
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2022) 15:69
https://doi.org/10.1007/s44196-022-00122-4

RESEARCH ARTICLE

Characterizing the Temperature of SAT Formulas

Pedro Almagro‑Blanco1 · Jesús Giráldez‑Cru2 

Received: 26 February 2022 / Accepted: 25 July 2022
© The Author(s) 2022

Abstract
The remarkable advances in SAT solving achieved in the last years have allowed to use this technology to solve many real-
world applications, such as planning, formal verification and cryptography, among others. Interestingly, these industrial SAT
problems are commonly believed to be easier than classical random SAT formulas, but estimating their actual hardness is
still a very challenging question, which in some cases even requires to solve them. In this context, realistic pseudo-industrial
random SAT generators have emerged with the aim of reproducing the main features of these application problems to
better understand the success of those SAT solving techniques on them. In this work, we present a model to estimate the
temperature of real-world SAT instances. This temperature represents the degree of distortion into the expected structure
of the formula, from highly structured benchmarks (more similar to real-world SAT instances) to the complete absence of
structure (observed in the classical random SAT model). Our solution is based on the popularity–similarity random model
for SAT, which has been recently presented to reproduce two crucial features of application SAT benchmarks: scale-free and
community structures. This model is able to control the hardness of the generated formula by introducing some randomiza-
tions in the expected structure. Using our regression model, we observe that the estimated temperature of the applications
benchmarks used in the last SAT Competitions correlates to their hardness in most of the cases.

Keywords  SAT · Hardness · Temperature · Popularity–similarity · Entropy

Abbreviations
SAT	� Boolean satisfiability problem
PS	� Popularity–similarity random model
ML	� Machine learning
RANSAC	� Random sample consensus
FNN	� Feed-forward neural networks
CDCL	� Conflict-driven clause learning
DPLL	� Davis–Putnam–Logemann–Loveland

1  Introduction

The Boolean satisfiability problem (SAT) is the problem of
deciding whether the Boolean variables of a propositional
formula can be assigned in such a way that the formula is
evaluated as true. SAT is the first known NP-complete

problem [14], which means that existing solvers can run dur-
ing exponentially long executions in the worst case. Inter-
estingly, in the last 2 decades, we have witnessed a remark-
able progress in SAT solving techniques, which has allowed
us to solve huge SAT instances in a reasonable amount of
time. These advances are integrated in the so-known CDCL
algorithm [43], and they have been especially relevant to
solve real-world benchmarks, i.e., SAT instances encoding
problems from industrial applications, including domains of
Artificial Intelligence and Computer Science as diverse as
hardware and software verification, security analysis, plan-
ning, formal methods, bioinformatics, and cryptography or
compilers, among others.

Despite the remarkable progress in SAT solving tech-
niques in the last years, determining the time required to
solve a given SAT instance by a certain algorithm is still
today one of the most interesting and challenging questions
in the SAT community. The simplest solution is to run that
algorithm until termination, but unfortunately this task may
be extremely costly, and hence infeasible in many cases. An
alternative solution would be to accurately estimate its hard-
ness, i.e., the solving time required to solve it.

 *	 Jesús Giráldez‑Cru
	 jgiraldez@ugr.es

	 Pedro Almagro‑Blanco
	 palmagro@us.es

1	 CCIA, Universidad de Sevilla, Seville, Spain
2	 DaSCI, DECSAI, Universidad de Granada, Granada, Spain

http://orcid.org/0000-0001-8963-6299
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00122-4&domain=pdf

	 International Journal of Computational Intelligence Systems (2022) 15:69

1 3

 69   Page 2 of 14

Most of the traditional approaches on the study of the
hardness of SAT instances have focused on the so-known
classical random model of SAT formulas [37], where a ran-
dom formula Fk(n,m) is a set of m clauses over n variables,
and clauses are chosen uniformly and independently among
all the 2k

(
n

k

)
 non-trivial clauses of length k.1 The empirical

hardness of this model has been extensively studied [13,
36, 37, 46]. In particular, for any fixed n and k > 2 , there
exists an easy-hard-easy pattern depending on the clause/
variable ratio m/n, which is also related to the satisfiability
of the formula. Therefore, the hardness of random SAT for-
mulas simply depends on k, n and m. The natural question
is whether a simple hardness characterization also exists for
real-world SAT instances, which is the question that moti-
vates our work. Far from providing such a characterization,
in this work we analyze the relation between the hardness of
real-world SAT instances and a simple parameter of them,
as a first step towards facing this challenge.

Although the reasons of the success of CDCL SAT solv-
ers on the heterogeneous set of application SAT instances are
not completely understood yet [8, 28, 45], there have been
some recent attempts to study common features on these
industrial problems [6] with the aim of explaining the good
performance of these solvers on this benchmark. In this con-
text and due to the heterogeneity of application SAT bench-
marks, realistic pseudo-industrial random SAT instances
generators have emerged, stated as one of the most important
challenges in propositional search [42]. The cornerstone of
these models is to produce random formulas with computa-
tional properties similar to real-world instances. The popu-
larity–similarity (PS) random model [27] has been proposed
as one of these realistic random SAT generators.

The entropy of a physical system measures its macro-
scopic energy given the configurations of its microscopic
particles. The zero entropy state occurs when all particles
are in the configuration with the highest probability. On the
contrary, the entropy of the system grows as the likelihood
of the configuration decreases, which is commonly achieved
by increasing its temperature. Inspired by this, the PS model
defines an expected structure composed of scale-free struc-
ture [2] (the number of variables occurrences follows a
power-law distribution, i.e., a few variables occurs a lot
while most of them occur very little) and community struc-
ture [4] as a result of high clustering (the set of variables can
be split into disjoint communities such that variables mostly
occur in clauses with other variables of the same commu-
nity). They are two common features observed in most real-
world SAT benchmarks [2, 4]. In order to control the entropy
of the resulting formula, the PS model defines a parameter,

called temperature T, to control the degree of distortion into
this structure. This is, at T = 0 the model produces a formula
with clear scale-free and community structures with high
probability (hence the generated formula is more similar to
real-world SAT instances), whereas at high temperature the
model behaves like the classical random SAT model (hence
the generated formula does not exhibit any structure at all).

In practice, it has been observed that CDCL solvers
exploit both the scale-free and the community structure of
industrial SAT formulas. In particular, they focus on fre-
quent variables and on variables of the same community [3,
5, 7–9, 26]. Using the synthetic PS model, it has been also
observed that CDCL solvers perform better on PS formulas
with low temperature. On the contrary, SAT solvers spe-
cialized in classical random SAT formulas perform better
on PS formulas with high temperature [27]. Based on that,
we conjecture that the hardness of real-world SAT formulas
depends on a notion of temperature, which characterizes the
distortion into the structure of a particular formula from the
structure exhibited in most real-world SAT benchmarks. To
this end, in this work we assume a real-world SAT problem
as an instantiation of the PS model [27], and its tempera-
ture corresponds to the value of T in this instantiation. We
emphasize that this does not require the real-world instance
to have any structure (e.g., high T). However, most of real-
world SAT instances exhibit the structure of the PS model
and, therefore, we consider our assumption plausible for
most of application formulas.

