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A B S T R A C T

The use of automatic systems for medical image classification has revolutionized the diagnosis of a high
number of diseases. These alternatives, which are usually based on artificial intelligence (AI), provide a helpful
tool for clinicians, eliminating the inter and intra-observer variability that the diagnostic process entails.
Convolutional Neural Network (CNNs) have proved to be an excellent option for this purpose, demonstrating
a large performance in a wide range of contexts. However, it is also extremely important to quantify the
reliability of the model’s predictions in order to guarantee the confidence in the classification. In this work,
we propose a multi-level ensemble classification system based on a Bayesian Deep Learning approach in order
to maximize performance while providing the uncertainty of each classification decision. This tool combines
the information extracted from different architectures by weighting their results according to the uncertainty
of their predictions. Performance is evaluated in a wide range of real scenarios: in the first one, the aim is to
differentiate between different pulmonary pathologies: controls vs bacterial pneumonia vs viral pneumonia. A
two-level decision tree is employed to divide the 3-class classification into two binary classifications, yielding
an accuracy of 98.19%. In the second context, performance is assessed for the diagnosis of Parkinson’s disease,
leading to an accuracy of 95.31%. The reduced preprocessing needed for obtaining this high performance, in
addition to the information provided about the reliability of the predictions evidence the applicability of the
system to be used as an aid for clinicians.
. Introduction

Nowadays, the use of medical images has revolutionized the diag-
osis of a high number of diseases. The reduction in the cost during
he acquisition of the images and the improvement in their quality
ave popularized their use in the diagnostic process. However, this is
ot a straightforward task and success in the detection of a certain
athology depends on many factors. One of the most important is that
iagnosis is still largely dependent on the expertise of the clinician. The
atient can have symptoms that are compatible with a high number
f diseases. Besides, some anatomical structures present in the images
an be similar to other abnormal findings associated with a disease,
ffecting the expert’s opinion. This leads to a manual, time-consuming
rocess that has inter and intra-observer variability, which may delay
he diagnosis and the election of the treatment. To mitigate this issue,
he use of computer aided diagnosis (CAD) systems based on artificial
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intelligence (AI) can play a decisive role. These methods rely on the
idea that they can learn the main features from a group of samples.
Then, the algorithm is able to generalize this knowledge, identifying
these features when new samples are analyzed [1–5].

Following this framework, previous works have employed machine
learning (ML) algorithms for the automatic detection of a wide range
of pathologies such as Parkinson’s or Alzheimer’s disease [6–9], and
most recently, pneumonia [10–14]. Classification systems employed
in CAD tools have the following general structure: (i) delimitation
of the regions of interest (ROI) to focus the analysis on them, (ii)
features extraction from these regions, (iii) classification based on those
features. Unlike classical methods based on the extraction of predefined
features, deep neural networks build a specific feature space for the
optimal class separation by means of a learning process. The emergence
of these approaches has revolutionized the automatic classification of
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medical images [15–22]. It is clear that deep learning models can
effectively identify the presence of a certain pathology. However, there
are some scenarios where they take a decision even though they do
not know the answer since the classification outcome only relies on the
most activated neuron of the output layer. Ref. [23] demonstrated the
need of evaluating the uncertainty of a model’s predictions in order
to improve the decisions of the system. Bayesian approaches offer a
practical solution for understanding the uncertainty of the decisions
of a neural network [24]. Specifically, they model a combination of
aleatoric and epistemic uncertainty in order to increase loss robustness
to noisy data, which usually leads to a boost in performance [23].

Despite the large performance provided by recent techniques, they
do not usually provide a crucial information regarding an individual
prediction is reliable or not. This is particularly important in contexts
where taking a wrong decision can have a dramatic effect. To address
this issue, in this work we employ an ensemble classification system
based on a Bayesian Deep Learning approach in order to maximize
performance while quantifying the uncertainty of each classification
decision. In particular, we combine a number of Convolutional Neural
Networks (CNNs) with the same structure, but differing in the kernel
size of their convolutional layers. This allows the classification system
to extract relevant features of different size and shape. The global
classification is performed by combining the predictions of the different
classifiers. The contribution of each individual classifier depends on the
uncertainty of their predictions: the lower the uncertainty, the higher
the weight, and vice versa. Performance of our proposal is evaluated in
a range of real scenarios: from the analysis of two-dimensional images
in order to distinguish between different types of pneumonia to the
application of the proposed method to three-dimensional images in
search of informative patterns associated with Parkinson’s disease.

This work skillfully uses Deep Learning within a Bayesian frame-
work for image classification, obtaining a large performance while
quantifying the reliability of the model’s predictions. The rest of the
paper is organized as follows. Section 2 summarizes related works
for image classification. Section 3 explains the different stages of the
proposed method. First, the CNNs employed are presented. Then, the
Bayesian framework used in combination with the neural networks
is detailed. Finally, the multi-level ensemble approach for the multi-
class classification is described. Afterwards, in Section 4, the proposed
method is applied to chest X-ray (CXR) images in order to evaluate its
suitability to the diagnosis of different types of pneumonia, in addition
to be applied to SPECT images to assess its ability for the diagnosis
of Parkinson’s disease. Specifically, a description of the datasets and
the preprocessing applied is included, as well as an explanation of the
main experiments carried out in this work. Results are summarized
in Section 7, whereas Section 8 includes a discussion of the findings.
Finally, the conclusions and future works are available in Section 9.

2. Related works

The use of automatic systems for image classification is widespread.
With reference to deep learning, a high number of methods have been
proposed for this purpose. The emergence of AlexNet [25] was a shift
of paradigm given the excellent performance achieved in the ImageNet
LSVRC-2012 contest. Based on this architecture, [26] reduced the size
of the convolutional kernels (and therefore, the complexity of the
model) while obtaining better results than AlexNet. The appearance
of inception modules [27] allowed to preserve a high performance
while considerably decreasing the complexity of the networks. This is
a crucial point because an increase in the depth of models can lead
to a worse performance given the difficulties in optimization [28]. To
mitigate this issue, [29] proposed the residual learning strategy (also
known as ResNet) in order to ease the training of networks with a
substantial complexity. Briefly, they introduced the concept of identity
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skip-connections. Unlike the traditional sequential pipeline, this allows
data to pass from any layer to any subsequent one [30]. The main ad-
vantage of adding this skip-connection is that any layer can be skipped
if degrades the performance of the model. The combination of inception
modules and residual blocks outperformed other models in the 2012
ImageNet challenge, in addition to highly accelerate the training of the
model [31]. Following the development of this architecture, [32] added
to Inception model a separable convolution component to perform
convolutions in a more efficient way.

Explainable models emerged with the aim of providing inter-
pretability to classification decisions. Intelligent systems are usually
considered as black boxes with a lack of transparency that do not offer
an explanation apart from the decision itself. This is specially relevant
in deep learning approaches, where disentangling the relationships be-
tween inputs and outputs is not a straightforward task. There is a high
number of approaches trying to provide explanations to deep neural
networks [33]. Most of them are known as attribution-based methods,
and they try to localize regions that contribute most to the decision
giving explanation in the domain of the input images. One example is
the Class Activation Mapping (CAM), an alternative which generates an
attribution map for visually explaining the decision of an image classi-
fication [34]. Based on this method, [35] developed a generalization of
CAM visualization that used gradients to generate class-discriminative
visualization. In [36], authors developed an explainable skin cancer
diagnostic system based on the taxonomic organization of skin lesions.
This system identified different pathologies and provided the most
probable spatial attention maps for each decision of the classification.
Other methods have based on producing alterations to the inputs and
comparing the outputs before and after these alterations to identify
meaningful predictors [37,38].

Previous works have employed uncertainty as an informative mea-
sure about a model prediction. Specifically, uncertainty can denote the
ambiguity and inaccuracy of a classifier decision when a model does
not know the answer. Bayesian Deep Learning makes use of uncertainty
to provide interpretable solutions. The applicability of this approach to
medical images has been widely demonstrated in literature. In [39],
a Bayesian approach was presented for the glaucoma diagnosis. This
method combines information from multiple medical data sources and
estimates the reliability of the classification prediction. Ref. [40] pro-
posed a supervised Bayesian learning algorithm for cancer detection
using terahertz imaging. Specifically, they used a reliability-based train-
ing data selection method in order to only use for training those data
that exceed a certain threshold. Similar architectures have been used
for coronary roadmapping in percutaneous coronary intervention [41],
in the segmentation of diabetic retinopathy lesions [42] and in the
segmentation of masses associated with breast cancer [43].

3. Methodology

3.1. Convolutional neural networks

The main aspect when developing an image classifier is the perfor-
mance that the approach can lead to. As explained in previous sections,
the emergence of algorithms based on deep learning revolutionized
the automatic classification of images because of the high accuracy
that they usually provide [44–47]. In medical images, CNNs have
been widely used from its development for the ImageNet classification
benchmark [48]. This architecture emerged as an attempt of replicating
the behavior of neurons. Briefly, CNNs combine different steps based on
convolution and pooling to allow the identification of different patterns
and low and high-level features [44,49]. The main component of a CNN
is known as convolutional layer. This operator takes the tensor 𝐕𝑖−1
containing the activation map of the previous layer 𝑖−1. Thus, the target
layer (𝑖) learns a set of 𝑁 filters 𝐖𝑖 with a bias term 𝐛𝑖, as follows:
𝐕𝑖 = 𝑓𝑎(𝐖𝑖 ∗ 𝐕𝑖−1 + 𝐛𝑖) (1)
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Fig. 1. Diagram of the bayesian framework of each individual network within the ensemble.
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where 𝑓𝑎(∗) is the activation function [44]. For a two-dimensional
environment (𝐕𝑖−1) of size 𝐻 × 𝑊 × 𝐶 (height, width and number of
hannels, respectively), 𝐖𝑖 is of size 𝑃 × 𝑄 × 𝑆 × 𝐾 where 𝐾 is the
umber of filters. The kth convolution term for the kth filter is

𝑖𝑘 ∗ 𝐕𝑖−1 =
𝑃−1
∑

𝑢=0

𝑄−1
∑

𝑣=0
[𝐖𝑖𝑘(𝑃 − 𝑢,𝑄 − 𝑣)

.𝐕𝑖−1(𝑥 + 𝑢, 𝑦 + 𝑣)]

(2)

Once convolution is performed, the activation of the filters in layer
are stored and passed to the next layer 𝑖 + 1. We employed a version
f the ResNet-18 presented in [50] as the base CNN. The output layer
ontained 2 neurons with softmax activation. Besides, dropout was
sed to prevent overfitting, and Batch Normalization for convergence.
he number of filters in each layer is an important parameter to be
et: the higher this number, the more patterns the model is able to
earn. There is no consensus in literature about the ideal number of
ilters, probably because different problems need CNNs with different
onfigurations, but numbers that are a power of 2 are usually taken.
e employed 16 filters in each convolutional block in order to strike a

alance between performance and computational burden. Fig. 1 shows
schematic representation of the CNN proposed.

