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Mantle-derived volcanic rocks from the Subbetic hyperextended basin in SE Spain provide new insights into the composition and
mechanical behavior of the mantle during continental rifting. The present study describes a sequential restored cross-section along
with geochemical characteristics of the basaltic rocks interbedded within the Mesozoic succession of the basin. Sedimentary
stacking patterns of minibasins above the mobilized salt reflect the relationships with coeval basaltic volcanism. We recognize
two type localities on the basis of volcanic facies, the presence of shallow intrusive bodies, and age of the associated
sedimentary formations. The first type corresponds to subaqueous pillow-lava flows and subvolcanic sills and dikes associated
with Lower Jurassic marly limestones and Middle Jurassic oolitic limestones. The Jurassic basalts present enriched MORB
compositions with moderate La/Sm and low Sm/Yb ratios. Interestingly, a significant group of this Jurassic basaltic magmatism
departs from the typical MORB-OIB array, showing deep Nb-Ta negative anomalies and high Th/Nb ratios. The second type
comprises subaqueous lava flows, also including pillow-shaped basalts interlayered with hyaloclastite deposits and Upper
Cretaceous clays, radiolarites, and marly limestones. The Cretaceous magmatism is characterized by highly enriched MORB
compositions. Furthermore, the moderate Sm/Yb values and the positive correlation between LREE/HREE and Zr point to the
involvement of deep (Grt-present) mantle sources in the origin of the Cretaceous basaltic melts. We interpret the Lower-
Middle Jurassic calc-alkaline signal as due to the partial melting of recycled crustal rocks within the upper mantle, i.e.,
associated with remnants of pre-Mesozoic subducted slabs. These characteristics are similar to those described in Triassic
basaltic rocks widespread throughout the External Zone of the Betic Cordillera. Mantle-derived basalts interlayered within the
Lower Jurassic syn-rift deposits indicate that melting and deformation within the lithospheric mantle was initiated early during
continental rifting. Accordingly, we suggest that Early to Middle Jurassic mantle melts promoted failure within the upper
mantle, thus contributing to the inception of lithospheric-scale shear zones, which, in turn, controlled the evolution of this
magma-poor hyperextended margin. Subsequently, rift evolution gave way to the activation of deeper melt sources in the
mantle and an increase of the alkaline signature at the Cretaceous time.

1. Introduction

Magmatic and tectonic processes are intimately interrelated.
Magmatism can contribute to dropping effective stresses,
thus weakening the lithosphere and promoting rifting
[1–3]. Conversely, continental rifts mostly nucleate on pre-
existing orogenic features, which also represent preferred

weakness zones (e.g., [4]). Although tectonic inheritance
and melt-weakening processes are known to be key factors
behind rifting, their connection and feedback are still poorly
documented.

Preexistent crustal fabrics influence the strike of individ-
ual faults, thus triggering segmentation and oblique rifting
(e.g., [5–9]). Nevertheless, numerical models show that
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rifting mechanisms are primarily governed by the strength
and thermal state of the lithospheric mantle (e.g., [10–16]).
In conjunction with increasing geothermal gradient, inher-
ited compositional heterogeneities within the upper mantle
exert a primary control on the location of partial melting
and the initiation of continental rifting [17–19]. Subse-
quently, positive feedback between melt production and
extensional processes occurs. Stretching of the continental
lithosphere reduces the overburden pressure, stimulating
asthenospheric decompressional melting, while upward
magma migration weakens the lithosphere (e.g., [14,
20–22]). Melt-weakening processes are crucial in the evolu-
tion of volcanic-rich rifted margins [18], but they have not
been completely characterized in magma-poor ones. In the
latter, very limited magmatic production occurs during dras-
tic crustal stretching and exhumation of the lithospheric
mantle [23, 24].

The geochemical variability of mantle-derived magmas
associated with hyperextended margins reflects interplay
between mantle heterogeneities and the depth at which the
fertile mantle starts melting [19, 25–28]. MORB terminology
in these continental settings is difficult to apply (e.g., [29]).
The extent of crustal thinning and the presence of
lithospheric-scale structures largely determine the so-called
lid effect (lithosphere thickness) [30], which ultimately con-
trols the volume and composition of basaltic magmas and
their capacity to reach the upper crust in cold rift settings
(e.g., [26, 31–33]).

In this paper, melt-weakening processes have been
explored in the Subbetic hyperextended basin (Betic Cordil-
lera, SE Spain), a failed branch of the Central Atlantic. Mag-
matic activity resulted in the emplacement of isolated
subvolcanic/volcanic bodies within Upper Triassic evapo-
rites and submarine lava flows interlayered between Lower
Jurassic and Upper Cretaceous hemipelagic and pelagic sed-
iments. We provide a new cross-section running along the
main rift axis based on field and seismic reflection data.
Sequential restoration allows us to describe the general basin
architecture and the relationship between basaltic lava flows
and sedimentary packages. Our new geochemical results
from the volcanic record in this Mesozoic basin have been
analyzed and compared with data from other rift basins in
order to unravel the early rifting processes and their subse-
quent evolution. Furthermore, we discuss the role of inher-
ited crustal fabrics in the inception of oblique rifting at this
region of the Iberian plate.

2. Geological Setting

The Betic Cordillera (SE Spain) is located in a region that
underwent Variscan collision at the late Paleozoic time and
subsequent lithosphere stretching during two distinct rifting
episodes at Permian-Triassic and Early Jurassic-Early Creta-
ceous times (Figure 1). The geology of the Variscan belt in
Southern Iberia encloses three main NW-SE trending tec-
tonic zones that represents continental pieces separated by
complex shear zones attesting to subduction and exhuma-
tion processes (e.g., [34–37]). These continental fragments
are characterized by pervasive fabrics formed during the

Variscan collision, important Carboniferous basins, and
large igneous bodies (e.g., [38–40]). Some of these pre-
Mesozoic structures constitute weakness zones prone to be
reactivated under extension, thus providing a template for
the formation of a Mesozoic rifted margin, subsequently
inverted at Alpine times (Figure 1(a)).

