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A B S T R A C T   

Expert’s judgments have been crucial in the development of decision theory; however, what criterion to use in 
the selection of experts remains an issue to address. Decision support techniques proposed to improve the quality 
of expert judgment decision making consider a demonstrated inconsistency of the judgments expressed by an 
expert as a criterion of exclusion in the decision-making process of such expert. Although consistency appears to 
be a desirable condition to qualify as “expert”, little is known about the quality of the decisions made imposing 
consistency as the expert qualifying condition. This paper proposes a simulation methodology, based on an 
automaton programmed to make decisions in an intended but bounded rational way, to assess the cost-benefit of 
different aspects of decision support techniques. Within this methodology, the imposition of the consistency 
condition in the selection of experts is studied. In particular, the paper shows with a case study example that the 
Analytical hierarchy process (AHP) decision support technique expected payoff is at most 5% higher when 
implementing Saaty’s consistency criterion of the expert’s judgments than when the consistency criterion is not 
considered.   

1. Introduction 

Relying on people’s judgments is a common way of making decisions 
when the information available on the consequences of the alternatives 
is diffuse, and/or when the decision criteria require weighting multiple 
attributes whose relationships cannot be formally established [1–4]. A 
key aspect when ordering alternatives using people’s judgments is the 
choice of the expert person or persons to entrust with the mission of 
proposing an ordering (from the most to the least preferred) of the al-
ternatives for the achievement of the decision goal(s). Assuming that 
experts have complete rationality is unrealistic [5,6] and this could 
generate biases in the analysis. Jones [7] shows how bounded rationality 
is a mechanism superior to conventional rationality for the analysis of 
human judgments, and presents better prediction results. 

Academic researchers have developed different decision support 
techniques based on experts’ judgments that improve the results of 
human decisions and endow the treatment of the expressed judgments 
with scientific rigor [8,9]. The experts can be individually evaluated a 
priori, when prior information to the judgments of the analysed problem 
is used, such as experience (number of previous participations in similar 

problems) [10], reputation (scientific or professional trajectory) [11], 
trust (level of social influence) [12]; experts can be individually evalu-
ated a posteriori when the decision support techniques use the proper-
ties of the judgments expressed in the analysed problem for expert 
evaluation, such as hesitation (lack of confidence due to lack of 
knowledge), interest (a high degree of interest in a criterion must show 
that the expert clearly identifies the best alternative in that criterion), 
preference (clearly distinguishing between the various criteria) [13,14], 
or consistency (judgments show a precise logical relationship) [15,16]. 
The evaluation criteria listed can be used individually or combined to 
weigh the judgment of the experts in the search for consensus [17], or 
they can establish guarantee systems, so that when an expert does not 
obtain the required level in the criterion all expert’s judgments are 
eliminated in the selection process. 

There exist a wide variety of approaches to eliminate human judg-
ments that contain inaccuracies or errors [18–20]. Inconsistency in 
judgments is used in the literature as the main indicator of possible er-
rors and, therefore, of the quality of the decision-maker, which in 
practice means that the following transitivity property is not satisfied: if 
alternative A is twice preferred to alternative B, and alternative B is 
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three times preferred to alternative C, then the alternative A should be 
six times more preferred than alternative C [15,21,22]. The objective of 
this work is to assess inconsistency as a criterion to exclude experts in 
decision-making based on judgments, proposing a new methodology 
that allows building as benchmark the performance observed in a 
simulated decision situation where a hypothetical expert (automaton) 
makes decisions in an intended but bounded rational way [23]. 

Decision support techniques establish a set of computations and 
logical structures that allow evaluating the judgments of experts to 
detect and avoid erroneous judgments; once these filters are overcome, a 
ratio scale can be built to establish priorities associated with the alter-
natives of the problem, that is to derive a priority vector of alternatives 
(solution). When the judgments of the decision-maker are accurate, then 
all techniques give the same solution, and the criterion used to choose 
the appropriate technique should be that of simplicity. However, in the 
case of erroneous judgments, different techniques may lead to different 
solutions [24]. Many aspects of decision support techniques have been 
studied [25], among them the way to represent the priority scale (a 
review can be seen in [26]), the group error distribution versus indi-
vidual error distribution [19], and the decomposition of alternatives 
into attributes to reduce error [20]. As far as we know, the value 
contributed by the consistency of the judgments of the decision-maker 
has not been specifically studied. 

A critical element in the evaluation of decision support techniques is 
the treatment of the decision-maker’s opinions to reach a final solution. 
If decision-makers do not make errors in their judgments, then the said 
judgments are consistent; however, the fact that judgments are consis-
tent does not necessarily imply that they are error-free [18,19]. The 
problem is that due to the characteristics of the situation, where the help 
of one or more experts is needed in making decisions, knowing the true 
quality of the experts’ decisions is not straightforward. With this premise 
in mind, this work proposes a simulation methodology to compare the 
performance of expert-based decision making with a different criterion 
to select the participating experts. The key element of the methodology 
is an “artificial” expert, an automaton that is programmed to make de-
cisions in an intended but bounded rational way. The intended ratio-
nality is incorporated into the automaton assuming that for a given level 
of expertise, alternatives that have higher payoffs will be ranked higher 
than those with lower payoffs, but the possibility of error cannot be 
excluded, in line with discrete choice models [27]. For given payoffs of 
the alternatives compared, the automata can be programmed to allow 
for different degrees of expertise that result in lower or higher proba-
bility of error. 

In addition to a detailed explanation of the form of representation of 
the automaton and the probabilistic decision-making process, the paper 
illustratively compares the “quality” of decisions applying the AHP 
technique with the requirement of consistency in the judgments of the 
decision-maker as the different criterion to select the participating ex-
perts, and the “quality” when the AHP technique is applied without 
imposing the consistency criterion. The results show that the automaton 
achieves at most 5% higher expected payoff (quality criterion of the 
automaton decisions) when the inconsistencies observed in the judg-
ments are excluded than when included. 

The paper makes different contributions to the literature on decisions 
based on experts’ judgments. First, it proposes an automaton with 
intentional but bounded rationality, in Simon’s sense [28], as a labo-
ratory that allows developing a methodology to evaluate and compare 
the performance of different decision support techniques. Second, it 
proposes a classification of errors that a decision support technique can 
make when generating a priority vector. Third, the methodology es-
tablishes a relationship between the manifest inconsistency of the au-
tomaton and the quality of the final decisions, proving the consistency 
restriction quality of the decisions measured with their expected per-
formance. Fourth, the proposed method opens future lines of research 
such as the comparison between the expected performance and the 
necessary resources of different decision support techniques. Currently, 

comparisons between techniques in the literature limit their analysis to 
describe in detail the differences [21,29–31] and empirically analyze 
their use [32]. 

The work is structured as follows: Section 2 introduces a new 
framework of intentional bounded rationality as a mechanism for 
choosing a simulated expert (automaton), in which the level of error 
depends on the relative performance of the alternative being judged and 
the expertise of the automaton. Section 3 studies the judgments through 
peer-to-peer analysis (pairwise comparison) and its implications in de-
cision support techniques. Section 4 analyses the relationship between 
error and consistency. Section 5 describes the intentional bounded ra-
tionality automaton methodology and illustrates, through a case study, 
how much the quality of AHP with the consistency criterion to select 
experts outperforms the quality of AHP without the consistency crite-
rion. Finally, the last section presents the most relevant conclusions of 
this research study and possible future research lines. 