.2. Bayesian deep learning

Most of the classification studies evaluate their performance in
erms of accuracy, area under the ROC curve or other measures derived
rom the confusion matrix. When modeling two classes such as in
inary classifications, a test sample is always labeled as belonging to
ne of the two classes. This means that although the test sample does
ot belong to any of these classes, it would be assigned to one of them.
his situation is not problematic because the development of a classifi-
ation system takes into account the classes to be modeled. In most of
cenarios, it makes no sense to introduce a test sample from a different
lass to the ones used for fitting the model. However, it would be
ighly useful to evaluate the reliability of a model’s prediction in order
o identify situations where the classifier does not know the answer.
ecent works have claimed the need of computing the uncertainty of a
55

rediction, allowing its rejection when the uncertainty is too high. To G
ddress this issue, Bayesian modeling can be used for understanding
ncertainty associated with deep learning models [51]. According to
he Bayesian framework, there are two types of uncertainty that can
e estimated: epistemic and aleatoric [24,52]. Epistemic uncertainty is
nherent to the model, which means that it can be reduced by increasing
he processed data. Estimating this kind of uncertainty requires to
odel distributions over the different parameters of the model. This

llows to optimize the network according to the average of all possible
eights. Let 𝐱 be a feature vector and 𝐖 the weights of a Bayesian
eural Network (BNN). Considering the output of the network as 𝐟𝐖(𝐱),

he model likelihood can be defined as 𝑝(𝐲|𝐟𝐖(𝐱)). For a given dataset
= {𝐱1,… , 𝐱𝑁}, 𝐘 = {𝐲1,… , 𝐲𝑁}, the Bayesian inference computes the

osterior probability over the weights 𝑝(𝐖|𝐗,𝐘).
Aleatoric uncertainty is usually referred as the uncertainty inherent

o the data, and can be divided into two sub-categories: (i) homosce-
atic uncertainty, which remains stable for every input of the model;
nd (ii) heteroscedastic, which assumes that noise varies for the dif-
erent inputs of the model [53,54]. Heteroscedastic uncertainty can be
odeled by modifying the loss function used by the neural network.

ince this uncertainty is a function of the input data, employing a
eterministic mapping from inputs to model outputs can allow the
stimation of the uncertainty. For a typical Euclidean loss 𝐿 = ‖𝑦 −
𝑦̂‖2, the Bayesian version will be given by 𝐿 = ‖𝑦−𝑦̂‖2

2𝜎2 + 1
2 log 𝜎

2. In
he latter one, the model predicts both 𝑦̂ and variance 𝜎2, so that if
odel prediction is not good, the residual term will be attenuated by

ncreasing 𝜎2. Therefore, the term log 𝜎2 prevents uncertainty growing
ntil infinite, leading to a learned loss attenuation. The process for
omoscedastic uncertainty is essentially the same, but considering the
ncertainty like a free parameter instead of a model output.

We modified the ResNet-18 described in Section 3.1 to obtain a
ayesian version of this CNN. Specifically, we replaced the determinis-
ic weights along the network by a distribution over these parameters.
ef. [55] demonstrated that applying dropout before every weight layer

n a neural network is mathematically equivalent to an approximation
o the probabilistic deep Gaussian process [56]. Briefly, they showed
hat the dropout objective minimizes the Kullback–Leibler divergence
etween an approximate distribution and the posterior one of a deep
aussian process. We applied a Monte Carlo dropout sampling to
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place a Bernoulli distribution over the network’s weights during the
test phase. This allows to obtain a distribution for the output pre-
dictions [57,58]. The statistics of this distribution reflect the model’s
uncertainty. As a result, the loss function depends on two factors: the
softmax values (as in the non-Bayesian modality) and the Bayesian cat-
egorical cross entropy, which is based on the input variance (see [23]
for more details).

3.3. Multi-level ensemble classification

There are some situations in which combining several classifiers
provide more accurate results than employing an individual one. This
is known as ensemble classification, and it is particularly useful for
fusing data from different modalities or when different architectures are
simultaneously employed [7,8]. Previous studies have used majority
voting to combine the output of the base classifiers [59,60]. Given the
Bayesian nature of the approach presented in this work, we propose to
employ the uncertainty of the prediction of each individual network to
weight their contribution to the ensemble. This means that if the un-
certainty of a classifier in a specific prediction is high, the contribution
to the final ensemble will be low, and vice versa [61]. Defining 𝑢𝑘𝑙 (𝐲)
as the uncertainty of the test sample 𝐲 obtained from the 𝑘th classifier
corresponding to the 𝑙th class, the empirical average of the 𝑙th weights
(inverse of uncertainties) over the K classifiers can be calculated as
follows:

𝐸𝑙(𝐲) =

∑𝐾
𝑘=1

1
𝑢𝑘𝑙 (𝐲)

𝐾
(3)

The class label of the test sample 𝐲 is then assigned to the class with
he maximum average weight as:

𝑎𝑏𝑒𝑙(𝐲) = argmax
𝑙

𝐸𝑙(𝐲) (4)

We employed this approach for weighting the contribution of each
ember of the ensemble in order to guarantee that the classification
ecision is guided by the reliability of the decision, and not derived
nly from performance, as other much common ensemble frameworks
se. Identifying the patterns associated with two classes is an interest-
ng initial step in the development of a CAD system. However, there
re some contexts in which it is much more useful to differentiate
etween a number of classes. In order to perform the multiclass classifi-
ation, we employed a decision tree based on the One-versus-all (OVA)
pproach [62–64]. This alternative divides a multiclass problem into
number of binary sub-problems. In each one of them, one of the

lasses is considered as the positive class, whereas the other classes are
he negative class. Thus, the proposed method in this work provides a
olution that informs about the reliability of a prediction. Besides, the
ystem uses this uncertainty to assign a weight to each member of the
nsemble, in addition to be compatible with multiclass classification.

Fig. 2 shows a schematic representation of the entire classification
ramework. The CNNs differ in the kernel size of their convolutional
ayers and are combined within an ensemble method. The uncertainty
n the predictions of each individual classifier are then used to weigh
heir contribution to the final decision. This process can be summarized
s follows:

• Definition of a CNN that adapts to the idiosyncrasy of the spe-
cific classification problem. We selected the ResNet-18 as the
base CNN since its performance has been widely evaluated in
literature.

• Modification of the CNN in order to obtain a Bayesian version.
This is done by replacing the deterministic weights along the
network by a distribution over these parameters within a Monte-
Carlo dropout sampling. Thus, the CNN provides two different
outputs: the classification decision, and the uncertainty of this
decision.

• The decision of each CNN is combined within an ensemble frame-
work. The contribution of each individual CNN to the final deci-
56

sion is given by the reliability of their predictions.
. Application to pneumonia detection

In this section, we evaluate the applicability of our proposal as a tool
or the automatic classification of chest X-ray images. Specifically, we
ssess the performance of our method in order to identify the presence
f pneumonia, as well as distinguishing whether it is caused by viral or
acterial pathogens.

.1. Database description

We have used the dataset available in [65] for controls and patients
ho suffered from a bacterial or a viral pneumonia. According to the

nformation described in [66], the CXR images were selected from
etrospective cohorts of pediatric patients of one to five years old from
uangzhou Women and Children’s Medical Center, Guangzhou. All
XR images were obtained as part of patient’s routines clinical care.

nstitutional Review Board (IRB)/Ethics Committee approvals were ob-
ained. The work was conducted in a manner compliant with the United
tates Health Insurance Portability and Accountability Act (HIPAA) and
as adherent to the tenets of the Declaration of Helsinki. [66] collected
nd labeled a total of 6374 CXR images from children, including 4273
haracterized as depicting pneumonia and 1583 normal. From those
atients diagnosed with pneumonia, 2786 were labeled as bacterial
neumonia, whereas 1487 were labeled as viral pneumonia. Fig. 3
hows the CXR image from a control (CTRL), and a patient suffering
rom a bacterial (BAC) and a viral (VIR) pneumonia (see Fig. 3).

.2. Image preprocessing

When working with medical images, it is crucial to apply a prepro-
essing that improves the subsequent classification performance. This
s especially important in CXR images, where low X-ray radiation and
ovement during image acquisition result in noisy and low-resolution

mages. However, this preprocessing must adapt images to the needs
f the neural network. Due to computational and memory require-
ents, we downsampled the input images to obtain a final map of size
24 × 224. We also performed an intensity normalization procedure
or each individual image based on standardization. Each image was
ransformed such the resulting distribution has a mean (𝜇) of 0 and a
tandard deviation (𝜎) of 1, as follows:

𝐼 ′ =
𝐼 − 𝜇
𝜎

(5)

where 𝐼 is the original image and I′ is the resulting one.

4.3. Ensemble of Bayesian CNNs

As explained in previous sections, we propose the use of a method
based on an ensemble of Bayesian CNNs to obtain a measure of the
uncertainty of the predictions. The election and setup of the archi-
tecture was done according to the database to be analyzed. In our
case, the images correspond to CXR images from patients with different
lung pathologies. Patterns associated with each type of pneumonia
are similar among different subjects. However, there are some factors
like the virulence of the disease and the presence of other pulmonary
findings that can affect the identification of the patterns associated
with the different pathologies. To overcome this issue, we employed an
ensemble of seven neural networks, each one of them with a different
kernel size value in the range [3 − 15] with increments of two. This
means that the kernel size assigned to the first network was 3, 5 for
the second network and so on, until a size of 15 for the seventh CNN.
The number of neural networks and their kernel sizes were selected in
order to strike a balance between performance and computational cost.

Regarding the multiclass classification (controls vs. bacterial pneu-
monia vs. viral pneumonia), we used a decision tree with two levels in
order to distinguish between the different pathologies. In each level, an

ensemble of different kernel sizes was employed. This led to a two-level
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Fig. 2. Schema of the ensemble architecture proposed in this work based on the uncertainty in the prediction of each individual classifier.
Fig. 3. Representation of the different pathologies evaluated. From left to right, CXR image of a control, bacterial and viral pneumonia.
ensemble classification: one ensemble for the combination of different
kernels, and another one for combining binary classifiers to perform
multiclass classification. The decision tree relies on a process that can
be summarized as follows:

• First level: classification between normal vs. pneumonia. The
second class contains subjects diagnosed from the two different
types of pneumonia (bacterial and viral).

• Second level: classification between bacterial vs. viral pneumonia.

Fig. 4 depicts a visual representation of how the decision tree works.
Images that are labeled as pneumonia in the first level are passed to
the second one. Here, it is identified whether the virus that produced
the pneumonia was a virus or a bacteria. It is worth mentioning that
the binary classifier employed in each level has the same ensemble
structure that the one explained in Section 3.3.

5. Application to Parkinson’s diagnosis

We also evaluate the applicability of our method as a diagnostic
tool of Parkinson’s disease (PD) from SPECT (Single Photon Emission
57
Tomography) images. Specifically, we assess the ability of our proposal
to differentiate between the striatal region of PD patients and healthy
individuals.

5.1. Database description

The data used in the preparation of this article was obtained from
the PPMI (Parkinson’s Progression Markers Initiative, RRID:
SCR_006431). PPMI is an observational clinical study to verify pro-
gression markers in PD. For up-to-date information on the study, visit
https://www.ppmi-info.org/. Raw projection data are acquired into a
128 × 128 matrix stepping each 3 degrees for a total of 120 projection
into two 20% symmetric photopeak windows centered on 159 keV and
122 keV with a total scan duration of approximately 30–45 min [67].
269 DaTSCAN images have been used in this study, 158 from patients
suffering PD disease and 111 normal controls (CTRL). Fig. 5 provides a
visual example of the DaTSCAN images of a control and a Parkinson’s
disease patient (left and right, respectively).

https://www.ppmi-info.org/
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Fig. 4. Schematic representation of the decision tree employed for the multiclass classification.
Fig. 5. Slice of the 3D images corresponding to a control (left) and a PD patient (right).

