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Abstract
The remarkable advances in SAT solving achieved in the last years have allowed to use this technology to solve many real-
world applications, such as planning, formal verification and cryptography, among others. Interestingly, these industrial SAT 
problems are commonly believed to be easier than classical random SAT formulas, but estimating their actual hardness is 
still a very challenging question, which in some cases even requires to solve them. In this context, realistic pseudo-industrial 
random SAT generators have emerged with the aim of reproducing the main features of these application problems to 
better understand the success of those SAT solving techniques on them. In this work, we present a model to estimate the 
temperature of real-world SAT instances. This temperature represents the degree of distortion into the expected structure 
of the formula, from highly structured benchmarks (more similar to real-world SAT instances) to the complete absence of 
structure (observed in the classical random SAT model). Our solution is based on the popularity–similarity random model 
for SAT, which has been recently presented to reproduce two crucial features of application SAT benchmarks: scale-free and 
community structures. This model is able to control the hardness of the generated formula by introducing some randomiza-
tions in the expected structure. Using our regression model, we observe that the estimated temperature of the applications 
benchmarks used in the last SAT Competitions correlates to their hardness in most of the cases.
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Abbreviations
SAT	� Boolean satisfiability problem
PS	� Popularity–similarity random model
ML	� Machine learning
RANSAC	� Random sample consensus
FNN	� Feed-forward neural networks
CDCL	� Conflict-driven clause learning
DPLL	� Davis–Putnam–Logemann–Loveland

1  Introduction

The Boolean satisfiability problem (SAT) is the problem of 
deciding whether the Boolean variables of a propositional 
formula can be assigned in such a way that the formula is 
evaluated as true. SAT is the first known NP-complete 

problem [14], which means that existing solvers can run dur-
ing exponentially long executions in the worst case. Inter-
estingly, in the last 2 decades, we have witnessed a remark-
able progress in SAT solving techniques, which has allowed 
us to solve huge SAT instances in a reasonable amount of 
time. These advances are integrated in the so-known CDCL 
algorithm [43], and they have been especially relevant to 
solve real-world benchmarks, i.e., SAT instances encoding 
problems from industrial applications, including domains of 
Artificial Intelligence and Computer Science as diverse as 
hardware and software verification, security analysis, plan-
ning, formal methods, bioinformatics, and cryptography or 
compilers, among others.

Despite the remarkable progress in SAT solving tech-
niques in the last years, determining the time required to 
solve a given SAT instance by a certain algorithm is still 
today one of the most interesting and challenging questions 
in the SAT community. The simplest solution is to run that 
algorithm until termination, but unfortunately this task may 
be extremely costly, and hence infeasible in many cases. An 
alternative solution would be to accurately estimate its hard-
ness, i.e., the solving time required to solve it.
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Most of the traditional approaches on the study of the 
hardness of SAT instances have focused on the so-known 
classical random model of SAT formulas [37], where a ran-
dom formula Fk(n,m) is a set of m clauses over n variables, 
and clauses are chosen uniformly and independently among 
all the 2k

(
n

k

)
 non-trivial clauses of length k.1 The empirical 

hardness of this model has been extensively studied [13, 
36, 37, 46]. In particular, for any fixed n and k > 2 , there 
exists an easy-hard-easy pattern depending on the clause/
variable ratio m/n, which is also related to the satisfiability 
of the formula. Therefore, the hardness of random SAT for-
mulas simply depends on k, n and m. The natural question 
is whether a simple hardness characterization also exists for 
real-world SAT instances, which is the question that moti-
vates our work. Far from providing such a characterization, 
in this work we analyze the relation between the hardness of 
real-world SAT instances and a simple parameter of them, 
as a first step towards facing this challenge.

Although the reasons of the success of CDCL SAT solv-
ers on the heterogeneous set of application SAT instances are 
not completely understood yet [8, 28, 45], there have been 
some recent attempts to study common features on these 
industrial problems [6] with the aim of explaining the good 
performance of these solvers on this benchmark. In this con-
text and due to the heterogeneity of application SAT bench-
marks, realistic pseudo-industrial random SAT instances 
generators have emerged, stated as one of the most important 
challenges in propositional search [42]. The cornerstone of 
these models is to produce random formulas with computa-
tional properties similar to real-world instances. The popu-
larity–similarity (PS) random model [27] has been proposed 
as one of these realistic random SAT generators.

The entropy of a physical system measures its macro-
scopic energy given the configurations of its microscopic 
particles. The zero entropy state occurs when all particles 
are in the configuration with the highest probability. On the 
contrary, the entropy of the system grows as the likelihood 
of the configuration decreases, which is commonly achieved 
by increasing its temperature. Inspired by this, the PS model 
defines an expected structure composed of scale-free struc-
ture [2] (the number of variables occurrences follows a 
power-law distribution, i.e., a few variables occurs a lot 
while most of them occur very little) and community struc-
ture [4] as a result of high clustering (the set of variables can 
be split into disjoint communities such that variables mostly 
occur in clauses with other variables of the same commu-
nity). They are two common features observed in most real-
world SAT benchmarks [2, 4]. In order to control the entropy 
of the resulting formula, the PS model defines a parameter, 

called temperature T, to control the degree of distortion into 
this structure. This is, at T = 0 the model produces a formula 
with clear scale-free and community structures with high 
probability (hence the generated formula is more similar to 
real-world SAT instances), whereas at high temperature the 
model behaves like the classical random SAT model (hence 
the generated formula does not exhibit any structure at all).

In practice, it has been observed that CDCL solvers 
exploit both the scale-free and the community structure of 
industrial SAT formulas. In particular, they focus on fre-
quent variables and on variables of the same community [3, 
5, 7–9, 26]. Using the synthetic PS model, it has been also 
observed that CDCL solvers perform better on PS formulas 
with low temperature. On the contrary, SAT solvers spe-
cialized in classical random SAT formulas perform better 
on PS formulas with high temperature [27]. Based on that, 
we conjecture that the hardness of real-world SAT formulas 
depends on a notion of temperature, which characterizes the 
distortion into the structure of a particular formula from the 
structure exhibited in most real-world SAT benchmarks. To 
this end, in this work we assume a real-world SAT problem 
as an instantiation of the PS model [27], and its tempera-
ture corresponds to the value of T in this instantiation. We 
emphasize that this does not require the real-world instance 
to have any structure (e.g., high T). However, most of real-
world SAT instances exhibit the structure of the PS model 
and, therefore, we consider our assumption plausible for 
most of application formulas.

