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a b s t r a c t

We analyze the structure of low energy Hamiltonian eigenstates in zincblende het-
erostructures (like HgTe/CdTe quantum wells) near the gamma point, under magnetic
fields, to characterize topological phase transitions (TPT) under an information-theoretic
perspective. Using information markers like entanglement, quantum fluctuations, fidelity
susceptibility, participation ration, area in phase space, etc., we realize that higher
Landau levels (LL) feel the topological phase transition slightly displaced with regard
to the edge state, thus leading to the concept of ‘‘higher Landau level |n| > 0 TPT’’, as
‘‘echoes’’ of the standard edge state n = 0 TPT. We compute the critical magnetic field
and the critical HgTe layer thickness at which these information measures of higher
Landau levels undergo a structural change.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Understanding quantum phases of matter and harnessing them for quantum technological applications (electronics,
atalysis, quantum computing, etc.) is a topic of great importance today, specially those phases of a topological nature.
or example, low-dimensional quantum devices based on mercury telluride–cadmium telluride (HgTe/CdTe) quantum
ells (QWs) have been recently proposed in [1]. High-temperature superconductors and two-dimensional Dirac materials
rovide new types of topological phases, sometimes characterized by exotic electronic (edge) states and currents
emarkably robust to impurities and thermal fluctuations. Quantum Hall effect provides the paradigmatic example of
topological phase, but dispersionless edge currents also appear in the absence of a magnetic field, for example, in some
raphene analogues (silicene, germanene, etc. [2]) with a strong spin–orbit coupling [3–6]. Two-dimensional topological
nsulators (see [7–9] for text books, [10,11] for reviews and [12] for progress and prospects) were predicted theoretically
y Kane and Mele [13] using a two-dimensional graphene-like material model with spin–orbit interaction. They were first
roposed [14] and later-on observed experimentally [15] in HgTe/CdTe QWs.
Topological phases are founded on much different principles than Landau’s theory, and they turn out to be character-

zed by topological numbers like: Chern, Pontryagin, Skyrmion, etc. and other kinds of winding numbers. Here we want to
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Table 1
Material parameters for HgTe/CdTe quantum wells with different HgTe layer thicknesses λ [11].
λ (nm) α (meV nm) β (meV nm2) δ (meV nm2) µ (meV)

5.5 387 −480 −306 9
6.1 378 −553 −378 −0.15
7.0 365 −686 −512 −10

contribute to the identification and to the reformulation of topological order through quantum information measures and
concepts. While information theory has played an important role in the understanding of quantum phase transitions from
the perspective of symmetry-breaking (Landau theory) [16–20], it does not seem to have had the same relevance in the
study of topological phases, except for important studies related with entanglement entropy (see e.g., [21,22]). Actually,
entanglement is at the heart of the interplay between quantum information and quantum phases of matter, playing
a fundamental role in the understanding of quantum phase transitions. Therefore, the formulation of the basic notion
of phase and phase transition in terms of quantum information allows for a unified study of both symmetry-breaking
(Landau) and topological order in a common general framework.

In this paper we shall explore topological phases of HgTe/CdTe QWs by using different information measures like:
idelity-susceptibility, expectation values of operators and their variances (quantum fluctuations), entanglement (linear,
ehrl, Rényi) entropies, and localization measures (inverse participation ratio, area) in configuration and phase spaces.
his approach has been fruitful for the study of the band insulator to topological insulator transition in silicene [23–27]
nd phosphorene [28,29]. Here we will analyze the structure not only of the edge states, but also of the higher Landau
evels (LL) of HgTe quantum wells, leading to an interesting concept of ‘‘higher Landau level topological phase transition’’
HTPT for short), to be distinguished from the standard concept of ‘‘topological phase transition’’ (TPT) linked to a band
nversion of edge (zero Landau level) states. Information measures of Landau levels will be represented sometimes as a
unction of the applied magnetic field B and sometimes as a function of the HgTe QW thickness λ, to find a significant
tructural change around the critical point Bc and λc of the TPT or the HTPT.
The organization of the paper is the following. In Section 2 we review the Hamiltonian model of a HgTe QW, we

compute its eigenspectrum and we discuss the topological phases of the system; we also introduce the concept of ‘‘higher
Landau level topological phase transition’’ (HTPT), which involves a valence-conduction role inversion, which will be useful
in the rest of the paper. In Section 3 we discuss several information-theoretic concepts linked to Hamiltonian eigenstates,
which turn out to provide good markers of the TPT and the HTPT, displaying characteristic values around the TPT critical
point. We plot (entanglement) purity, operator values and their variances, fidelity-susceptibility, inverse participation
ratio and area in phase space of Landau levels as a function of the magnetic field B and the HgTe layer thickness λ. These
re information-theoretic markers of the HTPT that indicate a sudden change in the structure of the Landau levels across
he critical point. Finally, Section 4 is left for conclusions and outlook.

