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Abstract: 

This study evaluates the horizontal positional accuracy of a new algorithm that defines a surface that approximates DEM 

data by means of a spline function. This algorithm allows evaluating the surface at any point in its definition domain and 

allows analytically estimating other parameters of interest, such as slopes, orientations, etc. To evaluate the accuracy 

achieved with the algorithm, we use a reference DEM 2 m × 2 m (DEMref) from which the derived DEMs are obtained at 

4 m × 4 m, 8 m × 8 m and 16 m × 16 m (DEMder). For each DEMder its spline approximant is calculated, which is evaluated 

at the same points occupied by the DEMref cells, getting a resampled DEM 2x2m (DEMrem). The horizontal accuracy is 

obtained by computing the area amongs the homologous contour lines derived from DEMref and DEMrem, respectively. It 

has been observed that the planimetric errors of the proposed algorithm are very small, even in flat areas, where you could 

expect major differences. Therefore, this algorithm could be used when an evaluation of the horizontal positional accuracy 

of a DEM product at lower resolution (DEMpro) and a different producing source than the higher resolution DEMref is 

wanted. 
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1. Introduction

Having a mathematical function that represents the terrain 

throughout its continuous definition domain has different 

advantages, among others the following: a) It is possible to 

sample regular meshes to generate digital elevation models 

(DEM) of both higher and lower resolution than the data 

from which the mathematical function was obtained; and 

this is achieved thanks to its definition domain is 

continuous, b) morphological variables of interest can be 

obtained from the corresponding mathematical formulas of 

the surfaces, such as slope, orientation, curvature and 

normal direction, c) You could intersect two surfaces 

corresponding to homologous DEMs from different dates 

and calculate the increase or decrease in the terrain 

volume. The provision of functions of this type has 

allowed resampling through bilinear (Maune, 2007) and 

bicubic (Keys, 1981) interpolations that have been used in 

different applications both to obtain DEMs of higher and 

lower resolution. In the first case, obtaining higher 

resolution has been used to, for example, improve urban 

flood zones in the absence of denser models (Shen and 

Tan, 2020); in the second case, its use has been frequent 

when it was intended to compare the altimetric accuracy of 

a lower resolution product model with another higher 

resolution reference model (Gao, 1998, Mukherjee et al. 

2013, Wang et al. 2015), although, in most cases, the error 

introduced by the resampling from a higher resolution to a 

lower one was left unanalysed, as indicated by Mesa and 

Ariza, 2020. Other studies have addressed the influence of 

resampling techniques on products derived from DEMs 

such as streamflows. (Leong et al., 2015). 

Although procedures are available to extract information 

directly from a DEM, we propose a new algorithm to build 

a surface with low computational cost that adjusts the 

elevations in order to have an explicit expression 

(function) from which to find the elements of interest. As 

the terrain has many irregularities, a surface should not be 

constructed too regular. C1 continuity is sufficient. The 

regular structure of the DEM allows to define a piecewise 

surface defined on a quadrangular partition of the terrain. 

More precisely, we define a piecewise bicubic surface by 

providing simple rules that give the Bézier ordinates (cf. 

Farin 2001) of the surface patches relative to the squares 

that make up the partition. 

Most studies on DEM accuracy of DEM THT compare a 

product with a reference have analyzed the altitude 
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component, leaving the horizontal component untouched. 

The reason for the lower number of investigations devoted 

to the horizontal component is due to the difficulty of 

finding a satisfactory method. In this work we will study 

the horizontal accuracy achieved by the new algorithm that 

we have proposed. We will use the automatic algorithm 

based on homologous contour lines introduced in Reinoso, 

2010 and rigorously demonstrated in Reinoso, 2011 for 

evaluating the horizontal accuracy. 