In order to test our hypothesis, we need first to compute 
the temperature of a given SAT formula. Unfortunately, 
there is no known analytical method to this purpose [40]. In 
our work we present an extensive study of Machine Learn-
ing (ML) regression methods to estimate it. In particular, we 
analyze the performance of different ML techniques trained 
with PS formulas generated at distinct temperatures, and 
measure their accuracy in the estimation. As we will see, 
training the model requires a careful design of the formula 
generation in, e.g., their temperature values. We also evalu-
ate the robustness of each ML technique when the train-
ing set is altered with perturbations in the generation step. 
Empirically, we show that ML techniques based on ensem-
bles (e.g., random forest) are the most accurate approaches, 
and they remain robust to perturbations. Specifically, we 
analyze changes in the scale-free structure, the temperature 
range and the set of features used to train the models. We 
obtain interesting results about model robustness, as well as 
the relations between different regression techniques and the 
feature sets. Empirically, we show that ML techniques based 
on ensembles (e.g., random forest) are the most accurate 
approaches, and they remain robust to perturbations.

Our second contribution uses the previous estimators to 
analyze the hardness of real-world SAT instances. In particu-
lar, we analyze the hardness of the application benchmarks 

1  A non-trivial clause of length k contains k distinct, non-comple-
mentary literals.
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from the SAT Competition 2017 to 2021. Interestingly we 
observe that formulas with high (estimated) temperature 
seem to be harder than those with low temperature, meas-
ured as the percentage of SAT solvers submitted to the com-
petition that were able to solve such a formula. Therefore, 
we consider the present work is a first step towards a simple 
hardness characterization of real-world SAT instances based 
on the notion of temperature, which may be useful to esti-
mate their solving cost without solving them.

The rest of this work is organized as follows. Section 2 
describes some preliminaries on the PS model, whereas in 
Sect. 3, we summarize the main related works. Section 4 
provides a brief description of the ML-based regression 
techniques used in our analysis. Section 5 is devoted to 
the analysis of the temperature estimation, whereas Sect. 6 
analyzes the temperature of real-world SAT benchmarks. 
Finally, we conclude in Sect. 7.

2 � Preliminaries

In this section, we provide some preliminaries on the PS 
random SAT model [27]. For further details, we address the 
reader to the original reference.

The PS model is able to generate random SAT formulas 
with both scale-free and community structure as the result 
of two orthogonal forces: popularity and similarity. To 
model them, every variable i is randomly assigned radial 
and angular coordinates ri ∈ [0, 1] and �i ∈ [0, 2�] , represent-
ing, respectively, its popularity and its similarity to other 
variables. Popular variables have a small radius and similar 
variables have close angles. These two coordinates are also 
assigned to every clause j.

In this model, the probability P(i ↔ j) of a variable i 
occurring in a clause j (with any sign) is

where ri and rj represent the radii of i and j respectively, �ij 
is the angular distance between them, � and �′ are, respec-
tively, the exponents of the power-law distributions for vari-
ables occurrences and clauses length, R is a normalization 
constant ensuring the expected formula size, and T is the 
temperature of the model. Notice that the values of ri , rj , 
and �ij affect the probability P(i ↔ j) . Let us assume that � 
is large enough.2 When T is small enough, the smaller the 
values ri , rj , and �ij , the bigger their product and hence the 

(1)
P(i↔ j) =

1

1 +

(
r
�

i
⋅r�

��

j
⋅�ij

R

)1∕T
,

probability P(i ↔ j) . As (one of) these values increase, this 
probability, which depends on the radii ri and rj and their 
angle difference �ij , decreases. On the other hand, when T is 
large, the value (rirj�ij)1∕T tends to 1, and hence, the prob-
ability P(i ↔ j) does not depend on ri , rj , �ij . Therefore, the 
temperature T precisely controls the entropy of the system, 
i.e., the degree of distortion into the expected probabilities. 
The aforementioned structures are the result of this prob-
ability distribution, which is clearly non-uniform at low T: 
it is more likely that a clause j contains a popular variable 
(low ri ) or a variable similar to it (low �ij ). In contrast, the 
probability distribution becomes (close to) uniform for high 
values of T, as in the classical random SAT model.

In order to illustrate the effects of the temperature on the 
generated PS formulas, in Fig. 1 we depict two PS formulas 
with n = 100 variables, m = 425 clauses, and � = 0.8 , only 
differing in their temperatures. In particular, one formula is 
generated with T = 0.1 (low temperature), while the other 
has T = 10 (high temperature). It can be observed that, 
when the temperature is low, variables tend to connect to 
close clauses (i.e., clauses with small radius or clauses with 
a similar angle), whereas a high temperature may produce 
occurrences of any variable in any clause, as in the classical 
random model. Moreover, the temperature has a dramatic 
effect in the scale-free structure. In Fig. 2, we represent the 
distribution of variables occurrences of these formulas with 
low and high temperature. When the temperature is low, this 
distribution clearly fits a power-law distribution. In fact, the 
estimated value of � is 0.89, very close to the original value 
0.8. In contrast, when the temperature is high, the data do 
not exhibit the heavy-tail behavior of power-law distribu-
tions. In particular the tail of these data decreases exponen-
tially, hence this formula dos not show scale-free structure. 
See [2] for more details in the estimation of �.

In summary, this model has the following parameters. The 
number of variables and clauses is, respectively, n and m. 
The (minimum) clause length is K. The scale-free structure 
of variables occurrences is set by � , which is the exponent 
of the corresponding power-law distribution. In addition, 
clause lengths may follow another power-law distribution 
with exponent �′ , where the average clause length is (K + k) . 
Finally, the temperature is T.

3 � Related Work

There are in the literature other realistic SAT generators, 
such as the scale-free SAT model [3], which generates purely 
scale-free SAT instances, and the community attachment 
model [25], which is able to produce formulas with clear 
community structure. We recall that both features can be 
observed in PS formulas.2  We do not consider cases where � is small, since they are not real-

istic.
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Our work is based on the conjecture that the hardness of 
real-world SAT instances is based on the entropy and other 
simple formula features. This is the case in (purely) scale-
free SAT formulas [3], for which the hardness, besides k, n, 
m, depends on the exponent � of the power-law distribution 
that characterizes their scale-free structure [1, 15, 20–23, 
39]. We recall that the PS formulas used in our experiments 
also exhibit this scale-free structure.

A seminal contribution on ML applied to SAT solving is 
SATzilla [31, 47]. A SAT solver unlikely dominates all oth-
ers on unrestricted SAT instances, but it may show a particu-
larly good performance on a certain class of problems [34]. 

On this idea, SATzilla proposes a per-instance algorithm 
portfolio that estimates the best solver to solve a given for-
mula from a predefined set. This portfolio approach has also 
been successfully applied in other works [32, 35].

4 � ML‑Based Regression Techniques

In this section, we provide a general overview of the regres-
sion problem to solve, and the techniques we use for that 
task.

Let us consider an instance � , which is characterized by 
a vector �� = [x1

�
,… , xn

�
] of n features. Being x∗ ∉ � the 

target feature to estimate, the problem consists of finding the 
function f s.t. f (�) = x∗ ± � that minimizes � . In our case, � 
represents a SAT instance, � its features, and x∗ its tempera-
ture T. Since the temperatures of the PS instances used in 
the training step are known a priori, we use supervised ML 
techniques to learn f. In the following section, it is discussed 
the set of features � used in our experiments.