The Betic Cordillera forms, together with the Rif Moun-
tains in NW Morocco, the southwestern termination of the
Alpine orogen, formed as a result of the complex collision
between the Eurasian and African plates (Figure 1(b)) (e.g.,
[41–44]). The central part of the Betic Cordillera is subdi-
vided from north to south into the External and Internal
Zones (e.g., [45]). The Internal Zone is composed of three
tectonic complexes referred to as Maláguide, Alpujárride,
and Nevado-Filábride, comprising Paleozoic and Mesozoic
rocks, variably affected by ductile deformation and metamor-
phism (e.g., [46, 47]). The lower complex is the Nevado-
Filábride one, constituted by rocks of the South Iberian
Margin subducted below the other two complexes [48–51].
Metabasalts and serpentinized ultramafic rocks having
recorded early Miocene (Burdigalian) HP metamorphism
are found at the structural top of the Nevado-Filábride Com-
plex, close to the contact with the overlying Alpujárride
Complex (e.g., [52]). This primarily subduction-related con-
tact was reactivated later during the middle Miocene as a
low-angle ductile-brittle extensional shear zone [53, 54].

The External Zone of the Betic Cordillera is organized as
a NW-directed fold-and-thrust belt that resulted from the
thin-skinned tectonic inversion of Mesozoic salt-floored
deposits unconformably overlying the South Iberian rifted
margin (Figure 1(b)) (e.g., [44, 55–60]). The inversion of
the Mesozoic sedimentary cover was coeval to the subduc-
tion of the South Iberian continental lithosphere [44, 48].
Based on lithostratigraphic differences of the Lower
Jurassic-Upper Cretaceous syn-rift successions, the External
Zone is subdivided into three structural units with paleogeo-
graphic meaning, referred to as Prebetic, Intermediate, and
Subbetic (e.g., [61, 62]).

2.1. The Subbetic Basin. The Subbetic units were deposited
over the South Iberian passive margin, which was laterally
connected with an oceanic domain in the Late Jurassic.
According to this interpretation, the Subbetic units represent
a gateway floored by oceanic crust that connected the North
Atlantic with the Tethyan oceanic domains to the east (e.g.,
[41, 63–67]). However, recent reconstructions propose that
oblique continental rifting failed before lithospheric break-
up [44]. According to this kinematic model, the Betic realm
encloses five rift domains segmented by WNW-ESE transfer
faults, with oceanic spreading restricted to the western
domain (distal part of the Algarve Basin and Betic Flysch
Trough). Likewise, the central-eastern portion of the Sub-
betic Basin recorded hyperextension with possible exhuma-
tion of the continental mantle (Figure 1(c)).

The Subbetic Basin comprises three main domains (e.g.,
[61]) highly influenced by the presence of Upper Triassic
salt- and clay-bearing rocks, which promoted complete
decoupling between basement and cover (Figures 1 and 2).
The interaction between salt/clay rocks and ENE-WSW
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rift-parallel faulting controlled the thickness and facies dis-
tribution of overlying minibasins [44]. The central portion
of the Subbetic Basin is characterized by a northern sector
with thick minibasins (Prebetic and Intermediate Units), a
central sector with condensed pelagic units over inflated salt
(External Subbetic units), and a southern sector with primary
minibasins featuring interbedded submarine volcanic rocks
overlying hyperextended crust (Median and Internal Sub-
betic). Magmatism along this southern sector triggered a pro-
tooceanic spreading center, but extension stopped before the
accretion of unambiguous oceanic crust (Figure 1).

The inversion of the Mesozoic Subbetic Basin started at
the Paleogene time. The Alpine shortening gave way to
squeezed salt walls, thrust welds, and allochthonous salt

canopies [44, 57]. Additional shortening formed two main
thrust sheets: the upper one encloses minibasins originally
placed in the southern part of the basin (Internal, Median,
and External Subbetic), which were displaced northwards,
overthrusting minibasins of the northern side; the lower
thrust sheet transported all these structures towards the fore-
land. Eocene-Miocene syn-orogenic deposits filled the
wedge-top and the Guadalquivir foreland basin.

3. Architecture of the Subbetic Basin and
Occurrence of Volcanic Activity

A detailed cross-section was constructed based on field and
seismic reflection data (section 85-G-05; Figure 2) to

Figure 1: (a) Simplified geology of the Variscan belt in Southern Iberia showing the axial traces of the folds and the main shear zones [114]
plotted over the aeromagnetic anomaly map [102]. Note that the WNW-ESE trend of the Variscan structures fits the elongated magnetic
dipoles that extend beneath the Guadalquivir foreland basin and the Jurassic-Early Cretaceous transfer faults [44]. SPZ: South Portuguese
Zone; OMZ: Ossa-Morena Zone; CIZ: Central Iberian Zone. (b) Simplified tectonic map of the Betic-Rif Cordillera and adjacent
continental and oceanic margins indicating the inherited Mesozoic rift structures (modified from [44]). The location of Figure 2 is
indicated as a box. (c) Kinematic reconstruction of the Central North-Atlantic and propagation towards the Betic Domain at 126Ma
(lowermost Aptian) (after [44]). The location of the Subbetic Basin (SB) is marked.
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constrain the structure of the Subbetic Basin in the sector
where the volcanic rocks were sampled. The studied basaltic
rocks were deposited in two primary minibasins of the upper
thrust sheet (Figures 1 and 2). These rocks are interlayered
within Lower Jurassic to Upper Cretaceous sediments. The
restored cross-section reveals the architecture of the miniba-
sins, providing a geometrical framework for the lithostratig-
raphic and chronostratigraphic descriptions, which, in turn,
enable precise spatial and temporal locations of the volcanic
occurrences within the minibasins (Figures 3 and 4).

