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Abstract. We introduce a new class of surfaces in Euclidean 3-
space, called surfaces of osculating circles, using the concept of
osculating circle of a regular curve. These surfaces contain a uni-
parametric family of planar lines of curvature. In this paper, we
classify those ones that are canal surfaces and Weingarten surfaces.

1. Introduction and first results

In the classical theory of surfaces in Euclidean space R3, there are
many ways of construction of surfaces with the help of curves. A
clear example are the Darboux surfaces. These surfaces are defined
kinematically as the movement of a curve by a uniparametric fam-
ily of rigid motions of R3. A parametrization of a such surface is
X(s, t) = A(t) · α(s) + β(t), where α and β are two space curves and
A(t) is an orthogonal matrix. The class of Darboux surfaces includes
translation surfaces, circular surfaces, ruled surfaces, surfaces of revolu-
tion and Monge surfaces. Since these surfaces are generated by curves
followed of rigid motions of R3, they have received a special attention
in computer aided geometric design (CAGD) of geometric models in
architecture, engineering or physics thanks to their ease of computation
and calculation ([14]).

From the geometric viewpoint, an important work is the classifica-
tion of these surfaces according its Gaussian curvature and its mean
curvature. For example, ruled surfaces and surfaces of revolution with
constant (Gaussian or mean) curvature are well known. In contrast,
the full classification of translation surfaces with constant curvature
was an open problem until very recently: see [4, 5, 6, 9].

In this paper, we define a new class of surfaces by means of the
concept of osculating circle of a regular curve in R3. Recall that if C
is a planar regular curve and p ∈ C is a given point, the osculating
circle at p is the tangent circle to C at p and with the same curvature
of C at p. If α = α(s) is a parametrization by arc length and {T,N} is
its Frenet frame, the osculating circle at a point s with non-vanishing
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curvature κ(s) parametrizes as

u 7→ α(s) +
1

κ(s)
N(s) +

1

κ(s)
(sinuT (s)− cosuN(s)) . (1)

Let us notice that if u = 0, then the point of the circle is just the
point α(s). In the case that C is a spatial curve, the definition of the
osculating circle coincides with (1), observing that this circle is included
in the osculating plane at the point α(s).

We are in conditions to introduce the new object of study.

Definition 1.1. Let α : I ⊂ R → R3 be a regular curve parametrized
by arc length with non-zero curvature κ. Let r(s) = 1/κ(s) be the ra-
dius of curvature. The surface of osculating circles is the parametrized
surface X : I × R→ R3 defined by

X(s, u) = α(s) + r(s)N(s) + r(s) (sinuT (s)− cosuN(s))

= α(s) + r(s) (sinuT (s) + (1− cosu)N(s)) .
(2)

The curve α is called the generator of the surface and the parametric
s-curves, u 7→ X(s, u) are called parallels.

A special case of surfaces of osculating circles occurs when the gen-
erator is a planar curve because in such a case, the surfaces must be
an open subset of a plane.

Proposition 1.2. If the generator of a surfaces S of osculating circles
is contained in a plane P , then S is a subset of P .

Proof. Suppose that the generator C is contained in the plane P of
equation 〈x − p0, ~v〉 = 0, p0 ∈ R3, |~v| = 1. Here 〈, 〉 is the Euclidean
metric of R3. Then the binormal vector B(s) of C is ±~v. From (2), it
is immediate that

〈X(s, u)− p0, ~v〉 = 〈α(s)− p0, ~v〉 = 0.

�

We show some examples of surfaces of osculating circles. The gen-
erator of the first example is a helix, a curve with constant curvature
and constant torsion. In the second example, the generator is a cu-
bic curve and finally, in the third example we show a compact surface
whose generator is a closed curve.

Example 1.3. Let α be the circular helix

α(s) =

(
2 cos

s√
5
, 2 sin

s√
5
,
s√
5

)
.
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The curvature is κ = 2/5 and the torsion is τ = 1/5. The tangent
vectors T (s) and the normal vectors N(s) are

T =
1√
5

(
−2 sin

s√
5
, 2 cos

s√
5
, 1

)
,

N =

(
− cos

s√
5
,− sin

s√
5
, 0

)
.

