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A B S T R A C T   

Understanding just how the increase in the Earth’s Surface Temperature (LST) is related to alterations of the 
urban climate —Surface Urban Heat Island (SUHI) or Urban Hotspots (UHS)— and with the deterioration of 
citieś environmental quality has become a great challenge. Societies worldwide seek actions that might break 
these trends and improve the quality of life of local inhabitants. In this research, with the help of Landsat 5, 7 and 
8 satellite images, the evolution of land use/cover (LULC), LST and SUHI were studied over a long period, from 
1985 to 2020, in the metropolitan area of the city of Granada (Spain). The aim was to evaluate how these 
variables, together with the Urban Index (UI), Normalized Difference Built-up Index (NDBI), Normalized Dif-
ference Vegetation Index (NDVI) and Proportion of Vegetation (PV), have influenced the variability of the UHS 
and the level of thermal comfort according to the Urban Thermal Field Variance Index (UTFVI). Reported as 
results, corroborated by statistical analysis, are mean increases in LST (2.2◦C), SUHI (0.6◦C), UHS (20.4%), and 
class 6 of the UTFV (26.2%). NDBI and UI are associated with high variations in LULCs. These have suffered 
increases in built-up and bare soil coverage, and decreases in water bodies, vegetation and farmland coverage.   

1. Introduction 

In recent years, extreme weather events tied to climate change have 
been acknowledged as a most urgent challenge facing society (Kovats 
et al., 2005; Song et al., 2020). One process contributing highly to 
climate change is soil modification through the expansion of urbanized 
areas owing to population growth (Li et al., 2011). Currently, according 
to a report by the United Nations, 50% of the world́s population is urban; 
and it is expected to increase to 70% by 2050 (UN, 2018). Thus, in the 
next 30 years, an increase of 2,500 million inhabitants (Mukherjee & 
Singh, 2020) will mean growth of impervious surfaces for coverage 
amounting to approximately 1,527,000 km2 (Schneider et al., 2010). 

It is known that urban development is the main driver of economic 
and urban growth, implying an expansion of industry and transport, but 
it alters the urban microclimate through an increase in the Earth’s mean 
surface temperature (LST) (Scolozzi & Geneletti, 2012; Song et al., 
2020). Recent investigations have reported a positive correlation be-
tween LST and urban areas, and a negative correlation between LST and 
green areas: urban areas have higher temperatures than rural ones, 
though urban green areas have somewhat lower temperatures (Hua 

et al., 2020; Karakuş, 2019; Tsou et al., 2017; Yang et al., 2020). The 
greatest increases in temperature are mainly due to the phenomenon 
called Urban Heat Island (UHI), which produces a modification whose 
intensity is heightened by human activities (Santamouris, 2020). The 
authors Yao et al., 2021 found, in the cities of mainland China, that 
human activities were behind an increase in temperatures positively 
correlated with the impervious areas of urban and rural areas. Recent 
studies indicate that the average annual temperature of a city having 
more than one million inhabitants is between 1◦C and 3◦C higher than 
the surrounding non-urban areas (Khamchiangta & Dhakal, 2019). 

Further studies have confirmed that the UHI generates a series of 
climatic, environmental and socioeconomic problems that affect the 
quality of life of people living in cities (Dwivedi & Mohan, 2018; Mac-
intyre et al., 2018; Rozos et al., 2013). They include a reduction of 
biodiversity (Čeplová et al., 2017), the degradation of water and air 
quality (Feizizadeh & Blaschke, 2013), changes in the energy balance 
(Arnfield, 2003), an increased cost of energy (Santamouris, 2020), 
detrimental effects on the regional climate (Sarrat et al., 2006) and even 
increased mortality (Arbuthnott & Hahat, 2017). 

Therefore, changes in urban land cover cause changes in the 
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microclimate, which in turn affect the physical and mental well-being of 
the inhabitants of urban areas (Das & Das, 2020). Spain is one of the 
European countries showing the greatest development of artificial 
coverage or built-up area. It is therefore necessary to ascertain the 
consequences of high temperatures in order to improve the quality of life 
for Spanish citizens, and report results that may be extrapolated to other 
geographic realms. To this end, several comfort indices can be used: the 
Urban Heat Island Intensity Index (UHIII), the Physiological Equivalent 
Temperature (PET), or the Urban Thermal Field Variance Index (UTFVI). 
The latter is commonly used by the scientific community to assess the 
thermal quality of urban areas. It allows for the identification of 
high-temperature spaces denoted Urban Hot Spots (UHS) (Amindin 
et al., 2021; Das & Das, 2020; Sharma et al., 2021) and their association 
with different Land Uses/Land Covers (LULC). Recent research has 
concluded that UHS are found within urban areas having higher UHI 
intensities and which correspond to areas of higher LST. These studies 
warn of significant increases in the LST of urban areas during the past 
decade, directly linked to an increase in UHS (Amindin et al., 2021; Luo 
& Wu, 2021; Sharma et al., 2021). A study on the industrial development 
authority of New Okhla (India) between the years 2011 and 2019 re-
ports respective LST and UHS increases of 6.4◦C and 33.56% (Sharma 
et al., 2021); a study on the city of Ahvaz (Iran) between 1995 and 2018 
likewise reported increases in LST and UHS of 3◦C and 4%, respectively 
(Amindin et al., 2021); a study involving five districts of the Suez 
Governorate area (Egypt) between 1988 and 2014 reported increases of 
4.5◦C in the LST and 16% in the areas classified as UHS (Ahmed, 2018), 
a study of 397 cities in China (Yao et al., 2019) reported a significant 
annual increase in daytime and night-time SUHI between 2001 and 
2017, while one of 14 cities also in China from 1961 to 2014 (Li et al., 
2021) detected a decrease in environmental humidity related to the 
increase in SUHI. These reported increases in LST and UHI, in view of 
further study results (Kafy et al., 2021; Singh et al., 2017; Vimayak et al., 
2022), point to significant increases in the UTFVI classes with greater 
environmental discomfort for the coming years. Although the data ob-
tained in these studies reflect some small variations in LST and UHS 
worldwide, they coincide in identifying industrial areas and bare soils 
without vegetation as the places where the largest increases are located, 
meaning the worst environmental quality indices. 

To determine such phenomena, remote sensing stands out among the 
different methodologies available. It allows for large-scale urban studies 
of LST, UHI, UTFVI and LULC (Song et al., 2018) by means of satellite 
images with infrared sensors (TIRS). To understand the effects that 
variations in the coverage of urban areas can have on the LST and the 
SUHI, it is essential to analyze land use and cover (Tepanosyan et al., 
2021). The evolution of these phenomena in the urban environment 
must be studied for mitigation purposes, to maintain some balance 
within a city. The information provided by research studies can equip 
urban areas in an effort to be more sustainable and resilient to rising 
temperatures caused by climate change. 