2. Intentional bounded rationality 

Decision theory in its prescriptive aspect has provided people 
methodologies and techniques to improve their decisions. However, 
there is a gap between this approach and the mechanisms governing 
human cognition. It seems obvious that expert decision analysis must 
have a solid foundation to link human behavior with decision support 
techniques. Intentional bounded rationality [33] tries to close this gap 
by proposing a solid functional representation of human behavior. Given 
that the concept of intentional bounded rationality is a central part of 
the methodology proposed in this work, some of the properties of the 
functional form that, from our point of view, are relevant as a guarantee 
of its sturdiness are covered herein. 

This work considers an automaton as a representation of human 
behavior with intentional bounded rationality, recognizing the possi-
bility of making mistakes in his judgments given the human limitations 
regarding the available time and processing of information in a complex 
and changing reality [23]. To overcome this, the decision-maker must 
use resources that facilitate the decision, bringing the problem closer to 
the limited aspects where he has a deep knowledge, where he is 
considered an expert, and where his solution is most likely to be close to 
the best. 

There are numerous papers describing and comparing methods that 
incorporate decision-maker’s subjective judgments in the search for the 
optimal decision. A basic problem discussed throughout this literature 
has been the possibility of judgments containing serious inaccuracies 
and inconsistencies [34–36]. In the present paper, we analyze the 
behavior of an automaton in a situation in which we know the payoffs of 
the alternatives. The automaton behaves as a person who does not know 
these performances, which allows us to evaluate the performance 
contribution of the mechanisms established in the decision support 
techniques. The functional forms that characterize our automaton are 
those that best represent human behavior. The automaton represents an 
individual with a level of reliability, herein represented by a parameter 
β, which is reflected in the probability of making a right or wrong de-
cision. The fallibility of people is not the result of noisy signals of in-
formation as in [19,20,37], but the consequence of a well-meaning but 
bounded rationality, in the sense that the decision-maker intends to 
choose the best option but with limitations in processing complex in-
formation that prevents it. Intentionality is reflected in the existence of 
an inverse relationship between the difference in latent performance of 
the alternatives (Vj − Vi) and the error made on their appreciation (pβi). 
The smaller the latent performance difference between the alternatives 
the more accurate the analysis or judgment should be, more information 
must be processed so as not to make a mistake and the decision is more 
difficult. This relationship between error and difference in latent per-
formance of alternatives has been used as a screening function of 
decision-makers [37–40]. However, not all decision-makers have the 
same precision; this depends on their expertise. Several methods have 
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been used in the literature to determine the expertise of a 
decision-maker [34,41,42]. What is decisive here is to characterize the 
automaton and its capacity according to its probability of error; this 
specification of the bounded, but intentional, rationality allows a priori 
evaluation of decision support techniques. 

The probability that an automaton chooses the alternative Ai with 
performance Vi combines the ability to process information and the 
decision difficulty: 

pβi = pβ(Ai) =
e

β Vi∑n

k=1
Vk

∑n
j=1e

β
Vj∑n

k=1
Vk

=
1

1 +
∑n

j∕=ie
β(Vj − Vi)∑n

k=1
Vk

. (1) 

This function is like the functions used in probabilistic choice theory 
by Luce [43], (see also [44–46]). Puranam et al. [28] relate probability 
(1) to Simon’s bounded rationality. The complementary probability, 1 −
pi, is the probability that any of the other alternatives will be chosen. 

Decision support techniques seek to improve performance by 
providing rational treatment to subjective judgments of people [8], with 
the aim to improve the quality of the decision-making process by giving 
procedural rationality to the outcome [9]. However, this approach has 
the limitation of being able to simply know the inconsistency of the 
decision-maker in the judgments manifested, limiting the evaluation of 
the method. The intentional bounded rationality of automaton pre-
sented here makes it possible to establish a certain starting situation, 
from which the decision-maker shows a level of error depending on the 
difference in the latent performance of the alternatives (Vj − Vi) and 
his/her reliability (β). This approach allows to evaluate a priori the re-
sults obtained from any decision support technique beyond the internal 
coherence of the decision-maker. It shows a constant struggle in the 
search for the best option facing a blurred reality between the right 
decision and the wrong decision. However, the human being (inten-
tional bounded rational) is attracted to the right decision to a greater 
degree than to the wrong, as shown by the fact that in Eq. (1) the best 
performance alternative is the one with highest probability of being 
chosen. This property of intentional bounded rationality ensures that 
decision support techniques add value to the search for the optimal 
option. 

As mentioned above, the parameter β, interpreted as non-negative, is 
a measure of the decision processing skills, and its value reflects the 
specific knowledge that the automaton has about the comparative al-
ternatives. When β decreases, the dispersion increases as for possible 
performances considered by the automaton, increasing the weight of the 
probability queues, increasingly admitting the possibility of accepting 
extreme differences between the performance of the alternatives. The 
limit case value β = 0 implies that the probability of choosing one of the 
alternatives does not depend on the relative value of each of them, being 
possible any performance for any alternative. In other words, decisions 
are made purely randomly. An “intentional bounded rationality” au-
tomaton value β > 0 is therefore most realistic for modeling decision- 
makers. Higher positive values of β mean that the expert makes the 
decision less binding to the difference in performance values, with the 
limit case of β tending to infinity implying that the probability of error 
converges to 0, even for small relative differences in performance 
values. This is expanded more formally below using probabilities with 
normalised alternative performance values1 vi = Vi∑n

j=1
Vj

: pβi =
eβvi∑n
j=1

eβvj 
=

1∑n
j=1

eβ(vj − vi )
, i = 1,…, n. 

1. The case of the reliability parameter β = 0. In this case, it is 

∀i = 1, 2, …, n : eβvi = 1 ⇒p0i =
1
n
.

This is in agreement with the interpretation of the reliability 
parameter as a measure of the decision processing skills, i.e., the specific 
knowledge that the automaton has about the alternatives to compare. 
Indeed, when there is a lack of knowledge about how to process a 
comparison of the alternatives’ performance values, all alternatives are 
equally treated by the automaton. 

2. The case of the reliability parameter β > 0.
2.1. We start by analysing first the case of all alternative performance 

values being positive and different. Without loss of generality, it can be 
assumed that v1 > v2 > … > vn (> 0). Therefore, it is: 

vi > vk ⇔ vj − vi < vj − vk ∀j ⇔ β
(
vj − vi

)
< β

(
vj − vk

)
∀j ⇔ eβ(vj − vi)

< eβ(vj − vk) ∀j ⇔
∑n

j=1
eβ(vj − vi) <

∑n

j=1
eβ(vj − vk) ⇔ pβi > pβk 

Thus, in this case, v1 > v2 > … > vn (> 0)⇔ pβ1 > pβ2 > … > pβn.

2.2. To the above positivity assumption, it is added that some of the 
performance values are the same. It is sufficient to analyze only the case 
of two consecutive performance values being equal in the above 
ordering. Let us denote these as k, k+ 1, i.e., v1 > v2 > … > vk = vk+1 >

vk+2 > … > vn (> 0). Therefore, it is 

vk = vk+1 ⇔
∑n

j=1
eβ(vj − vk) =

∑n

j=1
eβ(vj − vk+1) ⇔ pβk = pβk+1,

and pβ1 > pβ2 > … > pβk = pβk+1 > pβk+2 > … > pβn.

2.3. The case of some performance values being equal to zero is 
analysed. This assumption implies the existence of a value k > 1 such 
that vk = 0 . Then for k1 > k, it is also vk1 = 0 and 

pβk1 =
eβvk1

∑n
j=1eβvj

=
1

∑k− 1
j=1 eβvj + (n − k + 1)

∀k1 ≥ k,

which means that pβ1 > pβ2 > … > pβk = … = pβn. summarizing, a 
positive reliability parameter (β > 0) leads to the following association 
between alternative performance values and their probabilities of being 
chosen by an automaton: 

v1 ≥ v2 ≥ … ≥ vn (≥ 0)⇔ pβ1 ≥ pβ2 ≥ … ≥ pβn,

with corresponding strict inequalities in both statements of the above 
equivalence. 