. Hamiltonian model and topological phases

In [14,15,30–32] it was shown that quantum spin Hall effect can be realized in mercury telluride–cadmium telluride
emiconductor quantum wells. The surface states in these 3D topological insulators can be described by a 2D modified
ffective Dirac Hamiltonian

H =

(
H+ 0
0 H−

)
, Hs(k) = ϵ0(k)τ0 + ds(k) · τ, (1)

where s = ±1 is the spin, τ = (τx, τy, τz) is the Pauli matrix vector (τ0 denotes the 2 × 2 identity matrix) and k = (kx, ky)
denotes the two-dimensional wavevector in the first Brillouin zone (FBZ). The spin up H+ and down H− Hamiltonians are
conjugated and temporarily reversed, i.e. H−(k) = H∗

+
(−k). The expansion of the two-band Hamiltonian Hs(k) about the

enter Γ of the FBZ gives

ϵ0(k) = γ − δk2, ds(k) = (αskx, αky, µ− βk2), (2)

here α, β, γ , δ and µ are expansion parameters that depend on the heterostructure (the HgTe layer thickness λ). The
ost important one is the mass or gap parameter µ, which changes sign at the critical HgTe layer thickness λc ≈ 6.3 nm
hen going from the normal (λ < λc or µ/β < 0) to the inverted (λ > λc or µ/β > 0) regime. The term βk2 is
lso identified in [33] with the typical Wilson term ℓWk2/2 introduced to avoid the Fermion doubling problem arising
hen putting the continuous 2D Dirac equation into a lattice model (ℓ is the lattice constant); the gap µ is related to the
agnetic moment.
Typical values of these parameters for different HgTe layer thickness (below and above λc) can be found in [11] and

n Table 1 (γ can be neglected).
The energy of the two (conduction and valence) bands is√

α2k2
+ (µ− βk2)2. (3)
ϵ±(k) = ϵ0(k) ±

2
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To distinguish between topological phases, it is customary to use the Chern–Pontryagin topological number (related to
the quantum spin Hall conductance), which can be calculated by the TKNN (Thouless–Kohmoto–Nightingale–Nijs) formula

C =
1
2π

∫∫
FBZ

d2k

(
∂ d̂(k)
∂kx

×
∂ d̂(k)
∂ky

)
· d̂(k), (4)

with d̂ = d/|d| the unit vector in the direction of d. The Chern–Pontryagin number counts the number of times (winding
number) the unit vector d̂(k) wraps around the unit sphere as k wraps around the entire FBZ. Topological phases also
merge in open quantum systems with engineered dissipation [34–36]. One approach that has gained attraction lately
s the use of effective non-Hermitian Hamiltonians [37–40] and their associated Chern numbers [41]. Other generalized
hern numbers based on open system Green’s functions have been recently proposed in [42]. In this article, we shall
estrict ourselves to the standard closed quantum system case.

The TKNN formula (4) for ds(k) in (2) provides the Chern number

Cs = s[sign(µ) + sign(β)], (5)

where we have integrated on the whole plane, as corresponds to the continuum limit ℓ → 0 (zero lattice constant). One
can also work with a lattice regularization (tight-binding) of the continuum model just replacing kx,y → ℓ−1 sin(kx,yℓ)
and k2x,y → 2ℓ−2(1 − cos(kx,yℓ)). When sign(β) does not change (see e.g. typical values in Table 1), it is sign(µ) which
determines the topological phase. Sometimes, it is also discussed in terms of sign(µ/β), as done before.

A similar calculation for other 2D-Dirac materials of group IV (graphene analogues, but with an intrinsic non-zero
spin–orbit coupling ∆so, like silicene, germanene, stanene, etc.) with dsξ = (vh̄ξkx, vh̄ky,∆sξ ) (ξ = ±1 denotes the valley
index and v the Fermi velocity) gives the Chern number Csξ = ξ sign(∆sξ ), with ∆sξ = (∆z − sξ∆so)/2 the Dirac mass,
hich can be tunned by an external electric field potential ∆z [43–46].
We shall propose alternative topological phase transition markers based on information-theoretic measures of Landau

evels. For it, we shall firstly introduce a magnetic field interaction.
Promoting the wave-vector k to the momentum operator k → p/h̄ = −i∇, the interaction with a perpendicular

agnetic field B = (0, 0, B) is introduced through the usual minimal coupling, p → P = p + eA with A = (Ax, Ay) =

−By, 0) and e the elementary charge (in absolute value). The general prescription for magnetic field coupling is then to
ubstitute

kx → Px/h̄ =
a†

+ a
√
2ℓB

, ky → Py/h̄ =
a†

− a

i
√
2ℓB

. (6)

in terms of creation a† and annihilation

a =
ℓB

√
2h̄

(Px − iPy) =
−1

√
2ℓB

(y − y0 + iℓ2Bpy/h̄), (7)

perators, where ℓB =
√
h̄/(eB) is the magnetic length and y0 = ℓ2Bkx is the (conserved) center coordinate of the cyclotron

rbit. After Peierls’ substitution, the Hamiltonian (1),(2) can be written as

H+ =

⎛⎝ γ + µ−
(δ+β)(2N+1)

ℓ2B

√
2α
ℓB

a
√
2α
ℓB

a† γ − µ−
(δ−β)(2N+1)

ℓ2B

⎞⎠ ,
H− =

⎛⎝ γ + µ−
(δ+β)(2N+1)

ℓ2B
−

√
2α
ℓB

a†

−

√
2α
ℓB

a γ − µ−
(δ−β)(2N+1)

ℓ2B

⎞⎠ , (8)

where N = a†a is the Landau level number operator. Note that the operator Ms = N + s/2(τz + s) is a conserved quantity
(commutes with the Hamiltonian Hs) and therefore can be used to label the Hamiltonian eigenvectors of the system. A
Zeeman term contribution

HZ
s = −

s
2
BµB

(
ge
τ0 + τz

2
+ gh

τ0 − τz

2

)
(9)

can also be added to the Hamiltonian, with µB ≃ 0.058 meV/T the Bohr magneton and ge,h the effective (out-of-plane)
g-factors for electrons and holes (conduction and valence bands).