The parametrization of the surface of osculating circles is

X(s, u) =


1
2

(
cos s√

5
(5 cosu− 1)− 2

√
5 sin s√

5
sinu

)
1
2

sin s√
5
(5 cosu− 1) +

√
5 cos s√

5
sinu

2s+ 5 sinu

2
√

5

 .

The graphic of the surface of osculating circles X(s, u) appears in Fig-
ure 1.

Figure 1. Example 1.3. Left: The generator α (black)
together with some parallels. Right: the surface of oscu-
lating circles.

Example 1.4. Let α be the cubic α(s) = (s, s2/2, s3/3). Let us no-
tice that this curve is not parametrized by arc length. The radius of
curvature is

r(s) =
(1 + s2 + s4)

3/2

1 + s2

and the tangent vectors and the normal vectors are, respectively,

T (s) =
1√

1 + s2 + s4
(1, s, s2),

N(s) =
1

(1 + s2)
√

1 + s2 + s4

(
s(1 + 2s2), 1− s4, s(2 + s2)

)
.

Thus the surface of osculating circles is (see Figure 2, left)

X(s, u) =


(s4+s2+1)((2s3+s) cosu+(s2+1) sinu)−s3(2(s4+s2)+1)

(s2+1)2

2(s6−1) cosu−2s6+s4+s2+2(s5+s3+s) sinu+2

2(s2+1)
s(4s6+11s4+10s2+3(s4+s2+1)(s(s2+1) sinu−(s2+2) cosu)+6)

3(s2+1)2

 .
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Finally, we show an example of a compact surface of osculating cir-
cles.

Example 1.5. Consider the generator

α(s) = (cos(s)(4 + cos(2s)), sin(s)(4 + cos(2s)), sin(2s)).

This curve is closed and simple and it is contained in a torus of inner
and outer radii 1 and 4, respectively. The surface of osculating circles
whose generator is α has a cumbersome parametrization but its picture
appears in Figure 2, right.

Figure 2. Surfaces of osculating circles. Left: Example
1.4. Right: Example 1.5.

The organization of this paper is the following. In Section 2, we
study some basic properties of the surfaces of osculating circles, such
as, its regularity and umbilicity. For this, we compute the first and the
second fundamental form of the surface. We also discuss the necessary
and sufficient condition to be a canal surface. We prove that the surface
of osculating circles is a canal surface if and only if the curvature of
the generator is constant (Theorem 2.4). Curves in R3 with constant
curvature are called Salkowski curves ([10, 15]). In Section 3, we classify
the surfaces of osculating circles of Weingarten type, proving the the
generator is a Salkowski curve (Theorem 3.1). Finally, we prove that
open subsets of planes and spheres are the only surfaces of osculating
circles with constant Gaussian curvature or constant mean curvature
(Theorem 3.2).

2. The curvature of the surfaces of osculating circles

We begin this section analyzing in what points the surface of oscu-
lating circles is regular.

Proposition 2.1. The set of non-regular points of a surface of oscu-
lating circles is formed by the generator α and the set {X(s, u) : r′(s) =
τ(s) = 0, u ∈ R}.
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Proof. We compute the partial derivatives of X(s, u). As usually, the
subscripts will indicate the corresponding derivatives and ′ is the differ-
entiation of functions of one variable depending on s. Using the Frenet
equations of α

Xs = (r′ sinu+ cosu)T + (r′(1− cosu) + sinu)N + rτ(1− cosu)B

Xu = r(cosuT + sinuN).

Therefore,

Xs ×Xu = r(1− cosu) (−rτ sinuT + rτ cosuN + r′B) .

Then (Xs×Xu)(s, u) = 0 if and only if cosu = 1, that is, at the points
of the generator or when r′(s) = τ(s) = 0. �

From the above proof, we deduce that the unit normal vector field
at regular points is

N(s, u) =
1√

r2τ 2 + r′2
(−rτ sinuT + rτ cosuN + r′B) . (3)

A particular case of surfaces of osculating circles are the spheres of
R3.