3. Finally, the reliability parameter limit case β→∞ is analysed. First, 
we assume that the maximum value of the set of performance values is 
unique, i.e., v1 > v2. Since β(vj − v1) < 0 ∀j > 1, it is 

β
(
vj − v1

)
̅→
β→∞

− ∞ ∀j > 1 ⇔ eβ(vj − v1) ̅→
β→∞ 0 ∀j > 1 ⇔

∑

j>1
eβ(vj − v1) ̅→

β→∞ 0.

Therefore, it is 

pβ1 =
1

1 +
∑

j>1eβ(vj − v1)
̅→
β→∞ 1.

3. Judgments through peer-to-peer analysis 

The use of peer-to-peer comparisons, rather than direct score allo-
cation, originates from psychological studies [47]. Psychologists argue 
that it is easier and more accurate to make a judgment on two alterna-
tives than simultaneously on all the alternatives. Some examples that use 
these techniques in the hope of obtaining the “best” solution are: choice 
of the “best” supplier [48,49]; search for the “best” investment projects 
[50]; selection and evaluation issues in the area of engineering and 
personnel [51]. One advantage of this method is that decision-makers do 
not need to evaluate the specific values of the alternative performances 
{Vi > 0; i = 1,…, n}; it is sufficient to estimate the comparison of each 
alternative with respect to another by means of a judgment relationship 1 The normalization is introduced so that the comparison between the latent 

performances is independent of the scale. 
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{
aij =

Vi
Vj
; i ∕= j

}
, which avoids scale problems. Thus, the decision-maker 

compares the intensity of the performance of a pair of alternatives, aij, 
against its inverse, aji, wondering which is greater. 

Within the intentional bounded rationality methodology, in the case 
of conducting pairwise comparison of alternatives, the following prob-
ability of choosing alternative Ai over alternative Aj by the automaton 
with reliability β, pβij, is derived: 

pβij =
eβVi

Vj

eβVi
Vj + eβ

Vj
Vi

=
1

e
β

(
Vj
Vi
−

Vi
Vj

)

+ 1

=
1

eβ(aji − aij) + 1
. (2) 

Expression (2) is obtained by implementing the preference modeling 
framework methodology developed by Herrera et al. [52] to derive a 
multiplicative preference relation A = (aij) from a set of ratio scale 
performance values {Vi > 0; i= 1,…, n} associated to a set of alterna-
tives {A1,A2, …, An} Herrera et al. [52] proved that 

aij =

(
Vi

Vj

)c

, c > 0, (3)  

where c is a fit parameter that satisfies the properties required in mul-
tiplicative preference ordering. 

The probability of choosing alternative Ai over alternative Aj, pij, 
based on their performance values can be defined in terms of the cor-
responding intensity of preference values as 

pij =
aij

aij + aji
. (4) 

Following [53], the reliability value β(≥ 0) can be considered as an 
indication of the “power or importance [of the individual the automaton 
represents] in the decision, the higher the number the more important”. 
In other words, there is an increasing function fβ : [0,∞)→[0,∞) such 
that 

aβij = fβ
(
aij
)
, (5)  

and 

pβij =
aβij

aβij + aβji
. (6) 

In a fuzzy context, the methodology to implement importance values 
associated to decision makers is usually done via a t-norm operator, in 
particular the product t-norm. However, the power implementation of 
importance values is superior to the multiplication implementation, 
since in this last case the reliability value does not play any role in 
determining the probability values. Indeed, if we were to use the 
multiplication approach to implement importance values, then fβ(x) =
βf(x) (β > 0) and 

pβij =
aβij

aβij + aβji
=

fβ
(
aij
)

fβ
(
aij
)
+ fβ

(
ajj
) =

βf
(
aij
)

βf
(
aij
)
+ βf

(
aji
) =

f
(
aij
)

f
(
aij
)
+ f

(
aji
) .

(7) 

Hence, the probabilities would not depend on the reliability value of 
the individual making the decision, which is not what we expect. Thus, it 
will be fβ(x) = f(x)β (β ≥ 0) with f : [0,∞)→[0,∞) increasing. Notice 

that when f(x) ∈ [0, 1) (∀x), we would have that f(x)β
̅→
β→0 1 and 

f(x)β
̅→
β→∞ 0. In the first case, as the reliability value decreases towards the 

value β = 0, the probabilities pβij and pβji will approach to the common 
value 12. Although, this limit case is expected (lack of decision processing 
skills translates into treating alternative equally no matter their per-
formance), the second limit case is counterintuitive, since unlimited 
decision processing skills means that the automaton would be able to 
differentiate the alternatives no matter what performance values they 
have, i.e. the automaton would be able to achieve different probability 

values for different performance values. To avoid this, function f range 
could be assumed to be [1,∞), i.e., f : [0,∞)→[1,∞), which in turn avoids 
as well zero denominator in the expression of pβij. In any case, without 
loss of generality, it can be assumed the boundary condition f(0) =

1; and function f(x) = ex, or more general f(x) = eg(x) with g : [0, ∞)→ 
[0, ∞) an increasing function verifying g(0) = 0. Thus, fβ(x) = f(x)β

=

eβx (β ≥ 0), and the probability of choosing alternative Ai over alterna-
tive Aj by the automaton with reliability β, pβij, would be: 

pβij =
e

β

(
Vi
Vj

)c

e
β

(
Vi
Vj

)c

+ e
β

(
Vj
Vi

)c , c > 0, (8) 

In particular, and for computation efficiency, we consider the value 
c = 1 :

pβij =
eβVi

Vj

eβVi
Vj + eβ

Vj
Vi

=
1

1 + e
β

(
Vj
Vi
−

Vi
Vj

) =
1

1 + eβ
(Vj − Vi)(Vj+Vi)

ViVj

. (9)  

When the difference between the performance values of the compared 
alternatives increases in absolute value, the difference between the 
probabilities of the compared alternatives increases in absolute value as 
well. 

A higher relative performance of the alternative Ai (Vi) increases the 
likelihood that such alternative will be preferred in paired comparisons. 

The probability of expressing preference for the relative value aij

(
=

Vi
Vj

)
over the relative value aji

(
=

Vj
Vi

)
, pβij, depends on the relative dif-

ference of their valuations 
(

Vj
Vi
− Vi

Vj

)
. When (Vi > Vj) the probability of 

making the mistake of showing preference for the relative value that 
presents a lower relative performance is 1 − pβij = pβji. A rational person 
with unlimited computational capability (β = ∞) would show prefer-
ence with probability 1 when Vi > Vj. Fig. 1 illustrates the probability 

values of Eq. (2) as a function of 
(

Vj
Vi
− Vi

Vj

)
with parameter value β = 1. 

The probabilities of making a mistake decrease when the difference 
between Vi and Vj increases and are higher when the performance of Vi 

and Vj are relatively close. The function represents the hypothesis that 
decision-maker are rationally bounded (make mistakes) and intend to be 
rational. Thus, it is concluded that in paired judgments, Eq. (2) of 
intentional bounded rationality shows how the automaton is not entirely 
in darkness: it is attracted to the higher-performance option, so that the 
probability of choosing the best option is always higher than 0.5 if β > 0. 
This allows to establish decision support techniques that improve indi-
vidual performance by approaching the “best” option. 

