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A B S T R A C T   

Three-dimensional (3D) image mapping of real-world scenarios has a great potential to provide the user with a 
more accurate scene understanding. This will enable, among others, unsupervised automatic sampling of 
meaningful material classes from the target area for adaptive semi-supervised deep learning techniques. This 
path is already being taken by the recent and fast-developing research in computational fields, however, some 
issues related to computationally expensive processes in the integration of multi-source sensing data remain. 
Recent studies focused on Earth observation and characterization are enhanced by the proliferation of Unmanned 
Aerial Vehicles (UAV) and sensors able to capture massive datasets with a high spatial resolution. In this scope, 
many approaches have been presented for 3D modeling, remote sensing, image processing and mapping, and 
multi-source data fusion. This survey aims to present a summary of previous work according to the most relevant 
contributions for the reconstruction and analysis of 3D models of real scenarios using multispectral, thermal and 
hyperspectral imagery. Surveyed applications are focused on agriculture and forestry since these fields 
concentrate most applications and are widely studied. Many challenges are currently being overcome by recent 
methods based on the reconstruction of multi-sensorial 3D scenarios. In parallel, the processing of large image 
datasets has recently been accelerated by General-Purpose Graphics Processing Unit (GPGPU) approaches that 
are also summarized in this work. Finally, as a conclusion, some open issues and future research directions are 
presented.   

1. Introduction 

Remote sensing data is rapidly increasing and many real-world sce
narios are currently being replicated by the generation of virtual models 
in a three-dimensional (3D) space. The multi-source data integration 
and the 3D representation of surveyed areas is a hot research topic in the 
field of geoscience and remote sensing and has attracted the attention of 
both industry and academia (Ghamisi et al., 2019; Kotaridis and Laz
aridou, 2021; Zhang et al., 2018). Focusing on natural and environ
mental areas, it has many prospective applications in smart agriculture 
(Jurado et al., 2020b; Pádua et al., 2019; Poblete et al., 2020, 2021), 
forestry and nature preservation (Almeida et al., 2021; Guimarães et al., 
2020; Heckel et al., 2020; Schiefer et al., 2020) and monitoring (Mai
maitijiang et al., 2020). Initially, the acquisition of remote sensing data 

required costly sensors mounted on complex platforms. Likewise, the 
surveying procedure and data processing were labor-intensive and time- 
consuming. Observed scenarios were mainly represented as bi- 
dimensional (2D) maps and orthophotos, after applying manual pro
cesses to correct the image distortion (Vong et al., 2021). In this field, 
significant advances have been achieved by the development of efficient 
methodologies for data acquisition and processing, as well as the pro
duction of new sensor capabilities and aerial platforms. Accordingly, 
intense research is currently being carried out focusing on multi-source 
data fusion and remote sensing image mapping on 3D models. 

In recent years, huge datasets have been gathered for modeling and 
monitoring vegetation and environmental parameters aimed at the 
optimization of agroforestry activities. Many remote sensing techniques 
based on the use of specific sensors (LiDAR, RGB camera, multispectral, 
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thermal and hyperspectral) have been proposed to produce high-quality 
maps, orthomosaics and 3D models. In this context, the proliferation of 
Unmanned Aerial Vehicles (UAVs), as versatile and cost-efficient plat
forms to acquire multi-source data, enabled a detailed characterization 
of large scenarios, even with difficult accessibility. Undoubtedly, the 
UAV technology plays an important role in multidisciplinary research 
benefiting from unprecedented temporal, spatial and spectral resolu
tions of remote sensing data, acquired from multiple perspectives in a 
non-intrusive way. 

The advancement of UAV-based sensors facilitates the development 
of remote sensing applications, such as early disease detection (Terentev 
et al., 2022), crop assessment (Ahmad et al., 2021; Chauhan et al., 
2019), forest inventory (Pires et al., 2022), biomass estimation (Benson 
et al., 2021; Li et al., 2020b) and evaluation of natural disasters (Weiser 
et al., 2022). The use of UAVs for monitoring real-world scenarios also 
allows us to characterize them from multiple viewpoints by mounting 
different sensors. Current research aims to generate multi-source data
sets and reveal hidden features that cannot be directly identified in data 
obtained from a single sensor. This research domain has also been 
motivated by the reconstruction of high-detailed 3D models to represent 
the shape and morphology of plants, terrain and other natural and 
artificial entities. Accordingly, their geometry and physiological traits 
can be studied jointly to provide a more accurate assessment of the plant 
cycle and environmental sustainability. 

In parallel with the production of new UAV sensors, significant ad
vances have been presented in data fusion and processing. In the last few 
years, large datasets are being collected for Earth observations by 
capturing high-resolution imagery that enables the generation of 3D 
models represented by dense point clouds. In this field, machine 
learning techniques are increasingly being used for 3D data applications 
such as crop classification (Jayakumari et al., 2021), tree species seg
mentation using LiDAR (Light Detection And Ranging) models and 
hyperspectral images (Mäyrä et al., 2021; Zhang et al., 2020), and 
assessing impacts of canopy 3D structure (Regaieg et al., 2021), among 
others. Undoubtedly, the combination of geometry and multi-source is 
crucial to improve machine learning-based studies which might incor
porate multiple variables into the model (geometry, temperature, 
spectral reflectance, color, etc.). Accordingly, the fusion of remotely 
sensed images into 3D scenarios raises new developments based on 
image mapping to characterize the dynamic natural environment in 
terms of morphological and physiological features. Image mapping on 
3D models aims to define the texture or color information onto the 
surface, which can be represented as point clouds or triangle meshes. 
Thus, thermal, multispectral and hyperspectral imagery can be mapped 
on 3D models that bring new opportunities for the digitalization and 
analysis of our environment. In contrast to 2D remote sensing moni
toring, which has limitations for the detection of self-occluded vegeta
tion areas, and the assessment of the canopy structure, 3D allows us to 
extract the height and volume of plants and to develop a more accurate 
analysis of the plant’s condition considering geometric, spatial, and 
multi-temporal features. The use of 3D models in environmental, agri
culture and forestry applications facilitate the individual recognition of 
trees, the study of spatial colonization by dominant species in natural 
environments, forest inventory, and harvest forecasting. Therefore, and 
considering the growing importance of 3D in the above-mentioned 
fields, in this work we describe the most significant advances in 
remote sensing image mapping on 3D scenarios. The main contributions 
of this paper can be summarized as:  

• An overview, based on previous work of remote sensing techniques 
for image mapping on 3D scenarios, modeled from the real world. 
According to the data source, published works are classified into 
three categories: (1) thermal, (2) multispectral and (3) hyperspectral 
data. From this paper, readers can directly get a full picture of 
existing methods to obtain enriched 3D scenarios by using multi- 
source data.  

• Description of main processes to represent sensing data on the 3D 
model, considering critical aspects such as occlusion issues, spatial 
resolution, performance and automation level.  

• Review of the most used sensors and platforms for the acquisition of 
UAV-based imagery and 3D models.  

• Presentation and discussion of main applications in the field of 
agriculture and forestry that benefit from the 3D representation of 
remote sensing datasets. For instance, 3D models can be used to 
retrieve multi-view information to help substantially improve the 
land cover mapping compared to the classification that only relies on 
2D raster images. 

• Highlighting open issues in the characterization of real-world envi
ronments by fusing geometric and semantic features on existing 
techniques for the representation of thermal, multispectral and 
hyperspectral data. 

Table 1 summarizes previous surveys that cover similar research 
fields such where UAV-based remote sensing plays an important role. 
However, and different from the mentioned surveys, in this work we 
focus on multisensorial data fusion on 3D models. In addition, we pre
sent recent algorithms and their advantages for fusing 3D geometry and 
remote sensing imagery of natural environments. In summary, we pre
sent a compilation of a wide set of existing methods focused on studying 
not only the 3D reconstruction of real-world scenarios but also their 
combination with multispectral, thermal and hyperspectral imagery in 
forestry and agricultural applications. 

This survey is organized as follows. In Section 2, the methodology 
that guided the bibliographic research carried out is presented. Section 3 
provides a compendium of techniques for the acquisition and 3D 
reconstruction of real-world scenarios. Section 4 describes the main 
published works focused on fusing multispectral, thermal, and hyper
spectral data with 3D models. Afterward, current applications and future 
trends are presented and discussed in Section 5. Finally, the main con
clusions derived from this research domain are summarized and open 
research issues and future directions are pointed out in Section 6. 

2. Methodology 

The generation of three-dimensional models of real-world scenarios 
is increasingly common. However, most agricultural and forestry ap
plications require parameters that are derived from aerial imagery ob
tained by RGB, multispectral, hyperspectral and thermal sensors. The 

Table 1 
A summary of other surveys that collect previous research where UAV-based 
remote sensing plays an important role.  

Application Surveys Brief description 

Forestry and 
agriculture 

(Yandun Narvaez 
et al., 2017) 

Ranging and Imaging Techniques 
for Precision Agriculture 
Phenotyping 

(Li et al., 2021) Image fusion technology in 
agriculture 

(Tsouros et al., 
2019) 

UAV-Based Applications for 
Precision Agriculture 

(Guimarães et al., 
2020) 

Forestry Remote Sensing from 
Unmanned Aerial Vehicles 

3D modeling and 
mapping 

(Iglhaut et al., 
2019) 

UAV for 3D mapping applications. 

(Jiang et al., 
2020) 

Efficient structure from motion for 
large-scale UAV images. 

(Yao et al., 2019) Unmanned Aerial Vehicle for 
Remote Sensing Applications 

Data fusion (Ghamisi et al., 
2019) 

Multisource and Multitemporal 
Data Fusion in Remote Sensing 

(Paul and Pati, 
2021) 

A comprehensive review on remote 
sensing image registration 

Remote sensing image 
fusion on 3D models 

Our survey Integration of multi-source UAV 
imagery on 3D models.  
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combination of these multisensorial data with the 3D geometry of both 
natural and artificial entities brings a deep knowledge of our 
environment. 

Three-dimensional modeling applied to several remote sensing de
vices covers the methodology for generating 3D scenarios with any 
geometrical description while also integrating a specific data source. 
Thus, this review is not solely focused on 3D environments described 
through point clouds of meshes. To provide a relevant description of the 
state-of-the-art concerning remote sensing data fusion in 3D scenarios, 
we explore previous research related to the most relevant remote 
sensing data sources. In this work, we aim to collect existing method
ologies applied to visible, thermal, multispectral and hyperspectral im
agery. It is also intended, for this review, to describe the most common 
approaches related to the reconstruction of 3D environments, such as 
photogrammetric techniques, as well as enhancements of such methods 
and alternatives to conventional approaches, whether they can be 
applied to small or large datasets. Therefore, a review regarding their 
applicability to frequent surveying techniques, such as UAV flights, is 
also provided. Despite the growing interest in 3D modeling in recent 
years, some of the above data sources remain unexplored. This phe
nomenon is even more noticeable in natural environments, although 
some data sources have been successfully applied to other fields. Hence, 
we intend to provide the basis to build 3D models for agriculture and 
forestry, instead of only exploring existing works concerning our area of 
interest. 

A wide variety of research was reviewed in this study, using Scopus 
as the main cross-library search tool. Regarding multispectral, thermal, 
and hyperspectral modeling, the search was performed by the title, 
abstract and keywords, using the following term combination: “3D AND 
point AND cloud AND thermal”. For other imagery sources, the term 
“thermal” was exchanged by the corresponding source, i.e., “multi
spectral” and “hyperspectral”. This query produced 245 results for 3D 
thermal modeling, from which a total of 62 articles were finally selected 
in our review according to their relevance and concordance to the topic 
of this survey. Concerning 3D multispectral image mapping, the query 
returned 224 results, from which 85 were finally cited. Regarding 
hyperspectral data, the number of available studies drops dramatically 
(116 results). On the one hand, this is a field where major developments 
are now taking place, on the other hand, access to this type of tech
nology remains very expensive and, finally, the resources needed to 
process and analyze this data are still under development. Due to the 
high number of existing research in this domain, one of the main chal
lenges of this survey is to synthesize a selection of all those papers whose 
contribution to the remote sensing image fusion on 3D scenarios is 
significantly relevant after a careful review. Fig. 1 shows the weight of 
publications in the top-6 scientific journals in this field. 

