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Abstract: Sjögren’s syndrome is a chronic systemic autoimmune disease affecting from 0.2 to 3% of
the general population. The current treatment for Sjögren’s syndrome is aimed at controlling symp-
toms such as dry eyes and xerostomia. Systemic therapy with glucocorticoids or immunosuppres-
sants is also used. Baricitinib is an immunosuppressant drug, specifically a Janus kinases 1 and
2 selective inhibitor. We propose ocular liposomal formulations loaded with baricitinib for the
management of Sjögren’s syndrome. The novelty of the work relies on the fact that, for the first
time, baricitinib is intended to be used for topical delivery. Two liposomal formulations were pre-
pared with different lipids: (i) L-α-phosphatidylcholine (Lα-PC) and (ii) a combination of lipids
1-palmitoyl-2-oleoyl-phosphatidylethanolamine: s1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol
(3:1, mol/mol) (POPE:POPG), and they were physicochemically characterized. The in vitro drug re-
lease and the ex vivo permeation through corneal and scleral tissues were also assessed. Finally, the
tolerance of the formulations on the ocular tissues was evaluated by the HET-CAM technique, as
well as through the histological analysis of the cornea and sclera and the cornea transparency. Both
liposomes resulted in small, spherical shapes, with suitable physicochemical properties for the ocular
administration. Lα-PC led to higher flux, permeation, and retention in the sclera, whereas POPE:POPG
led to higher flux and permeation in the cornea. The formulations showed no irritant effects on the
chorioallantoic membrane. Additionally, the liposomes did not affect the cornea transparency when
they were applied, and the histological analysis did not reveal any structural alteration.

Keywords: Sjögren’s syndrome; liposomes; baricitinib; JAK inhibitor; ocular delivery; transcorneal
permeation; transscleral permeation; ocular tolerance

1. Introduction

Immunologic diseases are caused by an imbalance between the immune system
function to protect the body from bacteria and viruses and tissue damage because of the
immune response [1]. Some kinds of autoimmune diseases are immunologic diseases,
which are the result of identifying the patient’s own organs, tissues, and cells as foreign
and activating an immune response against them. Individually, these diseases are rare, but
as a group, they are the most common diseases in industrialized countries [2], and they
affect between 5 and 10% of the European and North American population [3].

Sjögren’s syndrome (SS) is a chronic systemic autoimmune disease that can be suffered
as a unique disease (primary SS) or can be a consequence of another autoimmune disease
(secondary SS) [4]. Primary SS is a highly prevalent, chronic, autoimmune exocrinopathy
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today, affecting from 0.2 to 3% of the general population. It is caused by the loss of
central tolerance, which generates epithelitis and acinar atrophy due to predominantly
inflammatory cell types which infiltrate into the exocrine glands and certain extraglandular
tissues [5]. It is characterized by keratoconjunctivitis sicca (dry eyes) and xerostomia (dry
mouth) [4,6].

The European Study Group on Classification Criteria developed and validated a
criteria classification for primary SS between 1989 and 1996. It was made observing
180 people, of which 76 were affected by primary SS and 104 were not. It is organized in a
classification tree performance and has a sensitivity of 96.1% and a specificity of 94.2% [7].

Different anti-inflammatory and immunomodulatory drugs are used in the treatment
of ocular inflammatory and immunological diseases. Two examples are diclofenac, used
as an anti-inflammatory agent, and cyclosporine, used an as anti-inflammatory and im-
munomodulatory drug [8]. Baricitinib is an immunosuppressant drug that acts inhibiting
selectively Janus kinases 1 and 2, among others, and reduces disease signs and symp-
toms by decreasing inflammation, cellular activation, and proliferation of key immune
cells. Baricitinib has already been used for the treatment of atopic dermatitis through
oral administration with good outcomes: oral baricitinib improved signs and resolved
symptoms better than topic cyclosporin [9]. Another advantage is that baricitinib has
anti-inflammatory properties due to its therapeutic path. Now, baricitinib is orally adminis-
trated for the treatment of moderate-to-severe atopic dermatitis and rheumatoid arthritis,
and it is also being studied for its oral administration for systemic erythematosusmatous,
psoriasis, and primary SS [10,11]. The pilot study of baricitinib oral administration con-
ducted in China using active SS patients seemed to show efficacy and safety [12]. The
actual treatment for primary SS is divided into topical treatment for the mouth and eyes
to control the symptoms and avoid complications, and systemic treatment for parotid
enlargement and extraglandular signs. Topical treatments are preventive: fluor is used
to avoid periodontal diseases and chlorhexidine for electrostimulation; and for the eyes,
artificial tears are used. Anti-inflammatory drugs and local ciclosporin, pilocarpine, or
cevimeline secretagogue are used in both cases to stimulate saliva or lacrimal flow. Systemic
treatments consist of glucocorticoids and different immunosuppressants [13].