Peer-to-peer comparison is intended to obtain the decision-maker 
judgement regarding the performance of two alternatives. Intentional 
bounded rationality introduces a probabilistic approach in which the 
reliability of the automaton when choosing each pair of alternatives (Ai,

Aj), pβij, is adequately known. Intensity judgment, also known as in-
tensity of preference, is the decision-maker’s assessment of how many 
times the performance of one alternative Ai is greater than the perfor-
mance of another alternative Aj, âij. 

Intensity judgment is therefore provided with respect to a default 
discrete preference scale. Saaty [18] provides a discrete scale (âij,k = k) 
to classify the verbal judgments of decision-makers. In this case, the 
decision-maker shows that Vi is k times Vj measured in a discrete way, 
âij,k = k ∈ {1,…, K}, to quantify the probabilities of each intensity 
segment that determines the intentional bounded rationality, pij,k. Thus, 
the critical points of each section of the chosen scale (k) must be ob-
tained. Each critical point represents the value from which the decision 
maker must change the segment, i.e., if the segments are those of Saaty’s 
scale (there are 18 segments, for aij,k = 1, 2, …, 9) when the 
decision-maker judges an intensity somewhat below 1.5 (for example 

C. Sáenz-Royo et al.                                                                                                                                                                                                                            



Information Fusion 89 (2023) 254–266

258

1.4) he will choose the intensity range aij,1 = 1 and if decision-maker 
judges the intensity somewhat above 1.5 (for example 1.6) he will 
choose the intensity range aij,2 = 2, then 1.5 is a critical point on Saaty’s 
scale. For the automaton, the critical point compares the minimum 
required intensity (Z) with the mean of the distribution at Eq. (2), 
obtaining the probability that the automaton will consider that the 
relative performance Vi

Vj 
is at least Z. 

pβij(Z) =
1

e
β

(

(Z− 1
Z)−

(
Vi
Vj
−

Vj
Vi

))

+ 1

(10) 

The probability with which the automaton manifests an intensity of 
preference k, delimited by a higher critical point Zk,h and a lower critical 
point Zk,l, is equal to the difference between the probability that the 
automaton considers that the intensity is greater than the lower critical 
point Zk,l and the probability that it considers the intensity to be greater 
than the higher critical point Zk,h, i.e., pij(âij,k = k) = pij(Zk,l) − pij(Zk,h). 
Using (10), we have that 

pij(k) =
1

e
β

((
Zk,l −

1
Zk,l

)
−

(
Vi
Vj
−

Vj
Vi

))

+ 1

−
1

e
β

((
Zk,h −

1
Zk,h

)
−

(
Vi
Vj
−

Vj
Vi

))

+ 1

(11)  

4. Error and inconsistency 

The intensity judgment adds information to a simple preference 
judgment and is a central element of decision support techniques such as 
AHP. From the decision-maker manifested intensity judgments on a set 
of n alternatives, the AHP technique builds an array of preference 
comparisons, a matrix A of dimension n × n, that is eventually solved 
algebraically [15]. 

The intensity of the decision-maker’s judgment âij shows the number 
of times that the performance assigned to the alternative Ai is greater 
than the performance of the alternative Aj: 

A =

⎛

⎝
â11 ⋯ â1n
⋮ ⋱ ⋮

ân1 ⋯ ânn

⎞

⎠.

When intensity of preference evaluates tangible quantifiable criteria, 
preference values âij are obtained directly from the measured informa-
tion, for example weights (in kilograms) or prices (in euros). However, it 
is not always possible to determine precisely the intensity numerically, 
either because it is complex information or because it refers to intangible 
aspects. In these cases, the cardinal information âij is provided with 
respect to a default discrete preference scale. A set of verbal judgments 
was proposed by Saaty [18] to provide a scale, which has been widely 
used in various applications [12] despite some critics [54,55]. Intensity 
judgements are defined for each possible comparison and the 
decision-maker is required to have a minimum of coherence, so that 
âij = 1

â ji
. If âij > 1, then the decision-maker thinks that Vi > Vj and Ai is 

therefore preferred to Aj. From the reciprocal matrix constructed A =

(âij)nxn, a vector of priorities ŵ is derived such that âij =
ŵi

ŵj 
and 

∑n
i ŵi =

1. If there are no errors and the decision-maker is totally rational (β =

∞ in Eq. (2)), then âij = Vi
Vj

. 
When the decision-maker has manifested the intensity judgments, 

the matrix A is cardinally consistent (transitive) when the following 
property is verified: 

âik = âij âjk

(
Vi

Vk
=

Vi

Vj

Vj

Vk

)

∀i ∕= j ∕= k. (12) 

A consistent matrix priority vector, ŵ, obtained by the AHP method 
is the solution to the decision problem. Since consistent matrix A has 
range 1, this takes the form Aŵ = nŵ, which can be written as (A − nI)
ŵ = 0. This equation has a solution if and only if n is an eigenvalue (λi) 
of A. Since A has range 1, all the eigenvalues are equal to zero (λi = 0) 
except one λmax that will be equal to n. Although any column of 
consistent matrix A is a solution to the equation (A − nI)ŵ = 0, the 
standardized solution is unique, i.e., the vector ŵ whose components 

verify ŵ i

ŵj
= Vi

Vj
, what has been specifically called the priority vector. Thus, 

matrix A is fully consistent if and only if λmax = n and it is not consistent 
when λmax > n. Saaty [15] defines the consistency index of a matrix A as: 

Fig. 1. Probability to prefer Ai and Probability to prefer Aj with performance from Vj
Vi
− Vi

Vj
in (1) with β = 1.
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CIA =
λmax − n

n − 1
(13)  

where λmax =
∑n

i=1 âij
ŵ j

ŵi
, indicates the cardinal difference between the 

decision-maker valuation and the inverse of its corresponding prioriti-
zation value. This formulation is tremendously intuitive: the closer each 
paired judgment is to the inverse of its estimate (the more consistent the 
judgments will be), the closer to 1 each addend will be, and the closer 
λmax will be to n and CIA to 0 (total consistency). On the contrary, the 
further the judgments of the decision-maker are from the inverse of their 
estimates (the more disparate the intensities of the judgments), the 
greater λmax and CIA will be. A unique measure of consistency that does 
not depend on the dimensions of matrices A, known as the consistency 
ratio (CR), was proposed by Saaty [15] by computing random consis-
tency index (RI) values for sets of randomly generated matrices (for 
different dimension values n): 

CRA =
CIA

RI
. (14) 

Saaty [15] established a consistency criterion of acceptability of 
decision-makers’ judgments based on the CRA being less than 0.1, which 
has been widely used (as can be seen in [37]). 

Not all problems have the same difficulty, nor all errors have the 
same consequences. Suppose that the automaton knows fully the per-
formance of all the alternatives assuming an infinite value of β in Eq. (2). 
This implies that the automaton can manifest an error-free decision 
matrix since it is able to compare all the alternatives correctly. This 
automaton rationality implies that the decision matrix is positive, 
reciprocal, and consistent. However, the opposite is not true, i.e., the 
fact that a decision matrix is reciprocal positive and consistent does not 
imply that it is error-free. Recall that consistency measures the logic of 
the decision-maker’s judgments but does not measure validity (prox-
imity to the optimal solution). Indeed, we can have consistent matrices 
that lead to the wrong ordering of the alternatives, which can happen 
when the starting hypotheses are false but the logical structures of the 
relationship between the judgments are correct. 