The accommodation space in these minibasins was cre-
ated by expulsion of the underlying Upper Triassic evapo-
ritic unit (Figures 3 and 4). A continuous thin carbonate
platform (Gavilán Fm.) covered this basal unit of the basin

during the Early Jurassic (e.g., [68]). Immediately above,
the Toarcian Zegrí Fm. contains marl-limestone intercala-
tions in the lower part and nodular marly limestones in
the upper part. This formation represents the onset of the
syn-rift stage and records the first appearance of interlayered
basalts. Shallow-water oolitic limestones (Camarena Fm.)
formed narrow platforms on the boundaries of the miniba-
sin coevally to profuse flood-basalt lava deposits at
Bajocian-Bathonian times. Some of these carbonate plat-
forms covered the submarine volcanic edifices (e.g., [68]).
Carbonate deposits evolved into radiolaritic marls and radi-
olarites of the Bathonian-Oxfordian Jarropa Fm., probably
deposited at moderate water depth [69]. The overlying
Milanos Fm. is constituted by marly limestones with chert,
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in which calcarenitic and calcisiltitic levels with hum-
mocky cross-stratification were interpreted as storm layers
in an outer marine platform [70, 71]. Slumped limestone-
marl alternations also including breccias with redeposited
pebbles from the underlying formations (Carretero Fm.)
record instabilities within the boundaries of the minibasin
during the Berriasian-Hauterivian (e.g., [72]). Green clays
and radiolarites with intercalations of carbonate and con-
glomerates were deposited in the central and southern
part of the minibasin at Aptian-Albian times (Fardes
Fm.) [73]. The Cenomanian to Paleocene postrift
sequence is characterized by white and pink marly lime-
stones (Capas Rojas Fm.); they include pelagic microfossils

and record an overall transgressive evolution. Voluminous
lava-flow deposits are interlayered between the Fardes and
Capas Rojas formations.

4. Field Relations and Characteristics of the
Volcanic Deposits

We distinguish two type localities according to volcanic
facies, presence of shallow intrusive bodies, and age of the
associated sedimentary formations.

4.1. Alamedilla. The Alamedilla outcrops (Figures 2–4) show
thick, pillowed, submarine lava flows, hyaloclastites, and
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basaltic pillows embedded in fine-grained sediments. Tec-
tonic deformation does not significantly affect the original
depositional contacts in this area. The restored cross-section
reveals an asymmetrical stacking pattern of the basaltic lava
lobes, progressively onlapping southwards (Figures 3 and 4).
Laterally, rounded fragments of basaltic lavas were observed
within Santonian marls and limestones from the Capas Rojas
Fm. [74].

Subaqueous extrusive volcanism consists of 5-8m thick
lava flows interlayered with hyaloclastite deposits and
carbonate-rich mud sediments that embed numerous
pillow-shaped basalts (Figure 5(a)). The thicker lava flows
exhibit a wide variety of pillow shapes. Spherical, flattened,
or tabular pillows are frequently interconnected by lobes
and tubes, presenting 1-3 cm thick glassy quenched rinds
(Figure 5(b)). The irregular depositional contacts between
volcanic deposits and the long axes of pillow lavas indicate
seafloor paleoslopes. The more elongated the shapes, the
more steeply inclined the slopes and/or thicker volcanic col-
umns (Figure 5(c)). Downslope in pillow accumulation
areas, hot interiors promoted ductile behavior of chilled
margins and close packing of former spherical pillows. A
thin layer of carbonate-rich mud exposes sharp, irregular
pillow rinds (Figure 5(d)).

4.2. Piletas. The Piletas area represents a basaltic domain
where both subaqueous extrusive deposits and subvolcanic
sills and dikes are associated with Lower Jurassic marly lime-
stones (Zegrí Fm.) and Middle Jurassic oolitic limestones

(Camarena Fm.). Besides the samples located in the Piletas
locality, an additional sample was collected in the Cerro de
los Peones (Figure 2). Middle Jurassic basalts were also sam-
pled in the El Peñón area (Figures 2 and 3). Lava flows
(ALM-8) and pillowed deposits (ALM-9) dominate this area
with intermediate characteristics between the Lower Jurassic
and the Cretaceous magmatism.

Pillowed lava flows in Piletas-type areas are similar to
those described in the Alamedilla area (Figures 5(a)–5(d)).
Furthermore, subvolcanic intrusives pervade partially con-
solidated, likely wet, carbonate-rich sediments and hyalo-
clastites. An anastomosing network of sill-like shallow
intrusions presents variable thickness (between 2m and a
few centimeters) due to the lateral growth of dome-like
structures (Figure 5(e)). During rapid cooling, polygonal
(mainly hexagonal) fractures were generated, and sills finally
acquire a hive-shaped structure. Basaltic fragments are lim-
ited by calcite veins with comb-layering textures due to the
infiltration of CaCO3-rich fluids through the quenching
fractures (Figure 5(f)).

5. Textural Features and Geochemistry of
Basaltic Rocks

5.1. Analytical Methods. Approximately 5 kg of basaltic rock
per sample were collected. Subsequently, they were crushed
and milled to a fine powder for whole-rock geochemistry.
Major elements and Zr were determined by X-ray fluores-
cence (XRF) at the Centro de Instrumentación Científica

Figure 4: Wheeler diagram representing stratigraphic succession, volcanic occurrences, and studied samples, in a time-space framework.
Biostratigraphic zones and absolute ages are included.

