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Abstract
New rigidity results for complete non-compact spacelike submanifolds of arbitrary codimen-
sion in plane fronted waves are obtained. Under appropriate assumptions, we prove that a
complete spacelike submanifold in these spacetimes is contained in a characteristic light-
like hypersurface. Moreover, for a complete codimension two extremal submanifold in a
plane fronted wave we show sufficient conditions to guarantee that it is a (totally geodesic)
wavefront.

Keywords Extremal submanifold · Weakly trapped submanifold · Plane fronted wave

Mathematics Subject Classification 53C42 · 53C80 · 83C35

1 Introduction

In the search for exact solutions to Einstein’s field equation it is usually assumed the existence
of a certain symmetry. This symmetry is usually provided by a globally defined causal
conformal vector field [18]. In particular, when this vector field is lightlike and parallel, the
resulting solution is called a Brinkmann spacetime [5]. In this article, we will focus on a
distinguished subfamily of Brinkmann spacetimes, namely, plane fronted waves [9]. A plane

frontedwave is a Lorentzianmanifold (M
n+2

, 〈 , 〉)where M
n+2 = R

2×Mn with (Mn, gM )

a (connected) Riemannian manifold and the Lorentzian metric is

〈 , 〉 = H(u, x)du ⊗ du + du ⊗ dv + dv ⊗ du + gM , (1)
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where (u, v) are the natural coordinates on R
2 and H(u, x) is a (independent of v) smooth

function on R
2 × Mn . The coordinate vector field ∂v := ∂/∂v is lightlike and parallel.

Endowing M
n+2

with the time orientation defined by ∂v , it becomes a spacetime.As∇u = ∂v ,

the coordinate u : M
n+2 −→ R plays the role of a quasi-time function [4, Def. 13.4] i.e., its

gradient is everywhere causal and any causal geodesic segment γ such that u ◦ γ constant is
injective. In particular, the spacetime is causal [4, p. 490]. A plane fronted wave is foliated
by the (characteristic) lightlike hypersurfaces u = u0, u0 ∈ R.

When Mn = R
2 and gM is the usual Euclidean metric, the spacetime M

4
is called a

pp-wave (plane fronted wave with parallel propagating rays) [4]. Plane fronted waves model
(electromagnetic or gravitational) radiation propagating at the speed of light. Despite the fact
that the study of gravitational waves goes back to Einstein and Rosen [8], the experimental
detection of gravitational waves [1] has aroused widespread interest in plane fronted waves.

In these ambient spacetimes we will study spacelike submanifolds of arbitrary codimen-
sion. Spacelike submanifolds of codimension greater than one became interesting from a
physical viewpoint when Penrose introduced the notion of trapped surface to study space-
times’ singularities [17]. Namely, the existence of a trapped surface is a sign of the presence
of a black hole. The original definition of trapped surface was given in terms of null expan-
sions. This is related to the causal orientation of themean curvature vector field, which allows
the extension of the concept of trapped submanifold to arbitrary codimension [14]. Indeed,

let ψ : �k −→ M
n+2

be a spacelike submanifold of arbitrary codimension in an arbitrary

spacetime. Denoting by
−→
H the mean curvature vector field of the submanifold and following

the standard terminology in General Relativity (see [14, 15]), �k is said to be future trapped

if
−→
H is timelike and future pointing everywhere (similarly for past trapped); weakly future

trapped if
−→
H is causal and future pointing everywhere (similarly for weakly past trapped)

and extremal if
−→
H = 0.

In a plane frontedwave, each codimension two totally geodesic (hence, extremal) spacelike
submanifold defined by u = u0, v = v0, u0, v0 ∈ R, is called a wavefront [9]. Physically, a
wavefront in a plane frontedwave can be interpreted as a perturbation that is being propagated
at the speed of light without experiencing any change (e.g., weakening) [12]. For instance,
if we consider in the 4-dimensional Lorentz-Minkowski spacetime L

4 the coordinates (u :=
(z − t)/

√
2, v := (z + t)/

√
2, x, y), where t, x, y, z are the standard coordinates, we can

see how the wavefronts are given by {u0, v0} × R
2, u0, v0 ∈ R.