It is very common to see how in the real world decision-makers 
qualified as “experts” show inconsistencies in their judgments, demon-
strating the fallibility of human nature. This error can result from an 
incorrect way to ask the peer comparison question, or it can be an error 
in the scale used. Saaty [18] states that it is practically impossible to find 
decision-makers who provide fully consistent peer comparison matrices. 
Recall that Saaty defines consistency using a cardinal criterion: to be 
consistent, judgments in intensity of preference in the pairwise com-
parison of the alternatives must verify âik = âij âjk. Consistency requires 
all judgments to show a unique ordering of alternatives. However, 
decision-makers may choose a correct ordering of alternatives but 
incorrect intensities of preference in the pairwise comparison of the 
alternatives [56]. If the decision-maker is the only one able to know the 
performance values assigned to the alternatives, then invisible errors 
might exist because it is not possible to check these values with reality 
since the inconsistency only shows the existence of errors when the 
judgments present internal incoherence of the decision-maker (their 
lack of precision when comparing elements separately). For example, a 
balance can give similar values in different weight measurements, which 
shows it has great consistency in its measurements, i.e., it is quite pre-
cise; however, the balance may show a systematic bias (underestimating 
or overestimating weights) and therefore its lack of validity could not be 
perceived. The same can happen with human judgments. Lack of val-
idity will be observable only when the alternative performances are 
known; when the performances are latent this lack of validity cannot be 
perceived. Thus, consistency may hide issues in decision support tech-
niques, and limit their validity to just one part of the problem: the de-
cision maker’s internal coherence (accuracy). If the decision-maker 
evaluates badly one alternative only, V̂ i = Viei (where ei represents the 

judgment error), then the errors in the comparisons will not lead to a 
consistency issue since âij =

Vi
Vj

ei (∀j) and all comparisons will verify the 

consistency property âik = âij âjk, i.e., Vi
Vk

ei = Vi
Vj

ei
Vj
Vk

, and the matrix A will 
be completely consistent. However, this type of error can lead to an 
incorrect ordering of the decision alternatives. Thus, if the performances 
of the alternatives are only known through the decision-maker’s judg-
ments and the judgements matrix of such decision-maker is consistent, 
then we might think that it is an error-free matrix when it may not be. 
Let us show this with an example. Suppose we want to evaluate three 
vehicles of three different brands X, Y and Z. The latent performance of 
each of these vehicles are Vx = 10, Vy = 20 and Vz = 30, values that 
must be estimated by an expert. The selected expert has a notable pre-
dilection for brand X (he tends to estimate the performance of X by four 
times its value), is neutral with respect to brand Y and has a strong 
aversion to brand Z (he tends to estimate the performance of Z as 
one-third of its value), that is, V̂x = 4Vx, V̂y = Vy, and V̂z = 1

3Vz. The 
security shown by the expert is maximum and his estimates have hardly 
any variance, although they show the above bias. The paired judgments 
that this expert will display are âxy = 2

[
= 4⋅10

20
]
, âyz = 2

[
= 20

10
]
, and 

âxz = 4 [ = (4⋅10)/(30 /3)]. The expert’s ordering is wrong since the first 
alternative should be last and the last should be first, however the ex-
pert’s judgments are completely consistent: âxy⋅âyz = âxz [2⋅2 = 4]; âyz⋅ 
âzx = âyz [2⋅1/4 = 1/2], this is true in all relations between alternatives. 
From the point of view of consistency, judgments of this expert are of 
high quality given their consistency, however, in a practical way they 
are unacceptable. 

It is true that in reality decision-making requires relativism; how-
ever, this does not negate the existence of absolute optimal alternatives. 
If no initial hypothesis is specified about the fallibility of decision- 
makers, improving the coherence of a group of people does not mean 
getting closer to the “optimal” solution but making their provided 
judgments, as a collection of samples, closer to being logically related 
than being chosen at random [18]. On the other hand, there may be 
significant errors in the perception of intensity that may lead to the 
decision support technique to reject a set of judgments. However, these 
errors may not affect the ordering of alternatives, and therefore the 
decision support technique may reject judgments that allow achieving 
the maximum possible performance. The relevant question is whether 
consistency always helps detect errors. Establishing a priori conditions 
that can be verified is very important to design ‘good’ decision support 
techniques. Methodology base on intentional bounded rationality allows 
assessing a priori the error percentages of ways to collect the judgments 
of a decision-maker. This is discussed and shown in the next section with 
the analysis of the results from an illustrative case study. 

5. Intentional bounded rationality methodology illustrative 
case 

The proposed methodology of intentional bounded rationality states 
that an automaton can manifest different judgments (intensities) with 
different probabilities, allowing to evaluate both orderings of alterna-
tives and elections of the best alternative. Thus, the proposed method-
ology analyses all the possible results of a situation with performances, 
known a priori, of an automaton that behaves like an expert that cannot 
accurately anticipate the performances of the alternatives. When the 
alternatives studied are not mutually exclusive and it is possible to elect 
more than one (i.e., carry out investment projects until the budget 
constraint is reached), it is useful to assess the quality of a decision 
support technique by computing the probability of the complete 
ordering of alternatives derived with such technique. When the alter-
natives are mutually exclusive and only one can be chosen, the quality 
evaluation will reduce to computing the probability of the elected 
alternative, with errors in the ordering of the other alternatives being 
not relevant. Thus, the following steps of intentional bounded ratio-
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nality methodology are carried out to evaluate a decision support 
technique:  

1 All possible combinations of judgments that the automaton can 
manifest (a matrix A for each one) and their probabilities are listed.  

2 The priority vector and its validity parameters (consistency) for each 
combination of judgments in step 1 is obtained by applying the de-
cision support technique to evaluate.  

3 Orderings are classified according to the impact of the error they 
entail. 

4 Priority vectors with same ordering of alternatives or elected alter-
native are clustered together. The probability of an ordering/elected 
alternative is obtained as the sum of the probabilities of all priority 
vectors in its corresponding cluster.  

5 The probability of choosing the correct ordering or the correct best 
alternative by the decision support technique is analysed and the 
(expected) performance of decision the support techniques can be 
computed. 

This methodology allows to evaluate the a priori help of a decision 
support technique by incorporating the possibility that the automaton is 
wrong. The results obtained will depend on how the decision support 
technique manages the automaton’s errors. The intentional bounded 
rationality methodology will be applied to Saaty’s AHP decision support 
technique on the set of possible judgement matrices constructed as 
combinations of intensities the automaton can manifest. In particular, 
the performance values will be compared for two versions of the AHP 
technique: with the application of Saaty’s consistency criterion 
(AHPwC) and without the application of such criterion (AHPwoC). 

For the case scenario, it is assumed that the bounded rationality 
automaton probabilities are obtained with a reliability parameter value 
β = 0.7, which entails a certain lack of expertise on the part of the 
decision-maker that the automaton is representing. In addition, and for 
simplicity, it is assumed three alternatives {A1, A2, A3 } with latent 
performance values V1 = 62.5, V2 = 25, and V3 = 10, respectively. 
According to the proposed methodology, the automaton may manifest in 
each paired comparison different intensities of preference, Vi

Vj
, with 

different probabilities, pβij. In what follows, we will drop the subscript 
0.7 for β when referring to such probabilities.2 To simplify as much as 
possible, using V1

V3 
and V2

V3 
as guiding values, the below four-stage intensity 

scale judgments is established as a simplification of the scale proposed 
by Saaty [18]3:  

1 Much higher (the performance of the alternative Ai is at least 4.5 
times bigger than the performance of alternative Aj): In this case, the 
value âij =

25
4 is assigned;  

2 Higher (the performance of the alternative Ai is bigger than the 
performance of alternative Aj but less than 4.5 times): In this case, 
the value âij =

10
4 is assigned;  

3 Lower (the performance of the alternative Aj is higher than the 
performance of alternative Ai but less than 4.5 times): In this case, 
the value âij =

4
10 is assigned;  

4 Much lower (the performance of the alternative Aj is at least 4.5 
times bigger than the performance of alternative Ai): In this case, the 
value âij =

4
25 is assigned. 