6 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2021/5505884/5437045/5505884.pdf
by Univ de Granada Biblioteca Fac de Ciencias user
on 04 October 2022



(a) (b)

(c) (d)

(e) (f)

Long axis:
(i) Paleo-slope
(ii) Advance of the flow

Short axis:
(i) Weight of the

pillowed flow column

Chilled margin

1

2

3

4

5

6

8–10 cm

1,5 m

Microcrystalline
chilled margin

Crystalline

core

Calcite vein
comb-layering texture

Figure 5: Representative studied outcrops of the subaqueous extrusive volcanism and subvolcanic facies of the Subbetic Basin. (a) Pillow-
rich fine-grained sediment overlying a pillowed basaltic flow. (b) Varied morphologies of a subaqueous, pillowed lava flow. (c) Stretched
pillows embedded in a carbonate-rich muddy sediment. Dark pillow margins exposing glassy quenched rinds. Long axes of the
ellipsoidal pillows indicate the slope of the paleorelief. (d) Closely packed, formerly spherical pillow lavas. (e) Basaltic sills in the Piletas
area with a characteristic “hive” arrangement. (f) Polygonal fractures originated during the rapid cooling of a basaltic sill intruding wet
sediments. 1: large spherical pillow having concentric and radial fractures and a thin quenched rind; 2: lava tube interconnecting two
spherical pillows; 3: elongated or flattened pillow; 4: three-dimensional view of the basaltic flow showing pillow lobes and interconnected
tubes that allowed for the advance of viscous lava; 5: trapdoor structure; 6: lobulated “hot” contacts between accumulated pillows.

7Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2021/5505884/5437045/5505884.pdf
by Univ de Granada Biblioteca Fac de Ciencias user
on 04 October 2022



(CIC) of the University of Granada (Spain). Precision for
major elements is better than 1% relative. Trace elements,
except Zr, were analyzed by inductively coupled plasma
mass spectrometry (ICP-MS), likewise at the CIC of the
University of Granada, following the standard procedures
described by Baedecker [75]. Analysis of trace elements
was carried out according to the method described by Bea
et al. [76]; the precision was approximately 2% and 5% on
concentrations of 50 and 5ppm, respectively.

5.2. Sampling Strategy and Comparative Data. With the aim
of studying the geochemical characteristics of the basaltic
magmatism in the Subbetic domain, 11 samples of pillow
lavas and subvolcanic sills were analyzed. Major and trace
element analytical results are presented in Table 1. Trace ele-
ment contents (see Supplementary material (available here))
were furthermore projected in several geochemical diagrams
in order to classify the basaltic magmatism associated with
rifting and hyperextension of the South Iberian Mesozoic
paleomargin, as well as to delve into the nature and condi-
tions at the mantle sources that were activated during the
evolution of the extensional process. According to the
restored cross-section and the lateral relationship with sedi-
mentary formations, we assign a Cenomanian-Santonian age
to the samples obtained from the Alamedilla area and a
Toarcian-Bathonian age to the Piletas and Cerro de los Peo-
nes volcanic/subvolcanic rocks (compiled as Piletas samples
from now on). The youngest basalts of the Piletas area
underlie the volcanic deposits sampled in the El Peñón area
(Figures 3 and 4).

Few studies have focused on the geochemistry of basaltic
magmatism in the Betic Cordillera. We selected analytical
results available in the literature to complement our study.
Traditionally, the term “ophite” has been used when refer-
ring to the mainly subvolcanic Triassic to Jurassic basaltic
magmatism in the Subbetic region [77, 78]. Our geochemical
projections include the averaged compositions of two groups
of ophites: post-Triassic Group 1 and Upper Triassic Group
2 compiled by Morata [77]. According to this author, the
two groups share the same mantle sources, with slight geo-
chemical differences owing to higher crustal contamination
in the late Triassic basalts (Group 2), generated during the
initial rifting stages. Additionally, we consider recent geo-
chemical results obtained in the Norian-Rhaetian volcanic
rocks of the Zamoranos Fm. exposed in the Betic External
Zone [79]. We moreover projected the Mesozoic metabasalts
of the Nevado-Filábride Complex, which have been inter-
preted either as a mafic-ultramafic association representing
a dismembered ophiolitic sequence [78, 80] or as subconti-
nental mantle-derived rocks formed during continental rift-
ing (e.g., [81]). As general comparative data, the Zagros
ophiolites were chosen; they are referenced in numerous
geochemical studies, including MORB, OIB, and arc-
related basalts, among others [27, 82, 83].

5.3. Petrographic Characteristics. The inner parts of the pil-
lowed basaltic lavas are constituted by euhedral to subhedral
Ol microphenocrysts included in a Pl+Px microcrystalline
matrix (mineral abbreviations after [84]). A partially devitri-

fied glass is present in interstitial positions (Figures 6(a) and
6(b)). Skeletal Pl laths are grouped into sheaf-like or radiated
clusters. Cpx shows anhedral and feathery textures in the
interstices between Pl clusters and Ol phenocrysts
(Figure 6(a)). For the more vitreous quenched margins, only
skeletal Ol phenocrysts are preserved as recognizable min-
erals, enclosed in a glassy (nondevitrified) groundmass. Sim-
ilar textures were observed in the hyaloclastite deposits
interlayered with the subaqueous lava flows of the Alame-
dilla area (Figure 6(c)). Irregular vitreous lava fragments
are embedded in carbonate-rich sediment (Figure 6(d)).

Regarding subvolcanic sills and dikes, shallower basaltic
intrusions (Figures 5(e) and 5(f)) show porphyritic micro-
crystalline textures, similar to those described in lava flows
(Figures 6(a) and 6(b)). In the Piletas area, some deeper
intrusions present fine- to medium-grained phaneritic tex-
tures. Gabbroic rocks show large Ol phenocrysts (0.5 to
1 cm in size) enclosed in a Pl+Px ophitic to subophitic
matrix (Figure 6(e)). Ol crystals are serpentinized and pres-
ent partially embayed surfaces in contact with Cpx
(Figure 6(f)). Both Ol phenocrysts and tabular Pl crystals
are randomly oriented and enclosed in large Px crystals.