3. The 3D reconstruction of real scenarios 

Three-dimensional representation of real-world scenarios has 
enjoyed a great interest to improve visualization and interpretation of 
the surveyed areas and phenomena. However, important limitations 
arise with data acquisition and monitoring processes in natural sce
narios. The acquired images have a strong dependency on the angle and 
position of the camera or sensor. In fact, some areas are not visible 
because they are self-hidden from the nadir view angle, especially the 
lower structures. To solve these issues, 3D point clouds and imaging- 
based sensors are combined, allowing to retrieve heterogeneous infor
mation of the whole model. Together, geometry and multi-sensor data of 
the surveyed area, provide a complete information system for a detailed 
analysis of natural and urban environments. 

A wide variety of sensors has burst onto the market for capturing the 
three-dimensional nature of the environment, whether natural or urban. 
Some examples of these acquisition technologies and methods are Radio 
Detection And Ranging (RaDAR) (Feng et al., 2016), Light Detection and 
Ranging (LiDAR) (Su et al., 2016) and structure-from-motion (SfM) 

(Rahlf et al., 2017). As shown in Fig. 2, several 3D modeling techniques 
can be performed following image-based approaches and either terres
trial or aerial LiDAR scans. Regardless of the method used, the result is a 
georeferenced point cloud with additional information such as the RGB 
color of the area representing each of these points. 

3D point clouds are commonly used to represent complex surfaces of 
the real world. In contrast to 3D meshes, they enable a simpler, denser 
and more close-to-reality representation (Cao et al., 2019). These 
models are generated to represent both static and dynamic 3D objects, 
which are characterized by dense geometric data and other attributes. 
The latter features are obtained by fusing point clouds with other 
sensing data such as multispectral, hyperspectral or thermal images. To 
this end, both point clouds and multi-source images are processed 
together to map relevant image-based characteristics for each 3D point. 
Reviewing the scientific literature, it can be concluded that this problem 
is similar to that posed in the technique called projective texture map
ping (Debevec et al., 1998; Everitt, 2001; Heckbert, 1986). Initially, the 
aim was to have additional effects on the realistic image synthesis field 
of research, to cast shadows or render translucent objects (Dachsbacher 
and Stamminger, 2003). 

This process poses a prevalent challenge in the current scenario, 

Fig. 1. Summary of the six most representative journals publishing work 
related to 3D point clouds concerning multispectral, hyperspectral and thermal 
data sources. To this aim, we performed a Scopus search using the keywords ‘3D 
AND point AND cloud’, appending the objective data source at the end of the 
title query. Along with the journal title, the publication method is also depicted. 
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considering the high number of high-resolution images and the huge 
amount of 3D points in the cloud - several hundred million can easily be 
achieved. These requirements led to the development and/or improve
ment of computational and storage capabilities, databases and true 
collaborative environments. Consequently, tools based on 3D data pro
cessing and analysis are rapidly increasing to enhance multidisciplinary 
research. The visualization and interaction with detailed 3D models 
should ensure real-time feedback for collaborative tasks. Therefore, 
efficient methods must be developed in order to exploit the hardware 
capabilities and ensure high performance. Thus, experts from different 
disciplines can collaborate on 3D environments which are user-friendly. 
To deal with the challenge of processing huge amounts of input data 
from different sources, general-purpose computing on graphics pro
cessing units (GPGPU) techniques are used to take advantage of parallel 
and distributed computing strategies. In contrast to classical sequential 
methods, the computational resources offered by graphics processing 
unit (GPU) devices suppose a great opportunity to accelerate image- 
based operations, 3D projections, geometric transformations, and oc
clusion tests (López et al., 2021c). 

Massive data processing is a trend that arouses the interest of 
multidisciplinary research since it allows accelerating large processing 
tasks. Some examples of this are feature matching of UAV imagery or 
any subsequent processing concerning large 3D point clouds, such as the 
occlusion detection, normal vector estimation, or their rendering to an 
image. However, there are still many limitations that should be 
addressed. GPGPU algorithms perform compute-intensive tasks, though 
they are also constrained by limited memory resources and high latency 
of data transfers between the central processing unit (CPU) and GPU. 
Nevertheless, new strategies are highly demanded to ensure not only fast 
methods but also the processing of large datasets. 

4. Remote sensing image processing and 3D mapping 

Nowadays, Remote Sensing is a hot research topic in terms of 
applicability and use cases, because of the large availability of remote- 
sensed datasets based on satellites and UAVs. Accordingly, high active 
and multidisciplinary research is being developed and many scientists 
aim to get advantages from the efficient acquisition methodologies for 
monitoring and evaluating real-world scenarios. 

The integration of multi-source imagery in combination with 3D 
reconstructed scenarios is still challenging since each dataset has 
different features related to the acquisition system (global or rolling 
shutter, push-broom sensors, etc.), intrinsic and extrinsic parameters, 
model image distortion and image resolution. Hence, heterogeneous 
datasets can be acquired but mapping them on 3D models is not a trivial 
task. Moreover, operations with large sets of images and dense geometry 
arise from high computational efforts, which may be accelerated with 

parallel computation. In the following subsections, the main contribu
tions in the field of remote sensing image mapping on 3D models are 
summarized. For this purpose, three types of images widely used in 
remote sensing are considered: multispectral, thermal and hyperspectral 
imagery. A general overview of the most used techniques for processing 
and 3D modeling from multispectral, thermal and hyperspectral images 
is presented in Fig. 3. Likewise, Table 2 summarizes a selection of papers 
considering the data source and procedures for the integration with 3D 
models. 

4.1. Multispectral imagery 

In the last decade, the proliferation of low-cost multispectral sensors 
led to the capture of massive multispectral data for different applications 
such as agriculture (Deng et al., 2018a; Pádua et al., 2019; Poblete et al., 
2020), forestry and ecology (Dalponte et al., 2020; Guimarães et al., 
2020; Schiefer et al., 2020; Torresan et al., 2017). More recently, deep 
learning techniques are also being explored in this type of data (Correa 
et al., 2020; Rapaka and Ramu, 2021, 2021; Yu et al., 2021). In the field 
of forestry and agriculture, recent advances have been proposed for 
multi-temporal monitoring (Du et al., 2020; Ghamisi et al., 2019; Jurado 
et al., 2020b; Pádua et al., 2020) and semantic segmentation (Gani et al., 
2021; Jurado et al., 2020a; Qiu et al., 2020; Wan et al., 2021, 2021; 
Zhang et al., 2020). Multispectral sensors provide a limited number of 
narrow spectral bands, from which key plant-light interactions can be 
observed and many physiological parameters can be extracted and 
analyzed. In contrast to hyperspectral sensors described in Section 4.3, 
multispectral data only represents some meaningful spectral bands that 
are mainly used to monitor crops, soil and natural resources (López 
et al., 2021a). Moreover, spectral bands can be combined to compute 
spectral indices, such as Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Water Index (NDWI), Normalized 
Pigment Chlorophyll Ratio Index (NPCRI), among others. Over years 
many spectral indices have been introduced by the scientific community 
to assess complex environmental issues (Mesas-Carrascosa et al., 2020; 
Pôças et al., 2020; Zhang et al., 2021). 

The generation of 3D multispectral data is possible due to a high 
increase in image quality and resolution provided by recent acquisition 
systems. The 3D representation of reflectance distribution along the 
model surface allows us to develop a more detailed inspection and 
analysis of plant health. Thus, self-occluded features can be revealed by 
being observed from multiple viewpoints and represented on a 3D 
model. According to previous studies focused on the 3D reconstruction 
of multispectral imagery, in this survey two main categories are 
described considering the data acquisition system: satellite-based and 
UAV-based imagery. Fig. 4 shows multispectral datasets, their corre
sponding data sources and a plausible 3D model of a forest. Both types of 

Fig. 2. Graphical scheme summarizing 3D modeling methodologies and expected results. (a) Image-based techniques for the 3D reconstruction by terrestrial and 
aerial photogrammetry, (b) terrestrial-LiDAR techniques, and (c) aerial-LiDAR modeling. 
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Fig. 3. Workflow of main procedures observed in the literature for 3D modeling using multispectral, thermal and hyperspectral images. Dotted lines represent 
optional steps for improving the core algorithm. The mapping categories are summarized as follows: a) the 3D reconstruction is solely based on the SfM algorithm 
using images of the relevant sensor, b) a base point cloud is aligned with an alternative point cloud, in order to increase the positioning accuracy, c) a 2.5D point 
cloud is generated using a base point cloud and the orthomosaic of an alternative data source, d) images are mapped into the base point cloud once 2D and 3D 
features are identified and used to estimate pose parameters, e) features are sought in 2D to compute the transformation matrix between RGB and an alternative data 
source, and f) a new approach, considering sensors previously calibrated, with the aim of projecting multi-sensorial images on the point cloud. The term GCP refers to 
Ground Control Points, i.e., georeferenced points aimed at enhancing the precision of resulting point clouds. 

J.M. Jurado et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102856

6

imagery are extensively used by scientists and each one raises advan
tages but also limitations. Main techniques and popular sensors are 
reviewed to pose a general overview of existing solutions for the gen
eration of 3D multispectral models. 

The availability of high spatial resolution and multitemporal imag
ery from satellites allows for monitoring large-scale scenarios of the real 
world. These images can be obtained from different satellites of Amer
ican Landsat programs, Copernicus missions (Main-Knorn et al., 2017; 
Wulder et al., 2019) and other private projects (Airbus, Kompsat, 
SuperWill, Pléiades, etc.) (Effiom et al., 2019; Lee et al., 2020). For 
instance, the spectral resolution of Sentinel-2 (Copernicus program) is 
determined by thirteen spectral bands, four of them with the highest 
spatial resolution (10 m) in the visible and near-infrared (VNIR) range. A 
lower spatial resolution is presented for other bands in short-wave 
infrared (SWIR) ranges (20 m− 60 m). According to multispectral im
agery generated by Landsat 8–9, nine spectral bands with a spatial 
resolution of 30 m are provided. A higher image resolution is achieved 
by other satellites such as Pléiades 1 or Kompsat 3, with a Ground 

Sample Distance (GSD) of approximately 2.8 m/px. 
Traditionally, most of the previous work is based on satellite image 

mapping on 3D photogrammetric point clouds and LiDAR models for 
monitoring the forest structure (Bolton et al., 2020; Lechner et al., 
2020), multitemporal observation of crops (Gadiraju et al., 2020; 
Qadeer et al., 2021) and semantic segmentation of urban and natural 
scenarios (Ballouch et al., 2022; Saralioglu and Gungor, 2020). State-of- 
the-art reconstruction methods from satellite data typically generate 
elevation data. Over the last few years, promising studies have focused 
on the super-resolution of satellite images through different deep 
learning approaches (Gómez et al., 2022; Keshk and Yin, 2017; Müller 
et al., 2020; Nguyen et al., 2021; Rohith and Kumar, 2020; Stucker and 
Schindler, 2022). Consequently, the cited advances and modern high- 
resolution satellite sensors allow us to recover full 3D surfaces from 
multi-view satellite panchromatic images (Han et al., 2020; Rothermel 
et al., 2020; Rupnik et al., 2018). Digital surface models can be effi
ciently modeled with automatic image matching from multiple optical 
stereo images, which are acquired in the same orbit (Gui and Qin, 2021; 

Table 2 
Relevant papers for building a 3D multispectral, hyperspectral or thermal point cloud, using the methodology classification depicted in Fig. 3.  