Proposition 2.2. If the generator of a surface of osculating circles is
a spherical curve, then the surface is an open subset of a sphere.

Proof. After a translation, we can assume that the generator α is in-
cluded in a sphere of radius R > 0 centered at the origin. Thus
〈α(s), α(s)〉 = R2, so 〈T (s), α(s)〉 = 0 and 〈N(s), α(s)〉 = −1/κ(s) =
−r(s) for all s ∈ I. From (2)

|X(s, u)|2 = R2 + r2((1− cosu)2 + sin2 u) + 2r(1− cosu)〈N,α〉
= R2 + r2((1− cosu)2 + sin2 u)− 2r2(1− cosu) = R2,

proving that the surface is included in the same sphere where is con-
tained α. �

The generator of the surface showed in Example 1.5 is a simple closed
curve and the topology of the surface is clearly a torus. This can be
generalized in the sense that a compact surface of osculating circles
must be a topological torus.

Proposition 2.3. If M is a compact surface of osculating circles, then
M is a torus.

Proof. Consider a compact surface M of osculating circles parametrized
by X = X(s, u). Define on M the vector field

V (s, u) = Xu = sinuN(s) + cosuT (s).

Then V have not zeroes on M so its index is 0. By the Poincaré index
theorem, the surface must be a topological torus. �
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We study when a surface of osculating circles is a canal surface.
Recall that a canal surface is the envelope of the 1-parameter pencil of
spheres Σ(s), centered at a spine curve β(s), Σ(x; s) = |x − β(s)|2 −
r(s)2 = 0 ([13]). The envelope condition is given by

d

ds
Σ(s) = 〈x− β(s), β′(s)〉+ r(s)r′(s) = 0. (4)

Theorem 2.4. A surface of osculating circles is a canal surface if and
only if the generator is a Salkowski curve.

Proof. Let β(s) = α(s)+r(s)N(s) be the center of the osculating circles
and consider the 1-parameter family of spheres Σ(x; s) = |x− β(s)|2−
r(s)2 = 0. By the definition (2) of the surface, it is clear that the
surface is contained in this uniparametric family of spheres. We need
to check the envelope condition (4). Since β′ = r′N + rτB, we have

d

ds
Σ(s) = 〈−r cosuN + r sinuT, r′N + rτB〉+ rr′ = rr′(1− cosu) = 0

for all s ∈ I. Therefore r′(s) = 0 for all s ∈ I and this is equivalent to
say that κ is a nonzero constant function. �

We show an example of a surface of osculating circles whose generator
is a Salkowski curve, in particular, the surface is a canal surface.

Example 2.5. Let us consider the Salkowski curve in R3 parametrized
by

α(s) =


78s
√
25−s2 cos(

√
26 arcsin( s

5))+
√
26(28s2−625) sin(

√
26 arcsin s

5)
2860√

26(625−28s2) cos(
√
26 arcsin s

5)+78s
√
25−s2 sin(

√
26 arcsin s

5)
2860

25−2s2
4
√
26

 .

The curvature of α is κ = 1 and the torsion is τ = s/
√

25− s2. The
tangent and normal vectors are

T =


−
√
25−s2 cos(

√
26 arcsin s

5)
5

− s sin(
√
26 arcsin s

5)
5
√
26

s cos(
√
26 arcsin s

5)
5
√
26

−
√
25−s2 sin(

√
26 arcsin( s

5))
5

− 2√
26

 ,

N =
1√
26

(
5 sin

(√
26 arcsin

s

5

)
,−5 cos

(√
26 arcsin

s

5

)
,−1

)
.