In our problem, the target estimation x∗ is a continuous 
value. Although there exist many different ML algorithms 
to predict these values, the no-free-lunch theorem [29] states 
that it cannot be known a priori which techniques show a 
good performance in a particular problem, and finding them 
usually requires a trial and error process.

In our experimental analysis, we evaluate a total of 13 
distinct regression methods. They can be grouped into the 
following categories: linear regression, ensemble methods, 
and other techniques (including neural networks). For all 

Fig. 1   Graphical representation of PS formulas with low T = 0.1 
(left) and high T = 10 (right), generated with n = 100 , m = 425 , and 
� = 0.8 . Blue and red nodes represent variables and clauses, respec-

tively. The (x, y) coordinates of each node represent their radius and 
their angle, respectively

Fig. 2   Scale-free structure of PS formulas with low T = 0.1 and high 
T = 10 , generated with n = 1000 , m = 4250 , and � = 0.8 , and their 
estimated values of �
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the techniques except neuronal networks, we use the imple-
mentations available at scikit-learn [41] with their default 
hyperparameter settings. In the case of neural networks, we 
use the implementation of Keras [12]. In addition, we evalu-
ate all these models using the best hyperparameter settings 
found after a Bayesian optimization. In what follows, we 
briefly describe the ML algorithms used in our experiments, 
and the description of the Bayesian optimization performed.

4.1 � Linear Regression Methods

Linear regression is an ordinary least squares linear regres-
sion using singular value decomposition. Stochastic gra-
dient descent is a linear model minimizing a regularized 
empirical loss with stochastic gradient descent. The regu-
larization is a penalty added to the loss function that shrinks 
the model parameters towards the zero vector. Passive 
aggressive [16] is a margin-based linear algorithm with no 
learning rate and a regularization parameter (maximum step 
size). Random sample consensus (RANSAC) [17] cal-
culates linear solutions minimizing least squares on subsets 
of fixed size from the training samples, selecting the solution 
that best fits to the subset of the data. Theil–Sen [17] also 
calculates linear solutions minimizing the sum of squared 
residuals on subsets of fixed size from the training samples. 
In this case, the L1 median is obtained for all the computed 
solutions. Huber [30] is a linear model that optimizes the 
squared loss for the samples where |(y − y�w)𝜎| < 𝜖 and the 
absolute loss in other case, where y and y′ represent the real 
and predicted target value, respectively, and w and � are 
parameters to be optimized in order to be less sensitive to 
outliers. Bayesian ridge [44] implements a Bayesian lin-
ear regression, an approach to linear regression in which a 
particular form of prior distribution is assumed (a normal 
distribution) for the model parameters.

4.2 � Ensemble Methods

Random Forest [10] fits a set of decision trees on various 
subsamples of the dataset. To make a prediction, it uses the 
average of all decision trees predictions. Extra Trees [24] 
fits a set of randomized decision trees on various subsam-
ples of the dataset and also uses the average of all decision 
trees predictions. When looking for the best split in a ran-
domized decision tree, a subset of random splits are drawn 
and the best split among those is chosen. AdaBoost [19] fits 
a sequence of estimators (regression trees) on the same data-
set weighting instances according to the error of predictions, 
such that subsequent trees focus more on difficult cases. 
XGBoost [11] is an implementation of gradient boosting, a 
method that fits a sequences of estimators (regression trees) 
based on the negative gradient of a loss function.

4.3 � Other Methods

Feed-forward neural networks (FNN) with one hidden 
layer, using its default configuration, where the number of 
hidden neurons is set to 64, the batch size to 32, and Adam 
[33] as the optimizer. The hyperbolic tangent is the acti-
vation function. In Kneighbors, the target is predicted by 
local interpolation of the targets associated to the nearest 
neighbors in the training set.

4.4 � Bayesian Optimization

Bayesian optimization [38] is a sequential design strategy for 
global optimization, which does not require derivatives. This 
strategy treats the objective function as a random function 
and places a prior over it. In our case, the objective function 
is the determination coefficient over a validation set, and 
the prior is a Gaussian process. In order to evaluate each 
algorithm, we perform a tenfold cross-validation, i.e., the 
learning procedure is performed a total of ten times, each 
with 90% of the instances as training set and the remaining 
10% used for validation.

For linear regression methods, we will optimize the 
specific hyperparameters of each model. In the case of 
RANSAC and Theil–Sen, only the size of the training sam-
ples subsets will be tuned. In the case of techniques based 
on ensembles, the number of estimators and various con-
straints on their structure will be considered. In the specific 
case of AdaBoost and XGBoost, also the learning rate and 
the loss function will be tuned. For neural networks, the 
hyperparameters considered are the number of hidden neu-
rons, the optimization strategy and the batch size. Finally, for 
Kneighbors, it is only optimized the number of neighbors 
considered to make a prediction.

5 � Analysis of the Temperature Estimation

In this section, we present an exhaustive experimental 
evaluation of our method to estimate the entropy of SAT 
instances, with the aim of showing the robustness of our 
approach. First, we introduce our experimental setup, 
describing the generation of instances, and the evaluation 
process. Then, we present the results on the estimation of 
the temperature of SAT instances, calculated by a number of 
state-of-the-art regression methods, using both default and 
optimized hyperparameter settings.

Next, we analyze the performance of our method expos-
ing the generation of SAT formulas to several perturbations 
in the training stage. Namely, we increase the parameter 
values used in the generation, and study how this affects the 
accuracy of the regression models. Finally, we examine the 
impact of the set of SAT features used in the training phase 
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on the accuracy of the models. In the following subsections, 
we, respectively, present these investigations.

5.1 � Experimental Setup

5.1.1 � Generation of SAT Formulas

The training set is composed of a heterogeneous set of PS 
random SAT formulas, differing in their number of vari-
ables n ∈ [100… 5000] , and their clause/variables densities 
m∕n ∈ [2… 8] . For each value of n and m/n, we generate 
100 random PS formulas with distinct temperatures. Our 
main benchmark results into a total of 7200 SAT instances, 
containing both satisfiable and unsatisfiable formulas. All 
formulas are 3-CNF and much smaller than real-world SAT 
instances. However, we found experimentally that the for-
mula size has no impact on the performance of ML methods.

In order to adequately train the regression models, we 
need to generate a heterogeneous set of PS random SAT 
formulas. Since the temperature is the parameter to estimate 
in our approach, it is the most critical choice in the genera-
tion of the benchmark. However, it is also important to con-
sider an ample range of formulas differing in the remaining 
parameters in order to make the regression methods learn 
the behavior of the PS model at different settings. Before 
discussing the generation of the benchmark at distinct tem-
peratures, we first describe the general batch of PS formulas 
used in our experiments.