To sum up, aphanitic, microcrystalline, and fine-grained
basaltic rocks of the Alamedilla- and Piletas-type areas pres-
ent similar mineralogical compositions. Alteration processes
affected primary mineral assemblages, and chlorite, serpen-
tine, and sericite, among other secondary minerals, were
identified in the Subbetic samples. Secondary processes
likely resulted in the high LOI contents analyzed in some
samples. Infilled amygdulitic vesicles (chlorite, calcite, and
analcime) were excluded during the sample preparation.

5.4. Geochemical Results. SiO2 and alkali contents serve to
classify most of the studied samples as basalts
(SiO2 < 52wt% and total alkali > 3wt% on an anhydrous
base). Only the subvolcanic rock ALM-12, which presents
the highest MgO and the lowest alkali contents, can be clas-
sified as a picrite or komatiite [85]. Except for the ALM-13
sample, the Piletas basalts show higher #Mg values (0.64-
0.73) and FeO and MgO contents than the Alamedilla sam-
ples (#Mg = 0:35 − 0:56). To the contrary, the Alamedilla
lavas present higher TiO2, CaO, alkali, and P2O5 contents
(Table 1). #Mg and Fe-Mg oxides show a positive correlation
for the Alamedilla and Piletas groups of samples. Further-
more, CaO, TiO2, and alkali contents increase as the #Mg
decreases. These characteristics point to early, short-range
Ol±Pl±Px fractionation in the basaltic melts, which can also
be inferred from the presence of Ol phenocrysts in the glassy
lavas and microcrystalline subvolcanic basalts (Figure 6).

Major element results should be analyzed with some
caution due to the likely seafloor and/or hydrothermal alter-
ation superimposed on the pristine geochemical characteris-
tics of basalts. Actually, wide variations are observed in Ca,
Fe, and Mg contents, with differences of up to 6-8wt% for
major oxides (Table 1). Element mobility entails an impor-
tant limitation when analyzing the geochemical composi-
tions of basaltic rocks affected by alteration and/or
hydrothermalism. Nevertheless, a good number of incom-
patible trace elements—such as transition metals, REE
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Figure 6: Microphotographs showing the main petrographic characteristics of the studied subaqueous and subvolcanic basaltic rocks in the
Subbetic Basin. (a) Plane-polarized light (PPL) image of the inner microcrystalline area of a spherical pillow (Figure 4(a)). (b) PPL image of a
highly altered basalt in a subaqueous deposit constituted by accumulated pillows (Figure 4(d)). (c) Thin section of a hyaloclastite
interlayered with basaltic lava flows in the Alamedilla area. Irregular fragments and shards of glass are amalgamated by a calcareous
cement. (d) PPL image of hyaloclastite basaltic glass fragments with Ol phenocrysts. (e) Cross-polarized light image of gabbroic textures
that are characteristic of some subvolcanic sills and dikes in the Piletas area. (f) PPL detailed image of a serpentinized Ol phenocryst
enclosed and partially reabsorbed in a subophitic Pl+Px matrix.
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(primarily HREE), and Zr, Nb, Ta, Y, Hf, and Th—have
been demonstrated to be relatively immobile during low-
temperature secondary processes (e.g., [86–89]). We tested
the behavior of relevant (for this study) trace elements
by means of variation diagrams vs. Zr (Supplementary
material 1). Except for the most incompatible and mobile
elements in basaltic melts, i.e., Rb, Ba, and Sr, trace ele-
ments show acceptable correlations with Zr, especially
LREE. Therefore, alteration processes appear not to have
involved significant variations in the content of the trace
elements used to characterize the Subbetic basaltic magma-
tism. The departure of some Piletas basalts from the main
trends (e.g., Th, Nb, and Ta) will be discussed below and
compared with other geochemical characteristics in the
context of their origin.

Regarding trace element compositions, the Alamedilla
samples (Upper Cretaceous) show higher contents than the
Piletas ones, except for the more compatible elements (Cr,
Co, and V; Table 1; Supplementary material 1). Further-
more, the Alamedilla basalts present high Nb/Y values
(1.1-1.6) and are plotted between the transitional and alka-
line fields in the Ti/Y vs. Nb/Y diagram (Figure 7(a)) [90].
Cretaceous pillow lavas show Zr/Y ratios between 6 and

10, close to the composition of modern ocean-island basalts
(OIB) (Figure 7(b)) [91]. Lower Nb/Y (<0.8) and Zr/Y ratios
characterize the Piletas samples (Lower-Middle Jurassic),
which are plotted together with the Jurassic and Triassic
ophites (Groups 1 and 2, respectively) and the more scat-
tered Nevado-Filábride ultramafic rocks (Figures 7(a) and
7(b)). Thus, the basaltic rocks of the Subbetic Basin
present intermediate geochemical characteristics between
alkaline or oceanic island basalts (OIB) and enriched mido-
cean ridge basalts (E-MORB) (e.g., [27, 82, 91, 92]): TiO2 =
0:82 − 2:78, P2O5 = 0:11 − 0:40, Zr = 50:3 − 157:9, Y = 10:01
− 19:21, ðLa/YbÞn = 2:6 − 6:8, Th/Yb = 1:28 − 2:29, and
Ta/Yb = 0:05 − 1:59. Nevertheless, the Alamedilla samples
consistently show higher trace element contents and a
more alkaline signature than the Piletas ones (Figure 7).