Using (Fock state) eigenvectors ||n|⟩ of the Landau level number operator N = a†a, one can analytically obtain the
eigenspectrum

Es
n = γ −

2δ|n| − sβ
2 − s

ge + gh BµB + sgn(n)

√
2α2|n|

2 +

(
µ−

2β|n| − sδ
2 − s

ge − gh BµB

)2

, (10)

ℓB 4 ℓB ℓB 4

3
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Fig. 1. Low-energy spectra Es
n of a HgTe/CdTe quantum well as a function of the magnetic field B for HgTe layer thickness λ = 7 nm. Landau levels

= ±1,±2,±3 are represented by dotted (holes) and dashed (electrons) thin lines, black for spin s = 1 and red for s = −1. Edge states (n = 0)
re represented by thick lines. The vertical gray grid line indicates the critical magnetic field Bc ≃ 7.4 T separating QSH from QH regimes.

or Landau level index n = ±1,±2,±3, . . . [valence (−) and conduction (+)], and

Es
0 = γ − sµ−

δ − sβ
ℓ2B

− BµB

(
s + 1
4

gh +
s − 1
4

ge

)
, (11)

or the n = 0 edge states. These eigenvalues coincide with those of [47–49] for the identification s = {−1, 1} = {↑,↓}.
The corresponding Hamiltonian eigenvectors are

|n⟩s =

⎛⎝ As
n

⏐⏐|n| −
s+1
2

⟩
Bs
n

⏐⏐|n| +
s−1
2

⟩
⎞⎠ , (12)

ith coefficients

As
n =

{ sgn(n)
√
2

√
1 + sgn(n) cosϑ s

n, n ̸= 0,
(1 − s)/2, n = 0,

Bs
n =

{ s
√
2

√
1 − sgn(n) cosϑ s

n, n ̸= 0,
(1 + s)/2, n = 0,

(13)

here

ϑ s
n = arctan

⎛⎝ √
2|n|α/ℓB

µ−
2β|n|−sδ

ℓ2B
− s ge−gh

4 BµB

⎞⎠ . (14)

he coefficients As
n and Bs

n can eventually be written as sine and cosine of half angle ϑ s
n, depending on sgn(n). Later in

ig. 2 (top left panel) we represent the angle ϑ s
n as a function of the magnetic field B, and in Fig. 3 (top right panel) as a

unction of the HgTe layer thickness λ, ranging from zero to π , with a value of ϑ s
n ≃ π/2 around the TPT critical point,

n both cases. In fact, we shall see that ϑ s
n plays a role in the identification of the HTPT.

The two zero Landau levels E+

0 and E−

0 belong to different (conduction and valence) bands. The level crossing condition

E+

0 = E−

0 ⇒ Bc =
µ

eβ/h̄ − µB(ge + gh)/4
, (15)

ives the critical magnetic field Bc which separates the Quantum Spin Hall (QSH) from the Quantum Hall (QH) regime [48].
or example, for the material parameters in Table 1 corresponding to a QW thickness λ = 7.0 nm and ge = 22.7, gh =

−1.21, one obtains Bc ≃ 7.4 T. Therefore, for magnetic fields B > Bc , the model shows an inverted band structure (see
Fig. 1 for the low-energy spectrum Es

n as a function of the magnetic field B, and later in Fig. 3 as a function of the HgTe
layer thickness λ).

Higher Landau levels |n| > 0 feel the TPT at a different place than edge states n = 0. In fact, we shall see that higher
Landau levels undergo a structural change when the angle (14) takes the value ϑ s

n = π/2 (which means |As
n| = |Bs

n|), that
is, when

µ−
2β|n| − sδ

2 − s
ge − gh BµB = 0. (16)
ℓB 4
4
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Fig. 2. Angle ϑ s
n (14), purity (19) and expectation values (20) and variances of N and τz , for the Hamiltonian eigenvectors |n(λ)⟩s , n = ±1,±2,±3

line thickness grows with |n|), as a function of the magnetic field B for a HgTe layer thickness of λ = 7 nm. Electron (resp. hole) states n > 0
resp. n < 0) are represented by solid (resp. dotted) lines, black for spin s = 1 and red for s = −1. The vertical purple grid line indicates the critical
agnetic field Bc = 7.4 T separating normal (QH) from inverted (QSH) regimes. Vertical gray grid lines mark the critical magnetic fields Bn,s

c (17) of
he HTPT.

his condition provides a new spin-dependent critical magnetic field

Bn,s
c =

µ

e(2β|n| − sδ)/h̄ + sµB(ge − gh)/4
, (17)

hich deviates from (15) for higher Landau levels |n|>0 (see later in Fig. 4). We shall refer to this phenomenon as a ‘‘higher
andau level TPT’’ (HTPT), to distinguish it from the standard edge state (n = 0) TPT. Note that, at ϑ s

n = π/2, the spinor
coefficients (13) of a Hamiltonian eigenvector (12) have the same weight, that is |As

n| = |Bs
n|. Therefore, at ϑ

s
n = π/2,

valence and conduction contributions interchange their roles. This is a kind of ‘‘band inversion’’ for higher Landau levels
that justifies the term HTPT.