The main difference among the formulas in the bench-
mark, besides their temperature, is the formula size. In par-
ticular, we generate random PS formulas with the following 
number of variables n and clause/variable ratios m/n:

•	 n = {100, 200, 500, 1000, 2000, 5000}

•	 m∕n = {2.0, 3.0, 3.5, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 5.0, 6.0, 8.0}

Notice that we generate both satisfiable and unsatisfiable 
instances, with a greater density of formulas in the SAT-
UNSAT phase transition region. In addition, note that these 
formulas are much smaller than actual real-world SAT 
instances existing in the SAT Competitions. However, these 
sizes are enough to generalize the structure of the resulting 
formulas and, hence, to test our hypothesis.

The popularity and similarity of the generated formu-
las is controlled by the parameter � . In the main batch of 
experiments, we use � = 1 , i.e., a very clear scale-free 
structure. We also evaluate the robustness of the regression 
techniques exposing the training set to some perturbations 
on � (see Sect. 5.3.1). In particular, we train the regression 
techniques with the same set of formulas generated with 
� = {5∕6, 4∕6, 3∕6} , as well as the union of these four 
benchmarks.

As in [26], we restrict our analysis to 3-CNF SAT for-
mulas, hence we generate the instances with K = 3 and 
k = 0 . Since there is no variability in the clause lengths, 
there is no need to define the parameter �′.

5.1.2 � Values of Temperature

The values of the temperature of the generated formulas 
are a key choice of our solution. It is desirable to generate 
formulas in an ample interval of temperatures, and these 
values must be uniformly distributed in such an interval in 
order to adequately train the regression model. However, 
a small difference of T at low temperatures may result in 
major differences in the resulting structure of the gener-
ated formula, whereas the same small difference at high 
temperatures results in a formula whose structure is almost 
unaltered. For instance, the PS model behaves quite dis-
tinctly with temperatures T = 0.1 and T = 0.6 , whereas 
there is no remarkable difference between the model at 
temperatures T = 10 and T = 10.5 . Notice that this is a 
direct consequence of Eq. 1. This distinct behavior makes 
inadequate the uniform selection of random values in a 
certain interval. In order to solve this drawback, we apply 
a logarithmic transformation to the range of temperature 
values. This is, instead of using the interval [a, b], we use 
the interval [log(a), log(b)].

To generate our batch of PS formulas, we sample 100 
uniformly distributed random values in the interval [−1, 1] 
for each formula size, i.e., for each combination of n and 
m/n. These random values correspond to the logarithm of 
the temperature of the generated formulas, and they are the 
values used to train the regression models. In other words, 
instead of estimating the temperature T of a given formula, 
the regression model estimates its logarithm log(T) . There-
fore, the temperature ranges in the interval [1/e, e]. Although 
this interval contains a reasonable range of values of temper-
ature, we also evaluate more ample intervals in Sect. 5.3.2.

It is important to mention that the regression models are 
trained with no PS formulas at temperature T = 0 . There is 
a twofold explanation to this choice. First, the PS model at 
very low temperatures behaves similarly than at the absolute 
zero limit. Second, since we consider that real-world SAT 
instances always have a certain degree of entropy, there is no 
need to train our model with unrealistic instances at T = 0.

5.1.3 � Set of Features

Every SAT instance is characterized by a vector of 
features. Ideally, this vector contains a set of uncor-
related, fast-to-compute features of the formula. In our 
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experiments, we use the extended and well-known set of 
features used in the SATzilla toolkit [47]. In particular, 
we use a total of 101 features,3 including formula size, 
graph characteristics, and solver statistics. In Sect. 5.4, 
we evaluate the impact of reducing the number of features 
used to train the regression models, in order to analyze 
their feature importance.

5.1.4 � Filtering Out Trivial Instances

Random PS SAT instances at low temperatures may be very 
easy [27]. This is especially relevant in small formulas (e.g., 
n = 100 ), which might be even solved by simple preprocess-
ing techniques. For this reason, we filter out those trivial 
instances from the benchmark because some SATzilla fea-
tures include solver statistics, which cannot be computed 
if the formula is already solved. Moreover, we observed 
that the resulting unbalance after filtering out these trivial 
instances does not affect the performance of the regression 
models with the best accuracy, due to the already large num-
ber of formulas in the benchmark.

5.1.5 � Accuracy of the Model

In order to evaluate each regression technique, we use 
the well-known coefficient of determination R2 between 
the actual temperature and its prediction. Let X and Y be, 
respectively, a sample of observed data and their predicted 
values. The coefficient of determination R2 between them 
is defined as

where X̄ is the mean of X. Therefore, R2 ∈ [−∞, 1] with 
positive values indicating the existence of a certain correla-
tion between the observed data and their predictions (the 
higher the value of R2 , the better is the prediction).

For each regression technique, a tenfold cross-validation 
is performed. For each fold, we compute the R2 of the model 
trained with the remaining ninefold. The global performance 
of each method is expressed as the average R2 and its cor-
responding standard deviation. This procedure allows us to 
reduce the variance in the results and obtain a confidence 
criteria.

In our experiments, we use the value R2 ≥ 0.8 to dis-
tinguish those regression methods achieving a strong cor-
relation (i.e., a good accuracy in the prediction), although 

R2(X, Y) = 1 −

∑
i (xi − yi)

2

∑
i (xi − X̄)2

,

any other reasonable high value of R2 could have been used 
instead. It is worth noticing that all methods with such a 

strong correlation also show a very small standard deviation 
of R2 , always lower than 0.15 (and usually much lower).

5.2 � Performance of Regression Methods

The first natural question in our analysis is whether a regres-
sion method is able to estimate the temperature of a given 
PS SAT formula given the vector of SATzilla features for 
this formula. To answer this question, we first perform the 
regression using the methods presented in the previous 
section.

In Table  1, we summarize the performance of each 
regression method on this problem, with both default and 
optimized hyperparameter settings, measuring the average 
and standard deviation of the coefficient of determination 
R2 . We recall that this coefficient measures the differences 
between the actual temperatures and the predicted ones; its 
values range between −∞ and 1, with (greater) positive val-
ues indicating (stronger) correlation between both samples.