Liposomes are spherically shaped nano-sized to micro-sized vesicles composed of
biodegradable natural or synthetic phospholipids. They are formed spontaneously in
an aqueous medium so that inside the vesicles different agents can be encapsulated; the
hydrophobic agents between the lipids and the hydrophilic ones in the aqueous core [14].
Liposomes can have very different properties because of their composition, surface charge,
size, phospholipid bilayer membrane, and method of preparation [15–17]. One way for
liposomes to be classified is by their size and number of bilayers: multilamellar liposome
vesicles (MLV) and unilamellar vesicles (UV). The latter group has three more stages, as
shown in Figure 1.

The liposomes’ composition is biocompatible, biodegradable, and non-toxic, and the
flexibility of their formulation allows for different sizes of liposomes that make it possible
to use them as eye drops [8]. These characteristics also help at the time of preparing an oph-
thalmic formulation, during which, some points need to be studied to avoid compatibility
problems: the pH has to be in a range close to the physiologic pH, the osmolarity has to be
isotonic with the tears and to prevent infections, and sterility is also necessary [18]. The
high capacity of entrapment relies on its ability to encapsulate a wide range of drugs, and
having this advantage overcomes the common problem of drugs that are water-insoluble
or poorly soluble in this kind of formulation [19]. As for liposome size and charge for eye
application, it has been shown that the interaction of liposomes with cornea follow this
order: MLV+ > SUV+ > MLV− > SUV− > MLV [8].
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Figure 1. Classification of the liposomes based on their size and number of lipid layers. SUV, small
unilamellar vesicle; LUV, large unilamellar vesicle; MLV, multilamellar liposome vesicle; GUV, giant
unilamellar vesicle.

To our knowledge, no studies involving baricitinib administered by the ophthalmic
route have been conducted. Stevenson and co-workers determined the efficacy of another
Janus kinase inhibitor; 0.003% tofacitinib was applied ocularly in mice which had induced
corneal thermocautery, resulting in a decrease in the interleukins [20]. In another study,
Hofauer and colleagues investigated the efficacy of liposomal agents for the symptoms of
xerostomia, keratoconjunctivitis sicca, and rhinitis sicca in a clinical trial involving patients
with Sjögren’s syndrome. The authors concluded that liposomes were an effective local
approach since they significantly reduced the symptoms of xerostomia, keratoconjunctivitis
sicca, and rhinitis sicca after 2 months of treatment [21]. Taking into account the satisfactory
results obtained by Stevenson et al. with tofacitinib and those obtained by Hofauer with
liposomal agents, we aimed to formulate liposomes loading baricitinib for ophthalmic
administration as an alternative or co-adjuvant treatment for Sjögren’s syndrome [9]. There-
fore, our intention with these formulations is to simplify the eye topical treatment to one
step. We characterized two liposomes with two different lipids and we assessed the barici-
tinib release from the formulations as well as the capacity of baricitinib to penetrate the
corneal and scleral tissues through ex vivo permeation tests. We also investigated the
tolerability of the developed formulations on the eye by alternative in vitro methods, such
as the HET-CAM technique and the evaluation of the cornea transparency. Finally, we
conducted histological studies on the tissues after the permeation test.

2. Materials and Methods
2.1. Materials

Baricitinib and an Ammonium salt formate were bought at Sigma-Aldrich (Madrid,
Spain). Gattefossé (Barcelona, Spain) supplied Transcutol® P [Diethylene glycol mo-
noethyl ether]. Acetonitrile was purchased at Fisher Chemical (Loughborough, UK). Lipids
L-α-phosphatidylcholine (Lα-PC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine
(POPE) were bought at BOC Sciences (London, UK) and 1-Palmitoyl-2-oleoyl-sn-glycerol-3-
phosphoglycerol (POPG) was obtained at Sigma-Aldrich (Madrid, Spain).

2.2. Biological Materials

Cornea and sclera were obtained from residual individuals of female pigs (cross Lan-
drace x Large White, 25–30 kg), previously used in surgical university practices and according
to the Ethics Committee of Animals Experimentation at the University of Barcelona. The
eyes were immediately enucleated after the animals were sacrificed, and corneas and scleral
tissues were excised in situ and transported to the laboratory immersed in artificial aqueous
humor solution to be debrided and plain-prepared for the permeation experiments.
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2.3. Methods
2.3.1. Preparation of the Liposomes

A total of 500 mg of baricitinib was placed in a round-bottom flask and 10 mM
chloroform-methanol (2:1, v/v) lipid solutions -Lα-PC or POPE:POPG (3:1, mol/mol) were
added to the flask to obtain the required lipid molar concentration for each composition [22].
To ensure the baricitinib was fully dissolved, the solution was sonicated for 10–15 s. The
round-bottom flask was then mounted on a rotary evaporator and the solvent was evapo-
rated protected from the light. Dry lipids with baricitinib were left under a high vacuum
in a desiccator protected from light overnight. Thin films were rehydrated with 10 mM
TRIS·HCl, 150 mM NaCl pH 7.40 [23,24] supplemented with a 5% (v/v) of Transcutol®

P. Large multilamellar vesicles were obtained after 5 cycles of vigorous vortexing of the
solution over and below the transition temperature of the lipid mixture. To homogenize
the liposome size, the liposome solution was placed in an ultrasound bath with 100% soni-
cation amplitude (the controlling temperature did not exceed the 37 ◦C) for 15 min. Finally,
non-encapsulated baricitinib was eliminated by filtering the liposomal solution through a
Sephadex® G50 column mounted in a 5 mL syringe and centrifuged at 1000× g rpm in a
Rotanta 460R centrifuge (Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany).