The objective of this research is to study the evolution undergone by 
the LULC, LST and SUHI in the metropolitan area of Granada (Spain) 
between 1985 and 2020, in order to evaluate how these variables 
—together with the Urban Index (UI), Proportion of Vegetation (PV), 
Normalized Difference Built-up Index (NDBI) and Normalized Differ-
ence Vegetation Index (NDVI) — have influenced the variability of UHS 
and UTFVI. Based on Landsat 5, 7 and 8 images, NDBI, NDVI, UI, PV 
index maps and LULC maps were generated, using the support vector 
machine (SVM) method. In turn, the LST was recorded, the SUHI was 
obtained, the evolution of the UHS was explored, and the level of 
thermal comfort of the city was evaluated through the UTFVI system. 
Finally, statistical analysis served to determine correlations between the 
data obtained and the variables of study, by means of the Data Panel 
technique. Compared to traditional correlation methods, this approach 
is novel in that it admits the inclusion of individual effects of a certain 
area to arrive at global results. This aspect is usually overlooked by more 
commonly used methods, yet it provides for more complete results. 

Several issues of great importance serve to justify our research: 1) 
The analyzed city does not have SUHI studies that contemplate a wide 
temporal variability like the range contemplated here. There is only one 
study of the spatial and temporal variability of the SUHI during a time 
interval of one year (Hidalgo & Arco, 2021). 2) The study period covered 
by this research is a positive element, allowing a view of how the indices 
and factors investigated vary in an extended time interval. Recent 
studies (Barbieri et al., 2018; Feizizadeh & Blaschke, 2013; Mukherjee & 
Singh, 2020) tend to use specific values of indices that are extrapolated 
to long periods to derive global results. Such a premise might be erro-
neous; recent research (Anjos et al., 2020; Emmanuel & Krüger, 2012) 
warns of high variability regarding the LST and UHI both over time and 
throughout a single day. 3) The more commonly used system for 
obtaining the LST, by means of in situ measurements with high-precision 
radiometers, is very expensive and requires significant measurement 
times. Contrariwise, the use of satellite images presents a significant cost 
reduction, as they are freely accessible on the platforms of the US Na-
tional Aeronautics and Space Administration (NASA) and the European 
Space Agency (ESA). This methodology therefore enables one to reduce 
work time, given that the platforms offer images of any part of the earth 
since the date of the satellite launch. 

The research questions that we intend to answer are the following: 1. 
How have the LST and SUHI variables, and the LULC, NDVI, NDBI, UI 
and PV indices, evolved in the area studied during the period 1985- 
2020? 2. What relationships exist between/among these variables? 3. 
How have the UHS in the study area evolved and what relationship do 
they have with the different LULC coverages? 4. How have the different 
areas of the UTFVI system evolved? 5. Could the results obtained prove 
important for future urban planning? 

The advance that this research represents is to provide a compre-
hensive study on the evolution of the indices and factors indicated 
during the last 35 years in area of study. A better understanding of their 
evolution within the analyzed time interval will, hopefully, aid public 
administrations and urban planners at the time of decision-making, to 
adopt measures that mitigate the effects of phenomena that alter the 
urban climate, such as the Heat Island Urban (UHI). Effective and effi-
cient measures are needed for new urban development, promoting 
resiliency to climate change, improved quality of life for inhabitants, 
and lesser harmful effects in terms of LST and UHI increases. The 
methodology applied, under an open source work environment, more-
over allows for extrapolation of our results to other areas. We therefore 
uphold it as a model to be followed in future studies. 

2. Materials and methods 

2.1. Study area 

The area studied belongs to the “plan for urban agglomeration” of the 
city of Granada (Andalucía), in southern Spain. Along with the city it-
self, this area embraces 31 smaller municipalities: Albolote, Alfacar, 
Alhendín, Armilla, Atarfe, Cajar, Cenes de la Vega, Cijuela, Cullar Vega, 
Chauchina, Churriana de la Vega, Dilar, Fuente Vaqueros, Gojar, Gue-
vejar, Huetor Vega, Jun, Lachar, Maracena, Monachil, Ogíjares, Otura, 
Peligros, Pinos Genil, Pinos Puente, Pulianas, Santa Fe, Viznar, La Zubia, 
Las Gabias and Vegas del Genil. 

The UTM geographic coordinates of the center of the area are: lati-
tude 37.111741 N and longitude 03.362401 W; the average altitude is 
680 meters above sea level (Fig. 1). The area includes the city of Granada 
(280,000 inhabitants) and the aforementioned small to medium-sized 
municipalities. In 1985 it had a population of 210,000 inhabitants and 
an urban area of 12,145 hectares (Ha), increasing by 2021 to 450,000 
inhabitants and 37,790 Ha (Statistics National Institute (SNI) 2021). 
These data mark a growth of 240,000 persons and 25,645 hectares in an 
interval of 35 years. The local climate is conditioned by its proximity to 
the coast and its location along the foothills of Sierra Nevada, with an 
average altitude of 2,045 meters and a maximum of 3,482 meters a.s.l, 
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making it the second highest mountain massif in all of Western Europe, 
after the Alps. According to the Köppen-Geiger climate classification, the 
area under study has a transition climate between the cold semi-arid 
climate (Bsk) and the Mediterranean climate (Csa) owing to its prox-
imity to a vast mountain system. The Csa climate features hot, dry 
summers and rainy winters. The Bsk climate, in turn, is considered 
transitional between the Mediterranean climate and the desert climate. 
It presents warmer temperatures overall, with dry summers and rela-
tively dry winters (de Castro et al., 2007). The approximate number of 
hours of sunshine per year is 2,917, hence an average of 7.99 hours of 
sunshine per day. The average annual temperature fluctuates between 
30.5◦C in July and 6.5◦C in January; there are summer extremes of 44◦C 
and winter minima of -3◦C (MSA, 2021). 

2.2. Methodology 

The methodology carried out for the development of this research 
work is shown in Fig. 2. 

The NDVI, NDBI, PV, UI and LST indices were determined using 
Landsat 5, 7 and 8 with the open-source software QGIS, version 3.10.5. 
LULC maps for those years were created from the indicated images by 
means of the support vector machine (SVM) method. The determination 
of land cover relied on a precision matrix to ensure accuracy; the area to 
be assessed underwent cross-tabulation between the reference category 
and the classified one (Campbell, 1996). Its use in studies that require 
the classification of the land surface is well documented (Xu et al., 2009; 
Yoo et al., 2019). Next, the SUHI was determined, and the UHS and 
UTFVI of the area under study were identified with the Raster calculator 
tool of the indicated software. The specialized software for data science, 
STATA, version 16, was used for statistical analysis of the data obtained 
in our study. 

2.3. Landsat data 

Landsat 5, 7 and 8 images were obtained from the United States 
Geological Survey (USGS) for the years indicated below:  

- Landsat 5 (Bands 2 to 6): Years 1985, 1990 and 1995.  
- Landsat 7 (Bands 2 to 6): Years 2000, 2005 and 2010.  
- Landsat 8 (Bands 2 to 6 and 10): Years 2015 and 2020. 