Data source Methodology 

a) SfM b) SfM and ICP c) Orthomosaic 
Projection (2.5D) 

d) Registration of 
2D and 3D 
features 

e) Image registration f) Inter-sensor 
calibration 

Multispectral (Jiang et al., 2020; 
Villacrés and Auat 
Cheein, 2022) 

(Clamens et al., 
2021; Jurado et al., 
2020b, 2020a, 
2020c) 

(Comba et al., 2018; 
Matese et al., 2017; 
Shen et al., 2019) 

(Clamens et al., 
2021; Gui and Qin, 
2021; Liu et al., 
2018) 

(Maimaitijiang et al., 2020; Ruiz 
et al., 2019; Tsai and Lin, 2017) 

(Gu et al., 2020; 
Manzanera et al., 2016; 
Sankey et al., 2021; 
Valbuena et al., 2018) 

Thermal (Dahaghin et al., 2021; 
González et al., 2019; 
Grechi et al., 2021; 
Guilbert et al., 2020; 
Jeong et al., 2021; Zheng 
et al., 2020) 

(Hoegner and 
Stilla, 2018; Lin 
et al., 2019a; 
Maset et al., 2017; 
Webster et al., 
2018) 

(Adán et al., 2020; 
Lorenzo Comba 
et al., 2019) 

(Lin et al., 2019a; 
Zhu et al., 2019, 
2021) 

(Hoegner et al., 2016b; Huang 
et al., 2018; Javadnejad et al., 
2020; Landmann et al., 2019; 
Lin et al., 2019a; López et al., 
2021b; Macher et al., 2019) 

(Adán et al., 2017; Dino 
et al., 2020; Hoegner 
et al., 2018; Javadnejad 
et al., 2020; Landmann 
et al., 2019) 

Hyperspectral (Aasen et al., 2015; Cao 
et al., 2018; Näsi et al., 
2018, 2015; Sothe et al., 
2019; Yue et al., 2018) 

– (Li et al., 2020a; 
Nezami et al., 2020) 

– (Angel et al., 2020; Fang et al., 
2019; Jurado et al., 2021) 

(Almeida et al., 2021; 
Lin et al., 2019a; Sankey 
et al., 2017, 2018)  

Fig. 4. Comparison of satellite multispectral images (GSD: 10 m) from Sentinel-2 mission and UAV-based multispectral imagery (GSD: 3 cm). The UAV-based 
multispectral sensor captures four bands, whereas the satellite provides ten spectral bands. Both images show a mountain area in Jaén, Spain. This area is repre
sented by a photogrammetric point cloud. 
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Qin, 2019). The resulting 3D meshes or point clouds can be directly 
fused with multispectral bands of satellite imagery. According to the 
satellite’s capabilities to produce 3D multispectral data, the most recent 
studies only produce digital elevation models (DEM) enriched by spec
tral attributes to enable a more comprehensive characterization and 
view of the surveyed area (Dalponte et al., 2020; Sagan et al., 2021; 
Wang and Li, 2020). Thus, real-world 3D scenarios can be labeled and 
this data provides a high interest for many environmental applications. 
In fact, to increase the size of current multispectral satellite image sets, 
recent work is focused on Generative Adversarial Networks (GANs) for 
the generation of synthetic multispectral satellite images (Abady et al., 
2020; Mohandoss et al., 2020). These techniques allow obtaining 
labeled synthetic imagery that can be mapped on 3D scenarios in data- 
scarce regions. 

Recently, novel aerial platforms and multispectral sensors are 
emerging in order to increase the accuracy of spectral measurements, 
reduce the noise coming from different layers of the atmosphere, and 
increase the model coverage by multiple view-points with a higher 
spatial resolution (Deng et al., 2018a). The UAV’s capabilities to carry 
lightweight imaging systems have positively impacted recent research. 
To date, a wide range of multispectral sensors has been produced as 
summarized in Table 3. In contrast to satellite images, the GSD of UAV- 
multispectral imagery can be significantly reduced to ~ 2 cm/px by 
planning a flight of 30 m height. The increase in spatial resolution and 
the possibility to capture many overlapped images enable the develop
ment of image-based techniques for 3D model reconstruction. In the 
following, according to the sensor’s features and proposed methodolo
gies, a brief description of previous work and preliminary results are 
presented. 

Digital surface modeling may be performed by UAV photogram
metric reconstruction using multispectral imagery. James et al. (2021) 
highlighted the contribution of infrared channels (NiR and Red-Edge) 
compared to the visible ones for the XYZ accuracy in the digital sur
face model (DSM) reconstruction over the coastal fringe. 3D points are 
usually reconstructed using images in every single spectral band. 
Speeded up robust features (SURF) algorithms (Oyallon and Rabin, 

2015; Sedaghat and Mohammadi, 2019) and Scale-invariant feature 
transform (SIFT) algorithms (Saleem and Sablatnig, 2014) are 
commonly applied for feature detection and feature matching. Accord
ing to previous studies that summarized the results of aerial image 
registration (Tsai and Lin, 2017), the SIFT method outperformed other 
algorithms in terms of quality of results and runtime. In this scope, 
Matese et al. (2017) presented an assessment of the canopy height model 
in a vineyard using UAV-based multispectral imaging, Liu et al. (2018) 
proposed a method for multispectral 3D points registration and plant 
inspection and Zainuddin et al. (2019) discussed the multispectral 
camera capabilities to acquire 3D data. The extracted tie points were 
generated using SfM, which were then used as input to generate a dense 
point cloud based on the multi-view stereo (MVS). 

Although UAV multispectral images have enough resolution to 
directly generate photogrammetric point clouds, which may be 
upsampled later (Qian et al., 2021), other work is focused on multi
spectral image mapping on 3D models, which can be generated by using 
LiDAR sensors or RGB imagery. In the following paragraphs, recent work 
is presented considering: (1) image-based methods, and (2) LiDAR- 
based solutions for the generation of 3D multispectral data. Recently, 
Jurado et al. (2020b) proposed a novel pipeline to generate dense 
multispectral point clouds by mapping multispectral images on dense 
point clouds which were reconstructed using high-resolution RGB im
ages. Firstly, a sparse point cloud is reconstructed using NIR images. This 
3D model is then aligned with the RGB model and the resulting trans
formation is applied for each multispectral camera. Thus, a unique 
reference system is set and then, every multispectral image is mapped on 
the RGB point cloud considering the occlusion problem. Since multi
spectral images have a lower resolution than RGB images, the K-Nearest 
Neighbor algorithm is used for resampling to obtain spatially matched 
multispectral and RGB 3D models. With this solution, dense point clouds 
with multispectral attributes can be generated. Other studies focused on 
generating multispectral point clouds by digital aerial photogrammetry. 
Comba et al. (2018) used the exact detection of vineyards from 3D point- 
cloud maps, generated from UAV multispectral imagery. Shen et al. 
(2019) generated point clouds from UAV multispectral and RGB images 

Table 3 
List of the most used multispectral sensors available for being coupled with UAVs.  

Manuf. Sensor Spectral bands, center and bandwidth (nm) HFOV GSD@120 m (cm) Weight (gr) Research articles 

Parrot Sequoia Green: 550 (40) 
Red: 660 (40) 
Red-edge: 735 (10) 
Near-IR: 790 (40) 

63.9◦ 8 135 (Franzini et al., 2019) 

Micasense RedEdge-MX Blue: 475 (32) 
Green: 560 (27) 
Red: 668 (14) 
Red edge: 717 (12) 
Near-IR: 842 (57) 

47.2◦ 3.4 180 (Cunha et al., 2021; Isgró et al., 2021) 

Micasense Dual-camera system Coast blue: 444 (28) 
Blue: 475 (32) 
Green 1: 531 (14) 
Green 2: 560 (27) 
Red 1: 650 (16) 
Red 2: 668 (14) 
Red-edge 1: 705 (10) 
Red-edge 2: 717 (12) 
Red-edge 3: 740 (18) 
Near-IR: 842 (57) 

47.2◦ 3.4 508.8 (Chakhvashvili et al., 2021) 

Micasense Altum Blue: 475 (32) 
Green: 560 (27) 
Red: 668 (14) 
Red-edge: 717 (12) 
Near-IR: 842 (57) 
LWIR: 11 (6) μm 

48◦ 5.2 357 (Hutton et al., 2020) 

DJI P4 Multispectral Blue: 450 (16) 
Green: 560 (16) 
Red: 650 (16) 
Red-edge: 730 (16) 
Near-IR: 840 (26) 

62.7◦ 6.3 1487 (Lu et al., 2020)  
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for the estimation of forest structural attributes. Villacrés et al. (2022) 
proposed the reconstruction of 3D maps of vegetation indices retrieved 
from UAV multispectral imagery in forested areas. Moreover, other 
approaches are based on multispectral image registration on 3D point 
clouds using RGB-D sensors that can be embedded on aerial and 
terrestrial platforms. Clamens et al. (2021) implemented a method based 
on feature-based and corner-based registration approaches to register 
images from the RGB-D camera with multispectral images. The combi
nation of multispectral, RGB and depth images generates a multi-modal 
data fusion, which allows the extraction of several types of information 
from the environment. 

Regarding other studies that use multispectral 3D data, the integra
tion of LiDAR and multispectral sensors is a well-known solution. 
Initially, these acquisition systems were quite heavy and coupled to an 
aircraft. Previous work was developed for forest structure character
ization (Manzanera et al., 2016) and urban scene classification (Guo 
et al., 2011). Data fusion was carried out by the back-projection method, 
proposed by Valbuena et al. (2014). Back-projecting consists in 
rendering LiDAR from the optical camera’s perspective to obtain the 
pixel information that corresponds to each return. Then, the pixel at
tributes are fetched and retrieved to the original position of LiDAR 
returns, and these are effectively textured. This projection is developed 
considering information about the optical sensor architecture (internal 
parameters) and the platform position and bearing (external parame
ters). The collected multispectral data are usually transformed from 
Digital Numbers (DNs) values to both reflectance and several vegetation 
indices. Multispectral data along with the more traditional LiDAR height 
metrics are beneficial for predicting variables describing forest struc
tural heterogeneity (Valbuena et al., 2018) and for improving public 
data through a building segmentation from Convolutional Neural Net
works (CNNs) (Griffiths and Boehm, 2019). 

In recent years, the proliferation of light-weight LiDAR sensors al
lows a physical integration of a multispectral camera and LiDAR sensor 
coupled to a UAV. In this way, simultaneous data can be acquired with a 
greater spatial resolution. Both sensors usually use the same GPS-IMU 
configuration to avoid the registration challenges caused by time–
space inconsistency. Despite both sensors being mounted on the same 
platform, multispectral data must be calibrated following two main 
steps: (1) band-to-band multispectral image registration and (2) radia
tion correction model to solve the vignette effect. In this context, sig
nificant advances have been made focused on multi-sensorial data 
fusion. Sankey et al. (2021) proposed a novel methodology for UAV 
multispectral, hyperspectral and LiDAR data fusion in shrub-encroached 
desert grassland. However, this study is based on a comparison between 
2D data using orthomosaics that are generated by Pix4D software (Pix4D 
SA, Lausanne, Switzerland), in the case of multispectral imagery, and 
SpectralView software (Headwall Photonics, Inc, Bolton, USA), to reg
ister the hyperspectral swatches. Gu et al. (2020) carried out a method to 
integrate UAV multispectral data and LiDAR models. This is based on an 
inner relationship between the multispectral grid pixel and the unor
ganized point cloud from the LiDAR sensor. To infer a model from 2D 
images to 3D physical world two components are considered: reflec
tance and shading. 

The typical workflow of the proposed techniques involves the gen
eration of a multispectral orthomosaic and then, an orthogonal projec
tion is developed on 2.5D models. As shown in Fig. 5, orthomosaics are 
generated using either thermal, multispectral or hyperspectral images. 
However, the mosaicking process usually generates some misalignment 
areas derived from positioning errors. In addition, measured data are 
interpolated representing many viewpoints as one ortho-pixel. Despite 
recent advances fusing multispectral imagery and photogrammetric 
LiDAR point clouds, the preliminary results may be optimized in terms 
of computing time and spatial/radiometric resolution, since no real-time 
data fusion is mostly provided. Open lines are in progress using GPU 
devices as discussed in Section 4.4. 

4.2. Thermal imagery 

Thermography or Infrared (IR) thermal imaging is a non-invasive 
technique that has rapidly evolved due to the enormous progress 
made in the last decades whether we consider the IR spatial resolution, 
noise levels, dynamic ranges, data storage capabilities and on-board 
image processing (Alfredo Osornio-Rios et al., 2019; Vollmer and 
Möllmann, 2017). Furthermore, competition in the industry of camera 
manufacturers has recently led to a significant drop in their prices, thus 
opening up a wide range of applications, both in research and industry 
fields (Vollmer and Möllmann, 2017). 

4.2.1. Thermal overview 
Visual cameras have been the standard imaging device, although 

their main acquisition challenges are their dependence on external en
ergy sources, artificial or natural, to lighten the scene (Gade and Moe
slund, 2014). Furthermore, they cover a small spectrum range, with 
wavelengths from 380 to 780 nm. Thus, thermal imaging arises as a 
passive sensing technology that provides additional information to 
detect and describe object surfaces at a temperature greater than abso
lute zero (-273 ◦C) (Gade and Moeslund, 2014; Tsouros et al., 2019; 
Vollmer and Möllmann, 2017). 