2.3.2. Liposomes Physicochemical Characterization

The physicochemical characterization included the measurement of pH, the vesicle size
and polydispersity index, the zeta potential, the osmolality, and the efficiency of encapsulation.

pH was measured at room temperature with pH-metre micro pH 2001 (Crison Instru-
ments SA, Alella, Spain) by triplicate.

Liposome size, polydispersity index (PDI), and zeta potential (ZP) were measured with
a Zetasizer Nano S (Malvern Instruments, Malvern, UK); all measurements were made in
triplicate and showed satisfactory deviation values [25]. The surface electrical properties of
the liposomes were measured after suitable dilution (0.1% w/v) by electrophoresis measures
using a Zetasizer 2000 (Malvern Instruments Ltd., UK). Furthermore, the influences of pH
and ionic strength were also investigated. For this task, dilute liposomal dispersions were
prepared at different pHs (3–8) and ZP determinations were done after they had been in
contact for 24 h under mechanical stirring (50 rpm) and at 25.0 ± 0.5 ◦C. Before carrying
out the measurement, the pH was checked and readjusted. Similarly, the ZP values were
also recorded for liposomes formulated at pH 6 with different electrolytes. Hence, the effect
of the particular electrolyte (NaCl, CaCl2, and AlCl3) and concentrations ranging from,
2 × 10−1, 10−1, 10−2, 10−3, 10−4, and 10−5 M, were assayed. All measurements were also
performed on blank liposomes and loaded liposomes nine times.

Osmolality was measured using an Advanced 3320 Micro-Osmometer (Advanced
Instruments, LLC, Norwood, MA, USA) [26].

The efficiency of encapsulation (EE) was measured by breaking the liposomes with
80% of Transcutol® P and a 10% of 10% Triton and quantifying the amount of baricitinib by
HPLC. The amount of baricitinib was compared to the initial amount (Equation (1)) [26].

EE% =
Q f

Qo
× 100, (1)

where, EE% is the efficiency of encapsulation, Qf is the amount of baricitinib in mg retained in-
side liposomes, and Qo is the amount of baricitinib in mg used initially to elaborate liposomes.

2.3.3. Morphological Study of the Liposomes

The morphological study was carried out by TEM with a JEM-1010 microscope (JEOL
Ltd., Tokyo, Japan). One drop of each liposome was put on copper grids covered with
a layer of Formvar®. The sample was in contact with the grid for 1 min. Next, one
drop of 2% uranyl acetate solution was placed on the grid, and subsequently, a drop of
methylcellulose was placed on the grid for 10 min; the excess methylcellulose was wiped
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with filter paper, tapping the filter diagonally. Finally, the grid was allowed to dry before
image analysis [27].

2.3.4. In Vitro Drug Release Study

In vitro release studies were carried out using Franz-type diffusion cells [28,29] with a
diffusion area of 0.64 cm2 and a receptor chamber of 4.9 mL. We used a dialysis membrane
with a molecular cut-off weight of 14,000 Da (Sigma-Aldrich, Madrid, Spain). The mem-
brane was hydrated for 24 h in methanol:water (1:1) and rinsed before being mounted in
the Franz diffusion cell (Crown Glass Company, Inc., Jersey City, NJ, USA).

Transcutol® P was the receptor medium which provided the sink conditions through-
out the study. Aliquots of 500 µL of two different liposomes were added to the donor
compartment. A volume of 200 µL was taken and replaced with Transcutol® P at estab-
lished times over 31 h. The experiment conditions are set out in Table 1. The samples
obtained were analyzed by a validated HPLC-fluorescence method. The concentrations of
baricitinib in the liposomes were determined as described in the efficiency encapsulation
section. The data were fitted to different kinetic models and the best fit was selected based
on the determination coefficient r2 [30].

Table 1. Experimental conditions for the in vitro release test.

Parameters Conditions

Receptor fluid Transcutol® P
Cell volume 4.9 mL
Diffusion area 0.64 cm2

Membrane Dialysis membrane
Replicates 5 replicates
Temperature 32 ± 0.5 ◦C
Stirring 500 r.p.m.
Dose 500 µL of liposomes (Lα-PC 13.99 µg/mL and POPE:POPG 9.83 µg/mL)
Sample volume 200 µL
Sampling times 0 (pre-sample time point), 3.0 h, 7.0 h, 20.3 h, 24.5 h, 28.3 h, and 31.0 h

Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-2-
oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).

