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Finite-range simple effective interaction including tensor terms
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An existing parametrization of the simple effective interaction (SEI) that is able to reproduce the experimen-
tally known crossing between the 2p3/2 and 1 f5/2 single-particle (s.p.) proton levels in neutron-rich Ni isotopes
has been generalized. We have added a short-range tensor force in order to describe the observed gaps between
the 1h11/2 and 1g7/2 s.p. proton levels in the Sn isotopic chain and between the 1i13/2 and 1h9/2 s.p. neutron
levels in N = 82 isotones without compromising the good agreement with the splittings in the Ni isotopes.
Different scenarios where tensor effects are relevant are considered with the new interaction and its predictions
are compared with results from other mean-field models and experimental data where available.
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I. INTRODUCTION

Modern experimental facilities such as SPIRAL at GANIL,
ISOLDE at CERN, FAIR at GSI, and FRIB at MSU are de-
livering many new data about properties of exotic nuclei near
the drip lines. These experiments have revealed many unex-
pected phenomena, especially in nuclei far from the stability
valley. Among them, the changes that appear in the nuclear
shell structure, such as, for instance, the disappearance of
the standard magic neutron numbers N = 20 and 28 and the
emergence of new ones such as N = 14, 16, 32, or 34 [1–11],
are of special relevance. All these new scenarios represent an
excellent testing ground for different nuclear models available
in the literature and give the opportunity to improve them
in order to better describe the physics of exotic nuclei. For
instance, there are several examples scattered over the nuclear
chart where the plain mean-field description using effective
forces is unable to describe correctly the pattern of the energy
gaps between certain s.p. energy levels along isotopic and
isotonic chains [12–14]. In the last two decades it has been
observed that the inclusion of the tensor contribution to the
nucleon-nucleon (NN) interaction is helpful towards describ-
ing several of the shell effects just mentioned [15–17]. The
relevance of the tensor part of the NN interaction was early es-
tablished in explaining the nonvanishing quadrupole moment
of the deuteron [18,19]. However, due to its limited role in
several nuclear phenomena, it has not been usually taken into
account in studies based on effective forces of Skyrme and
Gogny type. But as new data have poured in with the advent
of radioactive ion beam facilities, the exploration of the role of
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the tensor part of the NN interaction in the mean-field model
calculations has regained interest.

In recent years a new type of effective interaction, denoted
“simple effective interaction” (SEI), has been developed and
applied to the description of different properties of finite nu-
clei [20,21]. The form of this interaction is quite similar to
that of Gogny or Skyrme forces, but what makes it different is
the fact that its fitting protocol strongly differs from the usual
ones. As a consequence some of the typical deficiencies of
Gogny or Skyrme forces are not observed in SEI. An example
of this is the crossing between the 2p3/2 and 1 f5/2 s.p. proton
levels in neutron-rich Ni isotopes and the magicity of the
atomic number Z = 28 in this isotopic chain, which is a sub-
ject of current interest from both, experimental and theoretical
points of view [22,23]. As shown recently [24], this crossing
can be reproduced by SEI at a pure mean field level, while
the Skyrme forces SIII and SAMi-T require a short-range
momentum-dependent tensor part to reproduce the crossing of
the aforementioned levels at the right mass number [25,26].
The reproduction of this crossing by the Gogny force D1M
also requires an additional finite-range tensor force, as shown
in the Hartree-Fock (HF) calculation in coordinate space per-
formed by Anguiano et al. [27–29]. Alternatively, adding a
short-range tensor part as the one used in Skyrme forces to
Gogny D1M and in the framework of the quasi-local density
functional theory [30,31] the crossing is also reproduced [24].
On the other hand, it is important to note that the inclusion
of a tensor force on top of an effective interaction does not
guarantee the reproduction of the 1 f5/2 and 2p3/2 s.p. proton
levels crossing in neutron-rich Ni isotopes. A typical example
is the situation with the Skyrme interaction SLy5, which in-
cludes explicitly a tensor contribution in the fitting procedure
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[14] but is unable to reproduce the above-mentioned proton
level crossing in Ni, as is shown in Fig. 1 of Ref. [24].
This results shows the relevance of the underlying cen-
tral mean-field in determining the position and gaps of the
s.p. energy levels and diminishes the importance of tensor
terms.

In this paper we show that the addition of a short-range
tensor force to SEI is required in order to reproduce the trends
of the observed gaps between the 1h11/2 and 1g7/2 s.p. proton
levels in the Sn isotopic chain and between the 1i13/2 and
1h9/2 s.p. neutron levels in the N = 82 isotones and that this
can be achieved without spoiling the good agreement with the
splittings in the Ni isotopes.