3. Information-theoretic markers of the topological phase transition

3.1. Reduced density matrix and purity

Before calculating some operator expectation values and their variances, let us make explicit the reduced density
matrices associated to a Hamiltonian eigenstate ρn,s

= |n⟩s⟨n| for a composite system given by Landau (L) and Band
(B) sectors, that is

ρ
n,s
L = trB(ρn,s) = (As

n)
2
⏐⏐⏐⏐|n| −

s + 1
2

⟩ ⟨
|n| −

s + 1
2

⏐⏐⏐⏐+ (Bs
n)

2
⏐⏐⏐⏐|n| +

s − 1
2

⟩ ⟨
|n| +

s − 1
2

⏐⏐⏐⏐ ,
ρ
n,s
B = trL(ρn,s) =

(
(As

n)
2 0

0 (Bs
n)

2

)
. (18)

The purity of a Hamiltonian eigenstate in both cases is

P s
= tr(ρn,s)2 = (As )4 + (Bs )4. (19)
n L,B n n

5
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Fig. 3. Top panel: Low-energy spectra Es
n and angle ϑ s

n of a HgTe/CdTe quantum well as a function of the HgTe layer thickness λ for B = 1 T
⇒ λc (B) ≃ 6.24 nm. Landau levels n = ±1,±2,±3 are represented by dotted (holes) and dashed (electrons) thin lines, black for spin s = 1 and red
or s = −1. Edge states (n = 0) are represented by thick lines. Vertical gray grid lines indicate the critical HgTe thickness λc (B) separating normal
QH) from inverted (QSH) regimes. Bottom panel: Density of states (we choose η = 1) as a function of the energy for B = 1 T and three different
alues of the HgTe layer thickness below and above the critical value λc (B) = 6.24 nm.

Fig. 4. Left panel: Critical magnetic field Bn,s
c in Eq. (17) of the HTPT as a function of the Landau level n for HgTe layer thickness λ = 7 nm (black

ots for spin s = 1 and red dots for s = −1). The thick purple dot (n = 0) corresponds to the critical Bc of the ordinary TPT in Eq. (15). Right panel:
ritical HgTe thickness λn,sc (22),(24) as a function of the applied magnetic field B for the edge (n = 0) state (thick purple line) and the Landau levels
= 1 (solid), n = 2 (dashed) and n = 3 (dotted), in decreasing thickness (black for spin s = 1 and red for s = −1).

urity P is related to linear entropy L by Lsn = 1−P s
n. In Fig. 2 (top right panel) we plot the purity of low-energy Hamiltonian

igenstates as a function of the magnetic field, which reveals a sudden increase of entanglement (a decrease in purity)
etween L and B sectors at the HTPT critical point Bn,s

c in Eq. (17). This entanglement is the same for electrons and holes
s
n = P s

−n, with a small dependence on spin. The growth of entanglement around the HTPT is most apparent when we
epresent purity as a function of the HgTe layer thickness λ (see later in Fig. 5, bottom right panel), where P s

n(λ) displays
minimum around the critical thickness λn,sc (B) [see later in Eq. (22)] for a given magnetic field B. These minima are
isplaced with respect to the TPT critical thickness λc for larger and larger |n|. This will be a common feature of most
f the HTPT markers proposed here, which show that higher-energy Hamiltonian eigenstates feel the topological phase
ransition displaced with respect to lower-energy Hamiltonian eigenstates. This is a shared feature with the so called
‘Excited State Quantum Phase Transitions’’ (ESQPT) already present in the literature [50,51]. ESQPT is a continuation of
he concept of QPT for singularities of the ground state to singularities of the excites states and singular level densities.

Therefore, entanglement turns out to be a good marker of the TPT in HgTe QWS at low magnetic fields, and of the
TPT in general.
6
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(

Fig. 5. Purity, average values ⟨n|τz |n⟩s , ⟨n|N|n⟩s and ⟨n|τzN|n⟩s and their variances for electrons n > 0 (solid lines) and holes n < 0 (dotted lines)
of Hamiltonian eigenvectors |n(λ)⟩s for a HgTe/CdTe quantum well as a function of the HgTe layer thickness λ for Landau levels n = ±1,±2,±3
line thickness grows with |n|) and magnetic field B = 0.5 T. Black lines for spin s = 1 and red lines for s = −1. Vertical gray grid lines indicate
the critical HgTe thickness λc (B) separating normal (QH) from inverted (QSH) regimes.

3.2. Operator averages and their variances

Looking for other signatures of the HTPT, in Fig. 2 we represent the expectation values of the Pauli (valence/conduction
band) matrix and the Landau level number N = a†a

⟨n|τz |n⟩s = tr(τzρ
n,s
B ) = (As

n)
2
− (Bs

n)
2, (20)

⟨n|N|n⟩s = tr(Nρn,s
L ) = (As

n)
2
(

|n| −
s + 1
2

)
+ (Bs

n)
2
(

|n| +
s − 1
2

)
,

and their variances for low-energy Hamiltonian eigenvectors |n⟩s.
We perceive a kind of inversion behavior of these mean values occurring at the critical values Bn,s

c in (17). We also
perceive a growth of fluctuations (greater variance) for these average values around the HTPT region. We shall see later
in Fig. 5 that these HTPT markers turn out to be sharper when considered as a function of the HgTe layer thickness λ
instead of B.