2.3.5. Ex Vivo Permeation Study

Ex vivo corneal and scleral permeation was conducted with Franz diffusion cells.
The tissues were fixed between the donor and the receptor compartments [28,29]; the
area exposed to permeations was 0.64 cm2. We applied 500 µL of liposome, either Lα-
PC or POPE:POPG, in the donor compartment, with five replicates for each tissue. The
receptor compartment was Transcutol® P kept at 37 ◦C for the scleral tissue and at 32 ◦C
for the cornea, and stirred continuously. A volume of 200 µL was withdrawn from the
receptor compartment at fixed times and replaced by an equivalent volume of Transcutol® P.
Experimental conditions for the ex vivo permeation test are shown in Table 2. The samples
were quantified by HPLC with a fluorescence detector.

Once the permeation study was complete, all tissues were removed from the diffusion
cells and rinsed with distilled water to eliminate the liposomes remaining on the tissue
surface. To extract baricitinib retained in the tissues [25], the permeation area was cut
out, weighed, and immersed in 1 mL of Transcutol® P and sonicated for 10 min using an
ultrasonic water bath. The supernatant was filtered and quantified by HPLC. Figure 2
depicts the procedure for drug extraction from the corneal and scleral tissues. The amount
retained in the tissues (Qret) was calculated according to Equation (2), and the results are
expressed normalized by the weight of the tissue as well as by the diffusion area (0.64 cm2)
and multiplied by the recovery of the drug:

Qret =
Qext

W × A
× 100

R
, (2)
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where, Qext is the amount of drug extracted expressed in µg, W is the weight of the tissue
(g), A is the diffusion area (cm2), and R is the recovery of baricitinib in each tissue [29].

Table 2. Experimental conditions for the ex vivo permeation test.

Parameter Conditions

Receptor fluid Transcutol® P
Cell volume 4.9 mL
Diffusion area 0.64 cm2

Membrane Cornea and Sclera
Replicates 5 replicates
Temperature 37 ± 0.5 ◦C or 32 ± 0.5 ◦C
Stirring 500 r.p.m.
Dose 500 µL of liposomes (Lα-PC or POPE:POPG)
Sample volume 200 µL
Sampling times 0 (pre-sample time point), 2.1 h, 4.2 h, and 6.0 h

Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-2-
oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).
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2.3.6. Baricitinib Determination by HPLC

The amount of baricitinib in each sample was quantified by HPLC with a fluorescence
detector. The HPLC is composed of a Chromatograph Waters Alliance 2695 and a Fluo-
rescence Jasco FP-1520 detector at an Ex wavelength of 310 nm and an Em wavelength of
390 nm. Table 3 shows the chromatographic conditions for analyzing baricitinib.

Table 3. Chromatographic conditions for the determination of baricitinib.

Parameters Conditions

Chromatographic column Symmetry C18 (4.6 × 75 mm, 3.5 µm)
Mobile phase Ammonium Formate 10 mM pH 7:I (75:25 v/v)
Flux 1 mL/min
Injection volume 10 µL
Wavelength Ex 310 nm and Em 390 nm
Standard concentrations range 0.031 to 1 µg/mL

2.3.7. In Vitro Tolerance Study

The potential risk of ocular irritation caused by baricitinib liposomes was studied by
the HET-CAM test, which measured the ability to induce toxicity on the chorioallantoic
membrane (CAM) of a 10-day embryonated hen’s egg (from the G.A.L.L.S.A. farm, Tarrag-
ona, Spain). The effects are recorded in seconds during 5 min by the onset of hemorrhage
(bleeding), coagulation (blood vessel disintegration), and vessel lysis coagulation (protein
denaturation intra- and extra-vascular) [26]. These elements were considered individually
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and then combined to derive a score (IS), which was used to classify the irritancy level of
the test substance [31].

IS =
301 − sec H

300
·5 + 301 − sec L

300
·7 + 301 − sec C

300
·9, (3)

where, H is the hemorrhage, L is vessel lysis, C is coagulation, and sec is the time in seconds
when signs started.

We applied 300 µL of liposomes to CAM and we observed the membrane for 5 min to
determine the degree of severity of each reaction according to the INVITTOX protocol [32].
We used NaOH 0.1 N as the positive control, and a solution of 0.9% NaCl as the negative
control [32].

Additionally, we evaluated changes in the corneal transparency after applying the
liposomes to the cornea. The technique consists of exposing the cornea under a defined
beam of light and detecting the light transmitted without absorption or scattering [33]. We
examined the transmittance from 150 to 760 nm on corneas after these had been immersed
in Liposome Lα-PC, Liposome POPE:POPG, PBS pH 7.4 (negative control), and ethanol
(positive control) for 10 min [34].

2.3.8. Corneal and Scleral Histological Study

For the histological study of cornea and sclera, samples of both tissues were exposed
to the dilution of Liposome Lα-PC, the dilution of Liposome POPE:POPG, or to distilled
water (negative control) for 6 h, and then processed for hematoxylin and eosin staining [35].
In a brief summary, corneas and scleral tissues were fixed in 4% buffered paraformaldehyde
for 24 h and then, after dehydration, these tissues were embedded in paraffin and cut at
6 µm, stained, and mounted on DPX (Sigma Aldrich). Samples were observed under the
microscope (Olympus BX41 and camera Olympus XC50) on a blind coded sample.