The paper is organized as follows: In the second section we
revise the basic aspects of the mean-field approach based on
the SEI, paying special attention to the fitting protocol of its
parameters, in order to show the reason for the difference
found between SEI and other effective interactions of Skyrme
or Gogny types. In the same section, the short-range tensor
force used in this work is briefly discussed. The third sec-
tion is devoted to discuss the predictions of the SEI at a pure
mean-field level in some relevant scenarios of neutron-rich
nuclei. Next, using the SEI supplemented by a short-range
tensor force we analyze the gaps between the 1h11/2-1g7/2 s.p.

proton levels along the Sn isotopic chain and between the
1i13/2-1h9/2 s.p. neutron levels in isotones of N = 82. A com-
parison with the corresponding results provided by a selected
set of Skyrme and Gogny forces is also carried out. In the
last section, a summary of the results obtained and some
concluding remarks are given.

II. FORMALISM

A. The simple effective interaction

The SEI was introduced in Ref. [32] by Behera and collab-
orators in a way that closely resembles the Gogny force but
with one of the ranges set to zero (i.e., a contact term). Its
explicit form in coordinate space is given by

Veff = t0(1 + x0Pσ )δ(r)

+ t3
6

(1 + x3Pσ )

(
ρ(R)

1 + bρ(R)

)γ

δ(r)

+ (W + BPσ − HPτ − MPσ Pτ )e−r2/α2

+ iW0 �∇ δ(r) × �∇ · �σ . (1)

Ten parameters of this interaction, namely, α, γ , b, x0, x3, t3,
W , B, H , and M, are fit to reproduce nuclear matter (NM)
properties. The two remaining parameters, i.e., the strengths
of the zero-range force t0 and the spin-orbit (SO) interaction
W0 are determined from finite nuclei calculations. The proto-
col adopted for the parameter determination in case of SEI is
somewhat different from the one adopted for other effective
forces due to the fact that the momentum and density depen-
dence of the mean fields properties in NM of different types
has to satisfy certain experimental and empirical conditions.
More specifically the following conditions are imposed:

(1) The mean field in symmetric nuclear matter (SNM)
should change sign at a kinetic energy of the incident
nucleon of 300 MeV. This constraint is justified by
the analysis of the heavy-ion collision (HIC) data at
intermediate energies [33–36].

(2) The entropy in pure neutron matter (PNM) should not
exceed that of SNM [37].

(3) The effective-mass splitting in spin polarized neutron
matter should follow, as close as possible, the behavior
of the Dirac-Bruckner-Hartree-Fock (DBHF) calcula-
tion using the Bonn-B potential [38].

(4) The density dependence of the isospin asymmetric part
of the equation of state (EoS) should be fixed from
the standard value of the saturation properties supple-
mented by the empirical condition that the asymmetric
nucleonic contribution in β-stable charge neutral n +
p + e + μ matter must be a maximum.

(5) The stiffness of the SNM EOS is determined by the
exponent γ of the density dependent t3 term.

Typically, γ is used as a free parameter that is in the range of
values for which the pressure-density relation remains within
the allowed range extracted from the analysis of the HIC
data at intermediate energies [39]. The upper limit of γ ≈ 1
thus corresponds to a maximum value of the incompressibility
of K = 283 MeV. Other γ values used in this work, namely,
1
6 , 1

3 , 1
2 , and 2

3 correspond to SNM incompressibility values of
207, 226, 246, and 263 MeV, respectively.

The density-dependent term is also modified with a de-
nominator containing the parameter b. This denominator is
introduced to prevent supraluminous effects in NM [40]. With
the parameters determined by this fitting protocol, the SEI is
able to reasonably reproduce the trends of the EoS and the
momentum dependence of the mean-field properties obtained
in microscopic calculations of NM [37,41–44]. The parameter
t0 together with the SO strength W0 are fixed by fitting the
binding energies (BEs) of the magic nuclei 40Ca and 208Pb.

In the present study, finite nuclei are described by using
the so-called quasi-local density functional theory (QLDFT).
The QLDFT is a kind of HF calculation where the nonlocal
exchange contribution is written as a local density functional
by using the extended Thomas-Fermi approximation includ-
ing up to second-order terms in the h̄ expansion of the density
matrix [30,31]. The HF equations become Schrödinger-like
coupled equations for the s.p. wave functions,[

−∇ · h̄2

2m∗
q

∇ + Uq(R) − Wq(R)(∇ × σ )

]
φq = εqφq, (2)

where the subscript q = n, p indicates the type of particle, m∗
q

represents the effective mass, Uq is the mean-field experienced
by the nucleon of type q, Wq is the form factor of the spin-
orbit potential, and εq is the s.p. energy corresponding to the
orbital φq. This set of equations, which are local in coordinate
space, can be solved in the case of spherical symmetry in
a similar way to that used for Skyrme forces. The excel-
lent agreement between the predictions for spherical nuclei
obtained using the QLDFT approximation and the full HF
results including exchange terms has been discussed in detail
in Ref. [21]. To deal with pairing correlations in open-shell
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TABLE I. The twelve parameters for the SEI-G (γ = 0.42) along
with the nuclear matter saturation properties (such as saturation den-
sity ρ0, energy per nucleon e(ρ0 ), incompressibility for symmetric
nuclear matter K , effective mass m∗/m, symmetry energy Es, slope
of symmetry energy L, and curvature of the symmetry energy Ksym.