In order to test our hypothesis, we need first to compute
the temperature of a given SAT formula. Unfortunately,
there is no known analytical method to this purpose [40]. In
our work we present an extensive study of Machine Learn-
ing (ML) regression methods to estimate it. In particular, we
analyze the performance of different ML techniques trained
with PS formulas generated at distinct temperatures, and
measure their accuracy in the estimation. As we will see,
training the model requires a careful design of the formula
generation in, e.g., their temperature values. We also evalu-
ate the robustness of each ML technique when the train-
ing set is altered with perturbations in the generation step.
Empirically, we show that ML techniques based on ensem-
bles (e.g., random forest) are the most accurate approaches,
and they remain robust to perturbations. Specifically, we
analyze changes in the scale-free structure, the temperature
range and the set of features used to train the models. We
obtain interesting results about model robustness, as well as
the relations between different regression techniques and the
feature sets. Empirically, we show that ML techniques based
on ensembles (e.g., random forest) are the most accurate
approaches, and they remain robust to perturbations.

Our second contribution uses the previous estimators to
analyze the hardness of real-world SAT instances. In particu-
lar, we analyze the hardness of the application benchmarks

1  A non-trivial clause of length k contains k distinct, non-comple-
mentary literals.

International Journal of Computational Intelligence Systems (2022) 15:69 	

1 3

Page 3 of 14  69

from the SAT Competition 2017 to 2021. Interestingly we
observe that formulas with high (estimated) temperature
seem to be harder than those with low temperature, meas-
ured as the percentage of SAT solvers submitted to the com-
petition that were able to solve such a formula. Therefore,
we consider the present work is a first step towards a simple
hardness characterization of real-world SAT instances based
on the notion of temperature, which may be useful to esti-
mate their solving cost without solving them.

The rest of this work is organized as follows. Section 2
describes some preliminaries on the PS model, whereas in
Sect. 3, we summarize the main related works. Section 4
provides a brief description of the ML-based regression
techniques used in our analysis. Section 5 is devoted to
the analysis of the temperature estimation, whereas Sect. 6
analyzes the temperature of real-world SAT benchmarks.
Finally, we conclude in Sect. 7.

2 � Preliminaries

In this section, we provide some preliminaries on the PS
random SAT model [27]. For further details, we address the
reader to the original reference.

The PS model is able to generate random SAT formulas
with both scale-free and community structure as the result
of two orthogonal forces: popularity and similarity. To
model them, every variable i is randomly assigned radial
and angular coordinates ri ∈ [0, 1] and �i ∈ [0, 2�] , represent-
ing, respectively, its popularity and its similarity to other
variables. Popular variables have a small radius and similar
variables have close angles. These two coordinates are also
assigned to every clause j.

In this model, the probability P(i ↔ j) of a variable i
occurring in a clause j (with any sign) is

where ri and rj represent the radii of i and j respectively, �ij
is the angular distance between them, � and �′ are, respec-
tively, the exponents of the power-law distributions for vari-
ables occurrences and clauses length, R is a normalization
constant ensuring the expected formula size, and T is the
temperature of the model. Notice that the values of ri , rj ,
and �ij affect the probability P(i ↔ j) . Let us assume that �
is large enough.2 When T is small enough, the smaller the
values ri , rj , and �ij , the bigger their product and hence the

(1)
P(i↔ j) =

1

1 +

(
r
�

i
⋅r�

��

j
⋅�ij

R

)1∕T
,

probability P(i ↔ j) . As (one of) these values increase, this
probability, which depends on the radii ri and rj and their
angle difference �ij , decreases. On the other hand, when T is
large, the value (rirj�ij)1∕T tends to 1, and hence, the prob-
ability P(i ↔ j) does not depend on ri , rj , �ij . Therefore, the
temperature T precisely controls the entropy of the system,
i.e., the degree of distortion into the expected probabilities.
The aforementioned structures are the result of this prob-
ability distribution, which is clearly non-uniform at low T:
it is more likely that a clause j contains a popular variable
(low ri ) or a variable similar to it (low �ij ). In contrast, the
probability distribution becomes (close to) uniform for high
values of T, as in the classical random SAT model.

In order to illustrate the effects of the temperature on the
generated PS formulas, in Fig. 1 we depict two PS formulas
with n = 100 variables, m = 425 clauses, and � = 0.8 , only
differing in their temperatures. In particular, one formula is
generated with T = 0.1 (low temperature), while the other
has T = 10 (high temperature). It can be observed that,
when the temperature is low, variables tend to connect to
close clauses (i.e., clauses with small radius or clauses with
a similar angle), whereas a high temperature may produce
occurrences of any variable in any clause, as in the classical
random model. Moreover, the temperature has a dramatic
effect in the scale-free structure. In Fig. 2, we represent the
distribution of variables occurrences of these formulas with
low and high temperature. When the temperature is low, this
distribution clearly fits a power-law distribution. In fact, the
estimated value of � is 0.89, very close to the original value
0.8. In contrast, when the temperature is high, the data do
not exhibit the heavy-tail behavior of power-law distribu-
tions. In particular the tail of these data decreases exponen-
tially, hence this formula dos not show scale-free structure.
See [2] for more details in the estimation of �.

In summary, this model has the following parameters. The
number of variables and clauses is, respectively, n and m.
The (minimum) clause length is K. The scale-free structure
of variables occurrences is set by � , which is the exponent
of the corresponding power-law distribution. In addition,
clause lengths may follow another power-law distribution
with exponent �′ , where the average clause length is (K + k) .
Finally, the temperature is T.

3 � Related Work

There are in the literature other realistic SAT generators,
such as the scale-free SAT model [3], which generates purely
scale-free SAT instances, and the community attachment
model [25], which is able to produce formulas with clear
community structure. We recall that both features can be
observed in PS formulas.2  We do not consider cases where � is small, since they are not real-

istic.

	 International Journal of Computational Intelligence Systems (2022) 15:69

1 3

 69   Page 4 of 14

Our work is based on the conjecture that the hardness of
real-world SAT instances is based on the entropy and other
simple formula features. This is the case in (purely) scale-
free SAT formulas [3], for which the hardness, besides k, n,
m, depends on the exponent � of the power-law distribution
that characterizes their scale-free structure [1, 15, 20–23,
39]. We recall that the PS formulas used in our experiments
also exhibit this scale-free structure.

A seminal contribution on ML applied to SAT solving is
SATzilla [31, 47]. A SAT solver unlikely dominates all oth-
ers on unrestricted SAT instances, but it may show a particu-
larly good performance on a certain class of problems [34].

On this idea, SATzilla proposes a per-instance algorithm
portfolio that estimates the best solver to solve a given for-
mula from a predefined set. This portfolio approach has also
been successfully applied in other works [32, 35].