This scale requires 3 critical points (Z), which are 4.5, 1, and − 4.5. 
From these values, using Eq. (10) and (11), we can obtain the probability 
that the automaton will show a preference (1, 2, 3, or 4) in each paired 
judgment. For example, the probability that the automaton values âij =
25
4 is obtained as the probability that the automaton believes that Vi is 
much higher than Vj, which applying Eq. (11) leads to 

pij

(
25
4

)

=
1

e
0.7

(

(4.5− 1
4.5)−

(
Vi
Vj
−

Vj
Vi

))

+ 1

=
1

e
0.7

(
4.28−

(
Vi
Vj
−

Vj
Vi

))

+ 1

.

Previously to the calculations of the first two stages of the intentional 
bounded rationality methodology for the example are presented below 
the automaton’s intensity judgment probabilities are calculated. The 
probability with which the automaton with intentional bounded ratio-
nality will choose each intensity in each peer-to-peer comparison allows 
for situations in which it is possible to get right which of the two 
compared alternative is best but with not correct intensity. For example, 
the probability of choosing rightly alternative A1 in the comparison 
A1 vs A2 with intensity â12 = 10/4 will lead to 

p12

(
10
4

)

=
1

e
0.7

(

(1− 1
1)−

(
V1
V2
−

V2
V1

))

+ 1

−
1

e
0.7

(

(4.5− 1
4.5)−

(
V1
V2
−

V2
V1

))

+ 1

= 0.6342  

while with intensity â12 = 25
4 will lead to 

p12

(
25
4

)

=
1

e
0.7

(

(4.5− 1
4.5)−

(
V1
V2
−

V2
V1

))

+ 1

= 0.1788.

The complete set of probability values of peer-to-peer comparison 
are: 

â12 =
25
4
; p12

(
25
4

)

= 0.1788; â12 =
10
4
; p12

(
10
4

)

= 0.6342  

â12 =
4
10

; p12

(
4
10

)

= 0.1756; â12 =
4
25
; p12

(
4

25

)

= 0.0114  

â13 =
25
4
; p13

(
25
4

)

= 0.7805; â13 =
10
4
; p13

(
10
4

)

= 0.2056  

â13 =
4
10

; p13

(
4
10

)

= 0.0132; â13 =
4
25
; p13

(
4

25

)

= 0.0007  

â23 =
25
4
; p23

(
25
4

)

= 0.1788; â23 =
10
4
; p13

(
10
4

)

= 0.6342  

â23 =
4
10

; p23

(
4
10

)

= 0.1756; â23 =
4
25
; p13

(
4

25

)

= 0.0114 

STEP 1. All possible combinations of judgments that the automaton can 
manifest (a matrix A for each one) and their probabilities are listed. 

The total number of different combinations of possible judgments 
(matrices) the automaton can manifest is 64 (= 43): 

2 The value β = 0.7 for the level of reliability was selected because it presents 
the maximum expected performance difference between the requirement and 
the non-requirement of consistency as illustrates.  

3 To simplify, Saaty’s categories 1, 2, 3, 4 have been grouped in the segment 
whose assigned value is 2.5 (10/4) while Saaty’s categories 5, 6, 7, 8, 9 have 
been grouped in the segment whose assigned value is 6.25 (25/4). The critical 
point between the two segments is 4.5. The segment simplification and the laten 
performances of the alternatives were consciously chosen to allow for fully 
consistent matrices. 
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A(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
25
4

25
4

4
25

−
25
4

4
25

4
25

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
25
4

25
4

4
25

−
10
4

4
25

4
10

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

...

A(64) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
4
25

4
25

25
4

−
4

25
25
4

25
4

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The probabilities of each matrix are listed. 

p(A(1)) = p12

(
25
4

)

∗ p13

(
25
4

)

∗ p23

(
25
4

)

= 0.0250  

p(A(2)) = p12

(
25
4

)

∗ p13

(
25
4

)

∗ p23

(
10
4

)

= 0.0885 

… 

p(A(64)) = p12

(
4

25

)

∗ p13

(
4
25

)

∗ p23

(
4

25

)

= 9.12E − 08 

STEP 2. The priority vector and its validity parameters (consistency) for 
each combination of judgments in step 1 is obtained by applying the decision 
support technique to evaluate. 

The AHP method allows obtaining the priority vector, ŵ, from the 
matrix of A: 

A =

⎛

⎝
â11 ⋯ â1n
⋮ ⋱ ⋮

ân1 ⋯ ânn

⎞

⎠

Multiplying matrix A by itself as many times as necessary so that 
between one step and the next there are no variations in the elements of 
the priority vector ŵ. 

A(1)→ŵ(ŵ1, ŵ2, ŵ3) = (0.6880, 0.2397, 0. 0723);CR = 0.3539  

A(2)→ŵ(ŵ1, ŵ2, ŵ3) = (0.7385, 0.1694, 0.0920);CR = 0.0829 

… 

A(64)→ŵ(ŵ1, ŵ2, ŵ3) = (0.0723, 0.2397, 0.6880);CR = 0.3539 

STEP 3. Orderings are classified according to the impact of the error they 

entail. 
Regardless of the intensity values, there is only one correct ordering 

of alternatives: A1 ≻ A2 ≻ A3. Herein, this ordering is called Error Free 
and it is denoted O123. Using this notation, wrong ordering O132 chooses 

rightly alternative A1, and it is called Right-Soft Error. Ordering O213 is 
called Medium-Soft Error; O231 is called Medium-Hard Error; O312 is 
called Extreme-Soft Error; while O321 is called Extreme-Hard Error. The 
priority vector leading to the three alternatives being equivalent, A1 =

A2 = A3, is denoted O1=2=3, and called Total Error. Any of the error 
orderings but Total Error can be obtained from a fully consistent matrix. 
For example, the fully consistent matrix 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
10
4

4
10

4
10

−
4

25
10
4

25
4

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

has a priority vector leading to the Extreme-Soft Error ordering, while 
the fully consistent matrix 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
4
10

4
10

10
4

−
4

25
10
4

25
4

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

has a priority vector leading to the Extreme-Hard Error ordering. Notice 
that there are inconsistent matrices 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
10
4

10
4

4
10

−
25
4

4
10

4
25

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
25
4

10
4

4
25

−
25
4

4
10

4
25

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

that have a priority vector leading to a correct ordering of alternatives. 
As a summary of the first three steps for a sample of the 64 possible 

matrices, the probability of their priority vectors, obtained with the AHP 
technique, CR values and type of errors are provided below: 

A(1)→ŵ(ŵ1, ŵ2, ŵ3) = (0.6880, 0.2397, 0. 0723);CR = 0.3539  

p(A(1)) = p12(25 / 4) ∗ p13(25 / 4) ∗ p23(25 / 4) = 0.0250 (O123 Error Free)

A(2)→ŵ(ŵ1, ŵ2, ŵ3) = (0.7385, 0.1694, 0.0920);CR = 0.0829  

p(A(2)) = p12(25 / 4) ∗ p13(25 / 4) ∗ p23(10 / 4) = 0.0885 (O123 Error Free)

A(3)→ŵ(ŵ1, ŵ2, ŵ3) = (0.7385, 0.0920, 0.1694);CR = 0.0829  

p(A(3))=p12(25/4)∗p13(25/4)∗p23(4/10)=0.0245(O132 Right− SoftError)

… 

A(25)→ŵ(ŵ1, ŵ2, ŵ3) = (0.3306, 0.3976, 0.2718);CR = 1.4987   

p(A(25)) = p12(10 / 4) ∗ p13(4 / 10) ∗ p23(25 / 4) = 0.0015 (O213 Medium − Soft Error)
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… 