3. Results
3.1. Liposomes Physicochemical Characterization

The pH, osmolality, and encapsulation efficiency of the liposomes were measured and
the results are presented in Table 4. Both liposomes showed physiological pH, a suitable
osmolality value for the ophthalmic application, and encapsulation efficiency below 20%.

Table 4. pH, osmolality, and encapsulation efficiency (EE) of the liposomes. Results are expressed by
mean ± SD (n = 3).

Liposome pH Osmolality (mOsm/Kg) EE (%)

Lα-PC 7.4 ± 0.1 306 ± 2 12 ± 0.9
POPE:POPG 7.4 ± 0.1 305 ± 5 11 ± 1.1

Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-2-
oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).

Both liposomes have similar sizes and are negatively charged. Specifically, POPE:POPG
exhibits a higher ZP. Values are shown in Table 5.
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Table 5. Liposome composition with their respective hydrodynamic diameter, polydispersity index
(PDI), and zeta potential (ZP). Results are expressed by mean ± SD (n = 3).

Composition Formulation Hydrodynamic
Diameter (nm) PDI Zeta Potential (mV)

Lα-PC
blank 73.0 ± 3.0 0.040 −22.5 ± 1.1

+baricitinib 61.7 ± 0.5 0.081 −20.7 ± 0.5

POPE:POPG
blank 60.5 ± 0.6 0.124 −32.0 ± 3.0

+baricitinib 51.7 ± 0.8 0.202 −37.0 ± 5.0
Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-2-
oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).

The surface electrical study revealed that liposomes showed dependence on the pH.
The ZP values revealed the negative surface charge of the liposomes in the entire pH range
for all formulations, and no differences between blank liposomes and loaded liposomes
were observed. Figure 3 shows the zeta potential of the liposomes as a function of pH.
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*** Statistical differences between Lα-PC liposomes and POPE:POPG liposomes (p < 0.0001) on a t-Test
analysis comparing Lα-PC vs. POPE:POPG loaded with baricitinib. Significance level set at p < 0.05.
Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine:
1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).

The results of ZP as a function of ionic strength are shown in Figure 4. In general,
it is observed that the absolute value tended to decrease as the concentration of either
electrolyte increased.

Regarding the pH study, no differences between blank liposomes and loaded lipo-
somes were recorded. Specifically, for monovalent and divalent cations, the ZP at low
electrolyte concentrations showed negative values and decreasing absolute values as the
electrolyte concentration increased. In the case of NaCl, this negativity was maintained
throughout the range in the vicinity of 0, and was slightly positive when the salt reached
a concentration of 10−2 M, 10−1 M, and 2 × 10−1 M, respectively. In the presence of Ca2+

ions, ZP values became positive or close to 0 from 10−4 M or 10−2 M, depending on the
type of liposome. Finally, ZP values were positive throughout the range of concentrations
tested for Al3+.
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Figure 4. ZP of liposomes as a function of the concentration of NaCl, CaCl2, and AlCl3 at pH
7.4. (a) Lα-PC liposomes and (b) POPE:POPG liposomes. Each point represents the mean ± SD
(n = 9). An ANOVA was conducted and then followed by Tukey analysis, considering three groups of
electrolyte types at each concentration for both liposomes Lα-PC and POPE:POPG loading baricitinib.
*** Statistical differences p < 0.0001 between all the electrolytes; *** Statistical differences p < 0.0001
between NaCl vs. AlCl3 for Lα-PC; * Statistical differences p < 0.05 between NaCl and CaCl2
vs. AlCl3 for Lα-PC; *** Statistical differences p < 0.0001 between NaCl and AlCl3 vs. CaCl2.
Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine:
1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).

3.2. Morphological Study of the Liposomes

TEM images of both liposomes are shown in Figure 5. The liposomes obtained resulted
in a spherical shape and no aggregates were observed.
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Figure 5. TEM images of the liposomes. (a) Liposome Lα-PC (L-α-phosphatidylcholine), and
(b) POPE:POPG (1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-2-oleoyl-sn-glycerol-
3-phosphoglycerol (3:1, mol/mol). The scale bar stands for 200 nm.

3.3. In Vitro Drug Release Study

The release profile of both liposomes fits a nonlinear regression. They follow a hy-
perbola system where the liposome Lα-PC can release the drug faster than liposome
POPE:POPG, and in addition, the liposome Lα-PC can release all of the drug, whereas
liposome POPE:POPG can release just 64%. The rest remains trapped. Figure 6 shows the
release profiles of baricitinib. Both liposomes’ data are fitted to the one-site binding model
(Y = Bmax∗X/KD + X). Table 6 shows the fitted values for the model’s parameters Bmax
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and KD. The statistical analysis by a t-Test comparing Lα-PC and POPE:POPG showed
significant differences for Bmax.
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Figure 6. Release profiles of baricitinib from the liposomes POPE:POPG (1-palmitoyl-2-oleoyl-
phosphatidylethanolamine: 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol), and
Lα-PC (L-α-phosphatidylcholine): baricitinib cumulative released (µg) vs. time (h). Results are
expressed by mean ± SD (n = 5).