The Landsat data set with their optical bands were used to determine 
the indices: NDVI, NDBI, LULC, PV and UI; the thermal band was used to 
retrieve the LST values. 

Landsat 5 Thermal Mapper (TM) data cover a total of one thermal 
infrared band (band 6) with a resolution of 120 m and six multispectral 
bands (bands 1 to 5 and 7) with a spatial resolution of 30 m. Landsat 7 
has six multispectral bands (bands 1 to 5 and 7) with a spatial resolution 
of 30 m, plus one thermal band (band 6) on the Enhanced Thermal 
Mapper Plus (ETM+) sensor with a spatial resolution of 60 meters. 
Finally, the two Landsat 8 scanning instruments —Operational Land 
Sensor/Thermal Infrared Sensor (OLI/TIRS)— have a total of two 
thermal infrared bands (bands 10 and 11) with a spatial resolution of 
100 m, and 8 multispectral bands (bands 1 to 7 and 9) with a resolution 
of 30 m. Yet for the determination of the LST with Landsat 8, only band 
10 was used. The Landsat 5 bands were resampled at a spatial resolution 
of 30 meters, while the Landsat 7 and 8 bands were resampled at a 
resolution of 15 meters thanks to the use of a panchromatic band. 

The area of study is located under the path of the Landsat 5, 7 and 8 
satellites. The data set was acquired for the month of April of each year, 
when the weather in Spain is usually sunny and mild, therefore allowing 
for better discrimination of the different land uses. Throughout this time 
interval, 24 images were used (three per year, 1985: 07, 15 and 24; 

Fig. 1. Granada study area, Andalusia, Spain.  
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1990: 06, 13 and 22; 1995: 04, 11 and 20; 2000: 01, 13 and 24; 2005: 06, 
15 and 22; 2010: 02, 14 and 26; 2015: 02, 16 and 23; and 2020: 04, 11 
and 20), having a cloudiness index of less than 15 to enhance accuracy in 
obtaining the LST and subsequent SUHI. The selected images were 
georeferenced using the ETRS89/UTM Zone 30N projection system. 
Atmospheric correction in OLI bands relied on the DOS (Dark Object 
Subtraction) algorithm (Chavez, 1988; Li & Meng, 2018; Zhang et al., 
2015) and the Semi-Automatic Classification Plugin (SCP) with the 
open-source software environment QGIS, version 3.10.5 (Congedo, 
2016; Rozenstein et al., 2014). 

2.4. Thermal bands 

2.4.1. Spectral radiance (Lλ) 
To obtain the spectral radiance from the digital numbers (DN) of the 

TIRS band, the following equation was used (Kafer et al., 2019): 

Lλ = ML × QCal + AL, (1)  

where Lλ is the spectral radiance of the upper part of the atmosphere 
(TOA) expressed in W/(m2•sr•μm); ML is the specific multiplicative 
factor of the band that is located in the metadata file of the Landsat 
images. For TIRS bands this factor is 3.342 × 10− 4 W/ (m2•sr• μm); 
QCal is the digital value (DN) of the bands that ranges from 0 to 255; and 
AL is the additive rescaling factor specific to the TIRS bands, also 
included in the image metadata files. 

2.4.2. Brightness temperature 
Spectral radiation (TOA) was converted to brightness temperature 

(T) in◦C using equation 2. The thermal conversion constants K1 and K2 
of the TIRS bands attached in the data file served to this end. The for-
mula used is as follows (Kafer et al., 2019; Weng et al., 2004): 

T =
K2

log
(

K1
Lλ
+ 1

) − 273.15, (2)  

where Lλ is the spectral radiance derived from equation 1, and K1 and K2 
are the thermal conversion constants of the TIRS bands that appear in 
the metadata files (Landsat 5: K1= 607.76 and K2= 1260.56; Landsat 7: 
K1= 666.09 and K2= 1282.71; Landsat 8: K1= 774.8853 and K2=

1321.0789). 

2.4.3. Land surface emissivity (ε) 
The earth’s surface and its various components have different 

emissivities. This factor was determined by applying equation 3 based 
on the NDVI: (Sharma et al., 2021): 

ε = 0.004 × Pv + 0.986, (3)  

where Pv is the proportion of vegetation derived from the NDVI 
(equation 7). 

Fig. 2. Methodology.  
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2.4.4. Land surface temperature (LST) 
In view of the emissivity values of the earth’s surface (LSE), the Land 

Surface Temperature (LST) was determined by means of equation 4 
(Weng et al., 2004): 

LST =
T

(
1 +

(
λ T

C2

)
xlog(ε)

) (4)  

C2 =
h x c

s
, (5)  

where LST is the land surface temperature, λ is the wavelength of the 
emitted radiation (Landsat 5 and 7: λ =11.457 µm and Landsat 8: λ 
=10.8 µm), T is the Landsat brightness temperature, ε is the emissivity 
of the ground, C2 = 1.4388 × 10− 2 m K, h is Planck’s constant with a 
value of 6.626 × 10− 34 Js, s is the Boltzmann constant with value 1.38 ×
10− 23 J/K, and c is the speed of light with a value of 2.998 × 108 m/s 
(Weng et al., 2004). 

2.5. Optical bands 

2.5.1. Land use/Land cover (LULC) 
LULC maps were prepared from Landsat images by composing a red, 

green, and blue (RGB) band plan. Next, using the support machine 
method (SVM) and the QGIS software, the LULC plans were derived. 
This methodology has been used in numerous investigations (Otukei & 
Blaschke, 2010; Shafri & Ramle, 2009) to distinguish land use with high 
precision (Amindin et al., 2021). In our research, five main land uses 
were identified: water bodies, vegetation, built-up, agriculture, and bare 
soil. 

2.5.2. NDVI calculation threshold method (NDVI THM) 
The normalized vegetation index (NDVI) is calculated using the op-

tical bands of the near infrared (NIR) and the red band (Red). This index 
allows us to estimate the presence of vegetation in an area. The range of 
NDVI values is between -1 and 1. The first indicates clear and sparse 
soils, while the second indicates dense vegetation. It is calculated using 
the following formula: 

NDVI =
NIR − Red
NIR + Red

(6) 

With the values determined in equation 6, the proportion of vege-
tation (PV) can be calculated. This index determines the proportion of an 
area that is covered by vegetation or another type of soil (Rajeshwari A, 
2014). Equation 7 for the calculation of the PV is derived from the NDVI 
(Yu et al., 2014): 

PV =

[
NDVI − NDVImin

NDVImax − NDVImin

]2

, (7)  

where NDVI is the normalized vegetation index calculated using formula 
(6) and NDVI max and NDVI min are the maximum and minimum NDVI 
values of the interval. 