We can observe that many of the methods with default 
settings are able of predicting the temperature of the for-
mulas with a high accuracy, hence showing the robustness 
of our approach. Those accurate methods are based on 
ensembles, which are commonly more robust to hyper-
parameter tuning. This can be due to the low sensitivity 
of this kind of methods to modifications of their hyperpa-
rameter values. In addition, FNN and Kneighbors pre-
sent an acceptable accuracy with a low standard deviation. 
Although models linear regression and Bayesian ridge 

Table 1   Average coefficient of determination R2 (and its standard 
deviation) for different regression methods, with default and opti-
mized hyperparameters

Regression method Default Optimized

Linear regression 0.789 ± 0.35 0.789 ± 0.35
Stochastic gradient descent −1.230 ± 2.24 −2.5e8 ± 3e8
Passive aggressive −181.7 ± 271 −1.072 ± 0.13
RANSAC −0.982 ± 1.53 0.511 ± 1.20
Theil–Sen −8.272 ± 25.3 0.898 ± 0.03
Huber −0.085 ± 0.14 −0.076 ± 0.15
Bayesian ridge 0.760 ± 0.46 0.694 ± 0.66
Random forest 0.921 ± 0.01 0.931 ± 0.01
Extra trees 0.922 ± 0.01 0.935 ± 0.01
AdaBoost 0.878 ± 0.02 0.896 ± 0.01
XGBoost 0.924 ± 0.01 0.935 ± 0.00
FNN 0.687 ± 0.07 0.912 ± 0.01
Kneighbors 0.795 ± 0.03 0.796 ± 0.02

3  We skip the computation of LP-based and SLS-based features due 
to their long execution time for some formulas. We also skip diameter 
features, as done in the last SATzilla version.
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also obtain an acceptable R2 average, we cannot draw 
definitive conclusions due to their high deviation. For the 
Bayesian optimization to tune the hyperparameters set-
tings, we assume the objective function to be unknown 
(determination coefficient over the validation set), treat-
ing it as a random function and placing a prior over it (a 
Gaussian process). The prior captures beliefs about the 
behavior of the function and after each evaluation, the 
prior is updated to form the posterior distribution over the 
objective function. The posterior distribution, in turn, is 
used to construct an acquisition function that determines 
the next evaluation point. In order to find the best param-
eter settings of each regression method, we evaluate the 
objective function using 100 evaluation points.

After optimizing hyperparemeters, we observe noticeable 
improvements in most of the methods, especially in FNN 
and Theil–Sen. In the case of FNN, the method shows a 
considerable improvement after adjusting the number of 
neurons in the hidden layer, the optimizer and the batch 
size. In the case of Theil–Sen, this linear method is able 
to learn from different subsets of the training data, and with 
an optimal configuration acquires resistance against outli-
ers. This fact suggests a certain linear relation between SAT 
features and the temperature T. It is worth noticing that, 
in general, linear methods do not outperform (non-linear) 
methods based on neural networks and ensembles.

Besides the techniques that already show a good perfor-
mance with default parameters, we find a very good accu-
racy (with R2 above 0.8) in the following regression models: 
Theil–Sen, RANSAC, and Bayesian ridge. However, the 
improvements in the accuracy of these techniques suggest 
that they are not robust to variations in the benchmark, since 
the good performance is only achieved after an optimization 
process of their parameters settings.

In Fig. 3, we depict the predicted temperature versus 
the actual temperature of random PS formulas for the 
six regression techniques with a good performance after 
optimizing their hyperparameters. Notice that when R2 is 
close to 1, the points on the figure must be close to the 
diagonal. For the methods based on ensembles of decision 
trees (Random Forest, AdaBoost and XGBoost) and due 
to their low sensitivity to hyperparameter tuning, there is 
no remarkable difference between their performance with 
default and optimized settings. In fact, their values of R2 
are close to 1 in both settings, suggesting that they are 
robust to estimate the temperature of SAT formulas. Inter-
estingly, for Theil–Sen and FNN, we observe consider-
able improvements, resulting in a good performance after 
optimizing their settings. Recall that Theil–Sen performs 
a linear regression. In the case of FNN, it can be clearly 
observed its poor performance with its default setting, 
caused by its default learning rate. For Kneighbors, it can 

be observed that its performance is worse than the one of 
the other 5 models, in both settings, due to the number of 
points far from the diagonal.

5.3 � Robustness to Benchmark Perturbations

The next natural question is whether the accuracy of our 
approach is robust to perturbations. In particular, we con-
sider perturbations in the training step modifying the param-
eters values of the generated PS random SAT formulas vary-
ing: (i) the scale-free structure of the benchmark, and (ii) the 
interval used to sample the values of the temperature. The 
following subsections describe these experiments.

5.3.1 � Varying the Scale‑Free Structure

In our main benchmark, all PS random formulas are gen-
erated with � = 1 , i.e., with a clear scale-free structure. 
Now, we analyze the performance robustness of the regres-
sion models in benchmarks just differing in the value of � 
used in the generation of the SAT formulas. In particular, 
we evaluate the cases with � = {5∕6, 2∕3, 1∕2} , and the 
union of these four. In this experiment, we use the regres-
sion models with optimized hyperparameters computed for 
� = 1 . As before, we measure the accuracy of the models 
using the determination coefficient R2 , but we restrict our 
analysis to the regression methods that already showed a 
good performance in the previous experiment, and adding 
linear regression as baseline. In Table 2, we summarize the 
results of this experiment.

We observe that, in all the cases, the regression methods 
showing the best performance in all benchmarks (with any 
value of � ) are techniques that already showed a very good 
performance with default parameters in the benchmark with 
� = 1 , i.e., (non-linear) methods based on ensembles of deci-
sion trees: Random Forest, Extra Trees and XGBoost. 
Therefore, these techniques seem to be robust to this per-
turbation, and hence they are good candidates to build a 
promising temperature estimator. Surprisingly, the linear 
regression method is able to obtain a reasonably good result 
in the case of the union of the different sets. This can be due 
to the fact that this set of instances is larger than the others, 
allowing the linear method to learn more effectively. In the 
case of Theil–Sen, the optimization made for � = 1 does not 
generalize correctly, thus this model is not robust.

5.3.2 � Varying the Interval of Temperatures

Another perturbation to study the robustness of the regres-
sion methods is the interval used to sample the values of 
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Fig. 3   Predicted temperature versus actual temperature, for some regression techniques with a small standard deviation

Table 2   Average of coefficient 
of determination R2 (and its 
standard deviation) for different 
regression methods (with 
optimized hyperparameter 
values), varying the value of � 
in the benchmark

Union stands for the benchmark composed of the union of the other four

Regressor � = 1 � = 5∕6 � = 4∕6 � = 3∕6 Union

(baseline)

Linear regression 0.789 ± 0.35 −3.199 ± 12.4 −0.568 ± 4.45 0.856 ± 0.13 0.785 ± 0.02
Theil–Sen 0.898 ± 0.03 −2.223 ± 9.40 −6.625 ± 22.3 −197.1 ± 241 −213.6 ± 270
Random Forest 0.931 ± 0.01 0.932 ± 0.01 0.942 ± 0.01 0.958 ± 0.00 0.858 ± 0.01
Extra Trees 0.935 ± 0.01 0.935 ± 0.01 0.946 ± 0.01 0.960 ± 0.01 0.861 ± 0.01
AdaBoost 0.896 ± 0.01 0.882 ± 0.01 0.883 ± 0.01 0.904 ± 0.01 0.678 ± 0.01
XGBoost 0.935 ± 0.00 0.937 ± 0.01 0.948 ± 0.01 0.963 ± 0.01 0.872 ± 0.01
FNN 0.912 ± 0.01 0.904 ± 0.02 0.915 ± 0.01 0.927 ± 0.01 0.780 ± 0.02
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the temperature of the random PS formulas in the bench-
mark. We recall that these values represent the logarithm 
of the temperature of the generated formulas. In the main 
benchmark, we use the interval [−1, 1] (i.e., the tempera-
ture ranges in [1/e, e]). In this experiment, we generate two 
similar benchmarks only differing in this interval: [−2, 2] and 
[−3, 3] ; the rest of the generation remains unaltered.