Fromageometrical point of view, it is natural towonder underwhich conditions a complete
codimension two extremal submanifold in a plane fronted wave is a wavefront. In [7], the
authors answer this question for the compact case. Thus, in this paper we will focus on
the non-compact case. Our main tools will be certain maximum principles as well as the
parabolicity of the spacelike submanifold.

Let us recall that a complete (non-compact) Riemannian manifold is parabolic if the
only superharmonic functions bounded from below that it admits are the constants (see,
for instance, [13]). From a physical perspective, parabolicity is equivalent to the recurrence
of the Brownian motion on a Riemannian manifold [10]. From a mathematical standpoint,
complete Riemannian surfaces with non-negative Gaussian curvature are parabolic [11]. In
arbitrary dimension there is no clear relation between parabolicity and sectional curvature.
Nevertheless, there exist sufficient conditions to ensure the parabolicity of a Riemannian
manifold of arbitrary dimension based on its geodesic balls’ volume growth [3]. In this
article we will use that parabolicity is invariant under quasi-isometries [10, Cor. 5.3].
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This paper is organized as follows. Section 2 introduces general notions on plane fronted
waves and their spacelike submanifolds that will later allow us to proof our main results.
Section 3 contains themain results of this paper,wefirst state several conditions that guarantee
that a non-compact spacelike submanifold is contained in a lightlike hypersurface u = u0

(Theorems 7 and 11). From these theorems we can deduce certain non-existence results for
spacelike hypersurfaces (Corollaries 12 and 13) as well as for weakly trapped submanifolds
(Theorem 14). Finally, we answer our initial question providing in Theorems 15, 16 and 17
sufficient conditions for a complete non-compact codimension two extremal submanifold to
be a wavefront. Indeed, Theorem 15 states that in a plane fronted wave the only codimension
two parabolic extremal submanifolds with bounded (either from above or below) u ◦ ψ and
v ◦ψ are the (necessarily parabolic) wavefronts. Furthermore, Theorem 16 asserts, under the
same bound, that a complete codimension two extremal submanifold whose Ricci curvature
verifies Ric ≥ 0 is also a wavefront.

2 Set up

2.1 Plane fronted waves

Let us consider a plane fronted wave M
n+2 = R

2 × Mn and let L(Mn) be the subspace of

X(M
n+2

) consisting of the lifts to M
n+2

of all vector fields on Mn . From now on, we will use
the the same symbol to denote a vector field in X(Mn) and its corresponding lift to L(Mn).
In a similar way, we simplify the notation using the same symbol for a function on Mn and

its corresponding lift to M
n+2

. The Levi–Civita connection ∇ of a plane fronted wave was
given in [6] as follows,

Lemma 1 For any V , W ∈ L(Mn) ⊂ X(M
n+2

), we have

(i) ∇∂u ∂u = 1
2

(
∂uH ∂v − ∇̃Hu

) = 1
2

(∇H − ∇̃Hu
)
,

(ii) ∇V ∂u = ∇∂u V = 1
2 gM (∇̃Hu, V ) ∂v ,

(iii) ∇V W = ∇̃V W ,
(iv) ∇∂v ∂v = ∇∂v ∂u = ∇∂u ∂v = ∇V ∂v = ∇∂v V = 0,

where ∇̃ denotes the Levi–Civita connection of (Mn, gM ), ∇̃Hu is the gradient of Hu on

Mn, Hu(x) := H(u, x), and ∇H is the gradient of H on M
n+2

.

Every tangent vector Z ∈ T(u,v,x)M
n+2

admits the decomposition

Z = 〈Z , ∂v〉 ∂u + (〈Z , ∂u〉 − 〈Z , ∂v〉H
)
∂v + dπM (Z) (2)

where πM : M
n+2 −→ Mn is the natural projection. Thus, Lemma 1 implies that

∇Z ∂u = 1

2
〈Z , ∂v〉(∇H − ∇̃Hu) + 1

2
gM

(∇̃Hu, dπM (Z)
)
∂v. (3)

The non-necessarily vanishing components of the Riemann curvature tensor R of the
metric (1) are