2. Material and Methodology

Our study was carried out on a 2x2 m resolution DEMref 

produced by the Instituto Geográfico Nacional of Spain for 

the Navarra region. The following phases have been 

carried out: 

1. Starting from the 2x2 m resolution DEMref, a

resampling has been performed using the nearest

neighbor method at resolutions of 16x16, 8x8 and

4x4 m (DEMder) which we respectively denote

DEM4x4, DEM8x8, DEM16x16. In this way, the

DEMder have the same values as the DEMref at the

points interpolated by the nearest neighbor

method.

2. To evaluate the capacity of our approximation

algorithm (Aapx) to estimate the DEMref values,

the surface of each DEMref se ha calculado la

superficie de cada DEMder (Sder) has been

calculated using Aapx. Sder is assessed to obtain

DEMs with the same resolution as DEMref which

we call DEMremXxX (DEMrem4x4, DEMrem8x8,

DEMrem16x16).

3. The horizontal displacement between DEMref and

each one of the DEMremXxX is calculated using the

Reinoso 2011 contour method.

4. The results obtained with Aapx are compared with

the traditional bicubic resampling algorithm.

2.1 Material 

The DEMref has a cell size of 2x2m and y occupies an area 

of 4.8x4.8 Km. Figure 1 shows the geographical 

characteristics of the environment, as well as the DEMref
 

that contains flat areas along with other steep slopes. The 

coordinates are referred in the ETRS89 system 30N UTM 

zone. 

Figure 1: DEM used as reference and its geographical 

environment 

2.2 The approximation algorithm 

We propose to construct a spline surface by means of a 

tensor product of 1D spline approximants, defining the 

surface patches directly in the Bernstein basis. Suppose 

that for a real function 𝑓the values 𝑓(𝑣𝑖), 𝑖 ∈ ℤ, are known,

where 𝑣𝑖 = 𝑖 ℎ, with ℎ > 0 the size of the partition 𝛥 ≔
{𝑣𝑖: 𝑖 ∈ ℤ}. The 1D approximating spline 𝐴𝑓 reduces on

each interval 𝐼𝑖 ≔ [𝑣𝑖 , 𝑣𝑖+1] to a cubic polynomial, whose

control polygon is formed by four control points with 

Bézier abscissae {𝑣𝑖 , 𝑣𝑖 +
ℎ

3
, 𝑣𝑖+1 −

ℎ

3
, 𝑣𝑖+1}. If 𝐷3 is the

union (without repetitions) of these Bézier abscissae and 

𝑢𝑖 = 𝑣𝑖 −
ℎ

3
y 𝑤𝑖 = 𝑣𝑖 +

ℎ

3
, then 𝐷3 = ⋃ {𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖}𝑖∈ℤ .

For 𝑥 ∈ 𝐼𝑖, it holds

𝐴𝑓(𝑥) = 𝑉𝑖𝐵0(𝑡) + 𝑊𝑖𝐵1(𝑡) + 𝑈𝑖+1𝐵2(𝑡) + 𝑉𝑖+1𝐵3(𝑡),

with 𝑡 =
𝑥

ℎ
− 𝑖 and 𝐵𝑘(𝑡) = (3

𝑘
)𝑡𝑘(1 − 𝑡)3−𝑘, 0 ≤ 𝑘 ≤ 3. 

The Bézier ordinates 𝑉𝑖 , 𝑊𝑖 , 𝑈𝑖+1 and 𝑉𝑖+1 are defined as

linear combinations of point values 𝑓(𝑣𝑖): 𝑉𝑖 = 𝑓(𝑣𝑖),

𝑈𝑖 = ∑ 𝛼𝑟𝑓(𝑣𝑖+𝑟)

1

𝑟=−1

,  𝑊𝑖 = ∑ 𝛽𝑟𝑓(𝑣𝑖+𝑟)

1

𝑟=−1

, 

where the masks 𝛼 = (𝛼−1, 𝛼0, 𝛼1) ∈ ℝ3 and 𝛽 =
(𝛽−1, 𝛽0, 𝛽1) ∈ ℝ3 are determined to achieve 𝐶1

continuity as well as the reproduction of the quadratic 

polynomials. 
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Proposition 1 The unique masks yielding 𝐶1 continuity 

and the reproduction of quadratic polynomials are 

𝛼=(
1

6
, 1, −

1

6
) and 𝛽=(−

1

6
, 1,

1

6
). 