In Table 3, we also summarize the results of this pertur-
bation. We recall that we are evaluating regression methods 
whose hyperparameters were optimized for the benchmark 
with temperatures in the interval [−1, 1].

We observe that all regression methods show a very good 
accuracy, suggesting that they all are robust to this kind of 
perturbation in the temperature. Interestingly, there seems to 
be a peak of performance in the intermediate interval [−2, 2] , 
i.e., using a relatively ample interval is beneficial, but using 
a too ample one is not.

5.4 � Features Set and Feature Importance

Related to the set of features used in the experiments, we can 
consider the following questions. What is the relationship 
between the set of features used in the training step and the pre-
dictive capacity of the different regression methods and their 
configurations? Can this relationship give some information 
about which sets of features have a linear relationship with 

temperature and which do not? Is the features set used in our 
experiments introducing some bias in the results? In this subsec-
tion, we carry out some experiments to address these questions.

The set of features provided by the SATzilla toolkit can 
be divided into the following categories: (a) basic features, 
(b) graph features, (c) CDCL (and DPLL) features, and (d) 
other solving and timing statistics. Basic features concern 
problem size information (e.g., number of variables and 
clauses), proximity to the Horn formula, and the so-called 
balance features (e.g., ratio between positive and negative 
literals). Graph features rely on three graph representations 
of the formula, namely variable graph, clause graph, and 
variable-clause graph, and the features represent some sta-
tistics about these graphs (e.g., node degree). CDCL fea-
tures contain information in very short runs (i.e., it does not 
solve the formula, it just runs the solver during a few sec-
onds) about number of unit propagations, estimation of the 
search space, and number and size of learned clauses. The 
remaining subset contains the rest of features described in 
the documentation of SATzilla, including linear program-
ming, local search, and survey propagation statistics. In our 
analysis, we focus on the first three subsets, which, respec-
tively, have 26, 25, and 24 features. We use the original 
SATzilla tool to produce all these features [47].

In Table 4, we summarize the coefficient of determina-
tion R2 of different regression methods using a different set 
of features to train the models and compute the regression. 
Again, we use the models with optimized hyperparameter 
settings from the main experiment (see Table 1).

We observe that the set of features used to compute the 
regression may have dramatic consequences in their perfor-
mance. In particular, we observe a very poor performance 
when only CDCL features are used. On the contrary, the 
performance is generally good using the set of graph fea-
tures. Surprisingly, the linear methods (linear regression 
and Theil–Sen) have very good performance when they are 
trained using graph features only, while their performance 
gets worse with the rest of the feature sets. This shows that 
these graph characteristics are able to linearize the relation 
between the SAT formula and its temperature. Notice that 
linear estimators are less sensitive to overfitting than others. 

Table 3   Average of coefficient of determination R2 (and its standard 
deviation) for different regression methods (with optimized hyperpa-
rameter values), varying the interval of the temperature used to gener-
ate the benchmark

Regressor [−1, 1] [−2, 2] [−3, 3]

(baseline)

Linear regression 0.789 ± 0.35 0.936 ± 0.02 0.907 ± 0.01
Theil–Sen 0.898 ± 0.03 0.939 ± 0.01 0.904 ± 0.02
Random Forest 0.931 ± 0.01 0.955 ± 0.01 0.945 ± 0.01
Extra Trees 0.935 ± 0.01 0.956 ± 0.01 0.947 ± 0.01
AdaBoost 0.896 ± 0.01 0.928 ± 0.00 0.904 ± 0.01
XGBoost 0.935 ± 0.00 0.956 ± 0.01 0.943 ± 0.01
FNN 0.912 ± 0.01 0.917 ± 0.01 0.874 ± 0.02

Table 4   Average of coefficient 
of determination R2 for different 
regression methods (with 
optimized hyperparameter), for 
different features sets

Regressor All
(baseline)

Basic
(A)

Graph
(B)

CDCL
(C)

Union
A ∪ B ∪ C

Linear regression 0.789 ± 0.35 0.118 ± 2.14 0.808 ± 0.08 0.330± 0.07 0.749± 0.41
Theil–Sen 0.898 ± 0.03 −0.058 ± 2.62 0.832 ± 0.03 0.336± 0.06 −0.143± 3.11
Random Forest 0.931 ± 0.01 0.911 ± 0.01 0.917 ± 0.01 0.579± 0.04 0.927± 0.01
Extra Trees 0.935 ± 0.01 0.918 ± 0.01 0.924 ± 0.01 0.565± 0.05 0.933± 0.01
AdaBoost 0.896 ± 0.01 0.863 ± 0.02 0.864 ± 0.01 0.331± 0.06 0.876± 0.02
XGBoost 0.935 ± 0.00 0.916 ± 0.01 0.923 ± 0.02 0.554± 0.02 0.932± 0.01
FNN 0.912 ± 0.01 0.889 ± 0.01 0.932 ± 0.02 0.535± 0.06 0.911± 0.01
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Therefore, the combination between this small set of features 
and these linear methods must be emphasized.

In the case of CDCL features, the determination coef-
ficient R2 of linear methods is similar to the one of the 
remaining non-linear regression techniques. This suggests 
a second linear relation between the set of features and the 
temperature. Nevertheless, it is much weaker. Basic features 
only produces good results with non-linear regression meth-
ods based on neural networks and ensembles, and this may 
explain the worse performance of linear methods when using 
them.

6 � On the Hardness of Real‑World SAT 
Instances

In this section, we analyze the relation between the hard-
ness of real-world SAT instances and their (estimated) tem-
perature. To estimate such a temperature, we simply use the 
regression methods trained with PS formulas which were 
analyzed in the previous section.

If the temperature of real-world SAT instances is related 
to their hardness, we may observe that the ones with high 
(estimated) temperature behave similarly to random SAT 
formulas, i.e., they are hard to solve. In order to analyze it, 
we carry out the following experiment. We select a set of 
real-world SAT instances and estimate their temperature. 
In particular, we use the set of benchmarks from the SAT 
Competitions from 2017 to 2021.4 In addition, for each for-
mula, we measure the percentage of solvers submitted to 
each competition that were able to solve it. This percentage 
represents an indirect indicator of hardness: easy formulas 
are solved by (almost) all solvers, whereas hard formulas 
are solved by (almost) no solver. Finally, we compare these 
two metrics.