Table 6. Best fit values in the kinetic modeling for the liposomal formulations and the statistical
analysis by a t-Test between Lα-PC and POPE:POPG. Significance level set at p < 0.05.

Parameters Lα-PC POPE:POPG

Bmax (µg) 21.42 6.836
KD (h) 2.735 2.398

SE Bmax 0.424 0.052
SE KD 0.290 0.105

95% CI Bmax 20.33 to 22.51 6.701 to 6.971
95% CI KD 1.989 to 3.480 2.128 to 2.668

R2 0.9992 0.9999

p-value Bmax <0.0001
p-value KD 0.3047

Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-
2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol). Bmax = maximum amount released (µg); KD = time
required to reach 50% of the drug release (h); SE = standard error; CI = confidence interval.

3.4. Ex Vivo Permeation Study

Both liposomes on the cornea have r2 values of 0.99, whereas for the sclera, r2 were
greater than 0.97. The permeation parameters were calculated, including permeation
profile, flux (Jss, µg/h), permeability coefficient (Kp, cm/h), the cumulative permeated
amount at 24 h (Cum abricitinib 6 h, µg), and theoretical plasma concentration in humans at
the steady-state (Css, ng/mL), of baricitinib. Figure 7 shows the behavior of both liposomes
on the sclera and Figure 8 shows the behavior of both liposomes on the cornea.

The baricitinib retained in the sclera and cornea is shown in Figure 9, both liposomes
have significant differences in the sclera, but no statistical differences were found in the
amount of baricitinib retained in the cornea. POPE:POPG retained baricitinib in the scleral
tissue two-fold compared to Lα-PC, whereas baricitinib was retained equally by both
liposomes in corneal tissue.
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Figure 7. Ex vivo transscleral permeation. (a) Baricitinib permeation profile: baricitinib cumulative
amount permeated (µg) vs. time (h); (b) baricitinib flux for each liposome; (c) baricitinib amount
retained in the scleral tissue; (d) theoretical plasma concentration at the steady-state in humans.
Results are expressed by mean ± SD (n = 5). Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-
palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol
(3:1, mol/mol). t-Test analysis with statistically significant difference: *** = p < 0.0001.
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Figure 8. Ex vivo transcorneal permeation. (a) Baricitinib permeation profile: baricitinib cumu-
lative amount permeated (µg) vs. time (h); (b) baricitinib flux for each liposome; (c) baricitinib
retained amount in the cornea; (d) theoretical plasma concentration at the steady-state in humans.
Results are expressed by mean ± SD (n = 5). Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-
palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol
(3:1, mol/mol). t-Test analysis, statistically significant difference: *** = p < 0.0001.
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Figure 9. Baricitinib amount retained in the tissues: (a) cornea (b) sclera. Results are expressed
as mean ± SD (n = 5). Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-
phosphatidylethanolamine: 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol). t-
Test analysis with a statistically significant difference: *** = p < 0.0001; ns = non-significant.

3.5. In Vitro Tolerance Study
3.5.1. HET-CAM

The potential irritant effect of the formulations on the eyes was evaluated by the HET-
CAM method, which consisted of applying the liposomes on the chorioallantoic membrane
of 10-day embryonated eggs. No hemorrhaging, coagulation, or vessel lysis were observed
5 min after the application of the formulations (Figure 10). In contrast, hemorrhaging was
observed in the positive control from the very beginning of applying the control, and after
5 min both hemorrhaging and coagulation were observed.
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Figure 10. Evaluation of the irritant effect of the formulations by HET-CAM. (a) nega-
tive control (saline solution), (b) positive control (sodium hydroxide solution 0.1 N, (c) Lα-
PC liposome (L-α-phosphatidylcholine), and (d) POPE:POPG liposome (1-palmitoyl-2-oleoyl-
phosphatidylethanolamine: 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).

The values of the IS obtained after the HET-CAM test are reported in Table 7. IS values
obtained for both liposomes were below 0.9, indicating that the liposomes did not show
any irritating potential.



Pharmaceutics 2022, 14, 1895 14 of 20

Table 7. Irritation score (IS) of the liposomes tested by the HET-CAM technique.

Formulation Irritation Score (IS) Classification

Lα-PC 0.03 Non-irritating
POPE:POPC 0.02 Non-irritating

IS ≤ 0.9, non-irritating/slightly irritating; 0.9 < IS ≤ 4.9, moderately irritating; 4.9 < IS ≤ 8.9, irritating; and
8.9 < IS ≤ 21, severely irritating [26]. Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-
phosphatidylethanolamine: 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol).

3.5.2. Cornea Transparency

The transparency of the cornea was observed to assess any potential irritant effect of the
liposomes on the cornea. Corneas treated with ethanol (positive control) show a decrease
in the transmittance of up to 20% within the wavelengths 300–650 nm compared with the
negative control, indicating a reduction of the transparency of the cornea. In contrast, the
transmittance profile of both liposomes overlaps the negative control indicating that they
do not affect the cornea transparency (Figure 11).
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Figure 11. Transmittance from 190 to 850 nm wavelength of the corneas treated with PBS (negative
control), ethanol (positive control), Lα-PC (L-α-phosphatidylcholine), and POPE:POPG liposomes
(Lα-PC = L-α-phosphatidylcholine; POPE:POPG = 1-palmitoyl-2-oleoyl-phosphatidylethanolamine:
1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoglycerol (3:1, mol/mol) after 10 min of incubation.