So the parametrization of the surface of osculating circles is X(s, u) =
(X1(s, u), X2(s, u), X3(s, u)) given by

X1(s, u) =
26
√

25− s2 cos
(√

26 arcsin s
5

)
(3s− 22 sinu)

2860

−
√

26 sin
(√

26 arcsin s
5

)
(75− 28s2 + 550 cosu+ 22s sinu)

2860
,
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X2(s, u) =
26
√

25− s2 sin
(√

26 arcsin s
5

)
(3s− 22 sinu)

2860

+

√
26 cos

(√
26 arcsin s

5

)
(75− 28s2 + 550 cosu+ 22s sinu)

2860
,

X3(s, u) =
21− 2s2 + 4 cosu− 4s sinu

4
√

26
.

The graphic of X(s, u) is depicted in Figure 3.

Figure 3. A surface of osculating circles whose gener-
ator is a Salkowski curve: Example 2.5.

The property that parallel are circles implies remarkable properties
on them.

Proposition 2.6. Parallels of a surface of osculating circles are lines
of curvature. In case that r′(s0) = 0, then the parallel is also a geodesic.

Proof. Consider a parallel γ(u) = X(s, u/r) which is parametrized by
arc length. Then γ′(u) = sinuT + cosuN . On the other hand, and
thanks to (3), the derivative of the normal N(γ(u)) along the curve is,

d

ds
N(γ(u)) = − τ√

r2τ 2 + r′2
(cosuT + sinuN) = − τ√

r2τ 2 + r′2
γ′(u).

This proves that γ is a line of curvature. Moreover, the normal curva-
ture is κn(u) = τ/

√
r2τ 2 + r′2, being constant along γ.

We compute the geodesic curvature κg. Then we have

κg(u) = −〈γ′ × γ′′,N(γ)〉 =
r′

r
√
r2τ 2 + r′2

.

In particular, κg = 0 if and only if r′ = 0. �

One can also prove this result observing that each parallel is con-
tained in the plane {T,N}, which is orthogonal to B(s) and the angle
that makes B(s) with the normal N(s, u) to the surface is constant,
so we can apply the Joachimstahl’s theorem. By this proposition, no-
tice that the surface contains a family of lines of curvature which are
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planar. Thus surfaces of osculating circles form part of an interesting
family of surfaces having one or two uniparametric families of planar
lines of curvature. For example, this property is shared by the surfaces
of revolution and the Monge surfaces ([1]).

We now compute the Gaussian curvature and the mean curvature of
the surface. Firstly, we calculate the coefficients {E,F,G} and {e, f, g}
of the first and the second fundamental form, respectively. For the first
fundamental form, we have

E =
1

2

(
2 + 8r2τ 2 sin4 u

2
+ 4r′ sinu+ 4r′2(1− cosu)

)
,

F = r (1 + r′ sinu) ,

G = r2.

In particular,
√
EG− F 2 = 2r

√
r2τ 2 + r′2 sin2 u

2
. (5)

On the other hand,

det(Xs, Xu, Xss) = r sin2 u

2

(
2τr′ (sinu− 2(cosu− 1)r′)− 4r2τ 3 cosu sin2 u

2

+ 2r (κτ(1 + r′ sinu)− (cosu− 1) (r′τ ′ − τr′′))
)
,

det(Xs, Xu, Xsu) = 2r2τ(1 + r′ sinu) sin2 u

2
,

det(Xs, Xu, Xuu) = r3τ(1− cosu).

Then

e =
1√

r2τ 2 + r′2

(
τr′ (sinu− 2(cosu− 1)r′)− 2r2τ 3 cosu sin2 u

2

+τ(1 + r′ sinu)− r(cosu− 1) (r′′ − τr′′)
)
,

f =
rτ (1 + r′ sinu)√

r2τ 2 + r′2
,

g =
r2τ√

r2τ 2 + r′2
.

From the calculation of the first and the second fundamental forms,
we find the Gaussian curvature K and the mean curvature H.