IR imaging measures electromagnetic radiation emitted by surfaces 
in a small portion of the IR spectrum, ranging from 0.9 µm to 14 µm. 
Commercial cameras are available for three spectral ranges within the 
aforementioned range: short-wave (SW; 0.9 µm to 1.7 µm), mid-wave 
(MW; 3 µm to 5 µm) and long-wave (LW; 8 µm to 14 µm). In partic
ular, thermal cameras commonly operate within the LW range 
(González et al., 2019; Vollmer and Möllmann, 2017) as it represents an 
atmospheric window and also contains the peak energy emission for 
most Earth surfaces (González et al., 2019; Quattrochi and Luvall, 
1999). 

Regarding their acquisition, aerial thermal imagery can be acquired 
from satellites and airborne platforms (Fig. 6), although their spatial and 
temporal resolution are commonly not adequate for monitoring tasks, 
not to mention their cost (González et al., 2019). For instance, China- 
Brazil Earth Resources Satellite (CBERS) observes the same area once 
every 16 days and presents a spatial resolution of 80 m per pixel (“INPE/ 
CBERS,” 2021), while Landsat operates with several platforms with a 

Fig. 5. Top-view projection of multispectral- thermal- or hyperspectral- 
orthomosaic into a 3D RGB point cloud represented as a 2.5D model through a 
voxelization. 
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spatial resolution of 60 m and 100 m for Landsat 7 and Landsat 9, 
respectively, though it is typically resampled to 30 m (Landsat 9, n.d.). 
Therefore, UAVs emerge as an alternative to deploying low-cost and 
lightweight thermal sensors by operating as low-altitude satellites 
(González et al., 2019; Tsouros et al., 2019). Higher spatial and temporal 
resolution opens up fine-grain monitoring tasks, such as the manage
ment of geothermal features (Nishar et al., 2016), crop management, 
including the detection of plant diseases, (Yandun Narvaez et al., 2017; 
Zarco-Tejada et al., 2018) and error control in several industrial fields 
(Alfredo Osornio-Rios et al., 2019; McManus et al., 2016). Despite 
temperature has been described as an important parameter for crop 
monitoring activities, it usually requires multisensor approaches to in
crease the monitoring accuracy (Wachs et al., 2010; Yandun Narvaez 
et al., 2017). Hence, thermography can supplement other data sources 
for a better understanding of a particular environment (Hoegner et al., 
2018, 2016b; Hou et al., 2021; Truong et al., 2017). 

Consumer-grade thermal cameras are less expensive but also present 
lower resolution and defects. Among the available thermal sensors, 
Table 4 reports those sensors which have been previously used for 
research purposes. Though there exist hand-held devices, we have 
mainly described sensors that can be mounted on UAVs. Sledz et al. 
(2018) reported several sources of noise (environmental conditions, 
non-uniformity of Focal Plane Array (FPA), etc), causing thermal 
infrared (TIR) images to be commonly blurred and smoothed out (Jav
adnejad et al., 2020). As opposed to ideal optical imaging, the radiation 
of an object field is also observed by multiple neighboring detector el
ements (Vollmer and Möllmann, 2017). Beyond resolution challenges, 
the observation of thermal radiation is also error-prone for high-altitude 
platforms since it is attenuated by energy dispersion and atmospheric 
absorption (González et al., 2019; Quattrochi and Luvall, 1999; Vollmer 
and Möllmann, 2017). Though, this drawback is minimized using UAV 
platforms. 

Although outdoor scenes are mainly surveyed through aerial plat
forms, it is also common to find research studies focused on terrestrial 
measurements and indoor environments. Terrestrial thermography is 
performed by means of several devices. Lin et al. and (2019b) and 
Stojcsics et al. (2018) collect thermal data from a hand-held camera, 
whereas Zhu et al. (2021) record both thermal and LiDAR from a multi- 
sensor vehicle. Adán et al. (2020) used a robotic platform to autono
mously navigate and scan indoor environments. Previous work also 
exploited the use of custom systems that are geometrically calibrated by 
describing the lever-arm between multiple sensors (Hoegner et al., 2018; 
Javadnejad et al., 2020). This calibration is performed by collecting 

multiple images of a calibration pattern, either it is a common check
erboard (Javadnejad et al., 2020) or landmarks whose reflectivity fa
cilitates their finding in thermal imagery (Adán et al., 2017). 

Concerning TIR applications, they can significantly differ whether 
we consider their Infrared band. However, their overall applications 
include energy inspections on buildings and energy installations 
(Alfredo Osornio-Rios et al., 2019; Gade and Moeslund, 2014), detection 
of human and animal operators occluded by vegetation (Yandun 

Fig. 6. Comparison of a) UAV-based thermal imagery with resolution 640x512 pixels and b) three satellite SWIR bands from Sentinel 2 mission within the 
Copernicus space program. The thermal sensor mounted on the UAV captures the spectral range 7.5–13.5 μm, whereas satellite bands present thinner intervals and 
cover mainly the SWIR wavelength range. Both images depict areas in the region of Jaén, Spain. 

Table 4 
Consumer-grade thermal devices that were explored in previous work. Their 
main characteristics are reported through their specifications, according to the 
manufacturer’s source.  

Device 
name 

Focal 
length 

FOV Image 
resolution 
(px) 

Spectral 
range 

Research 
articles 

DJI 
Zenmuse 
XT2 

13 mm 
19 mm 

32◦×26◦

25◦×19◦

640 × 512 
336 × 256 

LW 
(7.5–13.5 
μm) 

(Jeong et al., 
2021; López 
et al., 
2021b; Yuan 
and Choi, 
2021) 

FLIR A320 18 mm 25◦×18.8◦ 320 × 240 LW 
(7.5–13.5 
μm) 

(Guilbert 
et al., 2020) 

FLIR A35 9 mm 48◦×39◦ 320 × 256 LW 
(7.5–13.5 
μm) 

(Lorenzo 
Comba 
et al., 2019) 

FLIR ONE 87.12 
mm 

50◦×38◦ 80 × 60 LW (8–14 
μm) 

(Javadnejad 
et al., 2020) 

FLIR A65 25 mm 25◦×20◦ 640 × 512 LW 
(7.5–13.5 
μm) 

(Adán et al., 
2017; 
Clarkson 
et al., 2017; 
Jarząbek- 
Rychard 
et al., 2020; 
Lin et al., 
2019a; 
Westfeld 
et al., 2015) 

FLIR Tau2 
640 

13 mm 45◦×37◦ 640 × 512 LW 
(7.5–13.5 
μm) 

(Boesch, 
2017; Sledz 
et al., 2018) 

thermoMAP N.A. N.A. 640x512 LW 
(7.5–13.5 
μm) 

(Pádua 
et al., 2019)  
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Narvaez et al., 2017), as well as their tracking, biometric identification 
(Gade and Moeslund, 2014), detection of concerning biometric changes 
in animal production (McManus et al., 2016), an inspection of solar 
panels, structural assessment on industrial processes (Alfredo Osornio- 
Rios et al., 2019), etc. 

Regarding crop and forest management, thermography is applied to 
tree characterization by measuring their energy flux, evapotranspiration 
and photosynthesis (Webster et al., 2018), as well as for water stress and 
disease detection (de Oca and Flores, 2021; Yandun Narvaez et al., 
2017). Heating monitoring also prevents frost damage from crops (Yuan 
and Choi, 2021). Besides 2D analysis, the fusion of thermal data with 3D 
structures enriches environmental monitoring practices with 3D geom
etry. Therefore, it allows us to further evaluate the location of image 
details. In addition, 3D representations facilitate the embedding of 
thermal data in geodatabases (Antón and Amaro-Mellado, 2021; Lin 
et al., 2019a). 

4.2.2. 3D reconstruction from thermal imagery 
Although 3D structures involve both 3D point clouds and polygonal 

meshes, the first representation is the most conventional in the research 
field, whereas BIM (Building Information Modeling) models are also 
gaining interest as an accurate representation of real buildings for di
agnostics and rehabilitation purposes (Hoegner et al., 2016a; Iwaszczuk 
and Stilla, 2017; Macher et al., 2019). 

Despite this survey being focused on 3D modeling from remote 
sensing data and its application to forest and farming scenarios, most 
published studies related to thermographic 3D modeling explore their 
application in other fields, such as indoor and outdoor energy in
spections in buildings. Furthermore, previous work concerning natural 
environments proposes naive approaches, as their main goal is to 
analyze vegetation features instead of the modeling procedure itself, as 
shown in Table 5. Thus, in this section, we aim to review 3D thermo
graphic modeling techniques previously described in the literature, 
whether they are applied to fields of our interest or not. However, we 
also intend to discuss their applicability to forest and crop environments. 

Despite the low resolution of thermal imagery, photogrammetric 
approaches such as SfM-MVS are commonly described to build thermal 
point clouds, as they are part of most commercial solutions for pro
cessing remote sensing information. Some notable software applications 
are Pix4DMapper (Zheng et al., 2020), Agisoft Metashape (Grechi et al., 
2021; Guilbert et al., 2020; Lin et al., 2019a; Macher et al., 2019; Metcalf 
and Olsen, 2016), Autodesk Recap 360 (Lafi et al., 2017) or Zephyr 
(Clarkson et al., 2017; Maset et al., 2017), as they provide built-in 3D 
modeling tools based solely on photogrammetric techniques. Despite 
their simplicity, the reconstruction process becomes more challenging 
due to the aforementioned defects and limitations, which causes a sig
nificant reduction in the number of tie points during feature detection 
(Lin et al., 2019a). Consequently, resulting point clouds are sparser and 
less accurate whether we consider noise, gaps and incorrect spatial 

estimations, as reported in previous studies (Ham and Golparvar-Fard, 
2013; Hoegner et al., 2016a; Kong et al., 2018). Beyond thermal imag
ing challenges, the reconstruction of 3D point clouds with SfM is also 
prone to errors for environments with repetitive patterns or uniform 
textures, e.g. buildings and vegetation (Jarząbek-Rychard et al., 2020; 
Lin et al., 2019a; Mathews and Jensen, 2013). Hence, photogrammetric 
approaches are expected to generate less accurate results in environ
ments of our concern. 

SfM has been extensively studied as a first step for 3D thermographic 
modeling (Clarkson et al., 2017; Dahaghin et al., 2021, 2019; González 
et al., 2019; Grechi et al., 2021; Guilbert et al., 2020; Hoegner et al., 
2016b; Hoegner et al., 2016a; Hoegner and Stilla, 2018; Kniaz and 
Mizginov, 2018; Maset et al., 2017; Metcalf and Olsen, 2016; Nishar 
et al., 2016; Sledz et al., 2018; Webster et al., 2018; Westfeld et al., 2015; 
Zheng et al., 2020). However, the resulting point clouds typically suffer 
from insufficient resolution for monitoring tasks. Additionally, the 
recognition and marking of GCPs to accurately align the point cloud in a 
global coordinate system is limited in thermal imaging due to their low 
spatial resolution and contrast (Sledz et al., 2018). Consequently, SfM is 
frequently followed by several refining operations, mainly by using 
other data sources that provide the missing accuracy. Nevertheless, 
previous research has explored the reconstruction through SfM and the 
conventional marking of GCPs as the unique stage to further explore 
some of the cited applications (Dahaghin et al., 2021, 2021; González 
et al., 2019; Metcalf and Olsen, 2016; Nishar et al., 2016; Sledz et al., 
2018; Zheng et al., 2020). To solve the limited visibility of GCPs in 
thermal imagery, Boesch et al. (2017) and Nishar et al. (2016) used 
metal-coated GCPs with low emissivity in comparison with the sur
rounding vegetation. An example of non-metal coated GCPs is shown in 
Fig. 7. Previous work has also assessed the enhancement of the accuracy 
of External Orientation Parameters (EOP) by replacing the EOP esti
mated from devices with higher precision (e.g., RGB devices) (Jeong 
et al., 2021). 

Additionally, some preprocessing methods have been proposed to 
optimize photogrammetric procedures. Maes et al. (2017) estimated the 
parameters of the thermal camera using the Brown-Conrady distortion 
model. They proposed to correct temperature by decoupling the influ
ence of air temperature throughout several flights and improvements in 
image position were achieved considering the on-board GPS/GNSS log 
file. 