γ b (fm3) α (fm) εex (MeV)

0.42 0.5050 0.7591 −95.0536

εl
ex (MeV) ε0 (MeV) εl

0 (MeV) εγ (MeV)

−63.3691 −91.6562 −53.1272 90.0035

εl
γ (MeV) t0 (MeV fm3) x0 W0 (MeV fm5)

65.3966 341.2 1.7933 113.4

Nuclear matter saturation properties

ρ0 (fm−3) e(ρ0) (MeV) K (MeV) m∗/m

0.1584 −16.0 240 0.711

Es (MeV) L (MeV) Ksym (MeV)

35.5 76.71 −155.0

nuclei, we use the Bardeen-Copper-Schrieffer (BCS) ap-
proach together with a zero-range density-dependent pairing
interaction of the type proposed by Bertsch and Esbensen. The
strength is fit to reproduce the pairing gaps in NM predicted
by the Gogny interactions [20,21].

By the reasons discussed below we mainly use in this work
the SEI EoS corresponding to γ = 0.42. The twelve parame-
ters of this interaction along with the saturation properties in
NM are given in Table I.

B. The spin-orbit force and the tensor force

To describe finite nuclei with SEI a zero-range SO interac-
tion similar to that used in Skyrme and Gogny interactions is
added. The corresponding contribution to the energy density
is given by

HSO = −W0

2
[ρ∇ · J + ρn∇ · Jn + ρp∇ · Jp], (3)

where the spin-orbit densities Jq (q = n, p) read

Jq(r) = 1

4πr3

∑
i

v2
i (2 ji + 1)

×
[

ji( ji + 1) − li(li + 1) − 3

4

]
R2

i (r). (4)

The sum index i runs over all the quantum numbers labeled
by i = n, l, j, Ri(r) is the radial part of the wave function,
and vi is the BCS occupation probability of each state. The
contribution to the SO potential is obtained from the variation
of HSO with respect to Jq, q = n, p, which results in

Wq = W0

2
(2∇ρq + ∇ρq′ ). (5)

In this work, a short-range tensor term similar to the one
used in the case of Skyrme interactions is added to SEI. The
reason to use a short-range tensor is that we have checked
previously [24] in the case of the Gogny D1M force that

a QLDFT calculation including a short-range tensor force
provides a finite nuclei description extremely close to the one
obtained in full HF calculations with a finite-range tensor
[27–29]. The similarity between SEI and Gogny D1M gives
us confidence on a similar property for SEI. Although the
contribution of the short-range tensor force to the energy
density functional has been discussed in detail in earlier lit-
erature [14,25], we briefly summarize it here for a sake of
completeness.

The short-range tensor force used in this work includes
triplet-even and triplet-odd terms, with strengths T and U ,
respectively. Its explicit form is

VT = T

2

{
[(σ1 · k′)(σ2 · k′) − 1

3
(σ1 · σ2)k′2]δ(r1 − r2)

+ δ(r1 − r2)[(σ1 · k)(σ2 · k) − 1

3
(σ1 · σ2)k2]

}

+ U

{
(σ1 · k′)δ(r1 − r2)(σ2 · k)

− 1

3
(σ1 · σ2)[k′δ(r1 − r2)k]

}
, (6)

where k = (∇1 − ∇2)/2i acts on the right and k′ = −(∇1 −
∇2)/2i on the left. In the case of Skyrme forces, the tensor
interactions contribute to both the mean-field and spin-orbit
potentials owing to their dependence on the neutron and pro-
ton spin densities Jn and Jp, respectively [14,25]. However, in
the case of SEI or the Gogny interaction the spin densities only
appear in the spin-orbit energy density within the QLDFT
formalism. Therefore the tensor term only modifies the spin-
orbit part of the energy density. As we are using a short-range
tensor interaction, the associate energy density reads [14,25]

HT = 1
2αT

[
J2

n + J2
p

] + βT JnJp, (7)

where the coefficients αT and βT are related to the tensor
strengths by

αT = 5
12U, βT = 5

24 (T + U ). (8)

As a consequence, the spin-orbit form factor is modified by
the tensor force and reads

Wq = W0

2
(2∇ρq + ∇ρq′ ) + αT Jq + βT Jq′ . (9)

III. RESULTS AND DISCUSSION

A. Simple effective interaction predictions
for exotic neutron-rich nuclei

At this point, it is worthwhile to recall several predictions
of the SEI for neutron-rich nuclei, some of them reported in
more detail in earlier literature. Let us mention that the SEI,
in spite of being a nonrelativistic model without an isovector
contribution in the spin-orbit sector, is able to reproduce the
experimental kink of the isotopic shift of the charge radius in
the Pb isotopic chain for neutron number N = 126 [20]. The
ground-state deformation properties and the fission barriers
predicted by SEI are analyzed in Ref. [45], finding a good
agreement with the accepted experimental values [46].
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TABLE II. Ni nuclei ground-state energy for A = 68 to 78 calculated for the four EoSs of the SEI compared with
experimental values [47].