3.6. Corneal and Scleral Histological Study

Sclera and cornea did not show architectural alterations in the hematoxylin and eosin
staining histological analysis in the control condition (Figure 12). The treatment with the
two diluted liposomes did not alter either the cornea or the sclera.
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Figure 12. Sclera and cornea sections stained with hematoxylin and eosin. The upper row shows
the cornea (A–C) and the sclera is shown below (D–F) in different conditions: control conditions
(A,D); Lα-PC (B,E) and POPE:POPG (C,F); (1) corneal epithelium (non-keratinized stratified squa-
mous epithelium); (2) substantia propria; (3) episclera; and (4) stroma. Magnification = 200×,
scale bar = 100 µm.

4. Discussion

Two liposomes loading baricitinib were developed using two different lipids (Lα-P
and POPE:POPG) with the aim of combining the effect of an immunomodulator and the
effect of the lipids to supplement the tear film lipid layer. It is known that alterations in
lipid composition, besides down-regulation in specific proteins or changes in the rheological
behavior of the tears, are common in dry eye disease. Lipid-based formulations aim to
mimic the tear film lipid layer by combining both components, the aqueous one and the lipid
one [36]. As Hofauer and co-workers in a previous work had applied liposomal agents on
buccal, nasal, and ocular mucosa in patients with Sjögrens’ syndrome to alleviate symptoms
such as xerostomia, keratoconjunctivis sicca, and rhinitis sicca [21], and they had achieved
positive results, it could be fruitful to load up liposomes with a specific immunomodulator,
as it may result in synergistic effects, achieving an advance in the treatment.

Baricitinib has been used orally and no literature is available reporting nanostructured
systems loading baricitinib for the topical route. It has been tested (only) once on the skin
and there is very little information on formulating baricitinib in nano-systems. Bhaskar-
murthy et al. [37] investigated the potential of baricitinib in reducing the inflammation
in ear oedema TPA-induced inflammation in mice; we can underscore that they used a
solution of baricitinib in acetone:DMSO, and they were testing on the skin, not on the
mucosa or eye. Our study, therefore, encourages further research, building on the potential
of baricitinib and its use in ocular mucosa. Both liposomes exhibit suitable characteristics
for the ophthalmic application: their smallness in size will not damage the cornea upon
application, and their pH is close to the tears’ value (7.4–7.5), so no irritation is expected;
additionally, the osmolality was also within the criterium. The liposomes should resist
aggregation due to Waals attraction forces because the zeta potential value is highly nega-
tive [38,39]. The surface electrical study focuses on two aspects. First, the dependence of
the lipid composition, and secondly, the influence of the pH and ionic strength on ZP.

One of the major constraints of liposomal systems is the vesicle aggregation, with
the concomitant destabilization of the system [40]. Moreover, the surface electrical charge
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of liposomes does play a fundamental role in the affinity on the corneal surface [41].
Along the same lines, the study of the surface electrical properties provides the expected
relevant information; the lipid composition of liposomes has a direct influence on ZP, due
to the different net charges of the lipids used: POPE:POPG liposomes showed much more
negativity than Lα-PC liposomes. Another question is that the surface charge might also
determine the interaction of liposomes with the ocular membrane due to the high negative
charge of its mucins.

Absolute values of ZP showed a marked increase when the pH was increased (Figure 3).
Changes in pH can affect the degree of lipid ionization. Specifically, the phosphate groups
of the polar head of PC and PG are neutralized at acidic pH by the hydrogen ions of the
dispersion medium. In contrast, as the pH value increased, that is, as the concentration
of hydroxyl groups in the medium increased, a greater number of surface phosphate
groups were dissociated. This determined the increase in the surface electric charge of
these particles [42]. Nanosystems with ZP between +30 mV and −30 mV are considered
to possess low stability [43]. The pH of tears is approximately 7.45 and ranges from 7.14
to 7.82, depending on diurnal and seasonal influences, or even 7.89 in dry eye patients
with Sjögren’s disease [44]. Under these conditions, our liposomal formulations would
have values outside the range +30 mV/−30 mV, which, predictably, will provide suitable
stability [45].

The most frequently used aqueous vehicles in the preparation of eye drops are water
for injection, isotonic sterile saline (SF), balanced salt solution (BSS®), and balanced salt
solutions whose composition is similar to that of the internal ocular medium. Both the
composition of these vehicles and physiologically buffer conditions mean that there are
electrolytes of different valences that could influence the surface electrical characteristics of
the liposomes. The electrolytes are mainly Na+, K+, Cl−, and HCO−, with lower levels of
Mg2+ and Ca2+. In this way, the results of the electrokinetic analysis of the liposomes as
a function of the ionic strength of the medium could be used to predict their stability in
dispersion (aggregation tendency) and their mucoadhesive capacity.