Proposition 2.7. The Gaussian curvature K and the mean curvature
H of a surface of osculating circles is

K =
τ (r2τ 3 cosu+ r′2τ(cosu− 1) + r (τr′′ − r′τ ′))

(cosu− 1) (r2τ 2 + r′2)2
(6)

and

H = −r
2τ 3 (2 cosu− 1) + 2r′2τ(cosu− 1) + r(τr′′ − r′τ ′)

2(1− cosu) (r2τ 2 + r′2)3/2
. (7)
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As a consequence, we find the umbilical points. First, we need the
next auxiliary lemma (e.g. [2, p. 25]).

Lemma 2.8. Let α = α(s) be a curve in R3 parametrized by arc length
with τ 6= 0 and κ′ 6= 0 for all s ∈ I. Then α is included in a sphere of
radius R if and only if the function r2 + r′2/τ 2 = R2. Equivalently, it
holds the identity

r′′τ − r′τ ′ + rτ 3 = 0. (8)

Corollary 2.9. The umbilical points of a surface X(s, u) of osculating
circles are those points where (8) holds.

Proof. An umbilical point is characterized by the identity H2−K = 0.
Then (6) and (7) lead to we have

H2 −K =
r2(r′′τ − r′τ ′ + rτ 3)2

4 (1− cosu)2 (r2τ 2 + r′2)3
,

proving the result. �

In particular, those points s = s0 where (8) is fulfilled, the parallel
u 7→ X(s0, u) is formed by umbilical points. Comparing with Lemma
2.8, Corollary 2.9 says that in case that τ 6= 0 and κ′ 6= 0, the umbilical
points correspond with those points of the generator that are close to
be contained in a sphere.

3. Surfaces of osculating circles of Weingarten type

A surface in Euclidean space is said to be a Weingarten surface if
there is a nontrivial smooth functional relation W (K,H) = 0. In
the general case, it is still an open question the full classification of
Weingarten surfaces. A particular case of Weingarten surfaces is when
the relation W (K,H) is linear, so aH + bK + c = 0 for a, b, and c are
not all zero real numbers. These surfaces are called linear Weingarten
surfaces. A linear Weingarten surface satisfying aH + bK + c = 0 is
elliptic (resp. hyperbolic, parabolic) if a2 − 4bc > 0 (resp. a2 − 4bc <
0 and a2 − 4bc = 0) ([3, 8]). In this section, we study under what
conditions, surfaces of osculating circles are Weingarten surfaces.

Theorem 3.1. If a surface of osculating circles is a Weingarten sur-
face, then it is an open subset of a plane, of a sphere or the generator is
a Salkowski curve. In the latter case, the surface is a linear Weingarten
surface of parabolic type and the Weingarten relation W (K,H) = 0 is

H − r

2
K − 1

2r
= 0. (9)

Proof. If we differentiate the Weingarten relation W (K,H) = 0 with
respect to s and u, and using the chain rule, we have KsHu−KuHs = 0.
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From (6) and (7), we find

KsHu −KuHs =
r2r′ (rτ 3 − r′τ ′ + r′′τ)

3
sinu

2 (cosu− 1)3 (r2τ 2 + r′2)9/2
.

Since sinu 6= 0 by regularity of the surface (Proposition 2.1), the sur-
face is of Weingarten type if and only if r′ (rτ 3 − r′τ ′ + r′′τ) = 0.

Suppose that there is s0 ∈ I such that r′(s0) 6= 0. Then we have
r2τ 3 − r′τ ′ + r′′τ = 0 in an interval around s0. If the torsion τ is
constantly 0, then the generator is a planar curve and the surface is a
subset of a plane by Proposition 1.2. Otherwise, the equation r2τ 3 −
r′τ ′ + r′′τ = 0 implies that the generator is a spherical curve (Lemma
2.8) and the surface is an open subset of a sphere (Proposition 2.2).