SEI (γ = 1
6 ) SEI (γ = 1

3 ) SEI (γ = 1
2 ) SEI (γ = 2

3 ) Expt. [47]
Nuclei E (MeV) E (MeV) E (MeV) E (MeV) E (MeV)

68Ni −591.60 −591.08 −590.37 −590.46 −590.407
70Ni −604.76 −604.52 −603.80 −603.82 −602.300
72Ni −616.44 −616.32 −615.73 −615.83 −613.455
74Ni −627.04 −627.03 −626.49 −626.71 −623.820
76Ni −636.64 −636.75 −636.27 −636.53 −633.156
78Ni −645.81 −645.38 −644.96 −645.27 −641.550

A region of particular interest from both experimental and
theoretical points of view is around magic numbers Z = 28
and N = 50. We briefly summarize here the SEI predictions
in this region [24]. A significant feature of the neutron-rich
Ni isotopes is the crossing between the 2p3/2 and 1 f5/2 s.p.

proton levels, which takes place for the nucleus 74Ni. This is a
direct consequence of the spin inversion from 3/2− to 5/2−
that takes place beyond 73Cu and which has been recently
confirmed experimentally [22,23]. We have reexamined this
level crossing of Ni isotopes in Ref. [24] by comparing SEI
predictions with the results provided by different mean-field
models of Skyrme and Gogny types. It is found that, for
the SEI, the crossing is reproduced in a natural way without
including any additional tensor term that is otherwise required
in the case of the Skyrme and Gogny interactions.

We report in Table II the binding energies (BEs) of Ni
isotopes from A = 68 to A = 78 computed at QLDFT level
for four equations of state (EoSs) of the SEI, corresponding to
the γ values 1

6 , 1
3 , 1

2 , and 2
3 and including pairing correlations

at BCS level, along with the experimental values. Calcula-
tions performed with these SEI EoSs reveal that the crossing
between the 2p3/2 and 1 f5/2 s.p. levels moves towards higher
mass numbers for smaller values of the γ parameter (i.e., of
the incompressibility modulus), as can be seen in Fig. 1. The
neutron s.p. levels close to the Fermi energy obtained using
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FIG. 1. Proton single-particle levels around the Fermi level for
Ni isotopes from A = 68 to A = 78 computed with the SEI for the
four EoSs.

SEI with different γ values are displayed in Fig. 2. We see that
the gap between the 2d5/2 and 1g9/2 s.p. levels remains almost
stationary as one moves from 68Ni to 78Ni, which implies that
the magicity of the N = 50 neutron number is preserved.

Very recently, measurements of charge radii Rch in Z = 28
isotopes have been made [48], which allow us to perform
comparisons between experimental values and theoretical pre-
dictions of the charge radii in all light-mass isotopic chains
from Z = 19 to Z = 50. The charge radii Rch and the isotopic
shifts δ〈R2

ch〉 with respect to the nucleus 60Ni computed with
the SEI EoS with γ = 0.42 of Ni isotopes from 58Ni to 70Ni
are displayed in Figs. 3 and 4 together with the experimental
data extracted using collinear laser spectroscopy [48]. The
charge radii predicted by SEI are in good agreement with the
experiment and show a similar quality as predicted by the ab
initio calculations using the NNLOsat potential [48] as well as
with the values obtained with the SLy5-T Skyrme interaction.
However, charge radii in this region are overestimated by the
SAMi-T [26] and SIII-T [49] interactions. The isotopic shifts
of the charge radii with respect to the 60Ni nucleus are partic-
ularly well reproduced by SEI on the average. In comparison,
the SLy5-T and SIII-T predictions overestimate the isotopic
shift for isotopes heavier than 64Ni, whereas SAMi-T fails in
reproducing the absolute values of the charge radii as well as
the trends of the experimental isotopic shifts in the considered
Ni isotopes.
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FIG. 2. Neutron single-particle levels around the Fermi level for
Ni isotopes from A = 68 to A = 78 computed with the SEI for the
four EoSs.
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FIG. 3. Nuclear charge radii Rch of Ni isotopes using SEI-G
(γ = 0.42) compared with the experimental data [48].