A(29)→ŵ(ŵ1, ŵ2, ŵ3) = (0.2785, 0.3897, 0.3319);CR = 2.5086  

p(A(29)) = p12

(
10
4

)

∗ p13

(
4
25

)

∗ p23

(
25
4

)

= 0.0001(O231 Medium − Hard Error)

… 

A(31)→ŵ(ŵ1, ŵ2, ŵ3) = (0.2166, 0.1585, 0.6249);CR = 0.3492   

… 

A(43)→ŵ(ŵ1, ŵ2, ŵ3) = (0.1638, 0.2984, 0.5377);CR = 0.0816   

… 

A(52)→ŵ(ŵ1, ŵ2, ŵ3) = (0.3333, 0.3333, 0.3333);CR = 3.8017  

p(A(52))= p12(4/25)∗p13(25/4)∗p23(4/25)= 0.0001 (O1=2=3 Total Error)

… 

A(64)→ŵ(ŵ1, ŵ2, ŵ3) = (0.0723, 0.2397, 0.6880);CR = 0.3539   

STEP 4. Priority vectors with same ordering of alternatives or elected 
alternative are clustered together. The probability of an ordering/elec-
ted alternative is obtained as the sum of the probabilities of all priority 
vectors in its corresponding cluster. 

p(O123) =
∑64

i=1
p(A(i)|O123); p(O132) =

∑64

i=1
p(A(i)|O132)

p(O213) =
∑64

i=1
p(A(i)|O213); p(O231) =

∑64

i=1
p(A(i)|O231)

p(O312) =
∑64

i=1
p(A(i)|O312); p(O321) =

∑64

i=1
p(A(i)|O321)

p(O1=2=3) =
∑64

i=1
p(A(i)|O1=2=3)

The probability of orderings as the sum of the probability values of 
the priority vectors leading to such ordering: 

p(O123); p(O132); p(O213); p(O231); p(O312); p(O321); p(O1=2=3).

When the alternatives are mutually exclusive, the quality of the de-
cision support technique is measured with its likelihood of choosing the 
best alternative. The probability of choosing alternative Ai as best is the 
sum of the probabilities of the orderings that have such alternative as the 
first option: pi =

∑n
j∕=i

∑n
k∕=i∕=jp(Oijk). 

p1 = p(O123) + p(O132); p2 = p(O213) + p(O231);

p3 = p(O312) + p(O321); p1=2=3 

STEP 5. The probability of choosing the correct ordering or the correct 
best alternative by the decision support technique is analysed and the (ex-
pected) performance of decision the support techniques can be computed. 

The expected performance of orderings (when only one alternative 
should be discarded – AHPwoCo) and of election (when two alternatives 
must be discarded – AHPwoCe) are detail: 

E(AHPwoCo) = (p(O123)+ p(O213))(V1 +V2)

+ (p(O132)+ p(O312))(V1 +V3)

+ (p(O231)+ p(O321))(V2 +V3) + p1=2=3
2(V1 + V2 + V3)

3
.

E(AHPwoCe) = p1V1 + p2V2 + p3V3 + p1=2=3

(
V1 + V2 + V3

3

)

.

Finally, these steps must be carried out for all compared decision 
support techniques. Obtaining the performance of each one for the same 
case allows us to analyze the differences quantitatively. 

In our case we evaluate the contribution of the inconsistency in AHP, 
therefore the first three steps are common in the two compared tech-
niques, and it will only be necessary to repeat steps 4 and 5 whose results 
are detailed in subSections 5.1 and 5.2. 

5.1. Performance of AHPwoC 

When consistency is not required to be verified, the 64 comparison 
matrices are considered. Each one of them having one priority vectors, 
which are obtained using Saaty’s AHP technique. 

The probability of an ordering is obtained, which in this case are: 

p(O123) = 0.6764; p(O132) = 0.1529; p(O213) = 0.1529; p(O231)

= 0.0026; p(O312) = 0.0026; p(O321) = 0.0008; p(O1=2=3)

= 0.0118.

p(A(31)) = p12(10 / 4) ∗ p13(4 / 25) ∗ p23(4 / 10) = 0.0001 (O312 Extreme − Soft Error)

p(A(43)) = p12(4 / 10) ∗ p13(4 / 10) ∗ p23(4 / 10) = 0.0004 (O321 Extreme − Hard Error)

p(A(64)) = p12(4 / 25) ∗ p13(4 / 25) ∗ p23(4 / 25) = 9.12E − 08 (O321 Extreme − Hard Error)
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Thus, for the AHPwoC technique the probability of obtaining an 
Error Free ordering is 0.6764, much higher than that of any of the other 
possible error orderings. The probabilities of obtaining a Medium-Soft 
Error and a Right-Soft Error, respectively, are the same (0.1529) since 
both suppose an error between two performances that have the same 
intensity (A1 is 2.5 times A2 and A2 is 2.5 times A3), while the other error 
orderings have a probability lower than 0.003. 

The probability of election each alternative Ai, in this case, it is: 

p1 = p(O123) + p(O132) = 0.8293; p2 = p(O213) + p(O231) = 0.1555;

p3 = p(O312) + p(O321) = 0.0034; p1=2=3 = 0.0118 

Thus, the AHPwoC technique probability of choosing A1 as the best 
alternative is 0.8293, of choosing A2 as the best alternative is 0.1555, of 
choosing A3 as the best alternative is 0.0034, while the probability of the 
three alternatives being equivalent is 0.0118. 

Once the probabilities of orderings (AHPwoCo) and election 
(AHPwoCe) are obtained, their expected performances are calculated: 

E(AHPwoCo) = (p(O123)+ p(O213))(V1 +V2)

+ (p(O132)+ p(O312))(V1 +V3)

+ (p(O231)+ p(O321))(V2 +V3) + p1=2=3
2(V1 + V2 + V3)

3
= 84.7239.

E(AHPwoCe) = p1V1 + p2V2 + p3V3 + p1=2=3

(
V1 + V2 + V3

3

)

= 56.1361.

An infallible automaton gets 87.5 = V1 + V2 and 62.5 = V1, 
respectively, which means that the AHPwoC technique achieves 96.83% 
and 89.82% of the maximum possible performance. 

5.2. Performance of AHPwC 

The AHPwC technique admits a comparison matrix when its con-
sistency ratio verifies CR < 0.1 (see Section 4). This criterion causes the 
decision support technique (AHPwC) to reject many priority vectors. In 
the considered case 24 of the 64 comparison matrices do not verify the 
consistency criterion, since each comparison matrix has a probability as 
a function of the probability of the judgments it contains (see STEP 2 
above), the probability of rejecting the judgments manifested by the 

automaton will be the sum of the probabilities of the rejected matrices, 
which in case study is 0.3141. In other words, the probability that the 
AHPwC technique will support the judgment expressed by the autom-
aton is 0.6859. From the comparison matrices that pass the consistency 
criterion, it is obtained: 

p(O123) = 0.8365; p(O132) = 0.0791; p(O213) = 0.0791;

p(O231) = 0.0023; p(O312) = 0.0023; p(O321) = 0.0006.

It is noticed that the probability of the Error Free ordering experi-
mented an increase of 23.67% while all other error orderings experi-
ment a decrease, which implies that the ordering expected performance 
of AHPwC technique is superior to that of the AHPwoC technique: 

E(AHPwCo) = (p(O123)+ p(O213))(V1 +V2) + (p(O132)+ p(O312))(V1 +V3)

+ (p(O231)+ p(O321))(V2 +V3)

= 86.1232.