Furthermore, the uniform norm of the corresponding 

operator 𝐴 is equal to 4/3. 

From the exactness of 𝐴, the following result regarding 

the approximation error holds. 

Proposition 2 There exist constans 𝐾𝑙 , 𝑙 = 0,1,

independent of 𝑓 and ℎ and 𝑖, such that 

‖(𝑓 − 𝐴𝑓)(𝑙)‖
∞,𝐼𝑖

≤ 𝐾𝑙ℎ
3−𝑙‖𝑓(3)‖

∞,𝛺
,

where 𝛺 = [𝑣𝑖−1, 𝑣𝑖+2].

Now, given a 2D function 𝑓(𝑥, 𝑦) a bi-cubic piecewise 

surface 𝑠 is defined as a tensor product approximant: the 

operator 𝐴 is applied to 𝑓 as a function depending on 𝑥 

(or 𝑦), and then 𝐴 is again applied to de resulting 

function, i.e. 𝑠(𝑥, 𝑦) = 𝐴𝑦𝐴𝑥𝑓(𝑥, 𝑦).

On each square 𝐼𝑖 × 𝐼𝑗 this function is a bi-cubic Bézier

surface, so that it can be represented in Bernstein-Bézier 

form. It is a linear combination of functions 

𝐵𝑚 (
𝑥

ℎ
− 𝑖) 𝐵𝑛 (

𝑥

ℎ
− 𝑗) , 0 ≤ 𝑚, 𝑛 ≤ 3,

whose coefficients are expressed in terms of values 

𝑓(𝑣𝑖+𝑘, 𝑣𝑗+𝑙), −1 ≤ 𝑘, 𝑙 ≤ 1.

For Franke function (see Franke 1982) (top), the results 

provided by the method proposed for ℎ = 2−7 are shown 

in Fig. 2. 

Figure 2: Results provided by our Aapx  for h=2-7 according to 

the Franke funcion 

Also for Nielson test function (Nielson 1978) it provides 

good results for the same step length, shown in Fig.3.

Figure 3: Results from our Aapx algorithm according to the 

Nielson test function 

2.3 Contours-based algorithm to measure the 

horizontal displacement  

The the horizontal displacement computation of the fases 

with respect to the DEMref is carried out in the following 

phases:  

1. The contours of both DEMs are calculated (Fig. 4

a and b respectively), and their homologous

curves are automatically identified, e.g. curves

C4a and C4b in Fig. 4 a and b.

2. After superimposing the homologous contours

(Fig. 4 c), the areas enclosed between them are

calculated (gray area in Fig. 4 d). The horizontal

displacement (Hdi) computed by the ith pair of

homologous contours (Cia, Cib) is formulated as

the area enclosed by both curves (Ai) divided by

the mean length of those contours (𝐿𝑚𝑖 =
𝐿𝑖𝑎+𝐿𝑖𝑏

2
) 

𝐻𝑑𝑖 =
𝐴𝑖

𝐿𝑚𝑖

3. And the mean displacement of the DEMremXxX

respect to DEMref (𝐻𝑑DEMremXxX) is computed as

the weighted average of the displacements of all

the homologous contours, the weighting factor

being the average length of those contours,

divided by the total length of the average contours

being the total length 𝐿𝑇𝑜𝑡 = ∑ 𝐿𝑚𝑖
𝑛
𝑖=1 :

𝐻𝑑DEMremXxX =
1

𝐿𝑇𝑜𝑡
∑ 𝐴𝑖 ∗

𝑛

𝑖=1

𝐿𝑚𝑖
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Figure 4: Hologous contours and area between them 

3. Results and discussion

To calculate the 𝐻𝑑DEMremXxX a 10 m interval between

contour lines has been used, that in our DEM produces a 

total of 22 levels, specifically their heights ranging from 

450 to 660 m. In Fig. 5 you can see the homologous 

contour drawn on a shadow map, as well as a detail where 

the area enclosed between those homologous contours are 

highlighted on green color. 