The eye can tolerate tonicities within the equivalent range of 0.6–2% NaCl. However,
to achieve isotonic solutions with tears, and to ensure that they are comfortable for the eye,
an amount equivalent to 0.9% NaCl 0.15 M is generally used.

According to our results, shown in Figure 4, as the concentration of the salts increases
the counterions accumulate closer to the particle surface, which compresses the double
layer and weakens repulsive forces by reducing ZP [46].

Regarding the effect of AlCl3, ZP values were positive across the whole range, prob-
ably due to the adsorption of this ion into the surface of the liposomes. Finally, a high
concentration of electrolytes equivalent to an isotonic solution might produce charge re-
versal or a large drop, showing slightly positive values. This fact will cause large size
aggregates and rapid settling, which could give rise to a flocculated system that is easy to
redisperse [47]. Additionally, thanks to their positive charge, they could interact better with
the ocular film and prolong the residence time of the drug in the cornea, and they have
increased the therapeutic interval [41,48].

A rapid release of baricitinib is observed within the first 4–6 h and it is followed by a
slower drug release for both liposomes after these first six hours. Higher released amounts
of baricitinib were obtained from the liposomes Lα-PC, about three-fold higher than the
POPE:POPG liposomes, and this suggests that the lipid used in preparing the liposomes
has a great impact on the extent of drug released. The release profile of both liposomes
fitted to a one-site binding model corresponding to a hyperbola curve. The parameters of
this model are Bmax, which corresponds to the maximum amount that can be released, and
KD, which is the time needed to reach 50% of the drug released. Statistically significant
differences were observed for Bmax. However, no statistical differences were found for
KD, meaning that both liposomes release 50% of the drug within a similar time period
(more or less in the first two and a half hours). Ansari et al. [49] developed polymeric
nanoparticles loading baricitinib with the aim of improving baricitinib’s bioavailability
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in order to reduce the dose, and in turn, reducing the side effects. The authors prepared
nanoparticles with poly-lactic-co-glycolic acid, and they conducted a deep characterization,
obtaining an optimized formulation that exhibited sustained release over 24 h, which fitted
the Higuchi model.

Despite the fact that liposome Lα- PC showed a higher in vitro drug release, this was
not limiting for POPE:POPG in the penetration and permeation through the cornea, where
the amount retained in the tissue was similar for both liposomes. It was POPE:POPG
that showed higher permeation. In contrast, Lα- PC was superior to POPE:POPG in the
permeation and penetration of baricitinib into and through the sclera. This is probably due
to the difference in the composition of sclera and cornea, whereas the latter is mainly com-
posed of type I collagen and proteoglycans, the sclera is primarily composed of connective
tissue [50]. The amount of baricitinib retained in the corneal and scleral tissue would act
as a reservoir and might enable a local anti-inflammatory and immunomodulatory effect
without systemic side effects since the predicted plasma concentration at the steady-state
(Css) is far below the concentration achieved in an oral administration [51].

5. Conclusions

The HET-CAM technique is an ideal model for testing ocular irritation since the
chorioallantoic membrane is a highly vascularized structure and it is sensitive to chemicals
such as the conjunctiva [52]. Both liposomes are supposed to be well-tolerated since no
irritant potential was detected by the HET-CAM technique nor was any change observed
in the histological analysis after the application of the liposomes on the corneal and scleral
tissues. Additionally, no changes in the transparency of the cornea were observed either,
meaning that the liposomes do not cause damage to the tissue exposed to them [34]. In
light of these promising results, further studies should be carried out and looked at so as to
better assess the efficacy of the liposomes in vivo. For instance, a dry eye in mice models
would allow for the evaluation of the efficacy of the liposomes similarly to the work of
Stevenson et al. [19,20], in which the researchers tested tofacitinib, a JAK inhibitor, applied
topically in dry eye-induced mice, and they monitored cytokines expression obtaining
excellent outcomes in reducing the ocular inflammation. Since the products intended for
ophthalmic use should be sterilized, in this sense, future studies should also consider
extruding the liposomes through a 0.22 µm pore size, as well as, investigating the effect of
the number of lipid layers composing the liposome on the drug release. Another important
point for future studies is the shelf-life of the formulations, and stability studies should also
be performed.

Two liposomal formulations have been developed for ocular delivery intended for
alleviating dry eyes related to Sjögren’s syndrome. The liposomes were prepared using two
different lipids, Lα-PC and POPE:POPG, both loading baricitinib, a Janus kinase inhibitor.
Lα-PC led to higher flux, permeation, and retention in the sclera, whereas POPE:POPG led
to higher flux and permeation in the cornea. The formulations showed no irritant effects
on the chorioallantoic membrane. Additionally, the liposomes did not affect the cornea
transparency when applied and the histological analysis did not reveal any structural
alteration. The two liposomes have shown promising results for ocular application, and
further studies, such as in vivo tests, should be conducted to evaluate their efficacy, and
hence, confirm their suitability in the management of dry eyes in Sjögren’s syndrome.
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