5.2. Spatial normalization

Spatial normalization is widely used in neuroimaging studies, and it
is specially common when performing group analysis. The aim of this
operation is to reduce the anatomical differences (i.e. shape and size)
of the individual brains of the different patients. To do so, individual
images are mapped from their original space to a new and common
reference one, which is usually given by a template. We employed the
most frequent one, proposed by the Montreal Neurological Institute,
which is based on the average of 152 MRI scans from normal subjects.
The original DaTSCN images extracted from the PPMI dataset preserved
their original anatomical information. We used SPM12 to achieve the
best warping of the images with the DaTSCAN template defined in [68].
After that, we isolated the regions of interests, which are given by those
that reveal dopaminergic activity. This process leads to a high reduc-
tion in the size of the images (from (95,69,79) to (29,25,41)), which
allows a large decrease in the computational cost while preserving the
informative regions.

5.3. Intensity normalization

Another crucial aspect is related to the intensities of the prepro-
cessed images. The idea behind SPECT images is that the intensity
of the pixels provides an indirect measure of the neurophysiological
activity. Thus, similar intensity values should correspond to similar
drug uptakes, whereas differences in these values could reveal different
pathologies [69–72]. In order to ensure that intensity levels are related
to drug uptakes, we used an Integral Normalization [73], as follows:

𝐈̂𝑖 =
𝐈𝑖 (6)
58

𝐼𝑛,𝑖
where 𝐈𝑖 refers to the image of the ith subject in the database, 𝐈𝑖 is
the resulting normalized image, and 𝐼𝑛,𝑖 is the intensity normalization
value. This is computed as the mean of the image for each independent
subject. Finally, the resulting values were standardized in the range
[0,1].

5.4. Ensemble of Bayesian CNNs

As explained in Section 4.3, the setup of the proposed method
must adapt to the idiosyncrasy of the classification context. To do
so, we employed an ensemble of five neural networks with different
kernel sizes, from 2 to 6. It is important to note that SPECT are three-
dimensional images, whereas CXR employed in pneumonia detection
are two-dimensional. For this reason, we modified the convolutional
and pooling layers of the CNN in order to provide a three-dimensional
version of our Bayesian ensemble. It is worth mentioning that the
additional dimension of these images highly increases the computa-
tional burden of the analysis. We used five CNNs instead of the seven
employed in the classification of pneumonia in order to mitigate the
computational cost associated with the processing of 3D images while
preserving a high performance.

6. Performance evaluation

For all experiments, a 5-fold stratified cross-validation scheme was
used to estimate the generalization ability of our method [74]. The
performance of the classification frameworks was evaluated in terms of
different parameters from the confusion matrix, which can be computed
as follows:

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑆𝑒𝑛𝑠 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝑃𝑟𝑒𝑐 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐 × 𝑆𝑒𝑛𝑠
𝑃 𝑟𝑒𝑐 + 𝑆𝑒𝑛𝑠

(7)

where 𝑇𝑃 is the number of pneumonia patients correctly classified (true
positives), 𝑇𝑁 is the number of control patients correctly classified (true
negatives), 𝐹𝑃 is the number of control subjects classified as pneumonia
(false positives) and 𝐹𝑁 is the number of pneumonia patients classi-
fied as controls (false negatives). We also employed the area under
the curve ROC (AUC) as an additional measure of the classification
performance [75,76]. Since classes were unbalanced (e.g. the number
of pneumonia patients was higher than controls), we incorporated the
weights of the classes into the cost function in order to the majority
class does not contribute more than the minority one.

Given the ensemble nature of the system proposed in this work, we
employed a kappa-uncertainty diagram to evaluate the level of agree-
ment of the different classifier outputs while correcting for chance [77,
78]. This measure is based on Cohen’s kappa coefficient [79], which is
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widely accepted as the de facto standard for measurement of interan-
notator agreement [80]. Specifically, the kappa statistic compares an
observed accuracy with an accuracy obtained by chance, providing a
measure of how closely instances classified by a classifier match the
ground truth. Mathematically, Cohen’s kappa can be defined as:

𝑘 =
𝑝𝐴 − 𝑝𝐸
1 − 𝑝𝐸

(8)

where 𝑝𝐴 is the observed relative agreement between two annotators,
and 𝑝𝐸 is the probability of agreement by chance. Although acceptable
kappa statistic values vary on the context, the closer to 1, the better
the classification. Section 7 summarizes the kappa scores obtained by
different members of the ensemble classifier, as well as revealing the
relationship between the uncertainty of Bayesian networks and kappa
values.

As explained in Section 3.3, a decision tree was employed for mul-
ticlass classification. In order to build the kappa-uncertainty diagram
explained above, a combination of the uncertainties of the different
levels of the tree has to be computed. To do so, we employed a method
known as summation in quadrature [81], described as follows:

𝑢𝑐 (𝑦) =

√

√

√

√

𝑛
∑

𝑖=1
[𝑐𝑖𝑢(𝑥𝑖)]2 (9)

where 𝑢𝑐 (𝑦) is the combined uncertainty, 𝑐𝑖 is the sensitivity coefficient
and 𝑢(𝑥𝑖) is the standard uncertainty.

6.1. Experimental setup

6.1.1. Pneumonia detection
We define two experiments associated with the identification of

pneumonia:

• Experiment 1: Binary Classification between different groups
under two scenarios: CTRL vs. PNEU, which includes all images
labeled as CTRL and PNEU; BAC vs. VIR, which divides the
images from people diagnosed from pneumonia regarding the
cause of the disease is a bacteria or a virus. The whole Bayesian
CNN was trained using the Adam optimization algorithm [82],
with learning rate 0.001, 𝜙 = 0.9 and a decay of 0.001. The
number of epochs employed for training the system was 15, 20
for the CTRL vs. PNEU and BAC vs. VIR, respectively.

• Experiment 2: Multiclass Classification by using a decision tree
in order to distinguish between the three different pathologies
contained in the database. A binary classification is employed in
each of the two levels of the tree. The first level corresponds to
the CTRL vs. PNEU classification, whereas the second one contains
the BAC vs. VIR comparison. These binary classifiers employ the
same framework and configuration as in Experiment 1.

Table 1 provides an overview of recent work focused on the auto-
matic detection of pneumonia.

6.1.2. Parkinson’s diagnosis
Experiment 1: Classification between PD patients and normal

controls. The Bayesian ensemble of five CNNs was trained using the
Adam optimization algorithm [82], with learning rate 0.001, 𝜙 = 0.9
and a decay of 0.001. Besides, the system was trained during 30
epochs. Table 2 summarizes the results obtained by recent works in
the automatic diagnosis of Parkinson’s disease.

The experiments conducted in both scenarios (pneumonia detection
and Parkinson’s diagnosis) employ custom code. This was written in
Python 3.6, and a number of additional libraries was used: Keras library
over Tensorflow and Numpy 1.19.5. The experiments were carried out
on a cluster with the following hardware specifications: two Intel®
Xeon® E5-2630 node 2.40 GHz processors, with 10 cores per processor.
Besides, the total RAM memory capacity of the system is 128 GB.
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Regarding the execution time, it is quite dependent on the classification
scenario, whereas parameters such as the kernel size also affects the
computational cost. On average, our classification framework requires
5 h and 20 min for the pneumonia detection context, and 6 h and
15 min for the Parkinson’s diagnosis. Although the number of images in
this last context was lower than in the first one, the processing of 3D
images considerably increased the computational load, balancing the
time needed for performing the analyses.

7. Results

7.1. Pneumonia detection

We first explore how performance varies for the different ker-
nel sizes of the individual classifiers for all the binary classifications
performed (see Fig. 6). We can see that kappa score slightly varies
when increasing the kernel size in the two classification contexts. With
reference to uncertainty, only in the BAC vs. VIR scenario uncertainty
values drastically change for different kernel sizes. Therefore, there is
not a tendency that let us assure that there is a relationship between
these two variables. It is important to note the high levels of uncertainty
in this classification context when comparing to the first one, which
manifests the extreme difficulty of this specific classification. It is not
surprising that differentiating between a control and a patient who
suffer from pneumonia is a considerably easier task.

We observe that the discrimination ability of the system is very
high for the two binary classifications regardless of the kernel size em-
ployed. Results in terms of different performance measures are shown
in Table 3, whereas Fig. 7 depicts the ROC curves for the different
classifiers. Large values are obtained, as expected, in the CTRL vs. PNEU
ontext. However, these results confirm that our system can also sepa-
ate patients with the same diagnosis (pneumonia) but with a different
ause (bacteria, virus). We also use the kappa-uncertainty diagram to
valuate the level of agreement between the classifier outputs. Fig. 8
hows these diagrams for the two binary classifiers and the multiclass
erived from the decision tree, represented by a different color. The
loud points represent the kappa score-uncertainty obtained in each
old of the cross-validation scheme, whereas large stars represent the
entroid of the resulting distribution. From this figure, we can see
hat there is not a great difference between individual classifiers, in
onsonance with results derived from ROC curves.

It is interesting how this figure reveals that the combination of
lassifiers with a certain performance (high kappa score and low un-
ertainty) leads to an ensemble classifier with these features. However,
ncertainty is higher in the multiclass classifier for a similar kappa
core compared to individual ones. This means that, although classi-
ication performance of the decision tree is high, the uncertainty of
he resulting prediction is also higher than in binary classification.
his evidences the extreme utility of this kind of diagrams in Bayesian
eep learning and in contexts when reliability of predictions is of core
nterest. According to Table 3, the multiclass classifier has a superior
erformance than the CTRL vs. PNEU in some of the evaluated metrics.
owever, the uncertainty of the predictions is also higher (centroid of

he multiclass is farther to the right than the CTRL vs. PNEU centroid).
urther discussion regarding the results obtained and their clinical
mplications are provided in Section 8.

.2. Parkinson’s diagnosis

Fig. 6(c) shows the relationship between performance and the ker-
el sizes when trying to distinguish controls and PD patients. We
bserve that the kappa score remains stable regardless the size of
he kernels of each individual CNN. Besides, only the kernels with
he largest sizes (5 and 6 voxels) provide a less reliable prediction
ccording to the increase in the uncertainty obtained. Given the small
ize of the images it is not uncommon that large kernels lead to a poorer
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Table 1
Summary of previous works focused on the automatic identification of pneumonia.

Research work Dataset Method Classification context Results (%)

[83] 852 CXR images COVIDNet Normal vs. COVID Acc = 97.72
[84] 521 CT images Pretrained model Normal vs. COVID vs. Tuberculosis Acc = 97.32
[85] 161 Lung ultrasound CNN Normal vs. COVID vs. Bacterial pneumonia Acc = 91.80
[86] 1110 CT scans COV-CAF Normal vs. COVID Acc = 97.76
[87] 640 CT images FGCNet Normal vs. COVID Acc = 97.71
[88] 420 CXR images Machine learning COVID vs. Non-COVID pneumonia Acc = 94.00
[89] 194 922 CCT images Transfer learning Normal vs. COVID vs. Non-COVID pneumonia Acc = 99.00
[90] 1142 CXR images DarkNet Normal vs. COVID vs. Viral pneumonia Acc = 87.02
[91] 3487 CXR images DenseNet-201 Normal vs. Bacterial vs. Viral pneumonia Acc = 97.94
[92] 6214 CXR images CoVNet-19 Normal vs. COVID vs. Pneumonia Acc = 98.33
[93] 2905 CXR images InstaCovNet-19 Normal vs. COVID vs. Pneumonia Acc = 99.08
[94] 3522 CXR images CHP-Net Normal vs. COVID vs. Pneumonia Acc = 93.65
[95] 16 634 CXR images EfficientNet Normal vs. COVID vs. Other diseases Acc = 93.48
[96] 1218 CXR images DenseNet-201 COVID vs. Pneumonia Acc = 94.96
[97] 230 CXR images ConvNet Normal vs. COVID vs. Viral pneumonia vs. Bacterial pneumonia Acc = 95.60
[98] 13 975 CXR images CoV2-Detect-Net Normal vs. COVID vs. Pneumonia Acc = 99.34
[99] 112 120 CXR images CheXNet 14 diseases Acc = 87.00
[100] 1125 CXR images SLB and FFB Nets Normal vs. COVID Acc = 99.52
[101] 1508 CXR images EfficientNet Normal vs. COVID vs. Pneumonia Acc = 99.62
Table 2
Summary of previous works focused on the automatic identification of pneumonia.