According to the MORB-normalized Th vs. Nb diagram
(Figure 7(c)), most of the studied samples are plotted along
the MORB-OIB array. This projection is useful as a variation
and tectonic discrimination diagram [93]. The similar
behavior of Th and Nb during melting and fractionation
processes maintains a reliable limit between subduction-
related basalts and the MORB-OIB array, even for basaltic
rocks that resulted from different melting/fractionation
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Figure 7: Geochemical characterization of the Subbetic basaltic magmatism. The samples collected in Alamedilla, Piletas, Cerro de los
Peones, and El Peñón areas (Table 1) are plotted together with the Nevado-Filábride metabasalts [80] and the Triassic (Group 2) and
Jurassic (Group 1) ophites [77]. Zagros ophiolites are included for comparison [82, 83]. Consider P-MORB comparatives as a
compositional group (with enriched compositions), not related to a tectonic scenario. (a) Ti/Y vs. Nb/Y diagram (after [90]). (b) Zr/Y vs.
Zr/Nb variation diagram showing the standardized compositions of MORB-, E-MORB-, and OIB-type basalts [91]. (c) N-MORB
normalized Th vs. Nb discrimination diagram [93]. MORB-OIB array and subduction-related fields are defined according to the
projection of a huge number of ophiolitic basalts.
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percentages. However, the nature of subduction-unrelated
sources may be mixed up due to differential partial melting/-
fractionation percentages. The studied Subbetic basalts pres-
ent trace element compositions similar to the comparative
P-MORB, with higher Th and Nb contents in the Upper
Cretaceous samples, i.e., indicative of a more alkaline signa-
ture. Still, a significant group of the Jurassic basalts, together
with the Triassic subvolcanic comparatives (Group 2 of the
ophites), departs from the general trend of subduction-
unrelated oceanic basalts towards calc-alkaline compositions
(Figure 7(c)). This crustal geochemical input may be derived
from the source or acquired during the ascent and emplace-
ment of the basaltic melts.

The two samples collected in the El Peñón area within
the Middle Jurassic Camarena Fm. present intermediate geo-
chemical characteristics between the Early Jurassic and Late
Cretaceous magmatism (Figure 7). ALM-9 sample repre-
sents a thick deposit of accumulated pillows. This basaltic

rock shows high Th and Nb contents, together with high
Nb/Y and Zr/Y ratios and is therefore close in composition
to the more alkaline Alamedilla samples. In turn, the basaltic
lava flow ALM-8 is quite similar to the Piletas samples and
the Triassic ophites (Group 2) (Figure 7).

MORB-normalized trace element patterns of the studied
samples highlight some characteristics of the Subbetic basal-
tic magmatism (Figure 8(a)): (i) pillow lavas and subvolcanic
bodies are enriched in more incompatible elements (Th and
LREE); (ii) these rocks show intermediate compositions
between standardized enriched midocean ridge basalts and
oceanic island basalts; (iii) the Alamedilla-type basalts
(Upper Cretaceous) show higher trace element contents
without major anomalies; and (iv) some of the Piletas
samples (Lower to Middle Jurassic) present a deep Nb-Ta
negative anomaly.

Regarding REE compositions, the Alamedilla samples
and ALM-9 (El Peñón) present the highest ratios between
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light, medium, and heavy REE (Figure 8(b), Supplementary
material 2). The Piletas samples, ophites, and most of the
Nevado-Filábride metabasalts show less steeped REE pat-
terns. Zagros comparative data define two different trends
with less fractionated HREE, i.e., positive slopes between
normalized La/Sm and Sm/Yb ratios, and more fractionated
samples with higher Sm/Yb ratios. The exception to this
general REE behavior is a group of Piletas samples with
increasing La/Sm values at decreasing Sm/Yb ratios
(Figure 8(b)). These basaltic rocks depart from the MORB-
OIB array in the Th vs. Nb diagram (Figure 7(c)).

We added Yb and Ti normalizations to the trace element
contents referred to MORB, following the methodology of
Pearce [94] (Figures 8(c) and 8(d)). The Yb normalization
subtracts the effects of fractional crystallization from the
original melt/rock fractionation of more incompatible trace
elements. The Subbetic Cretaceous basaltic rocks are
enriched in incompatible elements and LREE with respect
to Jurassic magmatism. The latter includes samples with dif-
ferent trace element patterns: three samples present particu-
larly high Th/Nb and La/Sm ratios, together with low Sm/Yb
values (Figure 8(c)); the remaining Jurassic samples show
flatter trace element patterns and similar compositions to
other enriched or plume-related MORB. An additional Ti
normalization emphasizes the behavior of the least incom-
patible elements (HREE), which depends on the stability of
Grt at the solid assemblage and, hence, on the source depth.
The patterns of more incompatible trace elements may be
interpreted according to the nature of the mantle source
and/or the melting percentage (Figure 8(d)). In this regard,
the Alamedilla and Piletas samples have similar slopes, close
in composition to the Zagros P-MORB. A significant excep-
tion is constituted by the Piletas samples with deep Nb-Ta
negative anomalies. When compared with the Zagros
ophiolites, the Alamedilla samples show steep HREE pat-
terns similar to the enriched magmatism with high Sm/Yb
ratios. Flatter HREE patterns among the Subbetic samples
were observed in the Piletas basalts, with negative Nb-Ta
anomalies.

6. Discussion

6.1. Variation of Basaltic Melts and Mantle Sources during
Rifting Evolution. The basaltic rocks of the Subbetic Basin
reveal a volumetrically poor magmatic response to Mesozoic
rifting in the South Iberian continental margin. These
magmas are interspersed in Triassic, Jurassic, and Creta-
ceous sediments, either as subaqueous lava flows or shallow
subvolcanic sills and dikes (the so-called ophites), the latter
being more frequent in older formations (Figures 1–3).

The geochemical study of the Mesozoic basalts in the
Subbetic Basin shows a mostly homogeneous magmatism
along the protracted rifting process, characterized by
enriched compositions in incompatible elements and LREE
with respect to MORB. Nevertheless, the higher Ti, Zr, Th,
and Nb contents observed in the Cretaceous samples
evidence an increase in the alkaline signature of the younger
magmas. Similar geochemical evolutions have been described

in coeval rift-related magmatism of the North Iberian plate
margins (e.g., [95]).