From now on we shall discard Zeeman coupling for the sake of simplicity and convenience. Although discarding Zeeman
coupling modifies the values of Bc in (15) (namely from Bc ≃ 7.4 T to Bc ≃ 9.6 T for λ = 7 nm) and of Bn,s

c in (17), our
main conclusions about quantum information signatures of the HTPT remain qualitatively equivalent. We shall then use
a linear fit

µ(λ) = 77.31 − 12.53λ,

α(λ) = 467.49 − 14.65λ,

β(λ) = 283.58 − 138.16λ,
δ(λ) = 458.46 − 138.25λ, (21)
7
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Table 2
Critical HTPT HgTe layer thickness λn,sc (B) in (24) (in nanometers) for two values of the magnetic field,
B = 0.5 T and B = 1 T, as a function of the Landau level n = 1, 2, 3 and the spin s = ±1. To be
compared with the critical TPT (n = 0) HgTe layer thickness λc (0.5) = 6.2 nm and λc (1) = 6.24 nm.
λn,sc (0.5) n = 1 n = 2 n = 3

s = 1 6.21 6.29 6.36
s = −1 6.26 6.34 6.41

λn,sc (1) n = 1 n = 2 n = 3

s = 1 6.26 6.41 6.57
s = −1 6.36 6.52 6.69

of the material parameters in Table 1 as a function of the HgTe thickness λ. In all cases the coefficient of determination
is R2 > 0.99. Inserting these values of α, β, µ, δ in (15), this linear fit gives us a relation

λc(B) =
368.31 − 2.05B

59.7 − B
(22)

etween the applied magnetic field B and the critical thickness λc(B) at which the TPT (band inversion E+

0 = E−

0 ) takes
place. For example, the zero field critical thickness yields λc(0) ≃ 6.17 nm, whereas λc(1) ≃ 6.24 nm, as can be seen in
Fig. 3, top left panel, where we represent the Hamiltonian eigenspectrum as a function of the HgTe layer thickness λ. In
this Figure (bottom panel) we also represent the low-energy density of states

Dη(ε) =

∑
s=±1

∞∑
n=−∞

δη(ε − Es
n), (23)

as a function of the energy ε for B = 1 T and three different values of the HgTe layer thickness: below (λ = 5 nm) and
above (λ = 7 nm) the critical value λc(B) = 6.24 nm. Here we are using the Lorentzian δη(x) = (η/π )/(η2 + x2) → δ(x)
as a finite representation/regularization of the Dirac delta for small η. The critical case λc(B) = 6.24 nm is distinguished
by a sudden growth of Dη(ε) around ε = 0 due to edge states.

For higher Landau levels n > 0, the critical HgTe thickness obtained from condition (17) gives

λn,sc (B) =
77.31 − 0.86B|n| + 0.7Bs
12.53 − 0.42B|n| + 0.21Bs

, n ̸= 0. (24)

n Fig. 4, right panel, we represent the critical HgTe thickness λc(B) and λn,sc (B) for the TPT and the HTPT, respectively,
s a function of B, for n = 0, 1, 2, 3. For low magnetic fields B ≪ 1 T, all λn,sc converge to λc but, for large B, they differ
ignificantly. In the following plots, we shall mostly take B = 0.5 T, so that the HTPT critical points λn,sc (0.5) slightly
iffer from λc(0.5) = 6.2 nm, for low energy Hamiltonian eigenvectors (|n| = 1, 2, 3). In Table 2 we provide particular
alues of λn,sc (B) for two magnetic fields, B = 0.5 T and B = 1 T, and several Hamiltonian eigenstates. This corresponds
o two different cross sections of the plot 4 (right panel) at B = 0.5 T and B = 1 T, respectively. This behavior can also
e perceived in Fig. 3, top right panel, where we represent the angle θ sn as a function of the HgTe layer thickness λ for
= 1 T, and where the band inversion θ sn = π/2 occurs near λc(1) = 6.24 nm.
As we did in Fig. 2, in Fig. 5 we plot again the average values of τz and N , and their fluctuations, but this time as a

function of the HgTe layer thickness λ. Together with purity (19), fluctuations turn out to be sharp markers of the HTPT,
displaying conspicuous maxima and minima at the HTPT critical points λn,sc (B) which, as we have already emphasized,
appear slightly displaced to the right with respect to the TPT critical point λc(B).

.3. Fidelity susceptibility

The fidelity is an elemental concept in general information theory, measuring the accuracy of a transmission. In
uantum theory, the fidelity between two normalized pure states |ψ1⟩ and |ψ2⟩ is just given by the scalar product
= |⟨ψ1|ψ2⟩|

2, that is, the squared cosine of the angle between the two vectors. Therefore, it is a measure of the closeness
etween |ψ1⟩ and |ψ2⟩, with F = 1 indicating that the states are the same up to a global phase and F = 0 when they are
rthogonal. Since QPTs are characterized by a sudden change on the ground state structure around the critical value of
ome control parameter λ, fidelity turns out to be a good marker/precursor of the QPT even for finite size systems (see
etails in [16,52–56]). Therefore, we will study the fidelity between the quantum states at λ and λ+ δλ:

Fψ (λ, λ+ δλ) = |⟨ψ(λ)|ψ(λ+ δλ)⟩|2, (25)

hich will show a minimum (dFψ/dλ|λ=λc = 0) at λc where the system changes drastically. Therefore, the most
epresentative term of the Taylor series expansion of Fψ for small δλ is the second derivative or fidelity susceptibility

χψ (λ) = 2
1 − Fψ (λ, λ+ δλ)

(26)