Odd spherical nuclei and the Cu case

Experimental data on the s.p. energy levels in Ni isotopes is
not very abundant and often one has to recourse to information
extracted from the studies in Co, Zn, and Cu isotopes. In
recent γ -spectroscopic studies of Cu-isotopes [22,23], it has
been found that the inversion of the ground-state spin-parity
from 3/2− to 5/2− occurs at neutron number N = 46, which
suggests the crossing of 2p3/2 and 1 f5/2 s.p. proton levels in
the underlying Ni core. This experimental scenario for Cu iso-
topes can be theoretically reproduced with SEI. One possible
reason for this success is the good description of spherical
odd nuclei with SEI at the QLDFT level and using the uni-
form blocking method of Ref. [50]. The ground-state spin and
parity of 298 spherical odd-nuclei computed with the EOS of
SEI with γ = 0.42 are displayed in Fig. 5. More than 80% of
the ground state’s spin-parity experimental data is reproduced
in our approach. This is similar to the performance of the
compilation of spins performed in Ref. [51] based on the
results provided by several Skyrme forces and the finite-range
droplet model of Möller. To investigate the inversion of the
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FIG. 4. Isotopic shift δ〈R2
ch〉, with respect to 60Ni, of Ni isotopes

using SEI-G (γ = 0.42) compared with the experimental data [48].
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FIG. 5. Comparison of experimental [47] and SEI-G (γ = 0.42)
spins of 298 odd-nuclei in different spin states.

spin-parity in Cu isotopes with our model, we have calculated
the energy of the ground and several excited states, assumed
of s.p. nature, of Cu-isotopes in the mass number region
A = 69–79 assuming spherical symmetry for all the consid-
ered nuclei because the deformation in these neutron-rich
Cu-isotopes is rather small [52]. We have studied the inversion
of ground-state spin-parity from 3/2− to 5/2− in Cu isotopes
for the SEI EoS with γ values between 1

6 and 2
3 . We find that,

for γ = 0.42, this inversion of the spin-parity of the ground
state occurs at N = 46, in agreement with the experimental
results [22,23]. The ground-state energies and spin-parity of
the Cu-isotopes together with their first excited-state energies
obtained with this γ value are collected in Table III. This γ

value corresponds to an incompressibility K (ρ0) = 240 MeV,
which conforms to the range 240 ± 20 MeV extracted from
the compressional mode of vibration in finite nuclei [53] and
the ranges obtained from related studies of the giant monopole
resonance and heavy-ion collisions [54–57].

This EoS also predicts reasonably well the energy of the
first-excited state, as can also be seen in the same Table III.
The calculated energies of the first-excited states in other
Cu-isotopes in this chain also compares well with the ex-
perimental results, which are taken from Fig. 2 of Ref. [22].
For example, the nucleus 75Cu described by this EoS of SEI
predicts the energy of excited state 3/2− at 103 keV, whereas
the experimental value is 62 keV.

B. Simple effective interaction with a short-range tensor force

In spite of the success of SEI in describing some exotic
scenarios of neutron-rich nuclei at the mean-field level by
means of QLDFT calculations, as we have discussed in the
previous section, there are other particular situations where
the mean-field description alone is not able to reproduce,
even qualitatively, the experimental data and the addition of
a tensor force on top of SEI becomes mandatory.

In this section we analyze first the energy gaps between
the 1h11/2-1g7/2 s.p. proton levels in the Z = 50 isotopic chain
and between the 1i13/2-1h9/2 s.p. neutron levels in the N = 82
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TABLE III. Ground-state spin and energy of neutron-rich odd Cu isotopes predicted by the SEI EoS (γ = 0.42). The
energy of the first-excited state E∗ is also given along with the experimental results taken from Ref. [22].

SEI (γ = 0.42) Expt. SEI (γ = 0.42) Expt.
Nucleus Spin-parity Energy (MeV) Energy (MeV) E∗ (keV) E∗ (keV)

69Cu 3/2− −599.40 −599.97 663 1215
71Cu 3/2− −613.73 −613.09 449 537
73Cu 3/2− −626.51 −625.51 156 263
75Cu 5/2− −638.25 −637.13 103 62
77Cu 5/2− −649.11 −647.42 292 295
79Cu 5/2− −658.94 −656.65 620 660

isotonic chain comparing with the available experimental data
[12] as well as with the predictions of other mean-field models
such as the SIII and SAMI-T Skyrme forces and the D1MTd
Gogny interaction. Another example where a tensor interac-
tion on top of the SEI is needed is the study of the evolution
of the 1h11/2, 1g7/2, 2d3/2, and 2d5/2 s.p. neutron levels in the
N = 51 isotonic chain, where the results obtained with our
model are compared with the behavior predicted by Federman
and Pittel [58].

To get a better agreement with the results reported in
Ref. [12], we add to SEI a short-range tensor interaction,
which depends on the neutron and proton spin densities [see
Eq. (7)]. Its main effect is to modify the spin-orbit potential
Eq. (9) and therefore to change the relative position of the
neutron and proton s.p. energy levels. The parameters T and
U of the tensor force are chosen to describe the energy gaps
given in Ref. [12] under the constraint that the crossing of
2p3/2 and 1 f5/2 s.p. levels in Ni isotopes at neutron number
N = 46 remains unchanged. For each pair of T and U values,
the spin-orbit strength W0 is readjusted to reproduce the ex-
perimental BE of 208Pb. We have found that the tensor force
with strength parameters T = 800 MeV, U = −140 MeV and
a spin-orbit strength W0 = 122 MeV fm5 fulfills these require-
ments. This procedure for determining the tensor parameters
T and U is different from the strategy used in Ref. [49], where
they are fit to reproduce the spectra of 48Ca and 56Ni. We
have checked that the spin-orbit splittings of these two nuclei
computed within our approach give quite similar results to
those displayed in Figs. 1 and 2 of Ref. [49].