The Piletas-type samples (except ALM-13) show high
#Mg values (0.64-0.73), which suggest that immobile ele-
ment variations are derived from the source, discarding
significant in situ fractionation processes. Petrographic
observations (Figure 6), together with the short-range trace
element variations vs. Zr (Supplementary material 1) and
the presence of positive and negative Eu anomalies (Supple-
mentary material 2), point to a likely Ol+Pl±Px fractionation
during ascent and emplacement of the basaltic melts. This
process may have been favored by the building of an incipi-
ent magmatic plumbing system at upper crustal levels, as
suggested by the presence of gabbroic rocks and the domi-
nant sills and dikes observed in the Triassic and Jurassic for-
mations. Lower #Mg and Al2O3/TiO2 values characterize the
Alamedilla-type pillow lavas. Such features, together with
the slightly negative Eu anomalies, would indicate a similar
Ol+Pl±Px in situ fractionation for the younger magmatism
(Supplementary material 1 and 2). Nevertheless—according
to the enriched Th, Nb, Ti, and LREE compositions, the
steep trace element patterns after MORB, Yb, and Ti nor-
malizations, and the differentiated behavior of LREE/HREE
ratios vs. Zr (inferred fractionation trends) (Figure 8, Sup-
plementary material 1)—trace element contents and ratios
also account for the nature of mantle sources and melting
conditions and highlight important differences between the
Cretaceous and the Triassic/Jurassic Subbetic magmatism.
Similarly, incompatible and LREE in the Subbetic basalts
show positive correlations vs. Zr (a proxy of the melting/-
fractionation progress) and present similarly steep patterns
that relate this magmatism to enriched mantle sources. In
contrast, HREE (e.g., Y and Yb; Supplementary material 1)
show constant values in the Cretaceous Alamedilla-type
samples. The fact that these basalts show steep positive cor-
relations between Ce/Y, Th/Yb, or Ce/Yb and Zr would sug-
gest the stability of a mineral phase that captured HREE at
the source (e.g., Grt) (Figure 8, Supplementary material 1).

The Th/Yb vs. Nb/Yb and TiO2/Yb vs. Nb/Yb projec-
tions (Figures 9(a) and 9(b)) [94] summarize the results of
the previously described Th vs. Nb diagram and MORB,
Yb, and Ti normalized trace element patterns (Figures 7(c)
and 8). The Piletas samples, especially those with higher
Nb-Ta negative anomalies (Figure 8), depart from the
MORB-OIB array. The vertical trends depicted by these
older basalts, and the Upper Triassic subvolcanic (Group 2;
[77]) and volcanic rocks (Zamoranos Fm.; [79]), entail a
subduction-related geochemical signature that may reflect
the presence of crustal components, within the source or
acquired during the ascent and emplacement of the basaltic
melts. This crustal signature can be modeled in terms of
Amp-bearing lherzolites (Figures 9(c)–9(e)). The departure
of the Piletas samples with steep Nb-Ta anomalies from
the typical melting/fractionation trend depicted by Spl- or
Grt-bearing lherzolites (Ce/Y vs. Zr/Nb; Figure 9(c)),
together with the negative correlation between Zr/Sm vs.
Ce/Y and La/Yb vs. Dy/Yb ratios (Figures 9(d) and
9(e)), can be explained by the buffering effect of Amp
over the MREE in mantle sources [96]. Regarding regional
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comparative data, the younger subvolcanic rocks (Group 1 of
the ophites) resemble an averaged composition of the scat-
tered Nevado-Filábride metabasalts and may derive from
the uncontaminated and enriched mantle source of
Triassic-Jurassic magmatism (Figures 9(a) and 9(b)). These
geochemical characteristics and the restored cross-section
(Figure 3) relate the Subbetic and the Nevado-Filábride sam-
ples and preclude that these metabasalts might come from
the metamorphism of remnants of a mature (N-MORB-type)
oceanic crust.

The Alamedilla samples are close in composition to typ-
ical OIB basalts (Figures 8, 9(a), and 9(b)). According to
numerical models, these enriched compositions slightly
above the MORB-OIB array could derive from the heteroge-
neous melting of a contaminated and enriched source, when
the process entailed very low melting percentages [94].
Accordingly, the less refractory source material with high
Th/Nb ratios might be involved. However, some evidence
points to a deeper source for the Cretaceous Subbetic basalts:
(i) the steep HREE patterns (Figure 8); (ii) the positive cor-
relation between melting/fractionation progress (increase of
Zr content or decrease of #Mg) and LREE/HREE ratios
(Supplementary material 1). The trends defined by the
Alamedilla-type basalts between the modeled compositions
of enriched Spl- and Grt-lherzolites suggest the presence of
melts from deep and shallower sources (Figures 9(c)–9(f)).
The mixing proportions and melting percentages depend
on the enrichment factor of the mantle sources (light,
medium, and heavy REE ratios) [82, 96]. According to
the Dy/Yb and La/Yb ratios (Figure 9(e)), in the case of
highly enriched sources, a 50/50 to 70/30 mix between
low melting percentages (<10%) of Spl- and Grt-lherzolites,
respectively, might have generated the Cretaceous Subbetic
magmatism. The subsequent 20-30% fractionation of a solid
assemblage constituted by Ol+Pl±Px could reproduce the
incompatible and rare earth element patterns observed in
the Alamedilla-type samples (Figure 9(g)). These variation
diagrams suggest that the Triassic/Jurassic magmatism that
was not significantly modified by contaminated sources or
assimilation processes (ophites G1 and Piletas samples with-
out significant Nb-Ta anomaly) also entails the presence of
melts derived from Grt-lherzolites or from the Grt+Sp-lher-
zolite stability field. Tentatively, these older basalts resulted
from higher melting percentages and lower melt proportion

originated at deeper sources (Grt-present melting) in com-
parison with Cretaceous magmatism (Figure 9).

6.2. Melt-Weakening Processes. The timing and nature of the
limited magmatism in magma-poor rifted basins provide
important clues for discerning the deformation mode. A
number of opposing kinematic models attempt to explain
crustal hyperextension. One group proposes distributed nor-
mal faulting within the upper crust acting sequentially in
time and coeval to ductile deformation of the lower crust
[24, 97–99]. Alternatively, hyperextension can result from
slip on a lithospheric-scale fault that finally acts as a large-
scale detachment exhuming serpentinized mantle (e.g., [15,
23, 100, 101]).