Research work Dataset Method Classification context Results (%)

[102] 80 sMRI SVM-RBF PD vs. CTRL Acc = 87.5
[103] 182 PET SVM-sigmoid PD vs. PD vs. CTRL Acc = 91.26
[104] 624 SPECT CNN PD vs. PD vs. CTRL Acc = 96.00
[105] 642 SPECT CNN PD vs. CTRL Acc = 95.20
[106] 101 T1W1/DTI Ensemble PD vs. CTRL Acc = 96.88
[107] 153 TCS DNMLDM PD vs. CTRL Acc = 81.70
[108] 379 SPECT CNN PD vs. CTRL Acc = 86.00
[44] 642 SPECT CNN PD vs. CTRL Acc = 94.10
[45] 269 SPECT CNN PD vs. CTRL Acc = 95.10
[109] 98 PET/CT CNN PD vs. CTRL Acc = 93.00
[110] 406 MRI CNN PD vs. CTRL Acc = 95.30
[111] 341 PET CNN PD vs. CTRL Acc = 84.20
[112] 200 SPECT CNN PD vs. CTRL Acc = 85.00
[113] 230 MRI CNN PD vs. CTRL Acc = 81.00
Table 3
Performance of the ensemble classification approach proposed in this work in the different contexts evaluated. In the Parkinson’s diagnosis scenario, we employed as baseline
voxels as features (VAF) and a Linear Support Vector Machines (SVM). The optimum parameters were computed within a grid-search procedure.

Experiment Acc (%) Sens (%) Spec (%) Prec (%) AUC (%) F1-score (%)

Pneumonia detection

CTRL vs. PNEU 97.21 ± 2.87 96.63 ± 4.28 99.77 ± 0.18 99.92 ± 0.09 98.31 ± 2.15 98.22 ± 2.55
BAC vs. VIR 98.29 ± 0.91 98.25 ± 1.11 98.34 ± 0.67 98.77 ± 0.76 98.55 ± 0.98 98.37 ± 0.59
Multiclass 98.19 ± 1.50 97.18 ± 2.76 99.25 ± 0.32 99.55 ± 0.28 98.45 ± 1.41 98.54 ± 1.35

Parkinson’s diagnosis

CTRL vs. PD (Baseline VAF+SVM) 90.63 ± 1.23 91.23 ± 0.87 89.96 ± 1.76 90.25 ± 1.21 91.32 ± 1.43 90.57 ± 1.39
CTRL vs. PD (Our method) 95.31 ± 1.75 94.36 ± 1.34 95.76 ± 1.27 94.83 ± 1.62 95.55 ± 1.18 94.87 ± 1.41
performance. This is one of the reasons why we used relatively small
kernel sizes, in addition to the huge computational cost of convolution
in three-dimensional images. However, even in these extreme scenarios
the uncertainty is lower than in the context of pneumonia diagnosis,
evidencing the good performance of our method when processing this
kind of images. This ability for identifying the presence of Parkinson’s
disease can also be shown in Table 3, leading to an accuracy of
95.31%. Moreover, the ROC curve depicted in Fig. 7(b) provides a
visual evidence that the proposed system can be successfully applied
in this clinical context.

8. Discussion

In this study, a classification framework based on Bayesian Deep
Learning is proposed. This approach is based on the quantification of
the uncertainty of the model’s prediction. Specifically, we employed
an ensemble scheme in order to combine several Convolutional Neural
Networks with the same structure but different kernel size in the
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convolutional layers. This allows extracting information from features
of different size and shape. The decision of each individual CNN is
fused according to the reliability in the prediction of each one of
them, so that a prediction with a low uncertainty has a higher weight
in the final decision than a prediction with a high uncertainty. This
alternative was applied to two different datasets in order to evaluate
its performance in the classification of two-dimensional and three-
dimensional images. In the first dataset (pneumonia detection), three
scenarios with differential difficulty were evaluated: (i) the two classes
generated relatively big differences in the observed pattern (control
vs. pneumonia); (ii) the differences between the classes were lower
(bacterial vs. viral pneumonia); (iii) a multiclass context where simul-
taneously differentiating between three different pathologies. In the
second dataset, the aim was to differentiate between the striatal region
of PD patients and healthy individuals.

A high number of studies have employed Deep Learning for image
classification because of the high performance that usually provides.
However, most of these studies only evaluate the performance itself,
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Fig. 6. Performance associated with the different kernel sizes in terms of kappa and
uncertainty for the different classification scenarios: (a) Controls vs. Pneumonia; (b)
Bacterial vs. Viral pneumonia; (c) Controls vs. Parkinson’s disease.
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Fig. 7. ROC curves obtained in the different classification scenarios: (a) Pneumonia
detection; (b) Parkinson’s diagnosis.

Fig. 8. Diversity-uncertainty diagrams of the different levels of the multiclass classifier.
The 𝑥-axis represents the combined uncertainty of each individual classifier and the
resulting multiclass. The 𝑦-axis represents diversity of the classifiers evaluated by the
kappa measure. Each dot represents the kappa-uncertainty score obtained by a classifier
in one fold, whereas large stars represent the centroid of the resulting distribution. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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and not how reliable the prediction is. The Bayesian framework allows
the quantification of the uncertainty of a prediction, enhancing the
usefulness of a CAD system in real scenarios. Most important, the
information that uncertainty provides is even more useful when applied
in combination with ensemble classification. In fact, computing the
weight of each individual classifier according to the reliability of its
predictions offers an alternative to other fusing methods that are more
computationally demanding (those that are based on the accuracy
computed from an inner CV loop).

The high performance shown by the proposed method in all scenar-
ios manifest its large suitability for medical image classification, both
for two-dimensional and three-dimensional images. With reference to
2D images, our system is able to detect the presence of pneumonia in
CXR images, in addition to distinguish whether the source of the pathol-
ogy is viral or bacterial. The features extracted by convolutional blocks
of different kernel sizes contained relevant information that enhanced
the separability between the different classes. The combination of this
information is especially interesting in this context where the database
contains images from a different virulence of the disease. Pulmonary
affections caused by the different pathologies evaluated in this work
mainly depend on the severity of the disease. The ensemble method
proposed in this work allows the identification of patterns associated
with pneumonia without focusing on a specific size for the informative
regions. This crucial characteristic of our system is also relevant for
the PD diagnosis, since it is possible to detect the pathology without
inferring a specific magnitude of the striatal activity.

Another crucial aspect of the method proposed in this work is its
Bayesian nature. The aim of CAD systems regardless of the application
context is to maximize the classification performance, in terms of
accuracy, AUC, etc. However, in most scenarios it is also important to
know the reliability of the prediction itself. Neural networks are prone
to overfitting, which means that taking decisions based only on the
prediction can be counterproductive. In an extreme case, it is possible
that the classifier does not know the class a test image belongs to, but it
always has to assign a label, even though the output probability is near
to chance level. This is particularly problematic when developing a tool
for the diagnosis of a disease. Doctors need to know not only the global
accuracy obtained during the training and test of the model, but how
reliable the prediction of new individual samples is. This problem is
addressed with the inclusion of Bayesian elements in neural networks.
However, our findings reveal that this is not the only advantage that
this approach provides. We have demonstrated the high performance of
ensemble classification, even in situations where differences between
the patterns associated with the different pathologies are extremely
small. The novelty of our approach relies on the way the contribution
of each individual classifier to the global decision is computed. Weights
are usually derived from the accuracy of each individual classifier.
However, results can be biased if part of the predictions are obtained
by chance, i.e. when the output probabilities of the different classes are
almost equal. We overcome this problem by weighting the contribution
of each classifier according to the uncertainty of its predictions.

We have developed a tool that is able to distinguish between pat-
terns associated with different pathologies, but it is worth highlighting
the high performance obtained in the multiclass classification of the
pneumonia detection. In this case, the accuracy and the AUC obtained
were 98.19% and 98.45%, respectively, which is considerably higher
than the results provided by similar techniques in previous studies [10,
60,114–116]. There are two main relevant aspects derived from these
excellent results to be mentioned. First, the only preprocessing applied
to the data was the rescaling of the images to a lower resolution in order
to reduce the computational burden of the classification pipeline. We
did not perform other complex processes such as lung segmentation, but
the RAW rescaled images were used as the inputs of the classification
system. Thus, it is remarkable the high performance obtained by the
method proposed in this extreme situation. Second, results obtained
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in the multiclass scenario allow the application of the tool proposed
in this work in a more real context. The multiclass scenario is more
similar to a real context than binary classifications, where the simplest
case only distinguishes the presence (or not) of pneumonia. Results ob-
tained by the multiclass classifier reveal the usefulness of our method.
Regarding the results obtained in the diagnose of PD, the accuracy and
AUC obtained were 95.31% and 95.55%, respectively, which is higher
than most methods presented in recent works [103,105,108,111,112].
With reference to the preprocessing of SPECT images in PD diagno-
sis, the main difference is that images were coregistered, unlike CXR
images. This is the main reason why the baseline alternative evaluated
shows reasonable results. However, our method highly overcomes these
results, evidencing that it can also be successfully applied to 3D images.

9. Conclusion

In this paper, we propose an ensemble method for multiclass classi-
fication based on uncertainty. This is addressed by employing a number
of CNNs within an ensemble framework, where each CNN has the same
architecture but differs in the size of the kernels in the convolutional
layers. After training each network, the decision of each individual
one are combined according to the reliability of their prediction: the
lower the uncertainty, the higher the contribution, and vice versa.
Finally, a decision tree is used by dividing the multiclass problem into
a number of binary sub-problems. We obtained a 98.19% of accuracy
and AUC of 98.45% in the multiclass scenario, when different types
of pneumonia are distinguished, whereas Parkinson’s disease was suc-
cessfully diagnosed with a 95.31% of accuracy and AUC of 95.55%. The
combination of CNNs of different kernel sizes allows the identification
of informative patterns regardless of their size and shape. Moreover,
the reduced preprocessing needed for obtaining these results guarantees
a limited computational cost. Our findings validate the usefulness of
the proposed method in a medical context, both for two-dimensional
and volumetric images. In fact, the additional information that our
method provides (obtained from the uncertainty of the predictions)
paves the way to employ this methodology in a wide range of scenarios,
especially where prediction itself is not enough to take a reliable
decision.

CRediT authorship contribution statement

Juan E. Arco: Conceptualization, Methodology, Software, Inves-
igation, Writing – original draft. Andrés Ortiz: Conceptualization,
ethodology, Investigation, Writing – original draft. Javier Ramírez:
onceptualization, Methodology, Investigation, Writing – original draft.
rancisco J. Martínez-Murcia: Conceptualization, Methodology, In-
estigation, Writing – original draft. Yu-Dong Zhang: Conceptual-
zation, Methodology, Investigation, Writing – original draft. Juan
. Górriz: Conceptualization, Validation, Supervision, Investigation,
riting – original draft.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability
The authors do not have permission to share data.



Information Fusion 89 (2023) 53–65J.E. Arco et al.
Funding

This work was supported by the MCIN and FEDER ‘‘Una manera
de hacer Europa’’ under the PGC2018-098813-B-C32 and RTI2018-
098913-B100 projects, by the Consejería de Economía, Innovación,
Ciencia 𝑦 Empleo (Junta de Andalucía) and FEDER under CV20-45250,
A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects; and by
Spanish ‘‘Ministerio de Universidades’’ through Margarita-Salas grant
to J.E. Arco. Besides, funding for open access charge was provided by
Universidad de Granada / CBUA.