4 � ML‑Based Regression Techniques

In this section, we provide a general overview of the regres-
sion problem to solve, and the techniques we use for that
task.

Let us consider an instance � , which is characterized by
a vector �� = [x1

�
,… , xn

�
] of n features. Being x∗ ∉ � the

target feature to estimate, the problem consists of finding the
function f s.t. f (�) = x∗ ± � that minimizes � . In our case, �
represents a SAT instance, � its features, and x∗ its tempera-
ture T. Since the temperatures of the PS instances used in
the training step are known a priori, we use supervised ML
techniques to learn f. In the following section, it is discussed
the set of features � used in our experiments.

In our problem, the target estimation x∗ is a continuous
value. Although there exist many different ML algorithms
to predict these values, the no-free-lunch theorem [29] states
that it cannot be known a priori which techniques show a
good performance in a particular problem, and finding them
usually requires a trial and error process.

In our experimental analysis, we evaluate a total of 13
distinct regression methods. They can be grouped into the
following categories: linear regression, ensemble methods,
and other techniques (including neural networks). For all

Fig. 1   Graphical representation of PS formulas with low T = 0.1
(left) and high T = 10 (right), generated with n = 100 , m = 425 , and
� = 0.8 . Blue and red nodes represent variables and clauses, respec-

tively. The (x, y) coordinates of each node represent their radius and
their angle, respectively

Fig. 2   Scale-free structure of PS formulas with low T = 0.1 and high
T = 10 , generated with n = 1000 , m = 4250 , and � = 0.8 , and their
estimated values of �

International Journal of Computational Intelligence Systems (2022) 15:69 	

1 3

Page 5 of 14  69

the techniques except neuronal networks, we use the imple-
mentations available at scikit-learn [41] with their default
hyperparameter settings. In the case of neural networks, we
use the implementation of Keras [12]. In addition, we evalu-
ate all these models using the best hyperparameter settings
found after a Bayesian optimization. In what follows, we
briefly describe the ML algorithms used in our experiments,
and the description of the Bayesian optimization performed.

4.1 � Linear Regression Methods

Linear regression is an ordinary least squares linear regres-
sion using singular value decomposition. Stochastic gra-
dient descent is a linear model minimizing a regularized
empirical loss with stochastic gradient descent. The regu-
larization is a penalty added to the loss function that shrinks
the model parameters towards the zero vector. Passive
aggressive [16] is a margin-based linear algorithm with no
learning rate and a regularization parameter (maximum step
size). Random sample consensus (RANSAC) [17] cal-
culates linear solutions minimizing least squares on subsets
of fixed size from the training samples, selecting the solution
that best fits to the subset of the data. Theil–Sen [17] also
calculates linear solutions minimizing the sum of squared
residuals on subsets of fixed size from the training samples.
In this case, the L1 median is obtained for all the computed
solutions. Huber [30] is a linear model that optimizes the
squared loss for the samples where |(y − y�w)𝜎| < 𝜖 and the
absolute loss in other case, where y and y′ represent the real
and predicted target value, respectively, and w and � are
parameters to be optimized in order to be less sensitive to
outliers. Bayesian ridge [44] implements a Bayesian lin-
ear regression, an approach to linear regression in which a
particular form of prior distribution is assumed (a normal
distribution) for the model parameters.

4.2 � Ensemble Methods

Random Forest [10] fits a set of decision trees on various
subsamples of the dataset. To make a prediction, it uses the
average of all decision trees predictions. Extra Trees [24]
fits a set of randomized decision trees on various subsam-
ples of the dataset and also uses the average of all decision
trees predictions. When looking for the best split in a ran-
domized decision tree, a subset of random splits are drawn
and the best split among those is chosen. AdaBoost [19] fits
a sequence of estimators (regression trees) on the same data-
set weighting instances according to the error of predictions,
such that subsequent trees focus more on difficult cases.
XGBoost [11] is an implementation of gradient boosting, a
method that fits a sequences of estimators (regression trees)
based on the negative gradient of a loss function.

4.3 � Other Methods

Feed-forward neural networks (FNN) with one hidden
layer, using its default configuration, where the number of
hidden neurons is set to 64, the batch size to 32, and Adam
[33] as the optimizer. The hyperbolic tangent is the acti-
vation function. In Kneighbors, the target is predicted by
local interpolation of the targets associated to the nearest
neighbors in the training set.

4.4 � Bayesian Optimization

Bayesian optimization [38] is a sequential design strategy for
global optimization, which does not require derivatives. This
strategy treats the objective function as a random function
and places a prior over it. In our case, the objective function
is the determination coefficient over a validation set, and
the prior is a Gaussian process. In order to evaluate each
algorithm, we perform a tenfold cross-validation, i.e., the
learning procedure is performed a total of ten times, each
with 90% of the instances as training set and the remaining
10% used for validation.

For linear regression methods, we will optimize the
specific hyperparameters of each model. In the case of
RANSAC and Theil–Sen, only the size of the training sam-
ples subsets will be tuned. In the case of techniques based
on ensembles, the number of estimators and various con-
straints on their structure will be considered. In the specific
case of AdaBoost and XGBoost, also the learning rate and
the loss function will be tuned. For neural networks, the
hyperparameters considered are the number of hidden neu-
rons, the optimization strategy and the batch size. Finally, for
Kneighbors, it is only optimized the number of neighbors
considered to make a prediction.

5 � Analysis of the Temperature Estimation

In this section, we present an exhaustive experimental
evaluation of our method to estimate the entropy of SAT
instances, with the aim of showing the robustness of our
approach. First, we introduce our experimental setup,
describing the generation of instances, and the evaluation
process. Then, we present the results on the estimation of
the temperature of SAT instances, calculated by a number of
state-of-the-art regression methods, using both default and
optimized hyperparameter settings.

Next, we analyze the performance of our method expos-
ing the generation of SAT formulas to several perturbations
in the training stage. Namely, we increase the parameter
values used in the generation, and study how this affects the
accuracy of the regression models. Finally, we examine the
impact of the set of SAT features used in the training phase

	 International Journal of Computational Intelligence Systems (2022) 15:69

1 3

 69   Page 6 of 14

on the accuracy of the models. In the following subsections,
we, respectively, present these investigations.

5.1 � Experimental Setup

5.1.1 � Generation of SAT Formulas

The training set is composed of a heterogeneous set of PS
random SAT formulas, differing in their number of vari-
ables n ∈ [100… 5000] , and their clause/variables densities
m∕n ∈ [2… 8] . For each value of n and m/n, we generate
100 random PS formulas with distinct temperatures. Our
main benchmark results into a total of 7200 SAT instances,
containing both satisfiable and unsatisfiable formulas. All
formulas are 3-CNF and much smaller than real-world SAT
instances. However, we found experimentally that the for-
mula size has no impact on the performance of ML methods.