2.5.3. Normalized difference built-up index (NDBI) 
To calculate the NDBI, the short wave infrared (SWIR) and NIR bands 

were used according to equation 8 (Zha et al., 2003): 

NDBI =
NIR − SWIR
NIR + SWIR

(8)  

2.5.4. Urban index (UI) 
The UI was calculated using SWIR2 and NIR bands following equa-

tion 9 (Kawamura et al., 1996): 

UI =
SWIR2 − NIR
SWIR2 + NIR

(9)  

2.6. Surface urban heat island estimation 

According to the existing literature on the determination of the SUHI, 
it is obtained by means of the temperature difference between the 
measurements made simultaneously in the urban area and the rural area 
(Oke, 1987). Therefore, the SUHI can be determined according to 
equation 10: 

SUHI = TSTurban − TSTrural (10) 

The urban LST values correspond to the average values of the pixels 
located within the urban area. The rural area chosen to derive the SUHI 
through the temperature differences from the urban area corresponds to 
where the Spanish State Meteorological Agency (AEMET) has a rural 
weather station. It lies 16 km outside the city, and there are no paved 
areas within a radius of 1000 m. Using the raster calculator command of 
the QGIS software and the exported Landsat images, the SUHI of 
Granada was determined by equation 10. 

2.7. Urban Hotspots (UHS) 

Hot spots are identified based on the LST within the study area. They 
are zones of variable size found within places showing the highest 
temperatures, and they are usually considered as uncomfortable for 
human activities. These spaces are determined using the following for-
mula (Guha, 2017; Jafari et al., 2021; Sharma et al., 2021): 

LST > μ + 2 ∗ σ, (11)  

where µ and σ are respectively the mean value and the standard devia-
tion of the LST of the zone in ◦C. Using this equation the areas that 
present urban zones with LST values above the mean and with a confi-
dence interval greater than 95% can be determined. 

2.8. Urban thermal field variance index (UTFVI) 

This index allows the value of each pixel of the urban area to be 
appraised in relation to the entire area, so as to obtain a classification of 
environmental quality (Sobrino & Irakulis, 2020; Vimayak et al., 2022). 
The UTFVI values fall into six typologies, in turn presenting six classes of 
ecological evaluation (Table 6). Each is related to the degree of presence 
of the SUHI phenomenon and its impact on the environmental quality of 
the population (Liu & Zhang, 2011). The UTFVI classes, based on the 
strength of the SUHI, range from 1 (excellent) to class 6 (worst), 
determined using the following equation (Guha et al., 2018; Vimayak 
et al., 2022): 

UTFVI =
LST − Tmean

Tmean
, (12) 

Here, LST is the temperature of each pixel (◦C) and Tmean is the 
average LST of the entire area (◦C). UTFVI values below zero indicate the 
complete absence of the UHI phenomenon, meaning it is a site where 
maximum thermal comfort occurs, hence an area classified as having 
excellent environmental quality. As UTFVI values increase, SUHI in-
tensity also increases, and therefore thermal comfort deteriorates 
(Sharma et al., 2021). 

2.9. Strategy of analysis 

Panel data refers to a statistical analysis that combines a temporal 
dimension (time) with a cross-sectional dimension (data or values). This 
method is often cited in the literature and involves the use of multiple 
regression models (Alcock et al., 2015; Chen et al., 2011; Fang & Tian, 
2020), which allows for a larger amount of data to be included than 
under traditional methods. There are three calculation options: ordinary 
squares method (OSM), generalized least squares (GLS), and intragroup 
estimation method (IEM) (Labra, 2014). To ascertain which of these 
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three should be applied, the following steps must be carried out (Chen 
et al., 2011). 1) Using the Hausman test, determine if the effects of the 
analysis are fixed or random; this allows the method to determine 
different hypotheses about the behaviour of the residuals of statistical 
analysis. 2) Evaluation of the model using the Wooldridge and Wald 
tests. Both stages will indicate the most appropriate method to use (Seto 
& Kaufmann, 2003). Our statistical analysis was performed with STATA 
software, version 16. After carrying out the indicated tests, the IEM 
method with random effects was used according to equation 2: 

Yit = β Xit + (αi + μit), (13)  

where μit is the error of the model, αi represents the individual effects, Xit 
are explanatory variables, β is an independent variable, t=time and 
i=individual. 

3. Results 

3.1. Space-time evaluation of spectral indices (LULC, NDVI, NDBI, PV 
and UI) 

The measures of central tendency and dispersion of the spectral 
indices NDVI, NDBI, PV and UI between the years 1985 and 2020 can be 
found in Fig. 3, while the space-time analysis of the spectral indices is 
represented in Figs. 4, 5 and 6. 

The NDVI index presents the highest mean value, 0.368, in the year 
2015, whereas the lowest mean value is 0.225 in the year 2005. The PV 
index gives the highest mean value of 0.627 in the year 1995, the lowest 
mean value being 0.179 in 1985. These values report average reductions 
of -3.41% and -28.09%, respectively, over the study period. The mean 
values of the NDVI and PV indices decreased, respectively, from 0.323 to 
0.312 and from 0.445 to 0.320. Given that the selected images corre-
spond to springtime, the vegetation of the studied area can be consid-
ered as scattered. The values are more intense in the zone toward the 

southeast of the study area, corresponding to the rural zone having 
vegetation or cultivation. The less intense values coincide with the city 
of Granada and its neighbouring municipalities. 

The NDBI index presents the highest mean value of 0.095 in the year 
2010; the lowest mean value is 0.015 in the year 1995. The UI index 
presents the highest mean value of 0.223 in the year 2020, while the 
mean value is lowest, 0.179, in 1985. These values attest to overall in-
creases in the indices during the period under study, of 14.3% and 
24.6%, respectively. The mean values of the NDBI and UI indices went 
from 0.077 up to 0.088 and from 0.179 to 0.223, respectively. Such 
findings point to excessive built-up land coverage, well in line with the 
increase of 3,245 hectares built-up (Table 2) in the years studied. The 
most intense values are seen to coincide with urban sectors within the 
area studied. 

Figure 4 and Table 1 display our analysis of the local coverage, 
broken down by categories. Water bodies present their highest value 
(1069 ha) in the year 2005; their lowest value (166 ha) occurs in 2000. 
Vegetation gives its highest value, 5367 ha, in 2000, whereas the lowest 
value of 2600 ha occurs in the year 2010. Built-up shows the lowest 
value, 8100 ha, in the year 1985; the highest value is seen for 2020, with 
10745 ha. Farming presents the lowest mean value of 4827 ha in the 
year 2020, while the highest mean value of 10175 is found for the year 
1985. Lastly, bare soil coverage presents the lowest mean value of 13000 
ha in the year 1985, whereas the highest mean value of 16412 ha is 
recorded within 2020. Such values denote significant decreases from 
1985 to 2020 of soils identified as water bodies, vegetation and farming: 
of -48.3%, -10.8% and -52.6%, respectively. Contrariwise, increases of 
40.1% and 28.7% are reported for land covers identified as built-up and 
bare soil, respectively. The increase in bare soil coverage might be due to 
an abandonment of farmland motivated by high production costs, 
droughts, progressive industrialization, and/or land speculation by de-
velopers —all common circumstances in the arable lands of the Medi-
terranean basin. Still, according to the data shown in Table 1, the latter 
coverages increased consistently throughout the period studied. 