References

[1] Y. Zheng, X. Hu, Concurrent prediction of finger forces based on source
separation and classification of neuron discharge information, Int. J. Neural
Syst. 31 (06) (2021) 2150010, http://dx.doi.org/10.1142/S0129065721500106.

[2] W.Y. Peh, J. Thomas, E. Bagheri, R. Chaudhari, S. Karia, R. Rathakrishnan,
V. Saini, N. Shah, R. Srivastava, Y.-L. Tan, J. Dauwels, Multi-center validation
study of automated classification of pathological slowing in adult scalp elec-
troencephalograms via frequency features, Int. J. Neural Syst. 31 (06) (2021)
2150016, http://dx.doi.org/10.1142/S0129065721500167.

[3] Y. Xue, H. Zhu, F. Neri, A self-adaptive multi-objective feature selection
approach for classification problems, Integr. Comput.-Aided Eng. (2021) http:
//dx.doi.org/10.3233/ICA-210664.

[4] J. Buenaposada, L. Baumela, Improving multi-class boosting-based object detec-
tion, Integr. Comput.-Aided Eng. 28 (2020) 1–16, http://dx.doi.org/10.3233/
ICA-200636.

[5] S. Liapis, K. Christantonis, V. Chazan-Pantzalis, A. Manos, D. Filippidou, C.
Tjortjis, A methodology using classification for traffic prediction: Featuring
the impact of COVID-19, Integr. Comput.-Aided Eng. 28 (2021) 1–19, http:
//dx.doi.org/10.3233/ICA-210663.

[6] J. Górriz, J. Ramírez, A. Ortíz, F. Martínez-Murcia, F. Segovia, J. Suckling,
M. Leming, Y. Zhang, J. Álvarez-Sánchez, G. Bologna, P. Bonomini, F. Casado,
D. Charte, F. Charte, R. Contreras, A. Cuesta-Infante, R. Duro, A. Fernández-
Caballero, J. Fernández, Artificial intelligence within the interplay between
natural and artificial computation: Advances in data science, trends and
applications, Neurocomputing 410 (2020) 237–270, http://dx.doi.org/10.1016/
j.neucom.2020.05.078.

[7] J.E. Arco, J. Ramírez, J.M. Górriz, M. Ruz, Data fusion based on searchlight
analysis for the prediction of Alzheimer’s disease, Expert Syst. Appl. 185 (2021)
115549, http://dx.doi.org/10.1016/j.eswa.2021.115549.

[8] D. Castillo-Barnes, J. Ramírez, F. Segovia, F.J. Martínez-Murcia, D. Salas-
Gonzalez, J.M. Górriz, Robust ensemble classification methodology for I123-
Ioflupane SPECT images and multiple heterogeneous biomarkers in the
diagnosis of Parkinson’s disease, Front. Neuroinform. 12 (2018) 53, http://dx.
doi.org/10.3389/fninf.2018.00053.

[9] J.E. Arco, A. Ortiz, D. Castillo-Barnes, J.M. Górriz, J. Ramírez, Quantifying
inter-hemispheric differences in Parkinson’s disease using siamese networks, in:
J.M. Ferrández Vicente, J.R. Álvarez-Sánchez, F. de la Paz López, H. Adeli
(Eds.), Artificial Intelligence in Neuroscience: Affective Analysis and Health
Applications, Springer International Publishing, Cham, 2022, pp. 156–165.

[10] Y.D. Zhang, S.C. Satapathy, L.Y. Zhu, J.M. Górriz, S.H. Wang, A seven-layer
convolutional neural network for chest CT based COVID-19 diagnosis using
stochastic pooling, IEEE Sens. J. (2020) 1, http://dx.doi.org/10.1109/JSEN.
2020.3025855.

[11] S.-H. Wang, V.V. Govindaraj, J.M. Górriz, X. Zhang, Y.-D. Zhang, Covid-19
classification by FGCNet with deep feature fusion from graph convolutional
network and convolutional neural network, Inf. Fusion 67 (2021) 208–229,
URL http://www.sciencedirect.com/science/article/pii/S1566253520303705.

[12] T.B. Chandra, K. Verma, B.K. Singh, D. Jain, S.S. Netam, Automatic detection
of tuberculosis related abnormalities in Chest X-ray images using hierarchical
feature extraction scheme, Expert Syst. Appl. 158 (2020) 113514, http://dx.
doi.org/10.1016/j.eswa.2020.113514.

[13] M.A. Elaziz, K.M. Hosny, A. Salah, M.M. Darwish, S. Lu, A.T. Sahlol, New
machine learning method for image-based diagnosis of COVID-19, PLoS One
15 (6) (2020) 1–18, http://dx.doi.org/10.1371/journal.pone.0235187.

[14] J.E. Arco, A. Ortiz, J. Ramírez, Y.-D. Zhang, J.M. Górriz, Tiled sparse coding
in Eigenspaces for image classification, Int. J. Neural Syst. 32 (03) (2022)
2250007, http://dx.doi.org/10.1142/S0129065722500071.

[15] A. Lozano, J.S. Suárez, C. Soto-Sánchez, F.J. Garrigós, J.J. Martínez-Álvarez,
J.M. Ferrández, E. Fernández, Neurolight: A deep learning neural interface for
cortical visual prostheses, Int. J. Neural Syst. (2020) 2050045.

[16] P. Lara-Benítez, M. Carranza-García, J.C. Riquelme, An experimental review on
deep learning architectures for time series forecasting, Int. J. Neural Syst. 31
(03) (2021) 2130001, http://dx.doi.org/10.1142/s0129065721300011.
63
[17] M.A. Ozdemir, O.K. Cura, A. Akan, Epileptic EEG classification by using time-
frequency images for deep learning, Int. J. Neural Syst. 31 (08) (2021) 2150026,
http://dx.doi.org/10.1142/S012906572150026X.

[18] P. Lara-Benítez, M. Carranza-García, J. García-Gutiérrez, J. Riquelme, Asyn-
chronous dual-pipeline deep learning framework for online data stream
classification, Integr. Comput.-Aided Eng. 27 (2020) 1–19, http://dx.doi.org/
10.3233/ICA-200617.

[19] J. García-González, J. Ortiz-De-Lazcano-Lobato, R.M. Luque Baena, E. López-
Rubio, Background subtraction by probabilistic modeling of patch features
learned by deep autoencoders, Integr. Comput.-Aided Eng. 27 (2020) 1–13,
http://dx.doi.org/10.3233/ICA-200621.

[20] S. Hamreras, B. Boucheham, M.A. Molina-Cabello, R. Benítez-Rochel, E. López-
Rubio, Content based image retrieval by ensembles of deep learning object
classifiers, Integr. Comput.-Aided Eng. 27 (2020) 1–15, http://dx.doi.org/10.
3233/ICA-200625.

[21] Y. Hou, T. Chen, X. Lun, F. Wang, A novel method for classification of
multi-class motor imagery tasks based on feature fusion, Neurosci. Res. (2021)
http://dx.doi.org/10.1016/j.neures.2021.09.002.

[22] H. Noğay, H. Adeli, Detection of epileptic seizure using pretrained deep
convolutional neural network and transfer learning, Eur. Neurol. 83 (2020)
602–614, http://dx.doi.org/10.1159/000512985.

[23] A. Kendall, Y. Gal, What uncertainties do we need in Bayesian deep learning for
computer vision? in: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing
Systems, Vol. 30, Curran Associates, Inc., 2017, pp. 5574–5584.

[24] Y. Gal, Uncertainty in Deep Learning (Ph.D. thesis), University of Cambridge,
2016.

[25] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep con-
volutional neural networks, in: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, in: NIPS’12, 2012, pp.
1097–1105.

[26] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in: 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[27] M. Lin, Q. Chen, S. Yan, Network in network, 2014, CoRR abs/1312.4400.
[28] D.A. Borges Oliveira, L.G. Ribeiro Pereira, T. Bresolin, R.E. Pontes Ferreira,

J.R. Reboucas Dorea, A review of deep learning algorithms for computer vision
systems in livestock, Livest. Sci. 253 (2021) 104700, http://dx.doi.org/10.1016/
j.livsci.2021.104700.

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[30] A. Veit, M. Wilber, S. Belongie, Residual networks behave like ensembles
of relatively shallow networks, in: Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016, pp. 550–558.

[31] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-ResNet
and the impact of residual connections on learning, in: Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp. 4278–4284.

[32] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 1800–1807.

[33] X. Bai, X. Wang, X. Liu, Q. Liu, J. Song, N. Sebe, B. Kim, Explainable
deep learning for efficient and robust pattern recognition: A survey of recent
developments, Pattern Recognit. 120 (2021) 108102, http://dx.doi.org/10.
1016/j.patcog.2021.108102.

[34] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features
for discriminative localization, in: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 2921–2929, http://dx.doi.org/10.
1109/CVPR.2016.319.

[35] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-
CAM: Visual explanations from deep networks via gradient-based localization,
in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp.
618–626, http://dx.doi.org/10.1109/ICCV.2017.74.

[36] C. Barata, M.E. Celebi, J.S. Marques, Explainable skin lesion diagnosis using
taxonomies, Pattern Recognit. 110 (2021) 107413, http://dx.doi.org/10.1016/
j.patcog.2020.107413.

[37] R.C. Fong, A. Vedaldi, Interpretable explanations of black boxes by meaningful
perturbation, in: 2017 IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 3449–3457, http://dx.doi.org/10.1109/ICCV.2017.371.

[38] J. Wagner, J.M. Köhler, T. Gindele, L. Hetzel, J.T. Wiedemer, S. Behnke,
Interpretable and fine-grained visual explanations for convolutional neural
networks, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 9089–9099.

[39] Y. Chai, Y. Bian, H. Liu, J. Li, J. Xu, Glaucoma diagnosis in the Chinese context:
An uncertainty information-centric Bayesian deep learning model, Inf. Process.
Manage. 58 (2) (2021) 102454, http://dx.doi.org/10.1016/j.ipm.2020.102454.