Regarding election, the AHPwC technique probability of choosing A1 

as the best alternative is 0.9156, of choosing A2 as the best alternative is 
0.0815, and of choosing A3 as the best alternative is 0.0030. As with the 
ordering, the election expected performance with AHPwC is higher than 
the obtained with the AHPwoC technique: 

E(AHPwCe) = p1V1 + p2V2 + p3V3 = 59.2906.

The gains in election and ordering of AHPwC in comparison with the 
AHPwoC amount to just 5.62% and 1.62%, and are due to the very 
important probability increase of the Error Free ordering achieved by 
the AHPwC. Indeed, the probability of rejecting the judgment of au-
tomaton (0.3141) is distributed as follows: 0.1026 goes to Error Free 
matrices; 0.0987 to Right-Soft Error matrices; 0.0987 to Medium-Soft 
Error matrices; 0.0010 to Medium-Hard Error matrices; 0.0010 to 
Extreme-Soft Error matrices; 0.0004 to Extreme-Hard Error matrices; 
and 0.0118 to Total Error matrices. 

When the judgments expressed are cardinally inconsistent, those 
judgments are more likely to be wrong than right, therefore the expected 
performance of eliminating the inconsistent judgments is positive. 
However, not all inconsistent judgments are incorrect, nor are all correct 
judgments consistent. For example, A(1) generates a correct priority 
vector (0.6880, 0.2397, 0.0723) with probability 0.0250, although it is 
classed as inconsistent because its CR = 0.3539. Therefore, the elimi-

Fig. 2. Expected Performance for different levels of reliability (β).  
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nation of inconsistent judgments that are correct could lead to perfor-
mance losses on certain occasions, and this situation must be assumed. 

5.3. Sensitivity analysis between automaton expertise and expected 
performance of consistency 

A sensitivity analyses of the Expected Performance for different 
levels of expert reliability was carried out, which is illustrated in Fig. 2. 
It is noticed that the maximum expected performance difference pro-
vided by the consistency requirement is 5.62% in election and 1.62% in 
ordering when the expertise level is β = 0.7. However, these modest 
increases in expected performance require the rejection of 31.41% of all 
the possible judgments that can be expressed. The alternative approach, 
i.e., the reparation of inconsistent matrices by improving their consis-
tency via feedback mechanisms, would involve costs that could be su-
perior to the corresponding gain in expected performance [12,57,58]. 

Fig. 2 establishes the relationship between the quality of the expert 
and the contribution of the consistency requirement to decision per-
formance. This result is important because it shows that the performance 
of the requirement of consistency in judgments depends on the quality of 
the experts. At the extremes, when the experts are “ignorant” (very low 
betas, less than 0.1) and when the experts are “sage” (very high betas, 
greater than 2.1), requiring consistency in judgments does not add 
performance to the assisting technique to the decision. It could be 
affirmed that when the a priori selection processes of experts work very 
well and their wisdom is guaranteed, it is not necessary to demand 
consistency in their judgments and the same would happen when we are 
faced with a totally new situation in which there are no experts in the 
matter. 

If the performance of each alternative is unknown, any of the error 
matrices is indistinguishable from the Error Free matrix, since an 
ordering with consistency preferences manifestation has traditionally 
been classified as correct. Only the a priori probability calculations 
shown in this work allow the evaluation of the decision support tech-
nique. Within the probability that the automaton will show a matrix 
with consistent judgments (proportion of total number of comparison 
matrices verifying the consistency criterion - in the present case study is 
0.6859), the errors are undetectable by the AHP: the probability that the 
priority vectors supported by this decision support technique are Error 
Free is 0.8365 (p(O123)), the probability of accepting an ordering that 
puts A1 as the best alternative is 0.9156, the probability of electing 
alternative A2 is 0.0815, and 0.0030 of electing alternative A3. 

6. Conclusions 

Human judgment is a valuable decision-making tool in many fields. 
This work has addressed problems with latent performance values of 
alternatives, establishing the difficulties involved in assessing human 
judgment in this case. To overcome this difficulty, a simulation meth-
odology based on the concept of automaton with intentional bounded 
rationality is proposed to evaluate a priori decision support techniques. 
In this conceptual framework, an automaton that can make right or 
wrong decisions in a controlled way is used to represent the decision 
maker. The probability of choice by the intentional bounded rationality 
automaton depends on two factors: the relative difference in perfor-
mance between alternatives, and its degree of expertise or reliability 
parameter. The difference in performances capture the complexity of the 
decision (higher probability of error the closer the performances are), 
while a higher degree of expertise means that the expert can make more 
accurate judgments in reaching a decision for the given decision 
complexity. When a decision support technique is implemented, the 
correct order of the alternatives cannot be known a priori, but the 
proposed method allows knowing the a priori reliability provided by the 
technique used. Without our method, the only thing that can be analysed 
is the logical level of the relationships expressed by each expert, that is, 
the level of consistency of each expert. 

Decision support techniques seek to analyze the logical relationships 
that are inferred from the judgments shown by the decision-maker, to 
detect possible errors, rejecting judgments that do not meet certain pre- 
established requirements. The results of the case study show how the 
AHP technique obtains better-expected performances when the consis-
tency proposed by Saaty [15] is required (at most an expected perfor-
mance of 5.62% higher) but significantly increases the rejection of 
judgments, which increases the costs of the decision process for its repair 
(at least 31.41%). This is related to the conclusion of the paper discus-
sion regarding consistency: while a set of free error judgments implies 
consistency in judgments, consistency in judgments does not imply that 
the judgements are free error, while inconsistency does not necessarily 
imply that the judgements are wrong. The methodology proposed makes 
it possible to detail the probabilities of making different types of error in 
the two scenarios studied, AHPwoC and AHPwC, by computing the 
probabilities of orderings being correct and inconsistent, and vice versa. 
The case study shows how the inconsistency of the AHP technique 
incorrectly rejects 20.13% of priority vectors that elect the correct best 
alternative A1 and correctly rejects 11.28% of the priority vectors that 
elect another alternative. When the rationality of the decision-maker is 
different to 0.7 the gains in the expected performance are reduced (as 
can be seen in Fig. 2); when the decision-maker are very expert their 
judgments are more consistent and the gain in the expected return is 
reduced, while when the decision makers are very inexpert the rejecting 
probability increases although it does not imply a greater gain in ex-
pected performance. On the other hand, increasing rejections of priority 
vectors means an increase in decision-making costs; the incorporation of 
the inconsistency must be compared with the cost that the decision 
support technique would require. Indeed, rejection of a priority vector 
supposes further processing to obtain greater reliability of the result: to 
allow the decision-maker to rectify his judgments (feedback process, 
change of preferences) or to incorporate another decision-maker into the 
process. 

6.1. Future research and applications 

Decision support techniques are a set of mechanisms that help obtain 
objective judgments from experts and use logical mechanisms that try to 
provide scientific rigor to treat the individual and collective judgments 
[8,9]. The intentional bounded rationality method allows evaluating 
each mechanism of the decision support techniques in an isolated and 
quantitative way. This level of detail makes it possible to delve into 
comparisons between decision support techniques, a field of research 
little studied to date. Most of the comparisons between techniques [21, 
30–32,54] analyze the differences between them descriptively, and in 
some cases, empirically illustrate when their application leads to dif-
ferences in conclusions. The analysis of the expected performances and 
their costs seems to be a promising line of future research, especially to 
evaluate novel methods such as the Best-Worst [56] which apparently 
shows a similar performance to the AHP but with a lower need for re-
sources (judgments of the experts). Another interesting future line of 
research would be to study automata groups. The methodology would 
make it possible to analyze the expected performance of different au-
tomaton judgment aggregation mechanisms [58–60], as well as the 
expected gains that would be obtained by adding one more automaton 
with a given level of expertise (β). 
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