In order to adequately train the regression models, we
need to generate a heterogeneous set of PS random SAT
formulas. Since the temperature is the parameter to estimate
in our approach, it is the most critical choice in the genera-
tion of the benchmark. However, it is also important to con-
sider an ample range of formulas differing in the remaining
parameters in order to make the regression methods learn
the behavior of the PS model at different settings. Before
discussing the generation of the benchmark at distinct tem-
peratures, we first describe the general batch of PS formulas
used in our experiments.

The main difference among the formulas in the bench-
mark, besides their temperature, is the formula size. In par-
ticular, we generate random PS formulas with the following
number of variables n and clause/variable ratios m/n:

•	 n = {100, 200, 500, 1000, 2000, 5000}

•	 m∕n = {2.0, 3.0, 3.5, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 5.0, 6.0, 8.0}

Notice that we generate both satisfiable and unsatisfiable
instances, with a greater density of formulas in the SAT-
UNSAT phase transition region. In addition, note that these
formulas are much smaller than actual real-world SAT
instances existing in the SAT Competitions. However, these
sizes are enough to generalize the structure of the resulting
formulas and, hence, to test our hypothesis.

The popularity and similarity of the generated formu-
las is controlled by the parameter � . In the main batch of
experiments, we use � = 1 , i.e., a very clear scale-free
structure. We also evaluate the robustness of the regression
techniques exposing the training set to some perturbations
on � (see Sect. 5.3.1). In particular, we train the regression
techniques with the same set of formulas generated with
� = {5∕6, 4∕6, 3∕6} , as well as the union of these four
benchmarks.

As in [26], we restrict our analysis to 3-CNF SAT for-
mulas, hence we generate the instances with K = 3 and
k = 0 . Since there is no variability in the clause lengths,
there is no need to define the parameter �′.

5.1.2 � Values of Temperature

The values of the temperature of the generated formulas
are a key choice of our solution. It is desirable to generate
formulas in an ample interval of temperatures, and these
values must be uniformly distributed in such an interval in
order to adequately train the regression model. However,
a small difference of T at low temperatures may result in
major differences in the resulting structure of the gener-
ated formula, whereas the same small difference at high
temperatures results in a formula whose structure is almost
unaltered. For instance, the PS model behaves quite dis-
tinctly with temperatures T = 0.1 and T = 0.6 , whereas
there is no remarkable difference between the model at
temperatures T = 10 and T = 10.5 . Notice that this is a
direct consequence of Eq. 1. This distinct behavior makes
inadequate the uniform selection of random values in a
certain interval. In order to solve this drawback, we apply
a logarithmic transformation to the range of temperature
values. This is, instead of using the interval [a, b], we use
the interval [log(a), log(b)].

To generate our batch of PS formulas, we sample 100
uniformly distributed random values in the interval [−1, 1]
for each formula size, i.e., for each combination of n and
m/n. These random values correspond to the logarithm of
the temperature of the generated formulas, and they are the
values used to train the regression models. In other words,
instead of estimating the temperature T of a given formula,
the regression model estimates its logarithm log(T) . There-
fore, the temperature ranges in the interval [1/e, e]. Although
this interval contains a reasonable range of values of temper-
ature, we also evaluate more ample intervals in Sect. 5.3.2.

It is important to mention that the regression models are
trained with no PS formulas at temperature T = 0 . There is
a twofold explanation to this choice. First, the PS model at
very low temperatures behaves similarly than at the absolute
zero limit. Second, since we consider that real-world SAT
instances always have a certain degree of entropy, there is no
need to train our model with unrealistic instances at T = 0.

5.1.3 � Set of Features

Every SAT instance is characterized by a vector of
features. Ideally, this vector contains a set of uncor-
related, fast-to-compute features of the formula. In our

International Journal of Computational Intelligence Systems (2022) 15:69 	

1 3

Page 7 of 14  69

experiments, we use the extended and well-known set of
features used in the SATzilla toolkit [47]. In particular,
we use a total of 101 features,3 including formula size,
graph characteristics, and solver statistics. In Sect. 5.4,
we evaluate the impact of reducing the number of features
used to train the regression models, in order to analyze
their feature importance.

5.1.4 � Filtering Out Trivial Instances

Random PS SAT instances at low temperatures may be very
easy [27]. This is especially relevant in small formulas (e.g.,
n = 100 ), which might be even solved by simple preprocess-
ing techniques. For this reason, we filter out those trivial
instances from the benchmark because some SATzilla fea-
tures include solver statistics, which cannot be computed
if the formula is already solved. Moreover, we observed
that the resulting unbalance after filtering out these trivial
instances does not affect the performance of the regression
models with the best accuracy, due to the already large num-
ber of formulas in the benchmark.

5.1.5 � Accuracy of the Model

In order to evaluate each regression technique, we use
the well-known coefficient of determination R2 between
the actual temperature and its prediction. Let X and Y be,
respectively, a sample of observed data and their predicted
values. The coefficient of determination R2 between them
is defined as

where X̄ is the mean of X. Therefore, R2 ∈ [−∞, 1] with
positive values indicating the existence of a certain correla-
tion between the observed data and their predictions (the
higher the value of R2 , the better is the prediction).

For each regression technique, a tenfold cross-validation
is performed. For each fold, we compute the R2 of the model
trained with the remaining ninefold. The global performance
of each method is expressed as the average R2 and its cor-
responding standard deviation. This procedure allows us to
reduce the variance in the results and obtain a confidence
criteria.

In our experiments, we use the value R2 ≥ 0.8 to dis-
tinguish those regression methods achieving a strong cor-
relation (i.e., a good accuracy in the prediction), although

R2(X, Y) = 1 −

∑
i (xi − yi)

2

∑
i (xi − X̄)2

,

any other reasonable high value of R2 could have been used
instead. It is worth noticing that all methods with such a

strong correlation also show a very small standard deviation
of R2 , always lower than 0.15 (and usually much lower).

5.2 � Performance of Regression Methods

The first natural question in our analysis is whether a regres-
sion method is able to estimate the temperature of a given
PS SAT formula given the vector of SATzilla features for
this formula. To answer this question, we first perform the
regression using the methods presented in the previous
section.

In Table 1, we summarize the performance of each
regression method on this problem, with both default and
optimized hyperparameter settings, measuring the average
and standard deviation of the coefficient of determination
R2 . We recall that this coefficient measures the differences
between the actual temperatures and the predicted ones; its
values range between −∞ and 1, with (greater) positive val-
ues indicating (stronger) correlation between both samples.