Table 5 
Classification of methods for 3D thermal modeling related to forestry and agri
culture, according to the preprocessing of thermal images (Thermal data source) 
and their registration to a global coordinate system (Registration). Alternative 
3D models are mainly provided by reconstructed RGB and LiDAR point clouds.  

Thermal data 
source 

Registration Previous work 

Thermal point 
cloud 

Ground Control Points 
(GCPs) 

(Boesch, 2017; González et al., 
2019; Guilbert et al., 2020; Nishar 
et al., 2016) 

GCPs and ICP with an 
alternative 3D model 

(Webster et al., 2018) 

Thermal 
orthomosaic 

Alternative 3D model (Lorenzo Comba et al., 2019; Neale 
et al., 2011a) 

Thermal images Alternative 3D model (Hosoi et al., 2019; López et al., 
2021b)  

Fig. 7. Non-metal coated GCPs and their representation surrounded by 
different materials. As depicted, GCPs cannot be properly marked over some 
environments (b) whether the neighboring materials present similar radi
ance behavior. 
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To overcome the limitations imposed by SfM keypoint detection, 
several studies propose alternative algorithms to enhance both feature 
extraction and the discard of false matching of point pairs. In this regard, 
Kong et al. (2018) discarded mismatches by applying first a K-Nearest 
Neighbor algorithm (KNN) to remove obvious false matches, followed 
by a modification of AC-RANSAC that includes the temperature as a 
constraint to distinguish correct matches from mismatches. As opposed 
to the RANSAC algorithm, both procedures are not dependent on a 
threshold given by model hyperparameters. On the other hand, feature 
descriptors are altered whether thermal imagery is merged with other 
data sources, e.g. RGB high-resolution imagery. 

4.2.3. 3D reconstruction from multi-source imagery 
Rather than building solely a 3D thermal model, the fusion of several 

data sources has been extensively investigated. RGB images are the main 
data source for 3D reconstruction, as they present higher resolution and 
thus allow producing more accurately dense 3D models. Therefore, most 
of the previous work is based on the building of RGB point clouds and 
the subsequent projection/alignment of thermographic information 
(Hosoi et al., 2019). Registration of visible and thermal imagery is 
performed through feature descriptors, either they are in 2D or 3D. 
Consequently, keypoints visible on both spectral ranges are automati
cally matched and filtered out to discard mismatches. Hence, the 
matching of features allows correlating both multidimensional data 
sources and projecting 3D RGB points into thermal imagery. Therefore, 
methods based on the projection yield large point clouds with upsam
pled thermal information. 

Some methods found in the literature consider that visible and 
thermal imagery can be perfectly aligned without any further registra
tion processing (Hou et al., 2021; Stojcsics et al., 2018). Under normal 
conditions, visible and thermal images are rarely corresponding to a 
fixed area due to device calibration, the delay between captures and 
vehicle movement (López et al., 2021a). This is valid, even for co- 
acquired images. As a result, image registration is refined by finding 
an affine or homography matrix to handle minor misalignments for co- 
acquired images. Unordered images are commonly handled by fusing 3D 
and 2D models. Other alternatives to avoid the alignment of images 
using their color data are based on the calibration of a multisensory 
system. Thermographic sensors are frequently combined with RGB 
cameras (Adán et al., 2017; Dino et al., 2020; Hoegner et al., 2018; 
Javadnejad et al., 2020; Landmann et al., 2019) and LiDAR sensors 
(Adán et al., 2017; Hoegner et al., 2018). To calibrate a dual-sensor co- 
registration, previous work estimated translation (lever-arm) and rota
tion (boresight) matrices to represent the relative difference between 
both systems through semi-automatic and manual identification of in
tensity features visible on any pair of images. Although this approach is 
theoretically correct, methods based on image registration that do not 
rely on a priori geometric calibration are proved to perform better in 
consumer-grade thermal cameras (Javadnejad et al., 2020). Once the 
relative transformation is known, either in 2D or in a dual-head system, 
RGB points can be projected into thermal imagery. Finally, larger point 
clouds can also be generated by mixing both RGB and thermal imagery 
in the bundle adjustment phase of SfM, followed by the generation of a 
dense point cloud that only integrates RGB data. As a result, thermo
graphic information is described with respect to RGB by means of SIFT 
features and the point cloud can be subsequently projected into thermal 
images (Hoegner et al., 2016b). However, it relies on SIFT capabilities 
for detecting features on images with different radiometric behavior. 

Regarding methods for image registration, as shown in Table 6, the 
main challenges concern the feature descriptor used to detect features, 
as edge detectors typically replace conventional descriptors, such as 
SIFT or SURF. For that purpose, Canny and Sobel filters have been 
previously applied to contour detection, thus allowing to obtain an 
affine transformation to register similar images (Bennis et al., 2013; 
Hoegner et al., 2016a, 2016b). The resulting contours can also be 
filtered out to extract only prominent edges through Hough transform 

(Hoegner et al., 2016b). These solutions are adopted to overcome SIFT 
limitations whether we use imagery with non-linear gradients. Never
theless, they can be hardly applied to natural environments with sig
nificant vegetation density since edges are not relevant enough for their 
pairing (Fig. 8). López et al. (2021b) solved the registration of visible 
and thermal imagery showing natural environments through an opti
mization technique called Enhanced Correlation Coefficient (ECC), 
based on the finding of the transformation matrix that maximizes the 
correlation coefficient. Given the limitations of linear-gradient feature 
extraction, previous work also describes methods based on the fre
quency domain to handle nonlinear radiation differences in thermo
graphic and visible images, such as Radiance Invariant Feature 
Transform (RIFT) (Lin et al., 2019a). Feature matching methods can be 

Table 6 
Summary of previous work concerning feature matching to estimate camera 
poses and reconstruct 3D models, either in 2D, 3D or both domains.  

Domain Algorithm  
Previous work 

RGB Thermal RGB Thermal 

2D ECC (López et al., 2021b) 
SIFT (Hoegner et al., 2016a, 

2016b) 
RIFT (Lin et al., 2019a) 

2D Sobel (Hoegner et al., 2016a, 
2016b) 

3D 2D Delaunay Canny (Bennis et al., 2013) 
Harris (Zhu et al., 2021, 2019) 
Plane 
estimation 

Sobel +
Hough 

(Hoegner et al., 2016b)  

Fig. 8. Comparison of the core of several registration algorithms. Edge-based 
descriptors are shown as insufficient methods for environments with dense 
vegetation, while methods not dependent on a linear gradient, such as ECC, are 
proved to perform better. ks refers to kernel size, the ratio is presented as r, and 
k is a free parameter on the Harris detector. The brightness of the two first 
images is increased to improve the visualization. 
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followed by techniques to discard mismatches, such as RANSAC (Lin 
et al., 2019a). Once images are registered, whether the projection of 
RGB captures is known, 3D points are projected into thermal images. 

Supervised procedures are also possible by manually selecting the 
corresponding pairs of RGB and thermal points. Ham and Golparvar- 
Fard (2013) estimated the Epipolar geometry between both camera 
systems by manually picking image features, whereas (Huang et al., 
2018; Macher et al., 2019) supported their decision through checker
board images and relevant image key-points, e.g. building corners. Lafi 
et al. (2017) performed semi-automatic stitching of thermal images by 
marking relevant features on thermal images, thus generating a pano
ramic image to be mapped to a 3D RGB point cloud. However, methods 
based on semi-automatic registration are not appropriate for datasets 
composed of a considerable number of images. In fact, their main 
advantage is the generation of thermographic models using a few im
ages, instead of larger datasets. 

Projection can also be performed by mixing both 3D dense point 
clouds and thermal imagery. For that purpose, the Perspective n Point 
(PnP) optimization problem is solved by pairing 3D and 2D features, 
thus estimating the camera pose. As previously described, they typically 
extract edge features. Although SIFT descriptor may be used in 2D, 3D 
and 2D must find similar features, whereas SIFT3D is reported to iden
tify an insufficient number of keypoints. Hence, contours-based ap
proaches replace conventional SIFT descriptor through Harris and 
Harris3D operators (Zhu et al., 2021, 2019). Moreover, Harris3D is 
shown as a robust method whose detected features are less likely to 
appear in other location in a single image. Instead of considering con
tours as significant features, Lin et al. (2019b) proposed to use the line 
intersections as key points. Nevertheless, there is seldom a robust 
method to accurately match 2D and 3D features. Therefore, the pairing 
is mainly performed by a human operator (Zhu et al., 2021, 2019) or by 
restricting the search space through GPS/GNSS data, along with RAN
SAC to discard mismatches (Lin et al., 2019a). Consequently, other ap
proaches seem to be more adequate and applicable to forest and 
agriculture applications, although using a reduced search space and 
extracting features concerning several edges (e.g., intersections) may 
increase its degree of applicability. 

The reconstruction of accurate RGB point clouds is also tempting for 
naive approaches based on the registration of both point clouds, in spite 
of the density and noise gap. This approach is suitable for re
constructions of thermographic models with sufficient density and 
quality. Therefore, alignment procedures benefit from RGB fine regis
tration to obtain a multi-source environment that enhances the posi
tioning of thermal models. Consequently, monitoring tasks perform 
further processing with RGB and thermal data. Minimization of differ
ences between two point clouds can be performed through Iterative 
Closest Point (ICP) by estimating the composite matrix of translation 
and rotation (scaling may also be considered) (Clarkson et al., 2017; 
Hoegner et al., 2016b; Hoegner and Stilla, 2018; Lin et al., 2019a; Maset 
et al., 2017; Webster et al., 2018; Westfeld et al., 2015). Webster et al. 
(2018) surveyed canopies through a LiDAR sensor instead of visible 
imagery. Rather than apply the raw ICP algorithm, thermal point clouds 
can be preprocessed by applying noise filtering and a coarse global 
registration through a rigid body transformation using the camera poses 
(Truong et al., 2017), whereas the ICP algorithm constitutes a local 
registration. An alternative to ICP is Fast Global Registration (FGR), 
which is proven to achieve better results for noisy datasets (Lin et al., 
2019a). Point clouds can also be registered by means of at least three 
GCPs whether they can be accurately identified on thermographic re
constructions (Dahaghin et al., 2019). In addition, the use of ICP along 
with KNN has been investigated to assign thermal data to RGB points, 
whose output is a dense 3D model with upsampled thermal information. 
Instead of performing this fusion in 3D space, more accurate results are 
achieved by projecting images directly into a dense visible point cloud. 

Building thermographic 3D models can also be performed by 
combining 3D point clouds generated by device alternatives to 

thermographic tools, such as LiDAR or visible sensors, with thermal 
maps placed in a common coordinate system. Comba et al. (2019) and 
Neale et al. (2011b) fused RGB point clouds with a registered thermal 
orthomosaic, whereas Adán et al. (2020) combined LiDAR results with 
360-degree maps of thermographic information. Hence, this approach 
relies on the generation of a thermal composition of limited resolution 
and its subsequent projection to a 3D model. In fact, these methods 
approximate a 2.5D model by providing depth values to thermal infor
mation (Juszczyk et al., 2021). Therefore, their results are more likely to 
present occluded areas that cannot be analyzed. Adán et al. (2020) 
overcame this challenge through a mobile scanning platform and the 
fusion of several thermal point clouds retrieved from different view
points by using the platform odometry and the ICP algorithm. 

4.2.4. Occlusion on 3D thermal reconstruction 
The projection of 3D points into thermal imagery poses challenges in 

terms of occlusion and sample aggregation. Firstly, occluded points may 
receive thermal information from foreground objects since their pro
jection in thermal imagery may be feasible and output valid coordinates 
within the image space (Fig. 9). On the other hand, a 3D point is more 
likely to be visible from multiple images, thus receiving distinct thermal 
samples (López et al., 2021b). The occlusion of 3D point clouds is 
frequently omitted due to their discrete representation, whereas polyg
onal meshes are easier to operate. However, the reconstruction of a mesh 
from a point cloud is not trivial for vegetation. Moreover, methods 
described in the literature for the estimation of a triangle mesh are 
dependent on several parameters to be adapted for each individual 
scenario (Cohen-Steiner and Da, 2004). Occlusion is mainly handled by 
using the well-known z-buffer (or depth buffer), where pixels of every 
image are mapped to one 3D point at most, i.e., the nearest point to the 
image viewpoint (Jeong et al., 2021; López et al., 2021c, 2021b). This 
method can also be adapted to sub-pixel SfM approaches since the di
mensions of the depth buffer determine its level of detail. López et al. 
(2021b) also managed the occlusion through a 3D approach, where 
points are represented by a spherical volume whose size depends on 
their distance to the image viewpoint, considering the GSD. Neverthe
less, 3D techniques require building data structures to accelerate queries 
on ray-volume intersections, such as the Bounding Volume Hierarchy 
(BVH) (Meister and Bittner, 2018). Remark that these data structures 
need to be built for each image, using a point subset consisting of several 
millions of volumes. 