R(U , V )W = RM (U , V )W , R(V , ∂u)∂u = −1

2
∇V ∇Hu and

R(V , ∂u)W = 1

2
H̃ess(Hu)(V , W ) ∂v,
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whereRM and H̃ess stand, respectively, for theRiemann andHessian tensors on Mn .Denoting

by Ric and RicM the Ricci tensors of M
n+2

and Mn , respectively, we obtain that the non-
necessarily vanishing components of Ric are

Ric(V , W ) = RicM (V , W ) and Ric(∂u, ∂u) = −1

2
�̃Hu,

where �̃ is the Laplacian on Mn . It can be easily seen that a plane fronted wave (M
n+2

, 〈 , 〉)
satisfies the timelike convergence condition (TCC), i.e., Ric(T , T ) ≥ 0 for every timelike
vector T , if and only if

�̃Hu ≤ 0 and RicM ≥ 0. (4)

2.2 Spacelike submanifolds

Let us now consider ψ : �k −→ M
n+2

a (connected) spacelike submanifold in a plane

fronted wave (M
n+2

, 〈 , 〉). That is, ψ is an immersion and the induced metric on �k is
Riemannian. We will also denote the induced metric on �k by 〈 , 〉. For any vector field
V along the immersion ψ , we write V  and V ⊥ for the tangent and normal parts along ψ ,
respectively. If we denote by μ := u ◦ ψ and ν := v ◦ ψ , the restrictions of the coordinate
functions u and v to �k , we obtain that their gradients are given by

∇μ = ∂
v (5)

and

∇ν = ∂
u − (H ◦ ψ)∂

v . (6)

Therefore, from these formulas we see how wavefronts (i.e., codimension two spacelike
submanifolds given by u = u0, v = v0, for u0, v0 ∈ R) satisfy that the vector fields ∂u and
∂v are normal at every point.

Let us recall the Gauss and Weingarten’s formulas, given respectively by

∇X Y = ∇X Y + II(X , Y ), (7)

and

∇X N = −AN X + ∇⊥
X N , (8)

for X , Y ∈ X(�k) and N ∈ X⊥(�k), where ∇ and ∇ are the Levi–Civita connections of
M

n+2
and �k , respectively, II is the second fundamental form and AN is the shape operator

with respect to N and ∇⊥ is the normal connection. The mean curvature vector field of the
spacelike submanifold �k is

−→
H = 1

k
trace〈 , 〉(II). (9)

Since ∂v is a parallel vector field, we obtain using (7) and (8) for X ∈ X(�k)

0 = ∇X∂v = ∇X∂
v + ∇X∂⊥

v = ∇X∂
v + II(X , ∂

v ) − A∂⊥
v

X + ∇⊥
X ∂⊥

v . (10)

Taking tangent and normal parts in (10) we get

∇X∂
v = A∂⊥

v
X (11)

123



Rigidity results for complete spacelike… Page 5 of 10   179 

and

∇⊥
X ∂⊥

v = −II(X , ∂
v ). (12)

In particular, we have div(∂
v ) = trace(A∂⊥

v
). Now, we can use (5), (6) and (11) to obtain

that the Laplacians of μ and ν on �k are

�μ = k〈−→H , ∂v〉 (13)

and

�ν = div(∂
u ) − ∂

v (H ◦ ψ) − k(H ◦ ψ)〈−→H , ∂v〉. (14)

For a codimension two spacelike submanifold�n contained in a lightlike hypersurfaceu =
u0, the normal bundle is generated by the normal vector fields ∂v and η = −∂⊥

u + 1
2 〈∂⊥

u , ∂⊥
u 〉∂v

which satisfy 〈η, η〉 = 0 and 〈η, ∂v〉 = −1. From (11) and (12), we have

A∂v = 0 and ∇⊥∂v = 0. (15)

From (15), the following formula holds for the second fundamental form

II(X , Y ) = 〈A∂⊥
u
(X), Y 〉∂v, (16)

where X , Y ∈ X(�n). Now, decomposing ∂u into its tangent and normal components and
using (11) and (12), we get from (3)

∇W ∂
u = A∂⊥

u
(W ), ∇⊥

W ∂⊥
u = −II(W , ∂

u ) + 1

2

〈∇Hu, d(πM ◦ 
)(W )
〉
∂v. (17)