Fig. 3. Dispersion measures of NDVI, NDBI, PV and UI indices per year.  
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Meanwhile, the coverages of farming, vegetation and water bodies 
present non-constant decreases with strong oscillations. This could 
indicate that the development of such areas also depends on climatic 
conditions, which vary each year depending, particularly, on the 
rainfall. 

The greatest changes in the LULC are found for the northern sector of 
the study area, which reflects a significant increase in bare soil cover. In 
contrast, up to the year 2010, a wide area destined for vegetation grows 
to the northwest, then begins to decrease in the observations in years 
2015 and 2020. 

Seen in Table 2 are the results of the precision matrix carried out to 
verify the LULC maps obtained. The precision was 83%, with a 95% 
confidence interval that varies between 0.77 and 0.89 points. The Tau 
value is 0.795; the Kappa coefficient obtained is 0.785. After determi-
nation of the matrix, however, manual correction was applied to the 
points that did not coincide with the LULC maps obtained. 

3.2. Spatio-temporal evaluation of LST and SUHI 

Figures 7 and 8 show the space-time analysis of the LST and the SUHI 
between 1985 and 2020 in the area studied. Table 3 presents the 

measures of central tendency and dispersion of both variables. In gen-
eral, urban areas are seen to have high LST values as opposed to rural 
areas. 

The lowest maximum LST value was 44.1◦C in the year 1995, 
whereas the highest value was 51.8◦C in the year 2015. The lowest 
minimum LST value, 17.9◦C, occurred in 1990; the highest value was 
26.1◦C in the year 2015. As for the mean minimum LST, the lowest value 
was 32.6◦C in the year 2000, and the highest value was 35.2◦C in 2020. 
The spatial statistics of LST show a steady increase over the period 1985- 
2020 of 2.2◦C, which means an increase of 6.6%. Yet the maximum and 
minimum values show greater increases in their trends, with respective 
values of 7.7◦C and 8.2◦C. In contrast, even though the average values 
also grow, they do so at a lower rate —with an increase of 2.6◦C. As 
clearly seen in Fig. 7, the LST increases tend to take place homoge-
neously throughout the studied area up to 2010, when they show a 
strong increase. The areas with lower temperatures are found to coincide 
with the areas presenting higher values for NDVI and PV, and lower 
values for NDBI and UI indices. 

Altogether, the lowest maximum SUHI value was 3.2◦C in the year 
2005, and the highest value was 5.2◦C in 2020. The lowest minimum 
SUHI value was -3◦C in year 1985, while the value was highest in 1990, 

Fig. 4. Land Use Land Cover and Normalized Difference Vegetation Index by study date.  
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-4.8◦C. The lowest mean minimum LST value was 0.10◦C in the year 
1985; the highest was 0.7◦C in 2020. The spatial statistics of SUHI for the 
studied area show a gradual, continuous increase during the period 
1985-2020 of 0.6◦C, which represents an increase of 600%. Notwith-
standing, and as occurs with the LST values, the maximum and mini-
mum SUHI values show even greater increases, with values of 2.0◦C and 
1.3◦C, respectively. The average values also grow, but they do so at a 
lower rate, of 0.6◦C. 

According to Fig. 8, the increases in SUHI also occur homogeneously 
throughout the study area up to the year 2010, when they mark a sharp 
increase. Areas with lower SUHI temperatures are seen to coincide with 
the areas presenting higher NDVI and PV indices, and lower values for 
NDBI and UI. Hence it may be stated that urban areas have higher SUHI 
values than rural areas. 

3.3. Identification of UHS 

Figure 9 offers a space-time analysis of the UHS in the area studied, 
1985 to 2020. The reader can easily spot a significant increase in the 
area classified as UHS in the area under study —particularly visible from 
the 2005 readings onward. 

Table 4 presents the critical values by year for determination of the 
UHS zones, as well as their extension and the percentage of occupation 
with respect to the total area studied. In general terms, over the years 
studied, the UHS area increased from 544 ha (1.4% of the total area) to 
8,318 ha (22.0% of the total area), hence an increase in the sector 
classified as UHS of 7774 ha (20.6%) from 1985 to 2020. Growth is 
constant between the years 1985 and 2010, and significant between 
2010 and 2015. 

In 1985, the UHS zones (1.4%) were located to the south of Granada 
and coincided with the military air base in the town of Armilla, a vast 
area without vegetation cover. From 2010 onward new UHS areas begin 
to appear in a disaggregated manner in the area under study. In 2015 the 
UHS zones reach a significant percentage (19.5%) of extension, albeit 
irregular, in the entire study area. 

In Fig. 10, the zones classified as UHS and the space-time variability 
of the SUHI between 1985 and 2020 are jointly represented. The places 
where the SUHI presents greater intensities are seen to coincide with the 
zones classified as UHS; the areas having lower intensities of SUHI are 
not classified as UHS. 

These findings served to identify any coverage involved in presenting 
higher temperatures and located within areas classified as UHS. 

Fig. 5. Normalized Difference Built up and Vegetation Proportion indices by study date.  
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Accordingly, the UHS would occupy a surface of 283 ha (3.4%) of the 
coverage called vegetation, a surface of 3311 ha (39.8%) of that built- 
up, a surface of 266 ha (3.2%) of the farming coverage, and 4,466 ha 
(53.7%) of bare soil coverage. Thus, the covers presenting the highest 
concentrations of UHS are: bare soil and built-up. Contrariwise, the 
covers that present lower concentrations of UHS are: vegetation and 
farming. Water body coverage is not related to any area classified as 
UHS. 

Figure 11 illustrates the areas classified as UHS and the LULC 
coverage plan of the area under study for the year 2020. A focus on the 
coverages that present the largest UHS areas (Fig. 11) points to areas of 
industrial use, featuring warehouses with metallic structures and/or 
roofing, large buildings, sports centers, urban green areas with little 
vegetation, commercial areas, roads of great width, and parking areas. 
The areas without vegetation or with little vegetation are where the 
highest concentrations of UHS are located within the bare soil cover. 

3.4. Evaluation using UTFVI 

Figure 12 offers the space-time analysis of our UTFVI evaluation of 
Granada between 1985 and 2020. An important growth of the red areas 
(qualified as strongest) is clearly noted. They are classified as worst for 
urban development in terms of already high temperatures. Table 5 
shows the variability of each of the UTFVI zones by year studied. In 
general, the area under study has two major surfaces: class 1 (excellent) 
and 6 (worst). 

The first presents optimal thermal comfort with UTFVI values under 
0, whereas the second reflects areas of high temperatures and UTFVI 
values over 0.02. The areas having the highest NDVI and PV indices are 
located precisely in the excellent thermal comfort zones, while the built- 
up areas and zones with high values for NDBI and UI are located in the 
“worst” thermal comfort zones. 

Throughout the period under study, classes 1, 2 and 3 of UTFVI show 
land decreases of -25.5%, -17.3% and 40.5%, respectively. Meanwhile, 
soil classes 4, 5 and 6 present respective soil increases of 62.4%, 6.4% 
and 26.2%. In 2020, 48.9% (18,478 ha) of the area under study gave an 
ecological index UTFVI of class 6, the worst ecological indicator 
considered here. 