Regarding aggregation of multiple samples, previous studies have 
conventionally averaged them (Hoegner et al., 2016b; Javadnejad et al., 
2020). Whether we consider individual samples to be consistent enough 
by themselves, maximum, minimum and any other averaging functions 
are presented as valid operators (Jeong et al., 2021). However, the se
lection of a suitable operator may be based on visualization results or 

Fig. 9. Representation of an occlusion scenario, where multiple 3D vertices 
along a ray are projected within the image plane. Though, the right model is 
occluded by the first figure. 
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metrics measuring the distance of the aggregated results from image 
samples (López et al., 2021b). Whether we aim to reduce distance with 
respect to original thermographic information, a penalty function is 
proposed to measure the error between the aggregation and multiple 
image samples, thus allowing to generate a recognizable compressed 
model as shown in Fig. 10. 

4.2.5. Temperature extraction 
Resulting point clouds from previous methods are regarded as 

grayscale intensity values, whereas thermal imagery provides further 
data as absolute temperature values. Accurate radiometric calibration 
has been previously encountered and handled through different 
methods (Fig. 11). 

Some devices allow capturing images in specific radiometric file 
formats containing several embedded parameters that enable the 
reconstruction of temperature values by applying the formula given by 
the manufacturer (López et al., 2021b; Teza and Pesci, 2019; Westfeld 
et al., 2015). For instance, FLIR One and Zenmuse XT2 allow recording 
RJPG imagery. The main advantages of radiometric file formats are their 
flexibility to modify emissivity factors from surfaces in the given for
mula. However, other file formats provide a digital number of n-bits 
which represents the output of the formula, thus presenting lower 
adaptability. Their translation to absolute temperature relies mainly on 
device functioning, as high/low resolution are assigned different factors 
(Zheng et al., 2020) in a linear equation as the one shown in Eq. (1): 

Tabs = F*DN − 273.15 (1)  

where 273.15 is the conversion factor between Kelvin and degrees, and F 
represents the previous factor related to devise resolution. 

Eq. (1) can be reformulated whether DN is given by a function fitting 
grayscale values and digital numbers (Zheng et al., 2020). Linear 
interpolation is also approached by integrating maximum and minimum 
temperature within the surveyed environment (Antón and Amaro- 
Mellado, 2021; Javadnejad et al., 2020). Finally, there exist commer
cial solutions to output temperature information from images, e.g., FLIR 
ResearchIR (Metcalf and Olsen, 2016). 

4.3. Hyperspectral data 

Following the latest developments both in unmanned aerial vehicles 
(UAVs) and in their associated technologies, new sensors have emerged. 

The more conventional and affordable sensors, presented in the previous 
sections, towards the integration with 3D data, have proven their use
fulness in many applications. When spectral resolution is not a 
requirement, significant outputs for the interpretation and understand
ing of the phenomenon under study are derived. However, in some ap
plications, there is a need to explore in greater detail the 
electromagnetic spectrum. In those cases, the accuracy and the spectral 
range of the conventional sensors may not suffice. In fact, for specific 
purposes, there may be a need to measure in detail several regions of the 
electromagnetic spectrum. To this end, it is explored the fact that ob
jects’ reflectance properties depend on the material and its physical and 
chemical state, as well as the surface roughness and sunlight incidence 
angle (Lombardo et al., 2020). The sensors that allow recording hun
dreds of spectral bands are called hyperspectral sensors and were 
initially employed in satellites and manned aircrafts. UAVs equipped 
with hyperspectral sensors provide new options to study high-resolution 
multi-temporal spectral data. A list of them is shown in Table 7. 

For each pixel in an image, a hyperspectral sensor acquires the light 
intensity (radiance) for a large number (typically a few tens to several 
hundred) of contiguous spectral bands. Every pixel in the image thus 
contains a continuous spectrum and can be used to characterize the 
objects in the scene with great precision and detail. Therefore, hyper
spectral sensors sample the spectral irradiance of a scene and collect 
three-dimensional (3D) data: two dimensions (x, y) representing the 
spatial coverage and the third dimension showing the spectral infor
mation (λ), originating from the so-called datacube. Thus, each pixel is 

Fig. 10. Overview of a penalty function that receives as input the original 
thermal measurements as well as the values aggregated by different operators, 
in order to measure the error from samples to the aggregation. 

Fig. 11. Scheme of a radiometric calibration procedure. Different methods are 
depicted here to extract the temperature of a thermal image. 

J.M. Jurado et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102856

14

formed by a specific spectral profile containing location data, followed 
by hundreds of digital numbers aligned with the corresponding spectral 
bands. 

Typically, four approaches can be used for acquiring hyperspectral 
imagery (HSI) in remote sensing. However, most sensors used in UAVs 
are classified as push-broom or snapshot. Since datacubes have a higher 
dimensionality than the two-dimensional (2-D) detector arrays currently 
used in RGB and multispectral sensors, system designers must resort to 
either measuring time-sequential 2-D slices of the cube (push-broom) or 
simultaneously measuring all elements of the datacube by dividing it 
into multiple 2-D elements that can be recombined into a cube in post- 
processing. Fig. 12 illustrates the main principles behind push-broom 
and snapshot approaches. 

Push-broom sensors include an input aperture (a long slit). A set of 2- 
D detectors is used, so that all points along the line represented by the 
slit are sampled simultaneously. To form the complete 2D image of the 
area of interest, the sensor is moved in the direction orthogonal to the 
slit. In the specific case of this review, the UAV that carries the sensor 
plays this role. The array of detectors is pushed along the flight direction 
to scan the successive lines, and hence the name push-broom. Instead of 
a line scanner, the snapshot approach allows simultaneous recording of 
spatial and spectral information. This type of sensor enables the acqui
sition of a complete spectral data cube in a single integration, generating 
images from the areas of interest. This approach allows to directly ac
quire data, which reduces the post-processing complexity to obtain a 3D 
data cube. 

It is worth noting that the type of sensor greatly affects field opera
tions, processing performance and the quality of the final product. More 
information regarding hyperspectral technology can be found in Adão 
et al. (2017). UAV-based hyperspectral technology continues to be 
developed. The fact that it allows us to obtain information in hundreds 

of adjacent narrow bands, will enable the acquisition of more complete 
information about the imaging scene, material or phenomenon. The 
fusion of different types of data with 3D information, regarding agri
cultural and forest applications, is the focus of this review. Considering 
hyperspectral data and 3D information fusion, it would provide a more 
accurate scene understanding. This would also allow the development of 
unsupervised automatic sampling of meaningful material classes from 
the target area exploring new machine learning approaches. 

Methods to compute 3D hyperspectral models were proposed in 
close-range applications. For instance, Zia et al. (2015) developed a 
method that applies structure from motion to images from different 
wavelengths and a 3D registration method to combine band-level 
models into a single 3D model. Yet, this method was applied neither 
in vegetation nor remote sensing HSI, only to objects in a controlled 
environment, by capturing images at different bands in the same posi
tion. Behmann et al. (2015) proposed a method to generate 3D models 
from push-broom HSI with potential for crop plant phenotyping in close- 
range applications. The method uses a polynomial image transformation 
to describe the non-linear effects occurring in plant phenotyping, 
considering not only the linear model of the push-broom sensors but also 
other distortion factors. Such 3D models were used to detect disease 
symptoms (Roscher et al., 2016) and data fusion with laser scanner 
models were also addressed (Behmann et al., 2016). 

However, methods that are applied in laboratory conditions benefit 
from a controlled environment and sensor orientation stability, which is 
challenging to ensure in a natural environment for remote sensing ap
plications, since that orientation conditions are always changing not 
only due to the orientation of the acquisition platform itself but also due 
to possible wind influence causing vibration to be induced on the sensor 
and in changes in the monitored scenes (Kalisperakis et al., 2015). Other 
works were capable of merging hyperspectral data in 3D models 

Table 7 
List of some hyperspectral sensors used for UAV-based HSI acquisition and its main characteristics.  

Manuf. Sensor No. of spectral 
bands 

Spectral range 
(nm) 

Acquisition 
type 

Weight 
(gr) 

Research articles 

Headwall 
Photonics 

Nano HyperSpec 272 400–1000 Push-broom 1200 (Li et al., 2017; Sankey et al., 2017, 2018) 

Cubert GmbH UHD 185 Firefly 138 450–950 Snapshot 490 (Aasen et al., 2015; Cao et al., 2018; Yue et al., 
2018) 

Senop HSC-2 hyperspectral 
camera 

Up to 1000 500–900 Snapshot 990 (Chan et al., 2021)  

Fig. 12. Portions of the data cube collected for a single detector integration period for (a) push-broom and (b) snapshot devices.  
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generated from standard RGB cameras or laser scanning, which enabled 
the 3D geological modeling (Nieto et al., 2010) or 3D mapping of un
derwater environments (Ferrera et al., 2021). Liu et al. (2020) provided 
an in-depth review of HSI and 3D technologies for plant phenotyping by 
analyzing the literature from close-range applications to remote sensing. 

In what concerns UAV-based remote sensing, the main focus of this 
paper, despite the flexibility offered by small-sized unmanned aerial 
systems, which enable data acquisition with high spatiotemporal reso
lutions than other remote sensing platforms (Pádua et al., 2017), the 
integration of hyperspectral sensors in UAVs is restricted due to payload 
capacity and flight autonomy (Adão et al., 2017; Bruning et al., 2020). 
These facts limit their employment to the monitoring of small-scale 
areas and research-oriented applications. Even so, UAV-based 3D 
hyperspectral is a recent and powerful technology that has become 
available to small-sized UAVs during the last decade (Nevalainen et al., 
2017). Some approaches use non-imager spectrometers in UAV plat
forms along with an RGB sensor to accurately display the acquired 
spectral signatures on the 3D information generated from photogram
metric point clouds and orthophoto mosaics (Garzonio et al., 2017). 
Astor et al. (2020) combined UAV-based RGB data with ground-based 
snapshot HSI for biomass estimation in different vegetable crops. In 
what concerns the use of HSI in forestry and agriculture there are several 
approaches in literature exploring this topic. In the specific case of 
forestry studies and other ecosystems, in the vast majority, hyper
spectral data acquired from different types of sensors is mainly used for 
species classification and estimation of structural parameters. 

Regarding 3D data fusion of HSI, the challenges arise due to both 
data dimensionality and therefore storage capacity, more specifically, 
due to the nature of its data acquisition process. If HSI is acquired by 
using a snapshot sensor, a 3D context can be easily obtained since this 
data can pass through a photogrammetric processing pipeline. However, 
if a push-broom sensor is used instead, the challenges are complex to 
solve, since this data is generally computed in a raster form with optimal 
results for each swath. In the studies addressing this topic, LiDAR data 
was used for data fusion (Lin et al., 2019b; Sankey et al., 2017, 2018), 
nevertheless, the data fusion can benefit from work developed in the 
integration of these sensors in airborne platforms for vegetation moni
toring (Mitchell et al., 2015; Torabzadeh et al., 2014). If multiple swaths 
are intended to be merged, there can be issues with stitching them 
together. Several approaches were already proposed concerning this 
issue by performing co-registration based on feature detection on RGB 
and HSI imagery (Angel et al., 2020; Fang et al., 2019; Jurado et al., 
2021) which can help in combining push-broom HSI with 3D photo
grammetric point clouds. 

Nevertheless, since the data is acquired by scanning, few perspec
tives of the surveyed area are acquired (only in the direction of the flight 
lines), thus making a full 3D data acquisition from complex objects, 
which are the case of trees and crops. Methods that account for this 
spatial heterogeneity to correctly merge hyperspectral data from push- 
broom sensors into the 3D space are lacking in the literature. With 
such approaches, it would be possible to have a seamless data fusion 
integration that allows a very high spatial and spectral data availability, 
opening alternatives to study different scenarios by visualizing spectral 
signatures in different parts of the area under study. It can be expected 
that in the near future UAV-based hyperspectral sensors would be 
capable of acquiring data in other parts of the electromagnetic spectrum 
as short-wave infrared to extend capabilities of aerial spectroscopy in 
vegetation monitoring or even HSI on-board real-time data processing, 
in fact some proposals were already presented towards this direction 
(Horstrand et al., 2019; Saari et al., 2017). 