In Fig. 4, we represent the results of this experiment, 
where the estimated temperatures are computed with the 
six regression methods that showed a good performance 
in the previous experiments, i.e., Random Forest, Extra 
Trees, Theil–Sen, XGBoost, FNN, and linear regression 
as baseline.

Fig. 4   Estimated temperature 
versus ratio of solvers submit-
ted to the SAT Competitions 
from 2017 to 2021 solving the 
instances in those competitions, 
for several regression techniques 
trained baseline dataset with 
optimized hyperparameters

4  http://​www.​satco​mpeti​tion.​org/.

http://www.satcompetition.org/
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In the five competitions, the empirical results show 
that (i) many formulas with high temperature are only solved 
by a small fraction of solvers (i.e., they seem to be hard), 
and (ii) many formulas with low temperatures are solved 
by a high percentage of solvers (in particular, a large frac-
tion is solved by 100% of the solvers, hence they are easy). 
However, there is a set of instances that does not exactly 
follow this pattern. This can be explained by several rea-
sons. First, we conjecture that the hardness of real-world 
SAT formulas depends on the temperature, but there may 
be other parameters affecting such a hardness, e.g., formula 
size.5 Second, there may exist a very hard combinatorial 
subproblem embedded into the formula, as in cryptogra-
phy problems, representing a very challenging case for our 
estimators. Nevertheless, these formulas represent a small 
fraction of the competition.

In order to compare the accuracy of the analyzed clas-
sifiers, we measure the percentage of correctly classified 
instances for these regression techniques. In particular, we 
consider that an instance is correctly classified either if it 
is easy with low (estimated) temperature (top left area of 
the plots), or if it is hard with high (estimated) temperature 
(bottom right area of the plots). In our analysis, an instance 
is easy (resp. hard) if it is solved by at least (resp. at most) 
50% of the solvers, and a temperature is low (resp. high) if 
it is greater (resp. less or equal) than T = 1.5.

In Table 5, we report these results. As it can be observed, 
linear regression and Theil–Sen are the ones with the best 
accuracy, with a performance around 65% in some cases. 
This confirms that, in many cases, the (estimated) tempera-
ture of the formula is related to their hardness. However, 
there is still a large number of formulas incorrectly classi-
fied. In general, they are easy formulas with high (estimated) 
temperature. We conjecture that they are formulas without 
scale-free and community structures and, thus, the PS model 
is unable to instantiate them. Interestingly enough, these 

methods based on linear regression outperform those based 
on ensembles. It is worth noticing that the simple linear 
regression shows the best performance in two of the five 
competitions analyzed. This supports the hypothesis that the 
characterization of the temperature of SAT instances may be 
linearized with certain features of the formulas.

7 � Conclusions

In this work, we have presented an extensive analysis of ML 
regression techniques in order to estimate the temperature 
of real-world SAT instances. Our experimental results show 
that ML methods based on ensembles (e.g., Random For-
est) show the best performance, remaining robust to pertur-
bations in the training step. Nevertheless, simple methods 
based on linear regression also show a very good perfor-
mance in many cases. In addition, we have showed that a 
successful application like SATzilla is able to indirectly infer 
the temperature of the formulas using only a very small sub-
set of (graph) features. Using these estimators, we observe 
that real-world SAT instances with a high (estimated) tem-
perature seem to be harder than those with low tempera-
ture. These empirical evidences suggest that the hardness of 
real-world SAT instances is related to their temperature. We 
consider that the present work is a first step towards a sim-
ple hardness characterization of real-world SAT instances 
based on their temperature, which may be used to estimate 
their solving cost without solving them. As future work, we 
plan to extend this analysis with more sophisticated neural 
networks, including graph neural networks, and other auto-
mated ML techniques [18]. Moreover, we plan to extend 
our analysis to characterize the temperature of MaxSAT for-
mulas, the optimization version of the SAT problem. This 
characterization may be crucial in order to select the most 
adequate algorithm to solve them (e.g., either MaxSAT solv-
ers more specialized in real-world instances, or MaxSAT 
solvers more specialized in random formulas).

Table 5   Percentage of 
correctly classified real-world 
SAT benchmarks of the SAT 
Competitions from 2017 
to 2021 according to their 
estimated temperature for 
different regression methods 
trained

The regressor with the best accuracy for each competition is marked in bold. LR stands for linear regres-
sion, RF for Random Forest, LR for Extra Trees, TS for Theil–Sen, and XGB for XGBoost

LR (%) RF  (%) ET (%)  TS (%) XGB (%) FNN 
(%)

SAT Comp. 2017 64.43 50.58 49.42 57.20 49.71 54.07
SAT Comp. 2018 59.09 43.81 45.10 57.67 44.33 63.4
SAT Race. 2019 63.98 48.97 44.87 59.75 45.64 47.18
SAT Comp. 2020 59.21 51.18 49.12 59.17 49.12 50.29
SAT Comp. 2021 65.27 40.26 38.95 65.13 38.42 38.68

5  A formula with hundreds of variables may be solvable in milli-
seconds, whereas solving a formula with millions of variables may 
require several hours or even days.



International Journal of Computational Intelligence Systems           (2022) 15:69 	

1 3

Page 13 of 14     69 

Author Contributions  All the authors have equally contributed to this 
work.

Funding  Jesús Giráldez-Cru is supported through the Juan de la Cierva 
program, fellowship IJC2019-040489-I, funded by MCIN and AEI.

Data Availability Statement  All the authors give their consent for the 
publication of this work.

Declarations 

Conflict of Interest  The authors declare that they have on conflict of 
interest.

Consent for Publication  Not applicable.

Ethics Approval and Consent to Participate  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Ansótegui, C., Bonet, M., Levy, J.: Scale-free random SAT 
instances. CoRR, abs/1708.06805, (2017)

	 2.	 Ansótegui, C., Bonet, M., Levy, J.: On the structure of industrial 
SAT instances. Proc. CP 2009, 127–141 (2009)

	 3.	 Ansótegui, C., Bonet, M., Levy, J.: Towards industrial-like ran-
dom SAT instances. Proc. IJCAI 2009, 387–392 (2009)

	 4.	 Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure 
of SAT formulas. Proc. SAT 2012, 410–423 (2012)

	 5.	 Ansótegui, C., Giráldez-Cru, J., Levy, J., Simon, L.: Using com-
munity structure to detect relevant learnt clauses. Proc. SAT 2015, 
238–254 (2015)

	 6.	 Ansótegui, C., Bonet, M., Giráldez-Cru, J., Levy, J.: Structure 
features for SAT instances classification. J. Appl. Log. 23, 27–39 
(2017)

	 7.	 Ansótegui, C., Bonet, M., Giráldez-Cru, J., Levy, J., Simon, L.: 
Community structure in industrial SAT instances. J. Artif. Intell. 
Res. 66, 443–472 (2019)

	 8.	 Audemard, G., Simon, L.: Predicting learnt clauses quality in 
modern SAT solvers. Proc. IJCAI 2009, 399–404 (2009)

	 9.	 Baud-Berthier, G., Giráldez-Cru, J., Simon, L.: On the community 
structure of bounded model checking SAT problems. Proc. SAT 
2017, 65–82 (2017)

	10.	 Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
	11.	 Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. 