[40] T. Chavez, N. Vohra, K. Bailey, M. El-Shenawee, J. Wu, Supervised Bayesian
learning for breast cancer detection in terahertz imaging, Biomed. Signal
Process. Control 70 (2021) 102949, http://dx.doi.org/10.1016/j.bspc.2021.
102949.

http://dx.doi.org/10.1142/S0129065721500106
http://dx.doi.org/10.1142/S0129065721500167
http://dx.doi.org/10.3233/ICA-210664
http://dx.doi.org/10.3233/ICA-210664
http://dx.doi.org/10.3233/ICA-210664
http://dx.doi.org/10.3233/ICA-200636
http://dx.doi.org/10.3233/ICA-200636
http://dx.doi.org/10.3233/ICA-200636
http://dx.doi.org/10.3233/ICA-210663
http://dx.doi.org/10.3233/ICA-210663
http://dx.doi.org/10.3233/ICA-210663
http://dx.doi.org/10.1016/j.neucom.2020.05.078
http://dx.doi.org/10.1016/j.neucom.2020.05.078
http://dx.doi.org/10.1016/j.neucom.2020.05.078
http://dx.doi.org/10.1016/j.eswa.2021.115549
http://dx.doi.org/10.3389/fninf.2018.00053
http://dx.doi.org/10.3389/fninf.2018.00053
http://dx.doi.org/10.3389/fninf.2018.00053
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb9
http://dx.doi.org/10.1109/JSEN.2020.3025855
http://dx.doi.org/10.1109/JSEN.2020.3025855
http://dx.doi.org/10.1109/JSEN.2020.3025855
http://www.sciencedirect.com/science/article/pii/S1566253520303705
http://dx.doi.org/10.1016/j.eswa.2020.113514
http://dx.doi.org/10.1016/j.eswa.2020.113514
http://dx.doi.org/10.1016/j.eswa.2020.113514
http://dx.doi.org/10.1371/journal.pone.0235187
http://dx.doi.org/10.1142/S0129065722500071
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb15
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb15
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb15
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb15
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb15
http://dx.doi.org/10.1142/s0129065721300011
http://dx.doi.org/10.1142/S012906572150026X
http://dx.doi.org/10.3233/ICA-200617
http://dx.doi.org/10.3233/ICA-200617
http://dx.doi.org/10.3233/ICA-200617
http://dx.doi.org/10.3233/ICA-200621
http://dx.doi.org/10.3233/ICA-200625
http://dx.doi.org/10.3233/ICA-200625
http://dx.doi.org/10.3233/ICA-200625
http://dx.doi.org/10.1016/j.neures.2021.09.002
http://dx.doi.org/10.1159/000512985
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb23
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb23
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb23
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb23
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb23
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb23
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb23
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb24
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb24
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb24
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb25
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb25
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb25
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb25
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb25
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb25
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb25
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb26
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb26
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb26
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb26
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb26
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb26
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb26
http://abs/1312.4400
http://dx.doi.org/10.1016/j.livsci.2021.104700
http://dx.doi.org/10.1016/j.livsci.2021.104700
http://dx.doi.org/10.1016/j.livsci.2021.104700
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb29
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb29
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb29
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb29
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb29
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb32
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb32
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb32
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb32
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb32
http://dx.doi.org/10.1016/j.patcog.2021.108102
http://dx.doi.org/10.1016/j.patcog.2021.108102
http://dx.doi.org/10.1016/j.patcog.2021.108102
http://dx.doi.org/10.1109/CVPR.2016.319
http://dx.doi.org/10.1109/CVPR.2016.319
http://dx.doi.org/10.1109/CVPR.2016.319
http://dx.doi.org/10.1109/ICCV.2017.74
http://dx.doi.org/10.1016/j.patcog.2020.107413
http://dx.doi.org/10.1016/j.patcog.2020.107413
http://dx.doi.org/10.1016/j.patcog.2020.107413
http://dx.doi.org/10.1109/ICCV.2017.371
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb38
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb38
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb38
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb38
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb38
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb38
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb38
http://dx.doi.org/10.1016/j.ipm.2020.102454
http://dx.doi.org/10.1016/j.bspc.2021.102949
http://dx.doi.org/10.1016/j.bspc.2021.102949
http://dx.doi.org/10.1016/j.bspc.2021.102949


Information Fusion 89 (2023) 53–65J.E. Arco et al.
[41] H. Ma, I. Smal, J. Daemen, T. van Walsum, Dynamic coronary roadmapping via
catheter tip tracking in X-ray fluoroscopy with deep learning based Bayesian
filtering, Med. Image Anal. 61 (2020) 101634, http://dx.doi.org/10.1016/j.
media.2020.101634.

[42] A. Garifullin, L. Lensu, H. Uusitalo, Deep Bayesian baseline for segmenting
diabetic retinopathy lesions: Advances and challenges, Comput. Biol. Med. 136
(2021) 104725, http://dx.doi.org/10.1016/j.compbiomed.2021.104725.

[43] E.H. Houssein, M.M. Emam, A.A. Ali, P.N. Suganthan, Deep and machine
learning techniques for medical imaging-based breast cancer: A comprehensive
review, Expert Syst. Appl. 167 (2021) 114161, http://dx.doi.org/10.1016/
j.eswa.2020.114161, URL https://www.sciencedirect.com/science/article/pii/
S0957417420309015.

[44] F. Martínez-Murcia, J. Gorriz, J. Ramírez, A. Ortiz, Convolutional neural
networks for neuroimaging in Parkinson’s disease: Is preprocessing needed? Int.
J. Neural Syst. 28 (2018) http://dx.doi.org/10.1142/S0129065718500351.

[45] A. Ortiz, F. Martínez-Murcia, M. García-Tarifa, F. Lozano, J. Gorriz, J. Ramírez,
Automated diagnosis of parkinsonian syndromes by deep sparse filtering-based
features, in: Innovation in Medicine and Healthcare 2016, 2016, pp. 249–258,
http://dx.doi.org/10.1007/978-3-319-39687-3_24.

[46] A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep
convolutional neural networks, Neural Inf. Process. Syst. 25 (2012) http://dx.
doi.org/10.1145/3065386.

[47] F. Segovia, M. García-Pérez, J. Gorriz, J. Ramírez, F. Martínez-Murcia, Assist-
ing the diagnosis of neurodegenerative disorders using principal component
analysis and TensorFlow, in: International Joint Conference SOCO’16-CISIS’16-
ICEUTE’16, 2016, pp. 43–52, http://dx.doi.org/10.1007/978-3-319-47364-2_
5.

[48] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw.
61 (2015) 85–117, http://dx.doi.org/10.1016/j.neunet.2014.09.003, URL http:
//www.sciencedirect.com/science/article/pii/S0893608014002135.

[49] A. Payan, G. Montana, Predicting alzheimer’s disease: a neuroimaging study
with 3D convolutional neural networks, in: ICPRAM 2015 - 4th International
Conference on Pattern Recognition Applications and Methods, Proceedings, Vol.
2, 2015.

[50] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[51] H. Wang, D. Yeung, Towards Bayesian deep learning: A framework and some
existing methods, IEEE Trans. Knowl. Data Eng. 28 (2016) 3395–3408.

[52] A.D. Kiureghian, O. Ditlevsen, Aleatory or epistemic? Does it matter? Struct.
Saf. 31 (2) (2009) 105–112, http://dx.doi.org/10.1016/j.strusafe.2008.06.020,
Risk Acceptance and Risk Communication.

[53] D.A. Nix, A.S. Weigend, Estimating the mean and variance of the target
probability distribution, in: Proceedings of 1994 IEEE International Conference
on Neural Networks (ICNN’94), Vol. 1, 1994, pp. 55–60, http://dx.doi.org/10.
1109/ICNN.1994.374138, vol. 1.

[54] Q.V. Le, A.J. Smola, S. Canu, Heteroscedastic Gaussian process regression, in:
Proceedings of the 22nd International Conference on Machine Learning, in:
ICML ’05, Association for Computing Machinery, 2005, pp. 489–496, http:
//dx.doi.org/10.1145/1102351.1102413.

[55] R. Cipolla, Y. Gal, A. Kendall, Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics, in: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7482–7491, http://dx.doi.
org/10.1109/CVPR.2018.00781.

[56] A. Damianou, N. Lawrence, in: C.M. Carvalho, P. Ravikumar (Eds.), Deep
Gaussian Processes, in: Proceedings of Machine Learning Research, vol. 31,
PMLR, 2013, pp. 207–215.

[57] L.V. Jospin, W.L. Buntine, F. Boussaid, H. Laga, M. Bennamoun, Hands-on
Bayesian neural networks - a tutorial for deep learning users, 2020, ArXiv
abs/2007.06823.

[58] Y. Li, Y. Gal, Dropout inference in Bayesian neural networks with
Alpha-divergences, in: ICML, 2017.

[59] T.B. Chandra, K. Verma, B.K. Singh, D. Jain, S.S. Netam, Coronavirus disease
(COVID-19) detection in Chest X-Ray images using majority voting based
classifier ensemble, Expert Syst. Appl. 165 (2021) 113909, http://dx.doi.org/
10.1016/j.eswa.2020.113909.

[60] T. Zhou, H. ling Lu, Z. Yang, S. Qiu, B. qiang Huo, Y. Dong, The ensemble deep
learning model for novel COVID-19 on CT images, Appl. Soft Comput. (2020)
106885, http://dx.doi.org/10.1016/j.asoc.2020.106885.

[61] M. Liu, D. Zhang, D. Shen, Ensemble sparse classification of Alzheimer’s
disease, NeuroImage 60 (2) (2012) 1106–1116, http://dx.doi.org/10.1016/j.
neuroimage.2012.01.055.

[62] X. Gao, Y. He, M. Zhang, X. Diao, X. Jing, B. Ren, W. Ji, A multiclass classifi-
cation using one-versus-all approach with the differential partition sampling
ensemble, Eng. Appl. Artif. Intell. 97 (2021) 104034, http://dx.doi.org/10.
1016/j.engappai.2020.104034.

[63] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera, An overview of
ensemble methods for binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes, Pattern Recognit. 44 (8) (2011)
1761–1776, http://dx.doi.org/10.1016/j.patcog.2011.01.017.
64
[64] L. Zhou, H. Fujita, Posterior probability based ensemble strategy using optimiz-
ing decision directed acyclic graph for multi-class classification, Inform. Sci.
400–401 (2017) 142–156, http://dx.doi.org/10.1016/j.ins.2017.02.059, URL
http://www.sciencedirect.com/science/article/pii/S0020025516314207.

[65] Kaggle, Chest X-Ray images (pneumonia) dataset, 2020, URL https://www.
kaggle.com/paultimothymooney/chest-xray-pneumonia?.

[66] D.S. Kermany, M. Goldbaum, W. Cai, C.C. Valentim, H. Liang, S.L. Baxter, A.
McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M.K. Prasadha, J. Pei, M.Y. Ting, J.
Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W.
Shi, X. Fu, Y. Duan, V.A. Huu, C. Wen, E.D. Zhang, C.L. Zhang, O. Li, X. Wang,
M.A. Singer, X. Sun, J. Xu, A. Tafreshi, M.A. Lewis, H. Xia, K. Zhang, Identifying
medical diagnoses and treatable diseases by image-based deep learning, Cell
172 (5) (2018) 1122 – 1131.e9, http://dx.doi.org/10.1016/j.cell.2018.02.010.

[67] The Parkinson progression marker initiative (PPMI), Prog. Neurobiol. 95 (4)
(2011) 629–635, http://dx.doi.org/10.1016/j.pneurobio.2011.09.005.

[68] J.C. Mazziotta, A.W. Toga, A. Evans, P.T. Fox, J.L. Lancaster, K. Zilles, R.P.
Woods, T. Paus, G. Simpson, B. Pike, C.J. Holmes, L. Collins, P. Thompson,
D. MacDonald, M. Iacoboni, T. Schormann, K. Amunts, N. Palomero-Gallagher,
S. Geyer, L. Parsons, K. Narr, N.J. Kabani, G.L. Goualher, D.I. Boomsma, T.D.
Cannon, R. Kawashima, B. Mazoyer, A probabilistic atlas and reference system
for the human brain: International consortium for brain mapping (ICBM),
Philos. Trans. R. Soc. Lond. Ser. B 356 1412 (2001) 1293–1322.

[69] A. Ortiz, J. Munilla, M. Martínez-Ibañez, J.M. Górriz, J. Ramírez, D. Salas-
Gonzalez, Parkinson’s disease detection using isosurfaces-based features and
convolutional neural networks, Front. Neuroinform. 13 (2019) 48, http://dx.
doi.org/10.3389/fninf.2019.00048.

[70] A. Ortiz, F.J. Martínez Murcia, J. Munilla, J.M. Górriz, J. Ramírez, Label aided
deep ranking for the automatic diagnosis of Parkinsonian syndromes, Neuro-
computing 330 (2019) 162–171, http://dx.doi.org/10.1016/j.neucom.2018.10.
074.