We can observe that many of the methods with default
settings are able of predicting the temperature of the for-
mulas with a high accuracy, hence showing the robustness
of our approach. Those accurate methods are based on
ensembles, which are commonly more robust to hyper-
parameter tuning. This can be due to the low sensitivity
of this kind of methods to modifications of their hyperpa-
rameter values. In addition, FNN and Kneighbors pre-
sent an acceptable accuracy with a low standard deviation.
Although models linear regression and Bayesian ridge

Table 1   Average coefficient of determination R2 (and its standard
deviation) for different regression methods, with default and opti-
mized hyperparameters

Regression method Default Optimized

Linear regression 0.789 ± 0.35 0.789 ± 0.35
Stochastic gradient descent −1.230 ± 2.24 −2.5e8 ± 3e8
Passive aggressive −181.7 ± 271 −1.072 ± 0.13
RANSAC −0.982 ± 1.53 0.511 ± 1.20
Theil–Sen −8.272 ± 25.3 0.898 ± 0.03
Huber −0.085 ± 0.14 −0.076 ± 0.15
Bayesian ridge 0.760 ± 0.46 0.694 ± 0.66
Random forest 0.921 ± 0.01 0.931 ± 0.01
Extra trees 0.922 ± 0.01 0.935 ± 0.01
AdaBoost 0.878 ± 0.02 0.896 ± 0.01
XGBoost 0.924 ± 0.01 0.935 ± 0.00
FNN 0.687 ± 0.07 0.912 ± 0.01
Kneighbors 0.795 ± 0.03 0.796 ± 0.02

3  We skip the computation of LP-based and SLS-based features due
to their long execution time for some formulas. We also skip diameter
features, as done in the last SATzilla version.

	 International Journal of Computational Intelligence Systems (2022) 15:69

1 3

 69   Page 8 of 14

also obtain an acceptable R2 average, we cannot draw
definitive conclusions due to their high deviation. For the
Bayesian optimization to tune the hyperparameters set-
tings, we assume the objective function to be unknown
(determination coefficient over the validation set), treat-
ing it as a random function and placing a prior over it (a
Gaussian process). The prior captures beliefs about the
behavior of the function and after each evaluation, the
prior is updated to form the posterior distribution over the
objective function. The posterior distribution, in turn, is
used to construct an acquisition function that determines
the next evaluation point. In order to find the best param-
eter settings of each regression method, we evaluate the
objective function using 100 evaluation points.

After optimizing hyperparemeters, we observe noticeable
improvements in most of the methods, especially in FNN
and Theil–Sen. In the case of FNN, the method shows a
considerable improvement after adjusting the number of
neurons in the hidden layer, the optimizer and the batch
size. In the case of Theil–Sen, this linear method is able
to learn from different subsets of the training data, and with
an optimal configuration acquires resistance against outli-
ers. This fact suggests a certain linear relation between SAT
features and the temperature T. It is worth noticing that,
in general, linear methods do not outperform (non-linear)
methods based on neural networks and ensembles.

Besides the techniques that already show a good perfor-
mance with default parameters, we find a very good accu-
racy (with R2 above 0.8) in the following regression models:
Theil–Sen, RANSAC, and Bayesian ridge. However, the
improvements in the accuracy of these techniques suggest
that they are not robust to variations in the benchmark, since
the good performance is only achieved after an optimization
process of their parameters settings.

In Fig. 3, we depict the predicted temperature versus
the actual temperature of random PS formulas for the
six regression techniques with a good performance after
optimizing their hyperparameters. Notice that when R2 is
close to 1, the points on the figure must be close to the
diagonal. For the methods based on ensembles of decision
trees (Random Forest, AdaBoost and XGBoost) and due
to their low sensitivity to hyperparameter tuning, there is
no remarkable difference between their performance with
default and optimized settings. In fact, their values of R2
are close to 1 in both settings, suggesting that they are
robust to estimate the temperature of SAT formulas. Inter-
estingly, for Theil–Sen and FNN, we observe consider-
able improvements, resulting in a good performance after
optimizing their settings. Recall that Theil–Sen performs
a linear regression. In the case of FNN, it can be clearly
observed its poor performance with its default setting,
caused by its default learning rate. For Kneighbors, it can

be observed that its performance is worse than the one of
the other 5 models, in both settings, due to the number of
points far from the diagonal.

5.3 � Robustness to Benchmark Perturbations

The next natural question is whether the accuracy of our
approach is robust to perturbations. In particular, we con-
sider perturbations in the training step modifying the param-
eters values of the generated PS random SAT formulas vary-
ing: (i) the scale-free structure of the benchmark, and (ii) the
interval used to sample the values of the temperature. The
following subsections describe these experiments.

5.3.1 � Varying the Scale‑Free Structure

In our main benchmark, all PS random formulas are gen-
erated with � = 1 , i.e., with a clear scale-free structure.
Now, we analyze the performance robustness of the regres-
sion models in benchmarks just differing in the value of �
used in the generation of the SAT formulas. In particular,
we evaluate the cases with � = {5∕6, 2∕3, 1∕2} , and the
union of these four. In this experiment, we use the regres-
sion models with optimized hyperparameters computed for
� = 1 . As before, we measure the accuracy of the models
using the determination coefficient R2 , but we restrict our
analysis to the regression methods that already showed a
good performance in the previous experiment, and adding
linear regression as baseline. In Table 2, we summarize the
results of this experiment.

We observe that, in all the cases, the regression methods
showing the best performance in all benchmarks (with any
value of � ) are techniques that already showed a very good
performance with default parameters in the benchmark with
� = 1 , i.e., (non-linear) methods based on ensembles of deci-
sion trees: Random Forest, Extra Trees and XGBoost.
Therefore, these techniques seem to be robust to this per-
turbation, and hence they are good candidates to build a
promising temperature estimator. Surprisingly, the linear
regression method is able to obtain a reasonably good result
in the case of the union of the different sets. This can be due
to the fact that this set of instances is larger than the others,
allowing the linear method to learn more effectively. In the
case of Theil–Sen, the optimization made for � = 1 does not
generalize correctly, thus this model is not robust.

5.3.2 � Varying the Interval of Temperatures

Another perturbation to study the robustness of the regres-
sion methods is the interval used to sample the values of

International Journal of Computational Intelligence Systems (2022) 15:69 	

1 3

Page 9 of 14  69

Fig. 3   Predicted temperature versus actual temperature, for some regression techniques with a small standard deviation

Table 2   Average of coefficient
of determination R2 (and its
standard deviation) for different
regression methods (with
optimized hyperparameter
values), varying the value of �
in the benchmark

Union stands for the benchmark composed of the union of the other four

Regressor � = 1 � = 5∕6 � = 4∕6 � = 3∕6 Union

(baseline)

Linear regression 0.789 ± 0.35 −3.199 ± 12.4 −0.568 ± 4.45 0.856 ± 0.13 0.785 ± 0.02
Theil–Sen 0.898 ± 0.03 −2.223 ± 9.40 −6.625 ± 22.3 −197.1 ± 241 −213.6 ± 270
Random Forest 0.931 ± 0.01 0.932 ± 0.01 0.942 ± 0.01 0.958 ± 0.00 0.858 ± 0.01
Extra Trees 0.935 ± 0.01 0.935 ± 0.01 0.946 ± 0.01 0.960 ± 0.01 0.861 ± 0.01
AdaBoost 0.896 ± 0.01 0.882 ± 0.01 0.883 ± 0.01 0.904 ± 0.01 0.678 ± 0.01
XGBoost 0.935 ± 0.00 0.937 ± 0.01 0.948 ± 0.01 0.963 ± 0.01 0.872 ± 0.01
FNN 0.912 ± 0.01 0.904 ± 0.02 0.915 ± 0.01 0.927 ± 0.01 0.780 ± 0.02

	 International Journal of Computational Intelligence Systems (2022) 15:69

1 3

 69   Page 10 of 14

the temperature of the random PS formulas in the bench-
mark. We recall that these values represent the logarithm
of the temperature of the generated formulas. In the main
benchmark, we use the interval [−1, 1] (i.e., the tempera-
ture ranges in [1/e, e]). In this experiment, we generate two
similar benchmarks only differing in this interval: [−2, 2] and
[−3, 3] ; the rest of the generation remains unaltered.