δλ2

8
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Fig. 6. Fidelity susceptibility (26) between the Hamiltonian eigenvectors |n(λ)⟩s and |n(λ + δλ)⟩s (δλ = 0.001) of a HgTe/CdTe quantum well for
agnetic fields B = 0.5 T (left) and B = 1 T (right) as a function of the HgTe layer thickness λ for the first three conduction Landau levels n = 1, 2, 3

same result for valence LL), black lines for spin s = 1 and red lines for s = −1. (Line thickness grows with |n|). Vertical gray grid lines indicate the
ritical HgTe thickness λc (0.5) ≃ 6.2 nm and λc (1) ≃ 6.24 nm separating normal (QH) from inverted (QSH) regimes.

hich is less sensitive to the choice of δλ. We propose this measure as a HTPT marker. In fact, in Fig. 6 we show that
he fidelity susceptibility between the Hamiltonian eigenvectors |n(λ)⟩s and |n(λ + δλ)⟩s (we choose δλ = 0.001) as a
unction of the HgTe layer thickness λ (the ‘‘control parameter’’ in this case) attains its maximum at the HTPT critical
alue λn,sc (B); These maxima are slightly displaced to the right of the TPT critical value λc(B) nm, according to Table 2. We
et the same result for conduction and valence states. The fact that the maximum of χ|n(λ)⟩s , occurring at λn,sc , is shifted to

the right of λc and is less and less sharp for larger |n|, says that higher-energy Hamiltonian eigenstates (in absolute value)
feel the HTPT ‘‘less intensely’’ and displaced with respect to lower-energy Hamiltonian eigenstates. This displacement is
more and more evident for higher magnetic fields, as we already anticipated in Fig. 4, right panel. As already shown in
Fig. 5, this was also a characteristic of fluctuations and entanglement of Hamiltonian eigenstates, that time measured by
purity (19).

3.4. Inverse participation ratio in position representation

The inverse participation ratio (IPR) measures the spread of a state |ψ⟩ over a basis {|i⟩}Ni=1. More precisely, if pi is
the probability of finding the (normalized) state |ψ⟩ in |i⟩, then the IPR is defined as the second moment M2

ψ =
∑

i p
2
i . If

|ψ⟩ only ‘‘participates’’ of a single state |i0⟩, then pi0 = 1 and M2
ψ = 1 is maximum, whereas if |ψ⟩ equally participates

on all of them (equally distributed), pi = 1/N,∀i, then M2
ψ = 1/N is minimum. Therefore, the IPR is a measure of the

localization of |ψ⟩ in the corresponding basis.
Let us chose the position representation |y⟩ to write the Hamiltonian eigenstates (12). We know that Fock states |n⟩

can be written in position representation as

⟨y|n⟩ =
1√

2nn!
√
π
e−y2/2Hn (y) , (27)

here Hn are the Hermite polynomials of degree n ≥ 0. The number-state density in position space is ϱn(y) = |⟨y|n⟩|2,
hich is normalized according to

∫
∞

−∞
ϱn(y)dy = 1. The density for the Hamiltonian eigenvectors (12) in position

epresentation is calculated through the corresponding reduced density matrix ρL (Landau sector) in (18) as

ρs
n(y) = ⟨y|ρL|y⟩ = (As

n)
2ϱ

|n|− s+1
2
(y) + (Bs

n)
2ϱ

|n|+ s−1
2
(y). (28)

he IPR M2
n,s of the density matrix ρn,s

= |n⟩s⟨n⟩ of a Hamiltonian eigenstate in position representation is then calculated
s the second moment of the density distribution

M2
n,s ≡

∫
∞

−∞

ρs
n(y)

2dy. (29)

s a previous step, we need the following integrals of Hermite density products:

Mn,m ≡

∫
∞

−∞

ϱn(y)ϱm(y)dy =
1

√
2π

⎛⎜⎜⎜⎜⎜⎝
1 1

2
3
8

5
16 . . .

1
2

3
4

7
16

11
32 . . .

3
8

7
16

41
64

51
128 . . .

5
16

11
32

51
128

147
256 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ , (30)

or n,m = 0, 1, 2, 3 . . . . Therefore, we can simply write (29) as (we denote Mn,n = Mn)

M2
= (As )4M s+1 + (Bs )4M s−1 + 2(As )2(Bs )2M . (31)
n,s n |n|− 2 n |n|+ 2 n n |n|,|n|+1

9
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Fig. 7. Inverse participation ratio (31) for electrons n > 0 (solid lines) and holes n < 0 (dotted lines) of Hamiltonian eigenvectors of a HgTe/CdTe
uantum well for a magnetic field of B = 0.5 T as a function of the HgTe layer thickness λ for Landau levels n = ±1,±2,±3 (line thickness
rows with |n|), black lines for spin s = 1 and red lines for s = −1. Vertical gray grid lines indicate the critical HgTe thickness λc (0.5) ≃ 6.2 nm
eparating normal (QH) from inverted (QSH) regimes. The combined electron plus hole IPRs are shown in the right panel and exhibit minima at the
orresponding HTPT critical point λn,sc (B).

n Fig. 7 (left panel) we represent the IPR of low-energy Hamiltonian eigenstates in position representation as a function
f the HgTe layer thickness λ for a magnetic field of B = 0.5 T. Conduction and valence states display an inverted (mirror
eflected) behavior at both sides of the HTPT point λn,sc (B) for a given spin s. We find that the combined (electron plus
ole) IPR M2

n,s+M2
−n,s exhibits a minimum near the HTPT critical point, as shown in the right panel of Fig. 7. This minimum

s sharper for lower |n|. Therefore, we can conclude that lower |n| Landau levels are more localized than higher |n| LL,
nd the combination of electrons plus holes undergoes a sudden delocalization around the HTPT critical point, which is
harper for lower |n|.