4.4. GPU-based acceleration for data computation 

The increase of data volume in terms of quantity and spatial reso
lution involves high-computational efforts for image stitching, matching 
and processing. Moreover, multi-source data integration and operations 

with large and dense 3D models can be sped up using parallel 
computing, although these algorithms are mainly constrained by the 
limited GPU memory (up to a few GBs). Nowadays, popular commercial 
solutions benefit from CUDA-compatible GPUs. For instance, Pix4D
Mapper and Agisoft Metashape enable the execution of photogram
metric procedures in GPU. Despite their hardware acceleration, most of 
them present a significant response time whether datasets consist of 
several hundreds of images, both for feature extraction and the building 
of a dense point cloud (Lafi et al., 2017). Whether we consider common 
commercial software already includes GPU computing, the exploration 
of alternative 3D modeling techniques is also studied in GPU, mainly for 
complementary data sources. For instance, the projection and occlusion 
in multispectral 3D point clouds is solved in GPU for point clouds of up 
to 271 million points and 1352 images (López et al., 2021c). 

Beyond the SfM procedure itself, post-processing techniques con
cerning 3D models are also well suited for their parallel development. 
Whether we aim to project new data sources into 3D models, we need to 
consider the occlusion to assign additional values to foreground objects. 
Hence, the occlusion detection requires iterating over the complete 
image dataset if solved in 2D. Consequently, its implementation is highly 
parallelizable, as shown in (López et al., 2021c, 2021b), thus requiring a 
few seconds to solve the occlusion problem, instead of requiring several 
hours. Normal estimation is also well suited for its development as a 
massively parallel methodology, as each point can find its surrounding 
points and estimate the normal vector (Jurado et al., 2020a; López et al., 
2021b). Given the nature of the revised data sources, specific scenarios 
may require transmitting information from remote locations and over 
low-bandwidth networks. Hence, their compression is a key factor for 
real-time monitoring. Additionally, compression algorithms are time- 
consuming tasks, thus High-Performance Computing (HPC) and hard
ware accelerators field-programmable gate arrays, such as FPGA, are 
frequently utilized to speed-up compression methodologies (Dua et al., 
2020). Remark that compression affects single hyperspectral captures as 
well as multi-temporal datasets. 

5. Discussion 

The integration of multispectral data and 3D models involves many 
recent solutions to monitor and study both morphological and physio
logical traits. The combination of spectral bands enables the calculation 
of different radiometric indices (NDVI and NDWI) and with the addition 
of LiDAR-derived DEM layers, Yeo et al. (2020) developed a method for 
vegetation classification and mapping of saltmarsh habitats. Previous 
work fused LiDAR data and multispectral imagery for disease detection, 
biomass estimation, crop monitoring, forest inventory, etc. 

The spatial resolution of LiDAR data is increasing so that the inte
gration of such 3D models with UAV-multispectral images leads to 
develop deep learning methods for the classification of tree species 
(Briechle et al., 2020), recognition of invasive species (Dash et al., 2019) 
and early detection of tree diseases (Yu et al., 2021). Other studies were 
proposed for the generation of multispectral 3D models by mapping 
multispectral images on dense RGB point clouds (Jurado et al., 2020b), 
the extraction of 3D individual tree structure (Dai et al., 2018) and the 
semantic segmentation of 3D models (Jurado et al., 2020a), lastly using 
deep learning approaches (Jing et al., 2021). The generation of multi
spectral 3D data presents many advantages for multiple applications 
since apart from the color, other spectral values can be studied and 
represented. Fig. 13 illustrates a general overview of preliminary results 
of existing methods for the reconstruction of 3D thermal and multi
spectral point cloud using UAV imagery. 

Due to its early state in the RS field, thermal data acquired in forestry 
environments has been mainly applied on multi-source fusion algo
rithms, thus addressing their applicability to scenes that pose a chal
lenge for photogrammetry (Boesch, 2017; Guilbert et al., 2020; López 
et al., 2021b; Nishar et al., 2016). Regarding 3D thermal research, 
previous studies describe the monitoring of radiation inertia (dynamics) 
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on crop soils (González et al., 2019), the temperature of forests with 
regard to the canopy height (Webster et al., 2018), crop classification 
considering their vigor (Lorenzo Comba et al., 2019), estimation of 
evapotranspiration and water, allowing to classify species (Neale et al., 
2011a) and chlorophyll estimation (Hosoi et al., 2019). Hence, overall 
3D thermographic research aims to provide long-term monitoring of 
crops and forestry, thus enabling further prediction over an environ
ment. However, 2D-based studies are both oriented towards short-term 
and long-term applications and therefore provide a background for de
cision making. Accordingly, thermal information can be used to monitor 
frost in a crop (Yuan and Choi, 2021), evaluate crop water stress (Qiu 
et al., 2021; Zhou et al., 2021), detect diseases on plants (Poblete et al., 
2021, 2020a; Zarco-Tejada et al., 2018), such as the well-known Xylella 
Fastidiosa, as well as for plant phenotyping (Xu et al., 2021). 

Fig. 14 shows the number of publications concerning 2D and 3D 
applications of thermal, multispectral and hyperspectral data sources, 
where thermal publications are slightly under the curve of hyperspectral 
research. Beyond the applications in forestry and agriculture, thermo
graphic and multispectral information allows us to strengthen our 
knowledge about other natural environments, including volcanoes, 
glaciers, coastal or geothermal areas, as highlighted by (Guilbert et al., 

2020). Given the relevance of simulation and prediction on emerging 
technologies (Angın et al., 2020; Chaux et al., 2021), thermal informa
tion is expected to represent a frequent data source for the monitoring of 
urban and natural environments. However, it is more likely to be applied 
on multi-source approaches along with visible, multispectral and 
hyperspectral captures, as it is commonly regarded as a complementary 
data source rather than the main data source (Lorenzo Comba et al., 
2019; Hosoi et al., 2019; López et al., 2021a; Neale et al., 2011a; Xu 
et al., 2021). 

Combining photogrammetric point clouds with hyperspectral data is 
a subject addressed in several studies. To map the damage of the Euro
pean spruce bark beetle (Ips typographus L.) at the tree level, Näsi et al. 
(2015) developed an approach to analyzing spectral differences using 
UAV-based photogrammetry and HSI. The photogrammetric processing 
enabled to generate simultaneously dense point clouds using hyper
spectral RGB-similar bands. For the remaining bands, a matching pro
cedure is applied. Individual tree identification from the dense point 
cloud showed an accuracy of approximately 75%. As for classification, 
76% and 90% as overall accuracies were obtained, respectively, when 
considering three classes (healthy, infested, dead) and two classes 
(healthy and dead). Demonstrating the potential of extracting forest 
health indicators in a bark beetle outbreak scenario. Following an 
identical data integration methodology, Nevalainen et al. (2017) 
addressed the use of UAV-based photogrammetric dense point clouds 
from RGB imagery along with HSI for individual tree detection and 
species classification in a boreal forest. Hyperspectral data were used 
alongside photogrammetric point clouds generated from RGB imagery. 
Both spectral and 3D point cloud features were used in the classification 
procedure where multiple classifiers were tested. The accuracy of the 
individual tree identification from point cloud data ranged from 40% to 
95%, depending on the analyzed area. As for the species classification 
95% overall accuracy was obtained in the random forest multilayer 
perceptron classifiers. The authors state that UAV-based hyperspectral 
3D remote sensing was successful even in challenging conditions and the 
methods can serve as a tool for automatic remote sensing in environ
mental monitoring tasks. Saarinen et al. (2018) implemented the indi
vidual tree crown approaches to estimate plot-level biodiversity 
indicators in the boreal forest, by merging structural metrics from 

Fig 13. Illustration of the point cloud characterization by 3D mapping of multi-source UAV images. Panel (A): a 3D point cloud and datasets of aerial images are 
shown with high-resolution RGB, thermal and multispectral images. Panel (B): a spatial correlation is defined to set the point clouds and all cameras in the same 
reference system. In Panel (C): the processes for image mapping on the 3D geometry and occlusion tests are depicted. Panel (D): several outputs and applications 
through the fusion of multi-sensor imagery and 3D models. The first figure shows a thermal distribution on the point cloud (López et al., 2021b), the second figure is 
obtained by the spectral image mapping on the point cloud (Jurado, 2020) and the last one shows the semantic segmentation of the 3D model considering all previous 
attributes assigned per each 3D point (Jurado et al., 2020c; Mäyrä et al., 2021). 

Fig. 14. Research concerning the three described data sources over a timeline 
from 1975 to 2021. The number of publications in recent years has experienced 
a significant increase with respect to previous periods. 
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photogrammetric RGB dense point clouds along with spectral features 
and vegetation indices derived from HSI. It was possible to assess the 
structural diversity with the integration of three-dimensional and 
spectral information, which can be suitable for biodiversity monitoring. 
In Cao et al. (2018) wetland ecosystems were monitored for mapping 
mangrove species using UAV-based snapshot HSI and digital surface 
models. Likewise, in Sothe et al. (2019) tree species classification (12) 
was performed in a Brazilian subtropical forest including photogram
metric RGB data along with HSI Li et al. (2017) showed that by using 
digital surface models and improvement in the mapping of wetland 
species is verified instead of using hyperspectral push-broom data only, 
misclassifications were reduced when considering height information. 
Nezami et al. (2020) performed the classification of tree species (pine, 
spruce and birch) using 3D CNNs trained with HSI UAV-based data and 
RGB sensors. The different extracted features were evaluated when used 
together or separated (spectral bands; red green blue and CHM). The 
combination of hyperspectral and RGB bands showed the best perfor
mance, outperforming RGB-only datasets. In this case, the improve
ments of CHM inclusion did not provide an added value for the tree 
species classification. 

UAV-based LiDAR and hyperspectral data fusion is addressed in 
some forestry studies. Sankey et al. (2017) explored UAV-based LiDAR 
and push-broom hyperspectral data fusion for forest monitoring. The 
available LiDAR data were used to estimate individual tree height and 
crown diameter as well as total tree canopy cover and tree density in 10 
m cells. HSI enabled to obtaining of spectral signatures for the vegeta
tion subjected to analysis, contributing to better vegetation discrimi
nation. A similar approach was applied by Sankey et al. (2018) for semi- 
arid land vegetation monitoring, LiDAR and HSI fusion enabled to the 
characterization of vegetation canopy structure along with the spectral 
signatures of each species. In both studies, LiDAR and HSI fusion showed 
the best overall accuracy for the classification of vegetation species and 
cover types than HSI data alone. Lin et al. (2019b) used HSI from a push- 
broom sensor and LiDAR data for the detection of pine shoot beetle 
(Tomicus spp.) stress at individual tree-level using a random forest 
classifier. The data from each sensor was evaluated by performing the 
classification separately and combining data from both sensors. To es
timate the shoot damage ratio, the LiDAR data had a better performance 
than HSI data, but the best results were obtained when combining data 
from both sensors. 