3.5. Statistical analysis 

3.5.1. Relationship between LST and the NDVI, NDBI, PV, UI and LULC 
indices 

The statistical analysis, carried out using the Data Panel method, 
served to determine relationships between the LST and the NDVI, NDBI, 
PV, UI and LULC indices of the area under study. First, the Pearson 
correlation coefficient was determined, then the Data Panel was devel-
oped. For the latter, the Generalized Least Squares (GLS) method was 
applied through equation 13. Results are indicated in Tables 6 and 7. 

Fig. 6. Urban Index Index by study date.  

Table 1 
Variation in land use per year.  

LULC (Ha) 1985 1990 1995 2000 2005 2010 2015 2020 Variability (%) (1985-2020) 

Water bodies 677 893 1069 166 169 190 216 350 -48.3 
Vegetation 3853 3670 4790 5367 4174 2600 3700 3436 -10.8 

Built-up 8100 8700 9742 9869 10028 10150 10356 10745 40.1 
Farming 10175 9000 6294 6731 6084 7571 5800 4827 -52.6 
Bare soil 13000 13537 13900 13657 15330 15330 15703 16412 28.7  

Table 2 
Precision Matrix.   

1 2 3 4 5 UA (%) 

1 10 0 0 0 0 100 
2 0 80 0 0 0 100 
3 0 0 20 0 2 10 
4 0 0 5 10 0 50 
5 0 0 0 0 10 100 

PA (%) 100 100 75 100 24 130 

Note: 1: Water bodies. 2: Vegetation. 3: Built-up. 4: Farming. 5: Bare soil. PA (5): 
Producer accuracy. UA (5): User accuracy. 
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Overall, the LST presents strong positive correlations with the NDBI 
(0.812), UI (0.654) and LULC (0.678) indices, as well as an inverse 
relationship with the NDVI (-0.789) and PV (-0.539) indices. Based on 

the Data Panel, results give a statistically significant and negative rela-
tionship greater than 99% between the LST variables and the NDVI and 
PV indices; a positive one of 99% with the NDBI and UI index; and 
positive above 99% with the LULC index. The values of R2, F statistic and 
Prob>chi2 obtained show good concordance between the variables, 
with an adjustment level over 99% significance, since 
Prob>chi2=0.000. 

3.5.2. Relationship between LST and SUHI 
The results of the data analysis are indicated in Tables 8 and 9. 
The LST presents a strong positive correlation with the SUHI (0.818). 
According to the statistical analysis technique of the Data Panel, our 

results underline a statistically significant and positive relationship 
above 99% between the LST and SUHI variables. The values of R2, F 
statistic and Prob>chi2 obtained show good concordance between the 
dependent variable and the independent ones used, with an adjustment 
level higher than 99% significance, since Prob>chi2=0.000. 

Fig. 7. Variability of the LST of the area studied by years.  

Fig. 8. SUHI variability of the studied area by years.  

Table 3 
Dispersion measures of LST and SUHI.   

LST (◦C) SUHI (◦C) 

Year Max Min Mean SD Max Min Mean SD 

1985 47.1 21.9 33.0 3.514 3.7 -3.5 0.1 1 
1990 45.2 17.9 33.4 3.216 3.7 -4.8 0.2 1 
1995 44.1 19.3 33.6 3.045 3.6 -4.5 0.2 1 
2000 45.2 19.7 32.6 3.227 3.9 -4.0 0.3 1 
2005 45.6 21.1 34.1 3.54 3.2 -3.7 0.4 1 
2010 47.1 19.7 34.5 3.263 4.5 -3.9 0.6 1 
2015 51.8 26.1 34.9 3.42 3.5 -4.0 0.6 1 
2020 47.1 21.8 35.2 2.701 5.2 -4.2 0.7 1 

Note: SD: Standard deviation. 
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3.5.3. Relationship between UHS and LST, SUHI and LULC 
The results of the data analysis are indicated in Tables 10 and 11. 
In general, the UHS present strong positive correlations with the LST 

(0.859) and SUHI (0.672), plus a weak relationship with the LULC 
(0.195). 

Data Panel results report a statistically significant and positive 
relationship above 99% between the variables UHS and LST and SUHI, 
and a positive relationship of 95% with LULC. The values of R2, F sta-
tistic and Prob>chi2 obtained would attest to good concordance be-
tween the dependent and independent variables used, the adjustment 
level being of 99% significance, with Prob>chi2>0.000. 

4. Discussion 

This study explored the space-time variability of the LST, SUHI, UHS 
and UTFVI from 1985 to 2020 in the “urban agglomeration plan” area of 
the city of Granada, linking these data to the NDVI, NDBI indices, PV, UI 
and LULC. Our motivation stemmed from the growing number of studies 
indicating that changes in these indices bear a significant impact on the 
regional microclimate, reflected in increases in LST, SUHI and UHS. 

Fig. 9. UHS variability of the studied area by years.  

Table 4 
Average and critical LST for the determination of UHS, along with occupation.  

Year Mean LST 
(◦C) 

SD 
(◦C) 

Non UHS 
(◦C) 

UHS 
(◦C) 

UHS 
(ha) 

UHS 
(%) 

1985 33.0 3.514 < 40.0 > 40.0 544 1.4 
1990 33.4 3.216 < 39.9 > 39.9 1523 4.0 
1995 33.6 3.045 < 39.7 > 39.7 1474 3.9 
2000 32.6 3.227 < 39.1 > 39.1 1568 4.2 
2005 34.1 3.54 < 41.1 > 41.1 1738 4.6 
2010 34.5 3.263 < 41.0 > 41.0 4421 11.7 
2015 34.9 3.42 < 41.7 > 41.7 7369 19.5 
2020 35.2 2.701 < 40.6 > 40.6 8318 22.0 

Note: SD: Standard deviation. UHS: Urban Hot Spot. 

Fig. 10. Variability of SUHI and UHS of the area studied, by years.  
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Fig. 11. Location of UHS and coverage of the area studied in 2020.  