.5. Husimi function and area in phase space

Now we are going to analyze Hamiltonian eigenvectors in phase space, both in Landau (L) and band (B) sectors. For the
andau (Fock) sector, we have at our disposal an overcomplete set of harmonic oscillator (canonical or Glauber) coherent
tates |α⟩ which are obtained by displacing the Fock vacuum |0⟩ as

|α⟩ = e−|α|
2/2eαa

†
|0⟩ = e−|α|

2/2
∞∑
n=0

αn

√
n!

|n⟩, (32)

ith α = q+ ip ∈ C a point in the phase space C. ‘‘Position’’ q and ‘‘momentum’’ p are called quadratures in the argot of
uantum optics. Coherent states verify the closure relation

1 =

∫
C

|α⟩⟨α|
d2α
π
, (33)

ith d2α = dqdp. For the band (B) sector, we have the typical SU(2) spin-1/2 (atomic, Bloch or Radcliffe [57]) coherent
tates

|ϑ, φ⟩ =

(
cos(ϑ/2)

sin(ϑ/2)eiφ

)
, dΩ =

1
2π

sin(ϑ)dϑdφ (34)

ith integration measure dΩ (the solid angle on the Bloch sphere S2), fulfilling the resolution of unity

1 =

∫
S2

|ϑ, φ⟩⟨ϑ, φ| dΩ. (35)

oherent states are said to be ‘‘quasi-classical’’ because of their minimum uncertainty and area, and dynamical properties.
Using this coherent state (Bargmann) representation, we can associate a quasiprobability distribution (the so called

usimi function) to Hamiltonian eigenstates in the Landau Q n,s
L (α) = ⟨α|ρ

n,s
L |α⟩ and band Q n,s

B (ϑ, φ) = ⟨ϑ, φ|ρ
n,s
B |ϑ, φ⟩

sectors respectively. Let us denote by

Qn(α) = |⟨n|α⟩|
2

=
e−|α|

2

n!
|α|

2n (36)

he Husimi function of a Fock state |n⟩ and by

Qc(ϑ, φ) = |⟨c|ϑ, φ⟩|
2

= cos2(ϑ/2), Qv(ϑ, φ) = |⟨v|ϑ, φ⟩|
2

= sin2(ϑ/2), (37)

the Husimi function of the conduction |c⟩ = (1, 0)t and valence |v⟩ = (0, 1)t band states, respectively. Note that Qn only
depends on |α| and Q only depend on ϑ . With this, the Husimi function of a Hamiltonian eigenstate can be written in
c,v

10
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Fig. 8. Husimi function Q n,s
L (α) (38) of the Hamiltonian eigenstates |n⟩s , n = ±1,±2,±3 (line thickness grows with |n|), in the Landau sector as a

unction of the radial coordinate r = |α|. Solid/dotted (black/red) curves for electrons/holes (spin s = ±1). The maximum of QρL (α) decreases with
n|. From top to bottom, we go from the normal regime (λ < λc ) to the inverted regime (λ > λc ), crossing the critical pint λc (B) = 6.2 nm for
= 0.5 T.

he Landau sector as

Q n,s
L (α) = (As

n)
2Q

|n|− s+1
2
(α) + (Bs

n)
2Q

|n|+ s−1
2
(α), (38)

nd in the band sector as

Q n,s
B (ϑ, φ) = (As

n)
2Qc(ϑ) + (Bs

n)
2Qv(ϑ). (39)

ote that, for Hamiltonian eigenvectors, Q n,s
L only depends on r = |α| and Q n,s

B only depends on ϑ . In Fig. 8 we represent
he Husimi function Q n,s

L (α) (38) of the Hamiltonian eigenstates |n⟩s, n = ±1,±2,±3, as a function of r = |α|, before and
fter the critical point λc(B). We see that the maximum of Q n,s

L (α) decreases when |n| increases, and it is located around
α| ≃ 0 for both n = ±1 when λ = λc(B). The roles of electrons and holes are reversed when crossing the critical point.

To quantify the spread/localization of a density matrix ρ in phase space, the ν-th moments of the corresponding Husimi
unction are often used. In our case, the ν-th moment of the Husimi function in the Landau sector with phase space C is

Mν,L
n,s =

∫
C

d2α
π

(Q n,s
L )ν(α), (40)

nd the ν-th moment of the Husimi function in the band sector with phase space S2 is

Mν,B
n,s =

∫
S2

dΩ (Q n,s
B )ν(ϑ, φ). (41)

ote that, using (33),(35), we haveM1,L
n,s = 1 = M1,B

n,s as a consequence of the normalization of ρn,s
L,B . As we did in Section 3.4,

we shall focus on the ν = 2 moment which, in this case, is related to the inverse area in phase space occupied by the
11
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usimi function. Before, we compute the auxiliary second moment of a Fock state

M2
n ≡

∫
C

d2α
π

Q2
n(α) =

(2n)!
22n+1(n!)2

, (42)

hich is maximum for n = 0, M2
0 = 1/2. Likewise, we easily find

M2
c,v ≡

∫
S2

dΩ Q2
c,v(ϑ) = 2/3 (43)

or the Husimi function second moments of conduction and valence band states (39). With this information, the Husimi
unction second moment of a Hamiltonian eigenstate in the Landau sector is

M2,L
n,s = (As

n)
4M2

|n|− s+1
2

+ (Bs
n)

4M2
|n|+ s−1

2
+ 2(As

nB
s
n)

2 (2|n| − 1)!
4|n||n|!(|n| − 1)!