Proc. KDD 2016, 785–794 (2016)
	12.	 Chollet, F., et al., Keras. https://​keras.​io (2015)

	13.	 Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). 
Proc. FOCS 1992, 620–627 (1992)

	14.	 Cook, S.: The complexity of theorem-proving procedures. Proc. 
STOC 1971, 151–158 (1971)

	15.	 Cooper, C., Frieze, A., Sorkin, G.: Random 2-SAT with prescribed 
literal degrees. Algorithmica 48(3), 249–265 (2007)

	16.	 Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, 
Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 
7(Mar), 551–585 (2006)

	17.	 Dang, X., Peng, H., Wang, X., Zhang, H.: Theil-sen estimators in 
a multiple linear regression model. Olemiss Educ. (2008)

	18.	 Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, 
M., Hutter, F.: Auto-sklearn: efficient and robust automated 
machine learning. In Automated Machine Learning—Methods, 
Systems, Challenges. Springer, pp 113–134 (2019)

	19.	 Freund, Y., Schapire, R.: A decision-theoretic generalization of 
online learning and an application to boosting. J. Comput. Syst. 
Sci. 55(1), 119–139 (1997)

	20.	 Friedrich, T., Krohmer, A., Rothenberger, R., Sauerwald, T., Sut-
ton, A.: Bounds on the satisfiability threshold for power law dis-
tributed random SAT. In Proceedings of ESA 2017, vol. 87, pp. 
37:1–37:15 (2017)

	21.	 Friedrich, T., Rothenberger, R.: The satisfiability threshold for 
non-uniform random 2-SAT. In Proceedings of ICALP 2019, pp. 
61:1–61:14 (2019)

	22.	 Friedrich, T., Rothenberger, R.: Sharpness of the satisfiability 
threshold for non-uniform random k-SAT. Proc. SAT 2018, 273–
291 (2018)

	23.	 Friedrich, T., Krohmer, A., Rothenberger, R., Sutton, A.: Phase 
transition for sclae-free SAT formulas. Proc. AAAI 2017, 3893–
3899 (2017)

	24.	 Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. 
Mach. Learn. 63(1), 3–42 (2006)

	25.	 Giráldez-Cru, J., Levy, J.: Generating SAT instances with com-
munity structure. Artif. Intell. 238, 119–134 (2016)

	26.	 Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. 
Proc. IJCAI 2017, 638–644 (2017)

	27.	 Giráldez-Cru, J., Levy, J.: Popularity-similarity random SAT for-
mulas. Artif. Intell. 299, 103537 (2021)

	28.	 Gomes, C., Selman, B.: Problem structure in the presence of per-
turbations. Proc. AAAI 1997, 221–226 (1997)

	29.	 Ho, Y., Pepyne, D.: Simple explanation of the no-free-lunch theo-
rem and its implications. J. Optim. Theory Appl. 115(3), 549–570 
(2002)

	30.	 Huber, P.: Robust Statistics. Springer, Berlin (2011)
	31.	 Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runt-

ime prediction: methods and evaluation. Artif. Intell. 206, 79–111 
(2014)

	32.	 Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC—
instance-specific algorithm configuration. Proc. ECAI 2010, 
751–756 (2010)

	33.	 Kingma, D., Ba, J.: Adam: a method for stochastic optimization. 
arXiv (2014)

	34.	 Leyton-Brown, K., Hoos, H., Hutter, F., Xu, L.: Understanding 
the empirical hardness of NP-complete problems. Commun. ACM 
57(5), 98–107 (2014)

	35.	 Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: 
Non-model-based algorithm portfolios for SAT. Proc. SAT 2011, 
369–370 (2011)

	36.	 Mitchell, D., Levesque, H.: Some pitfalls for experimenters with 
random SAT. Artif. Intell. 81(1–2), 111–125 (1996)

	37.	 Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribu-
tions of SAT problems. Proc. AAAI 1992, 459–465 (1992)

	38.	 Mockus, J.: Bayesian Approach to Global Optimization: Theory 
and Applications, vol. 37. Springer Science & Business Media, 
Berlin (2012)

http://creativecommons.org/licenses/by/4.0/
https://keras.io


	 International Journal of Computational Intelligence Systems           (2022) 15:69 

1 3

   69   Page 14 of 14

	39.	 Omelchenko, O., Bulatov, A.A.: Satisfiability threshold for power 
law random 2-SAT in configuration model. Theoret. Comput. Sci. 
888, 70–94 (2021)

	40.	 Papadopoulos, F., Kitsak, M., Serrano, M., Boguñá, M., Krioukov, 
D.: Popularity versus similarity in growing networks. Nature 489, 
537–540 (2012)

	41.	 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, 
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, 
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. 
J. Mach. Learn. Res. 12, 2825–2830 (2011)

	42.	 Selman, B., Kautz, H., McAllester, D.: Ten challenges in propo-
sitional reasoning and search. Proc. IJCAI 1997, 50–54 (1997)

	43.	 Silva, J.M., Lynce, I., Malik, S.: Conflict-driven clause learning 
SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, 
T. (eds.) Handbook of Satisfiability, Volume 185 of Frontiers in 
Artificial Intelligence and Applications, pp. 131–153. IOS Press 
(2009)

	44.	 Tipping, M.: Sparse bayesian learning and the relevance vector 
machine. J. Mach. Learn. Res. 1(Jun), 211–244 (2001)

	45.	 Williams, R., Gomes, C., Selman, B.: Backdoors to typical case 
complexity. Proc. IJCAI 2003, 1173–1178 (2003)

	46.	 Xu, L., Hoos, H., Leyton-Brown, K.: Predicting satisfiability at 
the phase transition. In Proceedings of AAAI 2012, (2012)

	47.	 Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: port-
folio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 
565–606 (2008)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Characterizing the Temperature of SAT Formulas
	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 ML-Based Regression Techniques
	4.1 Linear Regression Methods
	4.2 Ensemble Methods
	4.3 Other Methods
	4.4 Bayesian Optimization

	5 Analysis of the Temperature Estimation
	5.1 Experimental Setup
	5.1.1 Generation of SAT Formulas
	5.1.2 Values of Temperature
	5.1.3 Set of Features
	5.1.4 Filtering Out Trivial Instances
	5.1.5 Accuracy of the Model

	5.2 Performance of Regression Methods
	5.3 Robustness to Benchmark Perturbations
	5.3.1 Varying the Scale-Free Structure
	5.3.2 Varying the Interval of Temperatures

	5.4 Features Set and Feature Importance

	6 On the Hardness of Real-World SAT Instances
	7 Conclusions
	References