[71] F. Segovia, J.M. Górriz, J. Ramírez, F.J. Martínez-Murcia, J. Levin, M. Schu-
berth, M. Brendel, A. Rominger, K. Bötzel, G. Garraux, C. Phillips, Multivariate
analysis of 18f-DMFP PET data to assist the diagnosis of parkinsonism, Front.
Neuroinform. 11 (2017) 23, http://dx.doi.org/10.3389/fninf.2017.00023.

[72] D. Castillo-Barnes, J. Ramírez, F. Segovia, F.J. Martínez-Murcia, D. Salas-
Gonzalez, J.M. Górriz, Robust ensemble classification methodology for I123-
ioflupane SPECT images and multiple heterogeneous biomarkers in the
diagnosis of Parkinson’s Disease, Front. Neuroinform. 12 (2018) 53, http:
//dx.doi.org/10.3389/fninf.2018.00053.

[73] I.A. Illán, J.M. Gorrz, J. Ramírez, F. Segovia, J.M. Jiménez-Hoyuela, S.J.O.
Lozano, Automatic assistance to parkinson’s disease diagnosis in DaTSCAN
SPECT imaging, Med. Phys. 39 10 (2012) 5971–5980.

[74] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation
and model selection, in: Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, in: IJCAI’95, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1995, pp. 1137–1143.

[75] J.N. Mandrekar, Receiver operating characteristic curve in diagnostic test
assessment, J. Thorac. Oncol. 5 (9) (2010) 1315–1316, http://dx.doi.org/10.
1097/JTO.0b013e3181ec173d.

[76] K. Hajian-Tilaki, Receiver operating characteristic (ROC) curve analysis for
medical diagnostic test evaluation, Casp. J. Intern. Med. 4 (2013) 627–635.

[77] J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, Rotation forest: A new classifier
ensemble method, IEEE Trans. Pattern Anal. Mach. Intell. 28 (10) (2006)
1619–1630, http://dx.doi.org/10.1109/TPAMI.2006.211.

[78] J. Wang, Y. Yang, B. Xia, A simplified cohen’s kappa for use in binary
classification data annotation tasks, IEEE Access 7 (2019) 164386–164397,
http://dx.doi.org/10.1109/ACCESS.2019.2953104.

[79] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas.
20 (1960) 37–46.

[80] B. Di Eugenio, M. Glass, The Kappa statistic: A second look, Comput. Linguist.
30 (1) (2004) 95–101, http://dx.doi.org/10.1162/089120104773633402.

[81] G. White, Basics of estimating measurement uncertainty, Clin. Biochem. Rev. /
Aust. Assoc. Clin. Biochem. 29 (Suppl 1) (2008) S53–60.

[82] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2017.
[83] S. Tabik, A. Gómez-Ríos, J.L. Martín-Rodríguez, I. Sevillano-García, M. Rey-

Area, D. Charte, E. Guirado, J.L. Suárez, J. Luengo, M.A. Valero-González,
P. Garcí a Villanova, E. Olmedo-Sánchez, F. Herrera, COVIDGR dataset and
COVID-SDNet methodology for predicting COVID-19 based on chest X-Ray
images, IEEE J. Biomed. Health Inf. 24 (12) (2020) 3595–3605, http://dx.doi.
org/10.1109/JBHI.2020.3037127.

[84] S.-H. Wang, D.R. Nayak, D.S. Guttery, X. Zhang, Y.-D. Zhang, COVID-19 clas-
sification by ccshnet with deep fusion using transfer learning and discriminant
correlation analysis, Inf. Fusion 68 (2021) 131–148, http://dx.doi.org/10.1016/
j.inffus.2020.11.005.

[85] G. Muhammad, M. Shamim Hossain, Covid-19 and non-COVID-19 classification
using multi-layers fusion from lung ultrasound images, Inf. Fusion 72 (2021)
80–88, http://dx.doi.org/10.1016/j.inffus.2021.02.013.

[86] M.R. Ibrahim, S. Youssef, K.M. Fathalla, Abnormality detection and intelligent
severity assessment of human chest computed tomography scans using deep
learning: a case study on SARS-COV-2 assessment, J. Ambient Intell. Humaniz.
Comput. (2021) 1–24.

http://dx.doi.org/10.1016/j.media.2020.101634
http://dx.doi.org/10.1016/j.media.2020.101634
http://dx.doi.org/10.1016/j.media.2020.101634
http://dx.doi.org/10.1016/j.compbiomed.2021.104725
http://dx.doi.org/10.1016/j.eswa.2020.114161
http://dx.doi.org/10.1016/j.eswa.2020.114161
http://dx.doi.org/10.1016/j.eswa.2020.114161
https://www.sciencedirect.com/science/article/pii/S0957417420309015
https://www.sciencedirect.com/science/article/pii/S0957417420309015
https://www.sciencedirect.com/science/article/pii/S0957417420309015
http://dx.doi.org/10.1142/S0129065718500351
http://dx.doi.org/10.1007/978-3-319-39687-3_24
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/978-3-319-47364-2_5
http://dx.doi.org/10.1007/978-3-319-47364-2_5
http://dx.doi.org/10.1007/978-3-319-47364-2_5
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb49
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb49
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb49
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb49
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb49
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb49
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb49
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb50
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb50
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb50
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb50
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb50
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb51
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb51
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb51
http://dx.doi.org/10.1016/j.strusafe.2008.06.020
http://dx.doi.org/10.1109/ICNN.1994.374138
http://dx.doi.org/10.1109/ICNN.1994.374138
http://dx.doi.org/10.1109/ICNN.1994.374138
http://dx.doi.org/10.1145/1102351.1102413
http://dx.doi.org/10.1145/1102351.1102413
http://dx.doi.org/10.1145/1102351.1102413
http://dx.doi.org/10.1109/CVPR.2018.00781
http://dx.doi.org/10.1109/CVPR.2018.00781
http://dx.doi.org/10.1109/CVPR.2018.00781
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb56
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb56
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb56
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb56
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb56
http://abs/2007.06823
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb58
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb58
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb58
http://dx.doi.org/10.1016/j.eswa.2020.113909
http://dx.doi.org/10.1016/j.eswa.2020.113909
http://dx.doi.org/10.1016/j.eswa.2020.113909
http://dx.doi.org/10.1016/j.asoc.2020.106885
http://dx.doi.org/10.1016/j.neuroimage.2012.01.055
http://dx.doi.org/10.1016/j.neuroimage.2012.01.055
http://dx.doi.org/10.1016/j.neuroimage.2012.01.055
http://dx.doi.org/10.1016/j.engappai.2020.104034
http://dx.doi.org/10.1016/j.engappai.2020.104034
http://dx.doi.org/10.1016/j.engappai.2020.104034
http://dx.doi.org/10.1016/j.patcog.2011.01.017
http://dx.doi.org/10.1016/j.ins.2017.02.059
http://www.sciencedirect.com/science/article/pii/S0020025516314207
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia?
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia?
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia?
http://dx.doi.org/10.1016/j.cell.2018.02.010
http://dx.doi.org/10.1016/j.pneurobio.2011.09.005
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb68
http://dx.doi.org/10.3389/fninf.2019.00048
http://dx.doi.org/10.3389/fninf.2019.00048
http://dx.doi.org/10.3389/fninf.2019.00048
http://dx.doi.org/10.1016/j.neucom.2018.10.074
http://dx.doi.org/10.1016/j.neucom.2018.10.074
http://dx.doi.org/10.1016/j.neucom.2018.10.074
http://dx.doi.org/10.3389/fninf.2017.00023
http://dx.doi.org/10.3389/fninf.2018.00053
http://dx.doi.org/10.3389/fninf.2018.00053
http://dx.doi.org/10.3389/fninf.2018.00053
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb73
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb73
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb73
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb73
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb73
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb74
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb74
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb74
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb74
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb74
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb74
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb74
http://dx.doi.org/10.1097/JTO.0b013e3181ec173d
http://dx.doi.org/10.1097/JTO.0b013e3181ec173d
http://dx.doi.org/10.1097/JTO.0b013e3181ec173d
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb76
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb76
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb76
http://dx.doi.org/10.1109/TPAMI.2006.211
http://dx.doi.org/10.1109/ACCESS.2019.2953104
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb79
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb79
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb79
http://dx.doi.org/10.1162/089120104773633402
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb81
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb81
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb81
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb82
http://dx.doi.org/10.1109/JBHI.2020.3037127
http://dx.doi.org/10.1109/JBHI.2020.3037127
http://dx.doi.org/10.1109/JBHI.2020.3037127
http://dx.doi.org/10.1016/j.inffus.2020.11.005
http://dx.doi.org/10.1016/j.inffus.2020.11.005
http://dx.doi.org/10.1016/j.inffus.2020.11.005
http://dx.doi.org/10.1016/j.inffus.2021.02.013
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb86
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb86
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb86
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb86
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb86
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb86
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb86


Information Fusion 89 (2023) 53–65J.E. Arco et al.
[87] S.-H. Wang, V.V. Govindaraj, J.M. Górriz, X. Zhang, Y.-D. Zhang, Covid-19
classification by FGCNet with deep feature fusion from graph convolutional
network and convolutional neural network, Inf. Fusion 67 (2021) 208–229,
http://dx.doi.org/10.1016/j.inffus.2020.10.004.

[88] A. Zargari Khuzani, M. Heidari, S.A. Shariati, COVID-classifier: an automated
machine learning model to assist in the diagnosis of COVID-19 infection in chest
X-ray images, Sci. Rep. 11 (1) (2021) 9887, http://dx.doi.org/10.1038/s41598-
021-88807-2.

[89] W. Zhao, W. Jiang, X. Qiu, Deep learning for COVID-19 detection based on
CT images, Sci. Rep. 11 (2021) 14353, http://dx.doi.org/10.1038/s41598-021-
93832-2.

[90] T. Ozturk, M. Talo, E.A. Yildirim, U.B. Baloglu, O. Yildirim, U. Rajendra
Acharya, Automated detection of COVID-19 cases using deep neural networks
with X-ray images, Comput. Biol. Med. 121 (2020) 103792, http://dx.doi.org/
10.1016/j.compbiomed.2020.103792.

[91] M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B.
Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N.A. Emadi, M.B.I. Reaz, M.T. Islam,
Can AI help in screening viral and COVID-19 Pneumonia? IEEE Access 8 (2020)
132665–132676, http://dx.doi.org/10.1109/ACCESS.2020.3010287.

[92] P. Kedia, Anjum, R. Katarya, CoVnet-19: A deep learning model for the
detection and analysis of COVID-19 patients, Appl. Soft Comput. 104 (2021)
107184, http://dx.doi.org/10.1016/j.asoc.2021.107184.

[93] A. Gupta, Anjum, S. Gupta, R. Katarya, InstaCovNet-19: A deep learning
classification model for the detection of COVID-19 patients using chest X-ray,
Appl. Soft Comput. 99 (2021) 106859, http://dx.doi.org/10.1016/j.asoc.2020.
106859.

[94] Z. Wang, Y. Xiao, Y. Li, J. Zhang, F. Lu, M. Hou, X. Liu, Automatically
discriminating and localizing COVID-19 from community-acquired pneumonia
on chest X-rays, Pattern Recognit. 110 (2021) 107613, http://dx.doi.org/10.
1016/j.patcog.2020.107613.

[95] B. Nigam, A. Nigam, R. Jain, S. Dodia, N. Arora, B. Annappa, Covid-19:
Automatic detection from X-ray images by utilizing deep learning methods,
Expert Syst. Appl. 176 (2021) 114883, http://dx.doi.org/10.1016/j.eswa.2021.
114883.