, (44)

here we are using (42) and the value of
∫ d2α

π
Q|n|(α)Q|n|−1(α). Likewise, the Husimi function second moment of a

amiltonian eigenstate in the band sector is

M2,B
n,s =

2
3
(1 − (As

nB
s
n)

2), (45)

here we are using (43), the value of
∫
dΩQc(ϑ)Qv(ϑ) = 1/3 and the fact that ρn,s

L,B is normalized.
Instead of M2,L/B

n,s , we shall use the areas

An,s
L = 1/(2M2,L

n,s ), An,s
B = 2/(3M2,B

n,s ), (46)

ccupied by ρn,s
L and ρn,s

B in phase spaces C and S2, respectively, which have been properly normalized so that the
inimum area in both cases is A = 1. Indeed, as conjectured by Wehrl [58], proved by Lieb [59] and extended to more
eneral phase spaces in [60–63], the normalized area Aρ of a density matrix ρ in phase space verifies Aρ ≥ 1, attaining

its minimum value when ρ corresponds to a coherent state. Actually, these theorems are not stated in terms of area in
phase space but in terms of the so called Rényi–Wehrl entropy W ν

ρ =
1

1−ν ln(M
ν
ρ ) (Mν

ρ denotes the ν-th moment of ρ)
and, in particular, in terms of the Wehrl entropy

Wρ = lim
ν→1

W ν
ρ = −

∫
P
Qρ(z) ln

(
Qρ(z)

)
dµ(z) (47)

for the Husimi function Qρ of ρ in phase space P ∋ z with integration measure dµ(z). Both, area and Wehrl entropy, are
minimal in the case that ρ corresponds to a coherent state. Therefore, they measure the delocalization of a state ρ in
phase space.

In Fig. 9 we represent the area occupied in phase spaces C and S2 (Landau and band sectors), respectively, by the
Hamiltonian eigenstates |n⟩s for low-lying Landau levels n = ±1,±2,±3, as a function of the HgTe layer thickness λ.
n the Landau sector, lower Landau levels occupy an area smaller (are more coherent) than higher Landau levels. As can
e seen in Fig. 9 (top left panel), conduction and valence states suffer an area inversion at the HTPT critical point λn,sc
the same behavior for spin up and down). Moreover, the total area of electrons (n > 0) plus holes (n < 0) displays a
aximum at λn,sc (bottom left panel of Fig. 9), just as the total area of spin up plus spin down electrons/holes (bottom right
anel of Fig. 9). In the band sector, the behavior is simpler (top right panel of Fig. 9) since conduction and valence states
ccupy the same area. Higher energy Hamiltonian eigenstates occupy a higher area in phase space S2, and the maximum
elocalization for all of them occurs at the HTPT critical point λn,sc (B). In fact, as we have already noted before for other
nformation measures, the corresponding maxima are slightly displaced to the right with respect to the TPT critical point
c(B) = 6.2 nm for B = 0.5 T, according to the values of λn,sc (0.5) in Table 2.

. Conclusions

Using different information measures like purity, quantum fluctuations, fidelity susceptibility and other generalized
ntropies, we have found that higher Landau levels |n(λ)⟩s, |n| > 0, of HgTe quantum wells suffer an ‘‘electron–hole’’
ransition at a critical value λn,sc (B) of the HgTe layer thickness λ for a given applied magnetic field B. The localization
f the critical point occurs when the system has the same probability to be in the valence and conduction bands. The
ritical points λn,sc (B) appear to be slightly shifted (for low |n| and B) with respect to standard TPT critical point λc(B)
obtained from edge state n = 0 band inversion) separating the normal (quantum Hall) from the inverted (spin quantum
all) regimes. Therefore, from this point of view, higher Landau level transition points λn,sc (B) could be considered as

‘echoes’’ of the ordinary topological phase transition (TPT) occurring at λc(B). This fact leads us to introduce the concept of
‘higher Landau level topological phase transition’’ (HTPT for short) of which information measures account for and provide
harp signatures. In summary, information measurements and markers provide a useful tool to visualize and understand
opological phase transitions, complementary to conventional topological numbers, allowing an extension from edge
nd ground states to higher Landau levels. Furthermore, these information measurements show that, at critical points,
he wave function is delocalized and there is a growth of entanglement and quantum fluctuation of some observables,
howing a relationship between quantum information and quantum phases of matter and giving a different point of view
o understand topological phase transitions.
12
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Fig. 9. Top panel: Area in phase space C (Landau sector, left panel) and area in the Bloch sphere S2 (band sector, right panel) for electrons n > 0
solid lines) and holes n < 0 (dotted lines) of Hamiltonian eigenstates |n(λ)⟩s of a HgTe/CdTe quantum well for a magnetic field of B = 0.5 T as a
unction of the HgTe layer thickness λ for Landau levels n = ±1,±2,±3 (line thickness grows with |n|), black lines for spin s = 1 and red lines
or s = −1. The vertical gray grid line indicates the critical HgTe thickness λc (0.5) ≃ 6.2 nm separating normal (QH) from inverted (QSH) regimes.
ottom panel: combined electron plus hole (left panel) and spin up plus down (right panel) areas in phase space C (Landau sector) for |n| = 1.
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