Finally, if r′(s) = 0 for all s ∈ I, then the curvature of α is constant
and α is a Salkowski curve. In this case, if r(s) is a constant function,
say r(s) = r, we deduce from (6) and (7)

H = − 2 cosu− 1

2r(1− cosu)
, K = − cosu

r2(1− cosu)
. (10)

Now (9) is immediate being a linear Weingarten relation aH + bK +
c = 0. Furthermore, a = 1, b = −r/2 and c = −1/(2r), concluding
a2 − 4bc = 0 and the linear Weingarten relation is parabolic. �

By Proposition 2.4, the last case implies that the surface is a canal
surface and, in consequence, in the class of surfaces of osculating circles,
canal surfaces coincide with Weingarten surfaces. Moreover, a simple
computation gives that the principal curvatures are

κ1 =
1

r
= κ, κ2 = − cosu

r(1− cosu)
,

where κ1 is just the curvature of the generator.
An interesting family of surfaces in Euclidean space are the surfaces

with constant Gaussian curvature or constant mean curvature. The
classification of these surfaces in the class of surfaces of osculating
circles follows from general results because surfaces of osculating circles
are surfaces formed by a uniparametric family of circles, in particular,
these surfaces fall in the class of cyclic surfaces. Cyclic surfaces with
constant Gaussian curvature K = c or constant mean curvature H = c,
are planes, spheres (where the circles of the foliation are not necessarily
included in parallel planes), surfaces of revolution, cones (K = 0) or
the Riemann minimal examples (H = 0). See [7, 11, 12]. However,
given a parametrization (2) of a surface of osculating circles it is very
difficult to deduce that this surface is one of the above cases. We obtain
the classification thanks to the above computations of K and H.

Theorem 3.2. Open subsets of planes and spheres are the only surfaces
of osculating circles with constant Gaussian curvature or constant mean
curvature.
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Proof. (1) Suppose that K is a constant c. Then (6) becomes

τ
(
r2τ 3 cosu+ τr′2(cosu− 1) + r (τr′′ − τ ′r′)

)
−c (cosu− 1) (r2τ 2+r′2)2 = 0.

This gives an polynomial equation on {1, cosu} which are lin-
early independent. Thus all coefficients, which are functions on
s, must vanish, obtaining two equations. If c = 0, the coeffi-
cient of cosu is τ(r2τ 2 + r′2), obtaining τ(s) = 0 for all s ∈ I.
This implies that the surface is a subset of a plane (Proposition
1.2). If c 6= 0, both equations are

rτ(r′′τ − r′τ ′)− r′2τ 2 + c(r2τ 2 + r′2)2 = 0.

(r2τ 2 + r′2)(τ 2 − c(r2 + τ 2r′2)) = 0.

The first equation implies that κ is not a constant function.
From the second equation, and by regularity, τ 2 = c(r2τ 2 +r′2).
In particular, τ 6′= 0. Substituting in the first equation, we have

r(r′′τ − r′τ ′ + rτ 3) = 0.

Hence the result follows from Lemma 2.8 and Proposition 2.2.
(2) Assume that H is constant. Firstly assume that H = 0. Then

(7) gives

r2τ 3 (2 cosu− 1) + 2τr2 (cosu− 1) + r (τr′′ − τ ′r′) = 0.

The coefficient of cosu is 2τ (r2τ 2 + r′2). Hence τ(s) = 0 for all
s ∈ I and the surface is a subset of a plane (Proposition 1.2).
Now assume that H = c 6= 0. Then

r2τ 3 (2 cosu− 1)+2τr′2 (cosu− 1)+r (τr′′ − τ ′r′)+2c (1− cosu)
(
r2τ 2 + r′2

)3/2
= 0.

The coefficients of {1, cosu} must vanish, so

√
r′2 + r2τ 2(2c(r2τ 2 + r′2)− τ)− r′2τ + r(r′′τ − r′τ ′) = 0

−2(r′2 + r2τ 2)
(
τ − c

√
r′2 + r2τ 2

)
= 0.

By regularity of the surface, we deduce from the second equation

τ − c
√
r2τ 2 + r′2 = 0

Substituting in the first equation, we have r(r′′τ−r′τ ′+rτ 3) = 0.
In particular, κ is not a constant function and the result is again
a consequence of Lemma 2.8 and Proposition 2.2.

�
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[7] López, R., Cyclic surfaces of constant Gauss curvature. Houston Math. J. 27
(2001), 799–805.
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