Fig. 12. UTFVI spatial pattern of the area studied, by years.  
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In the studied area, a drop is detected in the mean values of NDVI and 
PV, although high values are reported in rural areas with vegetation, in 
contrast to the lowest values found in urban areas. But there has been an 
increase in the mean values of the NDBI and UI indices, which remain 
high in urban areas as opposed to rural areas having vegetation, where 
the lowest values are located. From the LULC results, a significant 
decrease in water bodies, vegetation and farmland coverage is identi-
fied, while an increase in built-up and bare soil coverage is reported. The 
increases in the NDBI, UI and built-up land cover indexes reflect rapid 
urbanization of the studied area, caused by a conversion of land 
formerly used for agriculture or having vegetation. Such findings are in 
line with recent results (Amindin et al., 2021; Luo & Wu, 2021; Sharma 
et al., 2021) regarding other cities or territories. Studies on Iran 
(Amindin et al., 2021) reported 30% reductions in green space between 
1995 and 2016, along with 30% increases in bare soil cover. In our 
research, the reduction of green areas is lower (10.8%), given that such 
areas in Spain are regarded as shields of protection against climate 
change. Notwithstanding, our results in terms of increased coverage of 
bare soil largely coincide, perhaps reflecting a trend of abandonment of 
farmland and agricultural practices per se since the 19th century in areas 
of the Mediterranean basin (Benayas et al., 2007). The agricultural crisis 
that Spain suffered at the beginning of the 20th century —in a context of 
economic development, high production costs, progressive industriali-
zation, but also droughts and speculation, obeying a trend to transform 
these types of soils into urban ones and obtain a high profit— are 
common circumstances behind such increases in this type of coverage 
(Romero & Martínez, 2014). On the other hand, it is necessary to stress 
that the general decrease in NDVI and PV cannot be attributed only to a 
rise in built-up zones and a decrease in vegetation zones; it also attests to 
a progressive decrease in rainfall as a consequence of climate change (Li 
et al., 2002; Nicholson & Farrar, 1994). Indeed, according to AEMET 
data, 17 of the last 32 years have been classified as very dry in Spain. 

The period 1985-2020 witnessed a considerable increase in LST and 
SUHI in the area studied. Such increments can be attributed to the 
building boom undergone in Granada (and elsewhere in Spain), to the 
detriment of green areas with vegetation. Authors Kotharkar and Sur-
awar (2016) likewise evidenced this problem, concluding that a 
decrease in green areas means an increase in LST and SUHI, and vice 
versa. It has been shown that the greatest increases in LST and SUHI 
occur in areas with the lowest values in the NDVI and PV indices, and in 

Table 5 
Ecological evaluation of thermal comfort.  

CLASS UTFVI UHI 
PRESENCE 

ECOLOGICAL 
INDEX 

1985 
(%) 

1990 
(%) 

1995 
(%) 

2000 
(%) 

2005 
(%) 

2010 
(%) 

2015 
(%) 

2020 
(%) 

Change 
(%) 

1 < 0 NONE EXCELLENT 45.9 44.0 43.3 42.8 39.3 42.1 37.4 34.5 -25.5 
2 0 - 0.005 WEAK GOOD 0.3 0.0 0.0 0.0 0.0 0.0 2.4 0.3 -17.3 
3 0.005 - 

0.010 
MIDDLE NORMAL 4.8 6.0 5.8 11.8 10.2 0.0 2.4 2.9 -40.5 

4 0.010 - 
0.015 

STRONG BAD 0.4 0.0 0.0 0.0 0.0 6.3 2.3 2.9 62.4 

5 0.015 - 
0.020 

STRONGER WORSE 4.9 5.8 6.0 0.0 0.0 0.0 2.3 5.3 6.4 

6 > 0.020 STRONGEST WORST 38.5 38.9 39.6 40.1 45.1 46.2 47.9 48.9 26.2  

Table 6 
Pearson’s correlation coefficient for LST, NDVI, NDBI, PV, UI and LULC indices.   

LST NDVI PV NDBI UI LULC 

LST 1.000      
NDVI -0.789 1.000     

PV -0.539 0.743 1.000    
NDBI 0.812 -0.811 -0.638 1.000   

UI 0.654 -0.880 -0.659 0.970 1.000  
LULC 0.678 -0.158 -0.234 0.159 0.126 1.000  

Table 7 
LST results and NDVI, NDBI, PV, UI and LULC indices.   

β ρ sd 

NDVI -10.030 0.000*** 2.4137 
PV -15.805 0.000*** 3.6172 

NDBI 5.2136 0.006** 2.3461 
UI 6.4142 0.002** 2.0835 

LULC 0.45713 0.000*** 0.0499  
R2=0.79 F= 1286 Prob>chi2= 0.000 

β: Coefficient; sd: Standard deviation; Robust standard errors: *p<0.05, 
**p<0.01 and ***p<0.001. 
R2: Linear regression coefficient. F: Statistical. 

Table 8 
Pearson’s correlation coefficient for LST and SUHI indices.   

LST SUHI 

LST 1.000  
SUHI 0.818 1.000  

Table 9 
LST and SUHI results.   

β ρ sd 

SUHI 3.227 0.000*** 0.1034  
R2=0.67 F= 973 Prob>chi2= 0.000 

β: Coefficient; sd: Standard deviation; Robust standard errors: *p<0.05, 
**p<0.01 and ***p<0.001. 
R2: Linear regression coefficient. F: Statistical. 

Table 10 
Pearson correlation coefficient for UHS, LST, SUHI and LULC indices.   

UHS LST SUHI LULC 

UHS 1.000    
LST 0.859 1.000   

SUHI 0.672 0.818 1.000  
LULC 0.195 0.678 0.238 1.000  

Table 11 
UHS results with LST, SUHI and LULC.   

β ρ sd 

LST 0.0353 0.000*** 0.0101 
SUHI 0.1172 0.000*** 0.0327 
LULC 0.0210 0.016* 0.0087  

R2=0.55 F= 12.85 Prob>chi2= 0.003 

β: Coefficient; sd: Standard deviation; Robust standard errors: *p<0.05, 
**p<0.01 and ***p<0.001. 
R2: Linear regression coefficient. F: Statistical. 
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turn coincide with areas having the highest NDBI and UI values. These 
indicative relationships are supported by statistical analysis, giving 
strong negative correlations with the first indices and positive ones with 
the second. The highest correlation of the LST is that produced with the 
NDBI variable; the lowest is that obtained with PV. Evidence from pre-
vious studies would underline this close relationship between LST and 
NDBI compared to the rest, since it is completely independent of any 
possible modifications produced by climate change (Shahfahad et al., 
2021; Tepanosyan et al., 2021). The use of waterproof construction 
materials with high thermal absorption in urban areas makes them give 
off the heat absorbed during the day, thereby raising the LST. The 
resulting increase in LST within urban areas implies greater differences 
with the LST of rural areas, thus contributing to the SUHI phenomenon 
(Saaroni et al., 2018; Singh et al., 2017; Wu et al., 2019; Yang et al., 
2020). These reported relationships and circumstances, in line with the 
results obtained in other similar investigations (Ahmed, 2018; Guha 
et al., 2018; Luo & Wu, 2021; Sharma et al., 2021), serve to validate the 
results presented here. Still, it is important to remark that studies on 
certain areas of India (Sharma et al., 2021) and Iran (Amindin et al., 
2021) show greater increases in LST (◦C) than the area under study. This 
circumstance can be attributed to differences in population and surface 
between the studied areas, the one presented here (Granada) being 
smaller and less populated. 