Figure 5: Area between homologous contours corresponding to 

the DEMref and the DEMrem16x16 

Table 1 shows the mean horizontal displacements as well 

as their standard deviations calculated for 4x4, 8x8 and 

16x16m resolutions using our new Aapx algorithm and the 

traditional bicubic resampling method. 

DEMremXxX 𝐻𝑑DEMremXxX Aapx (m) 
Bicubic 

(m) 

DEMrem4x4 
Mean 0.07 0.99 

Std 0.03 0.06 

DEM rem8x8 
Mean 0.28 1.05 

Std 0.13 0.06 

DEM rem16x16 
Mean 0.81 1.38 

Std 0.38 0.27 

Figure 6: Horizontal displacement from the 

𝐻𝑑𝐷𝐸𝑀𝑟𝑒𝑚𝑋𝑥𝑋 respect to the DEMref, comparing our algorithm

and the traditional bicubic.  

Table 1 shows that our new algorithm produces better 

results than the traditional bicubic algorithm regardless of 

the cell size used as DEMder. While our algorithm seems to 

decrease the error due to horizontal displacement at a rate 

of ¼ as the resolution increases at a rate of 2, in the bicubic 

algorithm the rate of decrease is much lower. However, no 

large differences are observed in the values of the standard 

deviations if both algorithms are compared for each level 
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of resolution. However, additional tests should be carried 

out with a greater number of DEMs, covering all types of 

terrain (flat, undulating and mountainous), in order to 

statistically validate the apparently better results or our 

algorithm respect the traditional bicubic one.  

Another advantage of the new algorithm with respect to 

the traditional bicubic one is that it has a lower 

computational cost, making it a candidate to be 

implemented in cartographic production software 

packages. 

We believe that this new algorithm can be used when you 

want to know the positional accuracy (horizontal and 

vertical) of a lower resolution DEM coming from a source 

other than the reference one or that has been created with 

a different method from the reference one.  

On the other hand, it would also be interesting to have an 

algorithm that not only reported the horizontal 

displacement with a scalar value, but also included 

information about direction in each of the cells, which 

would be possible by adapting the contours method by 

Reinoso 2011. 

4. Conclusions

In this work a new algorithm (Aapx) is presented to 

approximate a DEM by means of a piecewise defined 

surface (Sder). It presents some advantages linked to its 

definition type, such as being able to obtain the altitude of 

a point in the entire definition domain of that surface, as 

well as morphological variables that characterize the 

terrain surface: slope, orientation, curvature or normal 

direction in an analytical way. An immediate application 

would be the possibility of resampling Sder to obtain DEMs 

(DEMremXxX) of higher or lower resolution than those used 

to create Sder. One consequence of Aapx resampling 

capabilities is being able to assess the accuracy of a 

product DEM (DEMpro) against a higher accuracy 

DEMref. This assessment could be carried out both in the 

vertical component and in the horizontal component, 

which is the one studied in this work. DEMpro can come 

from both a source or a method other than the source or 

method used to create the DEMref.  

Aapx has shown a lower horizontal displacement than the 

traditional bicubic interpolation algorithm, which can be 

interpreted as a lower error when resampling DEMs of 

lower resolution to others of higher resolution; These 

processes are necessary when trying to compare the 

accuracies of a DEMpro against a DEMref, and whenever 

possible it will be necessary to choose those algorithms 

that produce the least error (horizontal displacement). 

The Aapx computational cost is lower than other 

conceptually similar such as the traditional bicubic one. 

 Finally, in the future an experiment will have to be 

designed with a sufficiently large number of DEMs on 

which to test Aapx so that the results that appear in this first 

Aapx study can be verified. 
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