Regarding studies in agricultural crops, HSI and 3D information is 
mainly employed for the estimation of biomass and yield. Aasen et al. 
(2015) proposed a method to generate digital surface models from UAV- 
based HSI acquired using snapshot sensors. The processing pipeline has 
three stages. The first relies on the pre-processing of each cube and 
performing the radiometric calibration. Then photogrammetric pro
cessing is carried out to generate georeferenced point clouds and to 
compute a DSM and DTM of the entire surveyed area and orthorectified 
images for each acquired cube. The final step relies on the mosaicking of 
the orthorectified imagery in a geographical information system. Then, a 
hyperspectral digital surface model is created, connecting hyperspectral 
information in the 3D space. The 3D hyperspectral information was 
evaluated in a barley field. Regarding plant height, R2 = 0.70 was ob
tained with the 3D model underestimating approximately 0.19 m. The 
authors state that their approach can be applied to other image-frame 
sensors on the condition that each individual band from the data cube 
is spatially co-registered with each other. By combining spectral signa
tures and point cloud data Honkavaara et al. (2012) showed the possi
bility to estimate biomass in wheat and barley by training a support 
vector regression classifier. Yue et al. (2018) used a UAV-based snapshot 
hyperspectral sensor to estimate different crop parameters (leaf area 
index and above-ground biomass) in winter wheat in different epochs. 
These crop parameters were estimated by combining the vegetation 
indices and crop height models (CSMs) via linear and exponential 
equations, random forest, and partial least squares regression. Näsi et al. 
(2018) used HSI and photogrammetric 3D data for estimating several 

crop-related parameters (fresh and dry biomass and nitrogen amount) of 
barley and grass silage site. The orientations of the HSI bands that were 
not included in the photogrammetric processing were obtained by using 
a 3D band registration method for frame format hyperspectral which can 
be performed in complex forestry environments (Honkavaara et al., 
2017). The method showed a sub-pixel band registration error. A 
random forest was used for regression. The best results in biomass 
estimation were obtained when integrating hyperspectral and 3D fea
tures, while for nitrogen content estimation the use of hyperspectral 
features only showed the best results. Above-ground biomass was better 
estimated when combining crop height and vegetation indices. In Li 
et al. (2020a) the combination of UAV-based push-broom HSI and height 
models from an RGB sensor is explored to perform above-ground 
biomass estimation and yield prediction in potato crops. Vanegas et al. 
(2018) proposed a methodology relying on UAV-based RGB, multi
spectral and hyperspectral data for plant pest surveillance, as a case 
study, phylloxera (Daktulosphaira vitifoliae Fitch) detection in vineyards. 
In this case, the hyperspectral data were compared with plant-height 
vigor maps generated from the 3D information retrieved from the dig
ital elevation maps computed from the photogrammetric processing of 
the RGB data, by analyzing only pixels belonging to grapevines to assess 
the correlation of different vegetation indices and spectral signatures 
with vigor levels. 

Deng et al. (2018b) evaluated the radiometric and geometric per
formance of a UAV-based hyperspectral image system at different spatial 
resolutions by analyzing a set of targets in what respects to its reflec
tance and geometry changes from data acquired from 30 m to 120 m. 
Despite not addressing 3D environments, this study provides a set of 
methods and directions towards the selection of the appropriate spatial 
resolution for UAV-based HSI acquisition with snapshot sensors, 
increasing operational efficiency. 

6. Conclusions 

Nowadays, multispectral and LiDAR data fusion that provides a 
combination of spectral and 3D information is in serious demand in 
many fields. With the development of monitoring technology, how to 
effectively integrate multispectral, thermal and hyperspectral data with 
the 3D geometry of natural and urban scenarios has been one of the 
frontier problems. In this survey, the most relevant advances in multi- 
sensorial image fusion and 3D generation of multi-sensorial data are 
introduced. 

Smaller sensors, better optics, cheaper cost, more efficient batteries, 
increased stabilization, intelligent image capturing, and the ability to 
include all these capabilities on fully autonomous UAVs is the future 
challenge in remote sensing. The research community is taking the op
portunity and is testing and proposing new ways of producing usable 
datasets and associated processing and algorithms, improving actual and 
offering new applications in the fields of agriculture and forestry, but not 
only. These facts combined with constant advances in small UAV design 
and availability, and other sensors that go beyond RGB and broadband 
(e.g., hyperspectral), make-believe that both the quality and quantity of 
data to produce a usable 3D multiple-sources dataset of specific areas of 
interest will drastically increase in the near future. In this paper, we have 
presented different approaches allowing the exploitation of the capa
bilities brought by the combination of multiple data sources and 3D 
information in a data fusion context. 3D scene reconstruction capability 
from images and fusion of material surface spectra (RGB, thermal, 
multispectral and hyperspectral) have proven to be of great interest and 
are a hot spot in current research. Multiple existing methods for the 3D 
reconstruction were presented, depending on the type of data used and, 
mainly, on their resolution. The manipulation of multispectral and 
hyperspectral data is well established and essentially results from the 
translation of the methods used in RGB images. Still, it is quite different, 
in terms of processing the use of snapshot or pushbroom hyperspectral 
data (Jurado et al., 2021). The use of thermal data turns out to be a 
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completely different world. The reconstruction of 3D thermographic 
models was described as a process composed of several stages to extract 
reliable temperature information. To overcome the challenges posed by 
thermal imagery, a significant number of methodologies were previ
ously proposed. Each category was individually presented, and the top- 
most relevant studies were highlighted. However, the use of thermal 
data is yet to spread to agriculture and forestry-related applications. 

Finally, considering the huge amount of data needed to be processed, 
it is recommended to improve the computation capabilities using GPU- 
based systems. These would provide results in real-time taking advan
tage of efficient data transfer methods and 5G technology. Moreover, 
rapid advances in artificial intelligence techniques will enable new ap
proaches to data fusion, improving computational results and 
performance. 
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Holopainen, M., Hyyppä, J., 2018. Assessing biodiversity in boreal forests with UAV- 
based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 10, 
338. https://doi.org/10.3390/rs10020338. 

Sagan, V., Maimaitijiang, M., Bhadra, S., Maimaitiyiming, M., Brown, D.R., Sidike, P., 
Fritschi, F.B., 2021. Field-scale crop yield prediction using multi-temporal 
WorldView-3 and PlanetScope satellite data and deep learning. ISPRS J. 
Photogramm. Remote Sens. 174, 265–281. https://doi.org/10.1016/j. 
isprsjprs.2021.02.008. 

Saleem, S., Sablatnig, R., 2014. A robust SIFT descriptor for multispectral images. IEEE 
Signal Process. Lett. 21, 400–403. 

Sankey, J.B., Sankey, T.T., Li, J., Ravi, S., Wang, G., Caster, J., Kasprak, A., 2021. 
Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV 
hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based 
LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sens. 
Environ. 253, 112223 https://doi.org/10.1016/j.rse.2020.112223. 

Sankey, T., Donager, J., McVay, J., Sankey, J.B., 2017. UAV lidar and hyperspectral 
fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 195, 
30–43. https://doi.org/10.1016/j.rse.2017.04.007. 

Sankey, T.T., McVay, J., Swetnam, T.L., McClaran, M.P., Heilman, P., Nichols, M., 2018. 
UAV hyperspectral and lidar data and their fusion for arid and semi-arid land 
vegetation monitoring. Remote Sens. Ecol. Conserv. 4, 20–33. 

Saralioglu, E., Gungor, O., 2020. Semantic segmentation of land cover from high 
resolution multispectral satellite images by spectral-spatial convolutional neural 
network. Geocarto Int. 1–21. https://doi.org/10.1080/10106049.2020.1734871. 

Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., Schmidtlein, S., 2020. 
Mapping forest tree species in high resolution UAV-based RGB-imagery by means of 
convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 170, 205–215. 
https://doi.org/10.1016/j.isprsjprs.2020.10.015. 

Sedaghat, A., Mohammadi, N., 2019. High-resolution image registration based on 
improved SURF detector and localized GTM. Int. J. Remote Sens. 40, 2576–2601. 
https://doi.org/10.1080/01431161.2018.1528402. 

Shen, X., Cao, L., Yang, B., Xu, Z., Wang, G., 2019. Estimation of Forest Structural 
Attributes Using Spectral Indices and Point Clouds from UAS-Based Multispectral 
and RGB Imageries. Remote Sens. 11, 800. https://doi.org/10.3390/rs11070800. 

Sledz, A., Unger, J., Heipke, C., 2018. Thermal IR imaging: Image quality and orthophoto 
generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 42 
2018 Nr 1 42, 413–420. https://doi.org/10.15488/4082. 

Sothe, C., Dalponte, M., de Almeida, C.M., Schimalski, M.B., Lima, C.L., Liesenberg, V., 
Miyoshi, G.T., Tommaselli, A.M.G., 2019. Tree species classification in a highly 
diverse subtropical forest integrating UAV-based photogrammetric point cloud and 
hyperspectral data. Remote Sens. 11, 1338. https://doi.org/10.3390/rs11111338. 

Stojcsics, D., Lovas, I., Domozi, Z., Molnar, A., 2018. High Resolution 3D Thermal 
Imaging Using FLIR DUO R Sensor. In: Presented at the INES 2018 - IEEE 22nd 
International Conference on Intelligent Engineering Systems, pp. 000311–000316. 
https://doi.org/10.1109/INES.2018.8523914. 

Stucker, C., Schindler, K., 2022. ResDepth: A deep residual prior for 3D reconstruction 
from high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 183, 
560–580. https://doi.org/10.1016/j.isprsjprs.2021.11.009. 

Su, Y., Guo, Q., Xue, B., Hu, T., Alvarez, O., Tao, S., Fang, J., 2016. Spatial distribution of 
forest aboveground biomass in China: estimation through combination of 
spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 
173, 187–199. https://doi.org/10.1016/j.rse.2015.12.002. 

Terentev, A., Dolzhenko, V., Fedotov, A., Eremenko, D., 2022. Current state of 
hyperspectral remote sensing for early plant disease detection: a review. Sensors 22, 
757. https://doi.org/10.3390/s22030757. 

Teza, G., Pesci, A., 2019. Evaluation of the temperature pattern of a complex body from 
thermal imaging and 3D information: a method and its MATLAB implementation. 
Infrared Phys. Technol. 96, 228–237. https://doi.org/10.1016/j. 
infrared.2018.11.029. 

Torabzadeh, H., Morsdorf, F., Schaepman, M.E., 2014. Fusion of imaging spectroscopy 
and airborne laser scanning data for characterization of forest ecosystems – A 
review. ISPRS J. Photogramm. Remote Sens. 97, 25–35. https://doi.org/10.1016/j. 
isprsjprs.2014.08.001. 

Torresan, C., Berton, A., Carotenuto, F., Gennaro, S.F.D., Gioli, B., Matese, A., 
Miglietta, F., Vagnoli, C., Zaldei, A., Wallace, L., 2017. Forestry applications of UAVs 
in Europe: a review. Int. J. Remote Sens. 38, 2427–2447. https://doi.org/10.1080/ 
01431161.2016.1252477. 

Truong, T.P., Yamaguchi, M., Mori, S., Nozick, V., Saito, H., 2017. Registration of RGB 
and Thermal Point Clouds Generated by Structure From Motion. In: in: 2017 IEEE 
International Conference on Computer Vision Workshops (ICCVW). Presented at the 
2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 
pp. 419–427. https://doi.org/10.1109/ICCVW.2017.57. 

Tsai, C.-H., Lin, Y.-C., 2017. An accelerated image matching technique for UAV 
orthoimage registration. ISPRS J. Photogramm. Remote Sens. 128, 130–145. https:// 
doi.org/10.1016/j.isprsjprs.2017.03.017. 

Tsouros, D.C., Bibi, S., Sarigiannidis, P.G., 2019. A review on UAV-based applications for 
precision agriculture. Information 10, 349. https://doi.org/10.3390/info10110349. 

Valbuena, R., 2014. Integrating Airborne Laser Scanning with Data from Global 
Navigation Satellite Systems and Optical Sensors. In: Maltamo, M., Næsset, E., 
Vauhkonen, J. (Eds.), Forestry Applications of Airborne Laser Scanning: Concepts 
and Case Studies, Managing Forest Ecosystems. Springer, Netherlands, Dordrecht, 
pp. 63–88. https://doi.org/10.1007/978-94-017-8663-8_4. 

Valbuena, R., Hernando, A., Manzanera, J.A., Martínez-Falero, E., García-Abril, A., Mola- 
Yudego, B., 2018. Most similar neighbor imputation of forest attributes using metrics 
derived from combined airborne LIDAR and multispectral sensors. Int. J. Digit. Earth 
11, 1205–1218. https://doi.org/10.1080/17538947.2017.1387183. 

Vanegas, F., Bratanov, D., Powell, K., Weiss, J., Gonzalez, F., 2018. A novel methodology 
for improving plant pest surveillance in vineyards and crops using UAV-based 
hyperspectral and spatial data. Sensors 18, 260. https://doi.org/10.3390/ 
s18010260. 

Villacrés, J., Auat Cheein, F.A., 2022. Construction of 3D maps of vegetation indices 
retrieved from UAV multispectral imagery in forested areas. Biosyst. Eng. 213, 
76–88. https://doi.org/10.1016/j.biosystemseng.2021.11.025. 
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