With the values T = 800 MeV and U = −140 MeV of
the tensor parameters, the 1h11/2-1g7/2 proton gap in even Sn
isotopes and the 1i13/2-1h9/2 neutron gap in N = 82 isotones
are qualitatively reproduced compared with the results of
Schiffer et al. [12]. The results for these proton and neu-
tron gaps, with and without including the tensor force, are
displayed in Figs. 6 and 7, respectively. In the same figures
we show the results predicted by the Skyrme forces SIII,
SLy5 and SAMi-T, the Gogny force D1MTd as well as the
experimental data of Ref. [12]. To enlighten the influence of
the tensor force on the relative change of the gaps between the
aforementioned s.p. levels, the theoretical results are shifted
so that the predicted splittings for the spin-saturated 132Sn
nucleus, in both the cases, coincide with the corresponding
experimental values.

As explained in detail in Ref. [16], the tensor force pro-
vides an additional attraction between neutron and proton

particle or hole states with spins j> = l + 1/2 and j′< =
l ′ − 1/2 (or with j< = l − 1/2 and j′> = l ′ + 1/2) and re-
pulsion with spins j> = l + 1/2 and j′> = l ′ + 1/2 (or with
j< = l − 1/2 and j′< = l ′ − 1/2). These tensor interactions
are stronger between states with similar radial wave functions,
i.e., with the same principal quantum number and the same
orbital angular momentum because in this case there is a large
overlap along the radial directions.

Proton gaps in the Z = 50 isotopic chains and neutron gaps
in the N = 82 and N = 51 isotonic chain

The tensor effects on the gap between the unoccupied
1h11/2 − 1g7/2 proton states along the Sn isotopic chain
strongly depend on the position and occupancy of the neutron
s.p. levels, which in the case of the SEI are displayed in Figs. 8
and 9, respectively. We see from Fig. 8 that, as mentioned,
the impact of the tensor force is more important for states
of large orbital angular momentum, such as 1g7/2 or 1h11/2,
whose s.p. energies are clearly shifted with respect to the
values computed without the tensor interaction. The tensor
force does not act on the 3s1/2 state, and its effect on the 2d5/2

and 2d3/2 states is small due to their small angular momentum.
From the same figure we can also see that, above N = 50,
the neutron levels 1g7/2 and 2d5/2 predicted by SEI lie very
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close to each other. The same happens with the 3s1/2 and 2d3/2

levels, while the 1h11/2 level remains rather isolated at higher
s.p. energy. As can be seen from Fig. 9, from A = 100 to
A = 114, neutrons in the Sn isotopic chain mainly populate
the 1g7/2 and 2d5/2 levels almost with the same occupation
probability, which reaches 80% at A = 114. Above this mass
number the occupancy of the 3s1/2 and 2d3/2 levels increases
remarkably until about 60% in competition with the filling of
the 1h11/2 level, which has a small occupation up to A = 120,
but from this mass number on increases until saturating at
A = 132.

The filling of the 1g7/2 neutron state above N = 50 en-
hances the splittings in the h and g s.p. proton states due to
the tensor interaction, thereby decreasing the gap between the
1h11/2 and the 1g7/2 proton levels. The effect of filling of the
2d5/2 neutron level on these two previously mentioned proton
levels is just the opposite. Since the occupancy of the 1g7/2
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computed with (without) the tensor force.
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FIG. 9. Occupation probability of the neutron levels of the Sn
isotopes in the N = 50 to N = 82 major shell. Solid (dashed) lines
correspond to the occupations computed with (without) the tensor
force.

and 2d5/2 s.p. neutron levels is quite similar (see Fig. 9), there
is a partial cancellation between their tensor effects. This is
because the overlap between the s.p. wave functions of the
states 1g7/2 (neutrons) and 1h11/2 or 1g7/2 (protons) is larger
than the overlap corresponding to the neutron state 2d5/2 and
these proton states. Thus the SEI calculation including the ten-
sor force predicts that the 1h11/2 − 1g7/2 proton gap decreases
when the mass number A increases from 100 to 114, which is
in agreement with the experimental data [12].

When the mass number of the isotope increases above
A = 114, the occupancy of the 2d3/2 and 3s1/2 neutron levels
becomes progressively important, as can be seen in Fig. 9.
The tensor interaction between the 2d3/2 neutron state and the
1h11/2 and 1g7/2 proton states should decrease the proton gap.
However, this effect is almost canceled out by the opposite
contribution of the 2d5/2 neutron state. As a consequence the
SEI prediction in the A = 114–120 range is an almost flat
proton gap compared with the experimental increasing trend
when the mass number A is above 114 [12]. The calculation
with SEI including tensor terms recovers this increasing trend
at A = 120 owing to the growing occupancy of the 1h11/2

neutron level (see Fig. 9), which enhances the attraction on the
1g7/2 and the repulsion on the 1h11/2 proton levels increasing
thus the gap between these two states.