Our results reveal that the onset of mantle partial melt-
ing began during an early stage of continental rifting,
recorded by facies and thickness variations at the basin scale.
Interlayered basalts within the Zegrí Fm. (Piletas-type sam-
ples) apparently recorded this process, suggesting that melt-
ing and deformation occurred within the lithospheric mantle
at the onset of the rifting. Accordingly, our data indicate that
the lithospheric-scale deformation governed the evolution of
the continental rifting at the South Iberian paleomargin
from the earliest stages, melt-weakening processes acting
on a rifting event with limited magma production. This con-
clusion may back up the results obtained in other hyperex-
tended basins (e.g., [29, 33]).

The Subbetic Basin developed on the Southern Iberian
pre-Mesozoic crust, a region that previously underwent Var-
iscan orogenesis at a late Paleozoic time. Major WNW-ESE
trending lithospheric shear zones and faults constitute the
boundaries of the main Variscan continental domains (e.g.,
[34]). The Jurassic-Early Cretaceous transfer faults that seg-
mented the South Iberian paleomargin run parallel to these
Variscan boundaries, probably playing an important role
in triggering segmentation and oblique rifting. Moreover,
the aeromagnetic map of Southern Iberia [102] reveals that
the WNW-ESE trend of the Variscan structures runs parallel
to the elongated magnetic dipoles that extend beneath
the Guadalquivir foreland basin and the Jurassic-Early
Cretaceous transfer faults (Figure 1(a)) [44].

The positive feedback between mantle melting, weaken-
ing processes, and lithospheric-scale detachments calls for
the presence of fertile peridotites in the upper mantle.
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Hence, we interpret that the crustal signature of the Jurassic
basalts and the Upper Triassic ophites and volcanic rocks
(deep Nb-Ta negative anomalies and high Th/Nb ratios)
was acquired at the mantle source. Bits of evidence serve to
discard the contamination of older basaltic melts during
ascent and emplacement processes in the crust: (i) the rapid
quenching of sills and dikes prevented the geochemical
interaction between the intruding melts and the host upper
crustal rocks and (ii) an increasingly thin crust and the vol-
umetrically poor magmatism did not favor the building of a
thermal dome in the lower crust where basaltic melts could
have assimilated crustal rocks and/or enhanced crustal ana-
texis [103, 104]. Furthermore, a few tens of km north of the
study area, Cenozoic volcanic rocks contain xenoliths of
refertilized Amp-lherzolites, probably associated with a
Paleozoic suprasubduction mantle [105, 106].

In the absence of an active subduction or mantle plume
in the Mesozoic rifted margin of Southern Iberia, the pres-
ence of fertile ultramafic lithologies along with the attenu-
ated crustal thickness most likely exerted major control
upon the basaltic magmatism [28, 30]. Any anticipated
direct relation between crustal thickness and Grt-signature
in the melting products is lacking in the hyperextended Sub-
betic margin. Contrariwise, the initial rifting stages were
dominated by partial melting of shallower areas of the man-
tle dominated by refertilized lherzolites (Figure 10(a)). These
mantle regions modified by ancient crustal component-
s—having melted at higher pressures than host peridotites
at the same potential mantle temperature—would have
enhanced lithospheric weakening [28, 107]. Subsequently,
the Grt signal increased and the crustal signature decreased
in the Subbetic basalts during rifting evolution. These char-
acteristics suggest the development of a rising mantle col-
umn and a proportional increase of the liquids derived
from Grt-present melting (Figure 10(b)).

Considering the conspicuous traces of Paleozoic subduc-
tive remnants in the margins of Iberia, the presence of Grt-
pyroxenites, originated by the reaction of high-silica melts
(derived from eclogites) and peridotites, is a feasible hypoth-
esis [28]. We assume that the high MREE/HREE ratios in
the Subbetic basalts are due to partial melting of deep lher-
zolites in the Grt stability field (modeled above; Figure 9).
Still, the putative presence of pyroxenites as Grt-signature
donors which are stable at shallower mantle regions cannot
be dismissed and should be evaluated in the future (e.g.,
[108–113]).

7. Conclusion

The composition of submarine volcanic rocks from the
Subbetic hyperextended basin yields new insight into the
mechanical behavior of the subcontinental mantle during
continental rifting. Basaltic volcanism—along the rift axis
during crustal attenuation—interacted with sedimentary
packages sinking into underlying evaporate/clay-rich rocks.
The geochemical characteristics of volcanic rocks evolved
during the extensional process: (i) Cretaceous basaltic mag-
matism, coeval with crustal hyperextension and postrift
stages, records highly enriched MORB compositions; the

moderate Sm/Yb values and the positive correlation between
LREE/HREE and Zr point to the involvement of deep (Grt-
present) mantle sources in the origin of late basaltic melts;
(ii) conversely, the Lower to Middle Jurassic syn-rift basalts
feature less enriched MORB compositions, moderate La/Sm,
and low Sm/Yb ratios, with deep Nb-Ta negative anomalies
and high Th/Nb ratios in most of the samples.

Mantle-derived basalts interlayered within the Lower
Jurassic syn-rift deposits suggest that melting and deforma-
tion within the lithospheric mantle began early during
continental rifting. We interpret this initially enriched stage
as a signal of partial melting of recycled crustal rocks within
the upper mantle, associated with remnants of pre-Mesozoic
subducted slabs. The melt-weakening process could there-
fore explain the inception of lithospheric-scale shear zones
controlling the evolution of magma-poor hyperextension,
which progressed until Cretaceous times, with the activation
of deeper melt sources in the mantle and an increase of the
alkaline signature in the basaltic deposits.
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