In Table 3, we also summarize the results of this pertur-
bation. We recall that we are evaluating regression methods
whose hyperparameters were optimized for the benchmark
with temperatures in the interval [−1, 1].

We observe that all regression methods show a very good
accuracy, suggesting that they all are robust to this kind of
perturbation in the temperature. Interestingly, there seems to
be a peak of performance in the intermediate interval [−2, 2] ,
i.e., using a relatively ample interval is beneficial, but using
a too ample one is not.

5.4 � Features Set and Feature Importance

Related to the set of features used in the experiments, we can
consider the following questions. What is the relationship
between the set of features used in the training step and the pre-
dictive capacity of the different regression methods and their
configurations? Can this relationship give some information
about which sets of features have a linear relationship with

temperature and which do not? Is the features set used in our
experiments introducing some bias in the results? In this subsec-
tion, we carry out some experiments to address these questions.

The set of features provided by the SATzilla toolkit can
be divided into the following categories: (a) basic features,
(b) graph features, (c) CDCL (and DPLL) features, and (d)
other solving and timing statistics. Basic features concern
problem size information (e.g., number of variables and
clauses), proximity to the Horn formula, and the so-called
balance features (e.g., ratio between positive and negative
literals). Graph features rely on three graph representations
of the formula, namely variable graph, clause graph, and
variable-clause graph, and the features represent some sta-
tistics about these graphs (e.g., node degree). CDCL fea-
tures contain information in very short runs (i.e., it does not
solve the formula, it just runs the solver during a few sec-
onds) about number of unit propagations, estimation of the
search space, and number and size of learned clauses. The
remaining subset contains the rest of features described in
the documentation of SATzilla, including linear program-
ming, local search, and survey propagation statistics. In our
analysis, we focus on the first three subsets, which, respec-
tively, have 26, 25, and 24 features. We use the original
SATzilla tool to produce all these features [47].

In Table 4, we summarize the coefficient of determina-
tion R2 of different regression methods using a different set
of features to train the models and compute the regression.
Again, we use the models with optimized hyperparameter
settings from the main experiment (see Table 1).

We observe that the set of features used to compute the
regression may have dramatic consequences in their perfor-
mance. In particular, we observe a very poor performance
when only CDCL features are used. On the contrary, the
performance is generally good using the set of graph fea-
tures. Surprisingly, the linear methods (linear regression
and Theil–Sen) have very good performance when they are
trained using graph features only, while their performance
gets worse with the rest of the feature sets. This shows that
these graph characteristics are able to linearize the relation
between the SAT formula and its temperature. Notice that
linear estimators are less sensitive to overfitting than others.

Table 3   Average of coefficient of determination R2 (and its standard
deviation) for different regression methods (with optimized hyperpa-
rameter values), varying the interval of the temperature used to gener-
ate the benchmark

Regressor [−1, 1] [−2, 2] [−3, 3]

(baseline)

Linear regression 0.789 ± 0.35 0.936 ± 0.02 0.907 ± 0.01
Theil–Sen 0.898 ± 0.03 0.939 ± 0.01 0.904 ± 0.02
Random Forest 0.931 ± 0.01 0.955 ± 0.01 0.945 ± 0.01
Extra Trees 0.935 ± 0.01 0.956 ± 0.01 0.947 ± 0.01
AdaBoost 0.896 ± 0.01 0.928 ± 0.00 0.904 ± 0.01
XGBoost 0.935 ± 0.00 0.956 ± 0.01 0.943 ± 0.01
FNN 0.912 ± 0.01 0.917 ± 0.01 0.874 ± 0.02

Table 4   Average of coefficient
of determination R2 for different
regression methods (with
optimized hyperparameter), for
different features sets

Regressor All
(baseline)

Basic
(A)

Graph
(B)

CDCL
(C)

Union
A ∪ B ∪ C

Linear regression 0.789 ± 0.35 0.118 ± 2.14 0.808 ± 0.08 0.330± 0.07 0.749± 0.41
Theil–Sen 0.898 ± 0.03 −0.058 ± 2.62 0.832 ± 0.03 0.336± 0.06 −0.143± 3.11
Random Forest 0.931 ± 0.01 0.911 ± 0.01 0.917 ± 0.01 0.579± 0.04 0.927± 0.01
Extra Trees 0.935 ± 0.01 0.918 ± 0.01 0.924 ± 0.01 0.565± 0.05 0.933± 0.01
AdaBoost 0.896 ± 0.01 0.863 ± 0.02 0.864 ± 0.01 0.331± 0.06 0.876± 0.02
XGBoost 0.935 ± 0.00 0.916 ± 0.01 0.923 ± 0.02 0.554± 0.02 0.932± 0.01
FNN 0.912 ± 0.01 0.889 ± 0.01 0.932 ± 0.02 0.535± 0.06 0.911± 0.01

International Journal of Computational Intelligence Systems (2022) 15:69 	

1 3

Page 11 of 14  69

Therefore, the combination between this small set of features
and these linear methods must be emphasized.

In the case of CDCL features, the determination coef-
ficient R2 of linear methods is similar to the one of the
remaining non-linear regression techniques. This suggests
a second linear relation between the set of features and the
temperature. Nevertheless, it is much weaker. Basic features
only produces good results with non-linear regression meth-
ods based on neural networks and ensembles, and this may
explain the worse performance of linear methods when using
them.

6 � On the Hardness of Real‑World SAT
Instances

In this section, we analyze the relation between the hard-
ness of real-world SAT instances and their (estimated) tem-
perature. To estimate such a temperature, we simply use the
regression methods trained with PS formulas which were
analyzed in the previous section.

If the temperature of real-world SAT instances is related
to their hardness, we may observe that the ones with high
(estimated) temperature behave similarly to random SAT
formulas, i.e., they are hard to solve. In order to analyze it,
we carry out the following experiment. We select a set of
real-world SAT instances and estimate their temperature.
In particular, we use the set of benchmarks from the SAT
Competitions from 2017 to 2021.4 In addition, for each for-
mula, we measure the percentage of solvers submitted to
each competition that were able to solve it. This percentage
represents an indirect indicator of hardness: easy formulas
are solved by (almost) all solvers, whereas hard formulas
are solved by (almost) no solver. Finally, we compare these
two metrics.