Similar effects due to the tensor force can be seen in the
evolution of the relative separation of the unoccupied 1i13/2

and 1h9/2 neutron levels in the isotones of N = 82 in Fig. 7.
For this isotonic chain the evolution of the proton s.p. levels
in the Z = 50–72 major shell and their corresponding occu-
pancies as a function of the atomic number are displayed in
Figs. 10 and 11, respectively. As the proton number increases
from Z = 50 to Z = 58, the 1g7/2 proton level fills up until
practically saturating at Z = 58. Due to the tensor force, this
proton level pulls the 1i13/2 and push the 1h9/2 neutron levels
decreasing the gap between them. From Z = 58 to Z = 64,
again only the 2d5/2 proton level fills up appreciably (see
Fig. 11), but in this case the tensor force acts in the opposite
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way, i.e., it pushes up the 1i13/2 and pulls down the 1h9/2

neutron levels, increasing the 1i13/2–1h9/2 neutron gap. The
kink at Z = 62 is due to the increasing of the occupancy of
the 2d3/2 proton level, which becomes prevalent to compen-
sate the increase of the gap due to the 2d5/2 level. Beyond
Z = 64 and up to Z = 70, the situation in the case of SEI with
γ = 0.42 is more complicated because the 2d3/2, 3s1/2, and
1h11/2 proton levels are almost degenerate and they populate
simultaneously, as can be seen in Fig. 11. In this region the
reduction of the 1i13/2-1h9/2 neutron gap due to the 2d3/2

proton level is compensated by the increasing effect of the
1h11/2 proton level, whose wave function has larger overlap
with the wave functions of the neutron levels because of the
same principal quantum number and similar orbital angular
momentum.

It can be seen from Fig. 6 that if the tensor force is ab-
sent the SEI model predicts an almost linear smooth growing
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tendency as a function of the neutron number, which is in dis-
agreement with the experimental results reported in Ref. [12].
As we have seen, the trends of the experimental results are
much better reproduced by adding to SEI a short-range tensor
interaction discussed in this work. Also, the behavior of the
experimental gaps between the 1i13/2 and 1h9/2 neutron levels
in the N = 82 isotopic chain is better reproduced by the theo-
retical calculations performed with SEI when the tensor force
is included in the calculation as can be seen in Fig. 7. This
improvement of the theoretical predictions with respect to the
experiment is due to the fact that the tensor force modifies the
position of the underlying s.p. energy levels provided by the
mean field and therefore changes the gaps among the levels
from a rather uniform value when tensor interaction is absent
to a more oscillating structure of the gaps due to the tensor
effects when the consecutive s.p. orbits are filled.

We have also analyzed the role of the pairing correlations
in the theoretical calculation of the proton and neutron gaps
in Sn isotopic and N = 82 isotonic chains in the particular
case of the SIII Skyrme force. Although the behavior of the
gaps is mainly ruled by the effects of the tensor interaction
on the s.p. energy levels, the BCS occupancies of the s.p.
energy levels may modify the tensor effects, as far as the
tensor force acts simultaneously on different levels around the
Fermi energy. This is just the situation for isotopes of Sn in
the range N = 64–70 because in this case the 2d3/2 and 3s1/2

neutron s.p. levels, which are almost degenerate, lie below the
1h11/2 s.p. neutron level that is empty if pairing correlations
are absent but partially occupied when pairing acts, and there-
fore modify the 1h11/2-1g7/2 proton gap with respect to the
case without pairing. On the contrary, in isotones of N = 82
pairing correlations are almost marginal in the neutron gaps
predicted by the SIII force, because in this case the 2d3/2

and 3s1/2 s.p. proton levels are above the 1h11/2 s.p. proton
level, and therefore they do not contribute to the 1i13/2-1h9/2

neutron gap in the range of atomic numbers Z = 64–70 if
pairing is absent. When the pairing interaction is switched
on, the 2d3/2 s.p. neutron level contributes to the change of
the aforementioned neutron gaps, but its effect is very small
and does not change the trend due to the tensor interaction
of the slightly less occupied 1h11/2 proton level. We have
found in our calculations that a similar result is obtained when
comparing results by using the Gogny interactions D1M and
D1MTd. In general, the tensor interaction reduces the pairing
correlations [59].