[96] A. Alhudhaif, K. Polat, O. Karaman, Determination of COVID-19 pneumonia
based on generalized convolutional neural network model from chest X-ray
images, Expert Syst. Appl. 180 (2021) 115141, http://dx.doi.org/10.1016/j.
eswa.2021.115141.

[97] M. Shorfuzzaman, M.S. Hossain, MetaCOVID: A siamese neural network
framework with contrastive loss for n-shot diagnosis of COVID-19 patients,
Pattern Recognit. 113 (2021) 107700, http://dx.doi.org/10.1016/j.patcog.2020.
107700.

[98] A. Dixit, A. Mani, R. Bansal, CoV2-detect-net: Design of COVID-19 prediction
model based on hybrid DE-PSO with SVM using chest X-ray images, Inform.
Sci. (2021) http://dx.doi.org/10.1016/j.ins.2021.03.062.

[99] C. Li, Y. Yang, H. Liang, B. Wu, Transfer learning for establishment of
recognition of COVID-19 on CT imaging using small-sized training datasets,
Knowl.-Based Syst. 218 (2021) 106849, http://dx.doi.org/10.1016/j.knosys.
2021.106849.

[100] T. Ozcan, A new composite approach for COVID-19 detection in X-ray images
using deep features, Appl. Soft Comput. 111 (2021) 107669, http://dx.doi.org/
10.1016/j.asoc.2021.107669.

[101] G. Marques, D. Agarwal, I. de la Torre Díez, Automated medical diagnosis
of COVID-19 through EfficientNet convolutional neural network, Appl. Soft
Comput. 96 (2020) 106691, http://dx.doi.org/10.1016/j.asoc.2020.106691.

[102] O. Cigdem, H. Demirel, D. Unay, The performance of local-learning based
clustering feature selection method on the diagnosis of parkinson’s disease
using structural MRI, in: 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC), 2019, pp. 1286–1291, http://dx.doi.org/10.1109/SMC.
2019.8914611.
65
[103] Y. Wu, J.-H. Jiang, L. Chen, J.-Y. Lu, J.-J. Ge, F.-T. Liu, J.-T. Yu, W. Lin,
C.-T. Zuo, J. Wang, Use of radiomic features and support vector machine to
distinguish Parkinson’s disease cases from normal controls, Ann. Transl. Med.
7 (23) (2019).

[104] H. Choi, S. Ha, H.-J. Im, S.H. Paek, D.S. Lee, Refining diagnosis of parkin-
son’s disease with deep learning-based interpretation of dopamine transporter
imaging, NeuroImage : Clin. 16 (2017) 586–594.

[105] P.R. Magesh, R.D. Myloth, R.J. Tom, An explainable machine learning model for
early detection of Parkinson’s disease using LIME on DaTSCAN imagery, Com-
put. Biol. Med. 126 (2020) 104041, http://dx.doi.org/10.1016/j.compbiomed.
2020.104041.

[106] Y. Yang, L. Wei, Y. Hu, Y. Wu, L. Hu, S. Nie, Classification of parkinson’s
disease based on multi-modal features and stacking ensemble learning, J.
Neurosci. Methods 350 (2021) 109019, http://dx.doi.org/10.1016/j.jneumeth.
2020.109019.

[107] B. Gong, J. Shi, S. Ying, Y. Dai, Q. Zhang, Y. Dong, H. An, Y. Zhang,
Neuroimaging-based diagnosis of Parkinson’s disease with deep neural mapping
large margin distribution machine, Neurocomputing 320 (2018) 141–149, http:
//dx.doi.org/10.1016/j.neucom.2018.09.025.

[108] C.-Y. Chien, S.-W. Hsu, T.-L. Lee, P.-S. Sung, C.-C. Lin, Using artificial neural
network to discriminate Parkinson’s Disease from other Parkinsonisms by
focusing on Putamen of Dopamine Transporter SPECT images, Biomedicines
9 (1) (2021).

[109] A. Piccardo, R. Cappuccio, G. Bottoni, D. Cecchin, L. Mazzella, A. Cirone, S.
Righi, M. Ugolini, P. Bianchi, P. Bertolaccini, E. Lorenzini, M. Massollo, A.
Castaldi, F. Fiz, L. Strada, A. Cistaro, M. Sette, The role of the deep convo-
lutional neural network as an aid to interpreting brain [18F]DOPA PET/CT
in the diagnosis of Parkinson’s disease, Eur. Radiol. 31 (2021) 7003–7011,
http://dx.doi.org/10.1007/s00330-021-07779-z.

[110] S. Chakraborty, S. Aich, H.-C. Kim, Detection of Parkinson’s disease from 3T
T1 weighted MRI scans using 3D convolutional neural network, Diagnostics 10
(6) (2020) http://dx.doi.org/10.3390/diagnostics10060402.

[111] Y. Dai, Z. Tang, Y. Wang, Z. Xu, Data driven intelligent diagnostics for
Parkinson’s disease, IEEE Access 7 (2019) 106941–106950, http://dx.doi.org/
10.1109/ACCESS.2019.2931744.

[112] S.-Y. Hsu, L.-R. Yeh, T.-B. Chen, W.-C. Du, Y.-H. Huang, W.-H. Twan, M.-C.
Lin, Y.-H. Hsu, Y.-C. Wu, H.-Y. Chen, Classification of the multiple stages of
parkinson’s disease by a deep convolution neural network based on 99mTc-
TRODAT-1 SPECT images, Molecules 25 (20) (2020) http://dx.doi.org/10.3390/
molecules25204792.

[113] K. Yasaka, K. Kamagata, T. Ogawa, T. Hatano, H. Takeshige-Amano, K.
Ogaki, C. Andica, H. Akai, A. Kunimatsu, W. Uchida, N. Hattori, S. Aoki, O.
Abe, Parkinson’s disease: deep learning with a parameter-weighted structural
connectome matrix for diagnosis and neural circuit disorder investigation,
Neuroradiology 63 (2021) 1–12, http://dx.doi.org/10.1007/s00234-021-02648-
4.

[114] S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X.
Meng, B. Xu, A deep learning algorithm using CT images to screen for corona
virus disease (COVID-19), MedRxiv (2020) http://dx.doi.org/10.1101/2020.02.
14.20023028.

[115] E.E.-D. Hemdan, M.A. Shouman, M.E. Karar, COVIDX-Net: A framework of
deep learning classifiers to diagnose COVID-19 in X-Ray images, 2020, arXiv:
2003.11055.

[116] I. Apostolopoulos, M. Tzani, Covid-19: Automatic detection from X-Ray images
utilizing transfer learning with convolutional neural networks, Australas. Phys.
Eng. Sci. Med. / Supported Australas. Coll. Phys. Sci. Med. Australas. Assoc.
Phys. Sci. Med. 43 (2020) http://dx.doi.org/10.1007/s13246-020-00865-4.

http://dx.doi.org/10.1016/j.inffus.2020.10.004
http://dx.doi.org/10.1038/s41598-021-88807-2
http://dx.doi.org/10.1038/s41598-021-88807-2
http://dx.doi.org/10.1038/s41598-021-88807-2
http://dx.doi.org/10.1038/s41598-021-93832-2
http://dx.doi.org/10.1038/s41598-021-93832-2
http://dx.doi.org/10.1038/s41598-021-93832-2
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1109/ACCESS.2020.3010287
http://dx.doi.org/10.1016/j.asoc.2021.107184
http://dx.doi.org/10.1016/j.asoc.2020.106859
http://dx.doi.org/10.1016/j.asoc.2020.106859
http://dx.doi.org/10.1016/j.asoc.2020.106859
http://dx.doi.org/10.1016/j.patcog.2020.107613
http://dx.doi.org/10.1016/j.patcog.2020.107613
http://dx.doi.org/10.1016/j.patcog.2020.107613
http://dx.doi.org/10.1016/j.eswa.2021.114883
http://dx.doi.org/10.1016/j.eswa.2021.114883
http://dx.doi.org/10.1016/j.eswa.2021.114883
http://dx.doi.org/10.1016/j.eswa.2021.115141
http://dx.doi.org/10.1016/j.eswa.2021.115141
http://dx.doi.org/10.1016/j.eswa.2021.115141
http://dx.doi.org/10.1016/j.patcog.2020.107700
http://dx.doi.org/10.1016/j.patcog.2020.107700
http://dx.doi.org/10.1016/j.patcog.2020.107700
http://dx.doi.org/10.1016/j.ins.2021.03.062
http://dx.doi.org/10.1016/j.knosys.2021.106849
http://dx.doi.org/10.1016/j.knosys.2021.106849
http://dx.doi.org/10.1016/j.knosys.2021.106849
http://dx.doi.org/10.1016/j.asoc.2021.107669
http://dx.doi.org/10.1016/j.asoc.2021.107669
http://dx.doi.org/10.1016/j.asoc.2021.107669
http://dx.doi.org/10.1016/j.asoc.2020.106691
http://dx.doi.org/10.1109/SMC.2019.8914611
http://dx.doi.org/10.1109/SMC.2019.8914611
http://dx.doi.org/10.1109/SMC.2019.8914611
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb103
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb103
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb103
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb103
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb103
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb103
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb103
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb104
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb104
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb104
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb104
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb104
http://dx.doi.org/10.1016/j.compbiomed.2020.104041
http://dx.doi.org/10.1016/j.compbiomed.2020.104041
http://dx.doi.org/10.1016/j.compbiomed.2020.104041
http://dx.doi.org/10.1016/j.jneumeth.2020.109019
http://dx.doi.org/10.1016/j.jneumeth.2020.109019
http://dx.doi.org/10.1016/j.jneumeth.2020.109019
http://dx.doi.org/10.1016/j.neucom.2018.09.025
http://dx.doi.org/10.1016/j.neucom.2018.09.025
http://dx.doi.org/10.1016/j.neucom.2018.09.025
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb108
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb108
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb108
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb108
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb108
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb108
http://refhub.elsevier.com/S1566-2535(22)00103-8/sb108
http://dx.doi.org/10.1007/s00330-021-07779-z
http://dx.doi.org/10.3390/diagnostics10060402
http://dx.doi.org/10.1109/ACCESS.2019.2931744
http://dx.doi.org/10.1109/ACCESS.2019.2931744
http://dx.doi.org/10.1109/ACCESS.2019.2931744
http://dx.doi.org/10.3390/molecules25204792
http://dx.doi.org/10.3390/molecules25204792
http://dx.doi.org/10.3390/molecules25204792
http://dx.doi.org/10.1007/s00234-021-02648-4
http://dx.doi.org/10.1007/s00234-021-02648-4
http://dx.doi.org/10.1007/s00234-021-02648-4
http://dx.doi.org/10.1101/2020.02.14.20023028
http://dx.doi.org/10.1101/2020.02.14.20023028
http://dx.doi.org/10.1101/2020.02.14.20023028
http://arxiv.org/abs/2003.11055
http://arxiv.org/abs/2003.11055
http://arxiv.org/abs/2003.11055
http://dx.doi.org/10.1007/s13246-020-00865-4

	Uncertainty-driven ensembles of multi-scale deep architectures for image classification
	Introduction
	Related works
	Methodology
	Convolutional neural networks
	Bayesian deep learning
	Multi-level ensemble classification

	Application to pneumonia detection
	Database description
	Image preprocessing
	Ensemble of Bayesian CNNs

	Application to Parkinson's diagnosis
	Database description
	Spatial normalization
	Intensity normalization
	Ensemble of Bayesian CNNs

	Performance evaluation
	Experimental setup
	Pneumonia detection
	Parkinson's diagnosis


	Results
	Pneumonia detection
	Parkinson's diagnosis

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	
	References