In Fig. 4, we represent the results of this experiment,
where the estimated temperatures are computed with the
six regression methods that showed a good performance
in the previous experiments, i.e., Random Forest, Extra
Trees, Theil–Sen, XGBoost, FNN, and linear regression
as baseline.

Fig. 4   Estimated temperature
versus ratio of solvers submit-
ted to the SAT Competitions
from 2017 to 2021 solving the
instances in those competitions,
for several regression techniques
trained baseline dataset with
optimized hyperparameters

4  http://​www.​satco​mpeti​tion.​org/.

http://www.satcompetition.org/

	 International Journal of Computational Intelligence Systems (2022) 15:69

1 3

 69   Page 12 of 14

In the five competitions, the empirical results show
that (i) many formulas with high temperature are only solved
by a small fraction of solvers (i.e., they seem to be hard),
and (ii) many formulas with low temperatures are solved
by a high percentage of solvers (in particular, a large frac-
tion is solved by 100% of the solvers, hence they are easy).
However, there is a set of instances that does not exactly
follow this pattern. This can be explained by several rea-
sons. First, we conjecture that the hardness of real-world
SAT formulas depends on the temperature, but there may
be other parameters affecting such a hardness, e.g., formula
size.5 Second, there may exist a very hard combinatorial
subproblem embedded into the formula, as in cryptogra-
phy problems, representing a very challenging case for our
estimators. Nevertheless, these formulas represent a small
fraction of the competition.

In order to compare the accuracy of the analyzed clas-
sifiers, we measure the percentage of correctly classified
instances for these regression techniques. In particular, we
consider that an instance is correctly classified either if it
is easy with low (estimated) temperature (top left area of
the plots), or if it is hard with high (estimated) temperature
(bottom right area of the plots). In our analysis, an instance
is easy (resp. hard) if it is solved by at least (resp. at most)
50% of the solvers, and a temperature is low (resp. high) if
it is greater (resp. less or equal) than T = 1.5.

In Table 5, we report these results. As it can be observed,
linear regression and Theil–Sen are the ones with the best
accuracy, with a performance around 65% in some cases.
This confirms that, in many cases, the (estimated) tempera-
ture of the formula is related to their hardness. However,
there is still a large number of formulas incorrectly classi-
fied. In general, they are easy formulas with high (estimated)
temperature. We conjecture that they are formulas without
scale-free and community structures and, thus, the PS model
is unable to instantiate them. Interestingly enough, these

methods based on linear regression outperform those based
on ensembles. It is worth noticing that the simple linear
regression shows the best performance in two of the five
competitions analyzed. This supports the hypothesis that the
characterization of the temperature of SAT instances may be
linearized with certain features of the formulas.

7 � Conclusions

In this work, we have presented an extensive analysis of ML
regression techniques in order to estimate the temperature
of real-world SAT instances. Our experimental results show
that ML methods based on ensembles (e.g., Random For-
est) show the best performance, remaining robust to pertur-
bations in the training step. Nevertheless, simple methods
based on linear regression also show a very good perfor-
mance in many cases. In addition, we have showed that a
successful application like SATzilla is able to indirectly infer
the temperature of the formulas using only a very small sub-
set of (graph) features. Using these estimators, we observe
that real-world SAT instances with a high (estimated) tem-
perature seem to be harder than those with low tempera-
ture. These empirical evidences suggest that the hardness of
real-world SAT instances is related to their temperature. We
consider that the present work is a first step towards a sim-
ple hardness characterization of real-world SAT instances
based on their temperature, which may be used to estimate
their solving cost without solving them. As future work, we
plan to extend this analysis with more sophisticated neural
networks, including graph neural networks, and other auto-
mated ML techniques [18]. Moreover, we plan to extend
our analysis to characterize the temperature of MaxSAT for-
mulas, the optimization version of the SAT problem. This
characterization may be crucial in order to select the most
adequate algorithm to solve them (e.g., either MaxSAT solv-
ers more specialized in real-world instances, or MaxSAT
solvers more specialized in random formulas).

Table 5   Percentage of
correctly classified real-world
SAT benchmarks of the SAT
Competitions from 2017
to 2021 according to their
estimated temperature for
different regression methods
trained

The regressor with the best accuracy for each competition is marked in bold. LR stands for linear regres-
sion, RF for Random Forest, LR for Extra Trees, TS for Theil–Sen, and XGB for XGBoost

LR (%) RF (%) ET (%) TS (%) XGB (%) FNN
(%)

SAT Comp. 2017 64.43 50.58 49.42 57.20 49.71 54.07
SAT Comp. 2018 59.09 43.81 45.10 57.67 44.33 63.4
SAT Race. 2019 63.98 48.97 44.87 59.75 45.64 47.18
SAT Comp. 2020 59.21 51.18 49.12 59.17 49.12 50.29
SAT Comp. 2021 65.27 40.26 38.95 65.13 38.42 38.68

5  A formula with hundreds of variables may be solvable in milli-
seconds, whereas solving a formula with millions of variables may
require several hours or even days.

International Journal of Computational Intelligence Systems (2022) 15:69 	

1 3

Page 13 of 14  69

Author Contributions  All the authors have equally contributed to this
work.

Funding  Jesús Giráldez-Cru is supported through the Juan de la Cierva
program, fellowship IJC2019-040489-I, funded by MCIN and AEI.

Data Availability Statement  All the authors give their consent for the
publication of this work.

Declarations 

Conflict of Interest  The authors declare that they have on conflict of
interest.

Consent for Publication  Not applicable.

Ethics Approval and Consent to Participate  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Ansótegui, C., Bonet, M., Levy, J.: Scale-free random SAT
instances. CoRR, abs/1708.06805, (2017)

	 2.	 Ansótegui, C., Bonet, M., Levy, J.: On the structure of industrial
SAT instances. Proc. CP 2009, 127–141 (2009)

	 3.	 Ansótegui, C., Bonet, M., Levy, J.: Towards industrial-like ran-
dom SAT instances. Proc. IJCAI 2009, 387–392 (2009)

	 4.	 Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure
of SAT formulas. Proc. SAT 2012, 410–423 (2012)

	 5.	 Ansótegui, C., Giráldez-Cru, J., Levy, J., Simon, L.: Using com-
munity structure to detect relevant learnt clauses. Proc. SAT 2015,
238–254 (2015)

	 6.	 Ansótegui, C., Bonet, M., Giráldez-Cru, J., Levy, J.: Structure
features for SAT instances classification. J. Appl. Log. 23, 27–39
(2017)

	 7.	 Ansótegui, C., Bonet, M., Giráldez-Cru, J., Levy, J., Simon, L.:
Community structure in industrial SAT instances. J. Artif. Intell.
Res. 66, 443–472 (2019)

	 8.	 Audemard, G., Simon, L.: Predicting learnt clauses quality in
modern SAT solvers. Proc. IJCAI 2009, 399–404 (2009)

	 9.	 Baud-Berthier, G., Giráldez-Cru, J., Simon, L.: On the community
structure of bounded model checking SAT problems. Proc. SAT
2017, 65–82 (2017)

	10.	 Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
	11.	 Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system.