A significant increase in the areas classified as UHS is evidenced over 
our comparatively long study period. This circumstance would be 
motivated by: increased LST and SUHI, and decreasing vegetation zones 
in the area. Strong positive correlations between these variables are 
evidenced, reducing the UHS relationship with the LULC variable to 
weak, because the increases in UHS do not occur in all LULC covers, but 
mainly in those of the built-up and bare soil types. In our study, urban 
green areas with scarce vegetation, industrial areas, sports areas, roads 
and rural areas without vegetation are those giving the highest LST and 
SUHI values, thus contributing to a greater extent to the development of 
UHS. Numerous studies confirm that during early morning hours, solar 
radiation in areas of little vegetation or rural areas is greater than the 
radiation in urban areas. Shade generated by buildings and trees im-
pedes the heating of enclosures and impermeable surfaces, and con-
tributes to the cooling rates of vegetated areas (Li & Meng, 2018; Yang 
et al., 2020). Yet some studies involving satellite images show that 
vegetation has a cooling effect in urban areas (Lin et al., 2015; Tan et al., 
2017; Yu et al., 2017) as well as a warming effect in areas with scarce 
vegetation and/or bare soils (Estoque et al., 2017; Lin et al., 2015). It is 
important to account for the processes of shading and evapotranspira-
tion, as well as rates of cooling or heating by convection and transpi-
ration. Such processes, by altering the LST of an urban area, would 
explain the behavior observed for the SUHI in this research. Numerous 
studies (Das et al., 2021; Guha et al., 2018; Jafari et al., 2021; Karimi 
et al., 2021; Shahfahad et al., 2021; Sharma et al., 2021) underline the 
significance of these factors, reporting results very similar to our 
findings. 

Finally, significant deterioration of the general thermal comfort 
(UTFVI) within the area under study has been evidenced and can be 
interpreted as an alarm signal. Local areas associated with better com-
fort (classes 1, 2 and 3) and lower temperatures are being lost, just as 
worse areas (classes 4, 5 and 6) with higher temperatures increase 
considerably. In 2020, category 6 of the UTFVI developed mainly on 
built-up or bare soils, those usually giving higher temperatures. A 
number of studies conducted elsewhere (Guha, 2017; Kafy et al., 2021; 
Luo & Wu, 2021; Majumder et al., 2021; Shahfahad et al., 2021; 
Vimayak et al., 2022) corroborate significant increases in classes 4, 5 
and 6 in urban areas, motivated by intense development and reflected by 
the LST, supporting the results presented here. Research carried out in 
India (Sharma et al., 2021) between 2011 and 2019 furthermore pre-
sents similar results (33.56%) in conjunction with a growth of category 6 
(26.20%). 

Conclusions 

In recent years, the study of the UHS in conjunction with the envi-
ronmental comfort index has become a field of analysis of great 
importance. Climate events point to a dire need to know which factors 
alter urban microclimates, so that we might establish mitigation mea-
sures in the framework of future urban proposals to sustain environ-
mental comfort and ultimately improve the quality of life of citizens. 

The present study describes the evolution of the LULC, LST and SUHI 
over 35 years (from 1985 to 2020) in the metropolitan area of Granada, 
southern Spain. Our aim was to evaluate how these indices, along with 
UI, NDVI, NDBI and PV, have influenced the increased UHS and the 
deterioration of the UTFVI. 

The study area, during the period specified, underwent increases in 
the mean values of the NDBI and UI indices, while also showing re-
ductions in the mean values of NDVI and PV. The LULC reflects sub-
stantial increases in built-up and bare soil coverage, accompanied by 
decreases in water bodies, vegetation and farmland coverage. This 
comes to confirm that the area under study has undergone rapid urban 
growth through the transformation of natural and agricultural land into 
urbanized or bare soil. The associated abandonment of farmland (owing 
to high production costs, droughts, progressive industrialization and 
land speculation by developers) is a very common trend in the arable 
lands of the Mediterranean basin. At the same time, there is ample ev-
idence of a progressive rise in the LST and SUHI, especially since 2005, 
which has led to an increase in areas classified as UHS and a clear 
deterioration in the thermal comfort of the area assessed by means of the 
UTFVI index. 

It is evident that the transformation of natural and agricultural land 
into urbanized or bare soil during the time interval studied is a main 
reason behind this increase in LST and SUHI, hence the ensuing increase 
in UHS zones and deterioration of UTFVI. The urban green areas having 
little vegetation, industrial areas, sports areas, roads and rural areas 
without vegetation in our study area show the greatest increases in LST 
and SUHI, contributing to a greater extent to the development of large 
UHS areas. Continued study and enhanced knowledge of these areas, 
backed by public administrations and urban planners, is essential to 
implement actions to correct such detrimental situations and establish 
measures to promote resilient future urban development. 

Thus, these results urge us to underline the need for significant ef-
forts to modify the upward trend of LST, SUHI, UHS and UTFVI values. 
One of the most effective strategies is to increase green spaces with 
vegetation, increasing the PV and NDVI indices. By fomenting vegeta-
tion cover that receives solar radiation but does not revert it to the at-
mosphere —as happens with impermeable materials and surfaces— a 
better thermal environment can be secured. This measure, if applied to 
vast surfaces, will eventually improve the quality of life of local 
inhabitants. 

Our findings provide for a better understanding of the interaction 
that occurs between the LST, SUHI, UHS and UTFVI, as well as how they 
may be conditioned by the NDVI, NDBI, UI, PV and LULC indices. 
Hopefully, in the wake of research efforts such as this one, administra-
tions in charge of future developmental plans can adopt appropriate 
mitigation and resilience measures to minimize or eliminate increases in 
LST and SUHI, which would quite clearly translate as a decrease in UHS 
and an improvement in UTFVI. 

Study limitations 

Concerning limitations to the study carried out, it is deemed neces-
sary that future research endeavors should increase the number of years 
(or at least months) of analysis. This research contemplates just three 
images per year, and always in April. It would be wise for new studies to 
explore towns near Granada to verify if further variables or circum-
stances might be linked to research results. (Eqn. 5, 11-12). 

D. Hidalgo-García and J. Arco-Díaz                                                                                                                                                                                                        



Sustainable Cities and Society 87 (2022) 104166

15

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Ahmed, S. (2018). Assessment of urban heat islands and impact of climate change on 
socioeconomic over Suez Governorate using remote sensing and GIS techniques. 
Egyptian Journal of Remote Sensing and Space Science, 21(1), 15–25. https://doi.org/ 
10.1016/j.ejrs.2017.08.001 

Alcock, I., White, M. P., Lovell, R., Higgins, S. L., Osborne, N. J., Husk, K., & 
Wheeler, B. W. (2015). What accounts for “England’s green and pleasant land”? A 
panel data analysis of mental health and land cover types in rural England. Landscape 
and Urban Planning, 142, 38–46. https://doi.org/10.1016/j. 
landurbplan.2015.05.008 

Amindin, A., Pouyan, S., Pourghasemi, H. R., Yousefi, S., & Tiefenbacher, J. P. (2021). 
Spatial and temporal analysis of urban heat island using Landsat satellite images. 
Environmental Science and Pollution Research, 28(30), 41439–41450. https://doi.org/ 
10.1007/s11356-021-13693-0 
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