In the same Figs. 6 and 7 we have displayed the
1h11/2-1g7/2 proton and 1i13/2-1h9/2 neutron gaps in the Sn
isotopic chain and N = 82 isotonic chain computed with other
mean-field models of Skyrme and Gogny types, as mentioned
before. The tensor effects in these models are qualitatively the
same as those discussed for the SEI, but quantitatively they de-
pend on the strength of the tensor force used as well as on the
energies and occupancies of the s.p. levels in each considered
model. We see that the relative tensor effects computed with
different interactions reproduce fairly well the experimental
results of Ref. [12] within a window of about 1 MeV for both
the isotopic chain of Sn and the isotonic chain of N = 82.
However, from a quantitative point of view, these proton and
neutron gaps computed with the different mean-field models
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TABLE IV. Shifts in MeV applied to the 1h11/2-1g7/2 proton gaps
in the Sn isotopic chain and to the 1i13/2-1h9/2 neutron gaps in the
N = 82 isotonic chain for the different models considered in this
work (see text for further explanations).

SEI SEI-T SIII-T SLy5-T SAMi-T D1M-T

1h11/2 − 1g7/2 1.85 2.99 2.12 0.35 4.00 3.00
1i13/2 − 1h9/2 0.90 1.16 0.57 −0.31 3.29 1.45

show larger differences with respect to the values reported in
Ref. [12]. This is due to the underlying mean-field effects,
which are different from the small changes induced by the
tensor force, and determine the absolute position of the s.p.
energy levels. The values of the shifts applied to the
1h11/2-1g7/2 proton gaps and 1i13/2-1h9/2 neutron gaps using
the different mean-field models considered in this work are
reported in Table IV.

The SEI model plus the tensor force used in this work is
also able to reproduce the experimental trends of the evolution
of the 1h11/2, 1g7/2, and 2d3/2 neutron s.p. levels in the N = 51
isotonic chain. As Z increases from 41 to 50, filling the 1g9/2

proton level, the 1h11/2 neutron s.p. level is pushed up while
the 1g7/2 and the 2d3/2 s.p. neutron levels are pulled down
owing to the tensor interaction as compared with the case
where the tensor force is absent. The lowering of the 1g7/2

neutron level is a phenomenon pointed out by Federman and
Pittel [58]. These effects are shown in Fig. 12, where the
evolution of these s.p. neutron levels relative to the 2d5/2

neutron level are shown for the cases without and with the
tensor force. From this figure we can see that the lowering
of the 1g7/2 level along this chain is more prominent, as
expected, than the one experienced by the 2d3/2 level, owing
to the larger overlap of the wave function of the 1g9/2 proton
level with the one of the 1g7/2 neutron level as compared with
the overlap with the wave function of the 2d3/2 neutron level,
which has different principal quantum number and angular
momentum.

IV. CONCLUSIONS

The main aim of this work is to study the impact of an
additional tensor force on different predictions of the SEI
model at mean field level. To this end we have used the
SEI parametrization with γ = 0.42, which was fit in a recent
work [24] to describe the crossing between the 2p3/2 and
1 f5/2 s.p. proton levels in neutron-rich Ni isotopes at mass
number A = 74 (or the spin-parity inversion of the ground-
state of Cu-isotopes measured experimentally in the nucleus
75Cu [22,23]). We have chosen a short-range tensor inter-
action similar to that used in Skyrme forces. Subject to the
constraint that the above-discussed predictions for Ni- and
Cu-isotopes are not violated, the two strength parameters T
and U of the tensor part have been adjusted to describe the
trends of the experimental gaps reported in Ref. [12] be-
tween the 1h11/2-1g7/2 s.p. proton levels in Sn isotopes and the
1i13/2-1h9/2 s.p. neutron levels in the N = 82 isotonic chain.
Our results are compared with the predictions of other mean-
field models containing a tensor force, namely, the SIII-T,
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SLy5-T, and SAMi-T Skyrme interactions and the D1MTd
Gogny interaction. We have also analyzed the evolution of
the 1h11/2, 1g7/2, and 2d3/2 neutron s.p. levels in the N = 51
isotonic chain. It is found that when the tensor force acts,
the energy of the 1g7/2 s.p. neutron level decreases when the
occupancy of the 1g9/2 proton level grows, in agreement with
the predictions of Federman and Pittel [58]. Our calculations
show that the SEI predictions qualitatively reproduce the ex-
perimental trends along the considered isotopic and isotonic
chains, while the agreement with the experiment is deterio-
rated if the tensor term is not included in SEI. The effects due
to the pairing correlations in the presence of the tensor force
are discussed in the case of the SIII-T interaction (we have
found comparable effects in the case of the D1M and D1MTd
Gogny interactions). It is seen that its impact depends on the
position of the different s.p. levels, which may be relevant in
some cases. It is known that in general the tensor interaction
reduces the pairing correlations [59].

In this work we have seen that, by including a short-range
tensor term to the standard spin-orbit interaction, one is able
to explain in a qualitative way the experimentally observed
behavior of some specific energy gaps in the Sn isotopes and
in the N = 82 and N = 51 isotonic chains. But to have a
more quantitative explanation, it appears that the tensor and
the spin-orbit interactions should be modified, for example, by
introducing a finite range in the tensor force and by exploring
a more flexible spin-orbit part, which are tasks for future
research.
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