Proc. KDD 2016, 785–794 (2016)
	12.	 Chollet, F., et al., Keras. https://​keras.​io (2015)

	13.	 Chvátal, V., Reed, B.: Mick gets some (the odds are on his side).
Proc. FOCS 1992, 620–627 (1992)

	14.	 Cook, S.: The complexity of theorem-proving procedures. Proc.
STOC 1971, 151–158 (1971)

	15.	 Cooper, C., Frieze, A., Sorkin, G.: Random 2-SAT with prescribed
literal degrees. Algorithmica 48(3), 249–265 (2007)

	16.	 Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer,
Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res.
7(Mar), 551–585 (2006)

	17.	 Dang, X., Peng, H., Wang, X., Zhang, H.: Theil-sen estimators in
a multiple linear regression model. Olemiss Educ. (2008)

	18.	 Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum,
M., Hutter, F.: Auto-sklearn: efficient and robust automated
machine learning. In Automated Machine Learning—Methods,
Systems, Challenges. Springer, pp 113–134 (2019)

	19.	 Freund, Y., Schapire, R.: A decision-theoretic generalization of
online learning and an application to boosting. J. Comput. Syst.
Sci. 55(1), 119–139 (1997)

	20.	 Friedrich, T., Krohmer, A., Rothenberger, R., Sauerwald, T., Sut-
ton, A.: Bounds on the satisfiability threshold for power law dis-
tributed random SAT. In Proceedings of ESA 2017, vol. 87, pp.
37:1–37:15 (2017)

	21.	 Friedrich, T., Rothenberger, R.: The satisfiability threshold for
non-uniform random 2-SAT. In Proceedings of ICALP 2019, pp.
61:1–61:14 (2019)

	22.	 Friedrich, T., Rothenberger, R.: Sharpness of the satisfiability
threshold for non-uniform random k-SAT. Proc. SAT 2018, 273–
291 (2018)

	23.	 Friedrich, T., Krohmer, A., Rothenberger, R., Sutton, A.: Phase
transition for sclae-free SAT formulas. Proc. AAAI 2017, 3893–
3899 (2017)

	24.	 Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees.
Mach. Learn. 63(1), 3–42 (2006)

	25.	 Giráldez-Cru, J., Levy, J.: Generating SAT instances with com-
munity structure. Artif. Intell. 238, 119–134 (2016)

	26.	 Giráldez-Cru, J., Levy, J.: Locality in random SAT instances.
Proc. IJCAI 2017, 638–644 (2017)

	27.	 Giráldez-Cru, J., Levy, J.: Popularity-similarity random SAT for-
mulas. Artif. Intell. 299, 103537 (2021)

	28.	 Gomes, C., Selman, B.: Problem structure in the presence of per-
turbations. Proc. AAAI 1997, 221–226 (1997)

	29.	 Ho, Y., Pepyne, D.: Simple explanation of the no-free-lunch theo-
rem and its implications. J. Optim. Theory Appl. 115(3), 549–570
(2002)

	30.	 Huber, P.: Robust Statistics. Springer, Berlin (2011)
	31.	 Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runt-

ime prediction: methods and evaluation. Artif. Intell. 206, 79–111
(2014)

	32.	 Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC—
instance-specific algorithm configuration. Proc. ECAI 2010,
751–756 (2010)

	33.	 Kingma, D., Ba, J.: Adam: a method for stochastic optimization.
arXiv (2014)

	34.	 Leyton-Brown, K., Hoos, H., Hutter, F., Xu, L.: Understanding
the empirical hardness of NP-complete problems. Commun. ACM
57(5), 98–107 (2014)

	35.	 Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.:
Non-model-based algorithm portfolios for SAT. Proc. SAT 2011,
369–370 (2011)

	36.	 Mitchell, D., Levesque, H.: Some pitfalls for experimenters with
random SAT. Artif. Intell. 81(1–2), 111–125 (1996)

	37.	 Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribu-
tions of SAT problems. Proc. AAAI 1992, 459–465 (1992)

	38.	 Mockus, J.: Bayesian Approach to Global Optimization: Theory
and Applications, vol. 37. Springer Science & Business Media,
Berlin (2012)

http://creativecommons.org/licenses/by/4.0/
https://keras.io

	 International Journal of Computational Intelligence Systems (2022) 15:69

1 3

 69   Page 14 of 14

	39.	 Omelchenko, O., Bulatov, A.A.: Satisfiability threshold for power
law random 2-SAT in configuration model. Theoret. Comput. Sci.
888, 70–94 (2021)

	40.	 Papadopoulos, F., Kitsak, M., Serrano, M., Boguñá, M., Krioukov,
D.: Popularity versus similarity in growing networks. Nature 489,
537–540 (2012)

	41.	 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., Duchesnay, E.: Scikit-learn: machine learning in Python.
J. Mach. Learn. Res. 12, 2825–2830 (2011)

	42.	 Selman, B., Kautz, H., McAllester, D.: Ten challenges in propo-
sitional reasoning and search. Proc. IJCAI 1997, 50–54 (1997)

	43.	 Silva, J.M., Lynce, I., Malik, S.: Conflict-driven clause learning
SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability, Volume 185 of Frontiers in
Artificial Intelligence and Applications, pp. 131–153. IOS Press
(2009)

	44.	 Tipping, M.: Sparse bayesian learning and the relevance vector
machine. J. Mach. Learn. Res. 1(Jun), 211–244 (2001)

	45.	 Williams, R., Gomes, C., Selman, B.: Backdoors to typical case
complexity. Proc. IJCAI 2003, 1173–1178 (2003)

	46.	 Xu, L., Hoos, H., Leyton-Brown, K.: Predicting satisfiability at
the phase transition. In Proceedings of AAAI 2012, (2012)

	47.	 Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: port-
folio-based algorithm selection for SAT. J. Artif. Intell. Res. 32,
565–606 (2008)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Characterizing the Temperature of SAT Formulas
	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 ML-Based Regression Techniques
	4.1 Linear Regression Methods
	4.2 Ensemble Methods
	4.3 Other Methods
	4.4 Bayesian Optimization

	5 Analysis of the Temperature Estimation
	5.1 Experimental Setup
	5.1.1 Generation of SAT Formulas
	5.1.2 Values of Temperature
	5.1.3 Set of Features
	5.1.4 Filtering Out Trivial Instances
	5.1.5 Accuracy of the Model

	5.2 Performance of Regression Methods
	5.3 Robustness to Benchmark Perturbations
	5.3.1 Varying the Scale-Free Structure
	5.3.2 Varying the Interval of Temperatures

	5.4 Features Set and Feature Importance

	6 On the Hardness of Real-World SAT Instances
	7 Conclusions
	References