Hence, from (14), (16) and (17), the mean curvature vector of a spacelike submanifold �n

contained in a lightlike hypersurface u = u0 is given by (see [7])

−→
H = 1

n
trace(A∂⊥

u
) ∂v = 1

n
div(∂u) ∂v = 1

n
�ν ∂v. (18)

From (15) and (17) we have that each wavefront is totally geodesic and is also clearly
contained in a lightlike hypersurface u = u0. As shown in [7, Lemma 4.2], any codimension

two spacelike submanifold of M
n+2

contained in a lightlike hypersurface u = u0 is locally
isometric to Mn . Indeed, the following lemma extends this result.

Lemma 2 Let ψ : �n → M
n+2

be a codimension two spacelike submanifold in a plane

fronted wave M
n+2

. If ψ(�n) is contained in a lightlike hypersurface u = u0 or the lightlike
vector field 2∂u − (H ◦ ψ) ∂v is normal to �n at any point, then, πM ◦ ψ : �n → Mn is a
local isometry.

Proof From (2), for any Z ∈ Tp�
n we obtain

〈dψp(Z), dψp(Z)〉 = 〈Z , ∂v〉〈Z , 2∂u − (H ◦ ψ)p∂v〉 + gM (d(πM ◦ ψ)p(Z), d(πM ◦ ψ)p(Z)).

Hence, the first addend on the right hand side vanishes under our assumptions. ��
Remark 3 By means of Eqs. (5) and (6) we obtain that 2∂u − (H ◦ ψ) ∂v being normal to �n

is equivalent to

2∇ν + (H ◦ ψ)∇μ = 0.

Therefore, if 2∂u − (H ◦ ψ) ∂v is normal to �n and ψ(�n) is contained in a lightlike
hypersurface u = u0, then ψ(�n) is contained in a wavefront.
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3 Main results

First, let us obtain the next result for the restriction of the quasi-time function u to any
spacelike submanifold.

Proposition 4 Let ψ : �k −→ M
n+2

be a spacelike submanifold in a plane fronted wave.

(i) If 〈−→H , ∂v〉 > 0, then the function μ attains no local maximum.

(ii) If 〈−→H , ∂v〉 < 0, then μ attains no local minimum.

Proof Assume μ attains a local maximum at pmax . Therefore, at pmax from (13) we have
�μ(pmax ) = k〈−→H , ∂v〉(pmax ) ≤ 0, contradicting the fact that 〈−→H , ∂v〉 > 0. The proof of
the second statement is analogous. ��

As a direct consequence of Proposition 4, we have the following result.

Corollary 5 Let ψ : �k −→ M
n+2

be a spacelike submanifold in a plane fronted wave with

〈−→H , ∂v〉 > 0 (resp. 〈−→H , ∂v〉 < 0). Then, there is no (non-empty) open subset U ⊂ �k such
that ψ(U ) is contained in a lightlike hypersurface u = u0.

Another immediate consequence of Proposition 4 is

Corollary 6 Let ψ : �k −→ M
n+2

be a spacelike submanifold in a plane fronted wave.
Then,

(i) If μ attains a local maximum, then inf
�k

〈−→H , ∂v〉 ≤ 0.

(ii) If μ attains a local minimum, then sup
�k

〈−→H , ∂v〉 ≥ 0.

Note that, as an application of Proposition 4, we reobtain the well known non-existence
of compact trapped submanifolds in a plane fronted wave [7, 15].

Our next result ensures the constancy of the quasi-time function’s restriction to the
spacelike submanifold under certain assumptions, equivalently, under which conditions the
spacelike submanifold factorizes through the lightlike hypersurface u = u0, for u0 ∈ R.

Theorem 7 Let ψ : �k −→ M
n+2

be a complete, orientable, non-compact spacelike sub-
manifold in a plane fronted wave.

(i) If 〈−→H , ∂v〉 ≥ 0, μ ≥ u0, for u0 ∈ R and

lim
r(p)→∞ μ = u0,

where r(p) = d(p, o) is the Riemannian distance function on �k from a fixed point
o ∈ �k , then, μ = u0.

(ii) If 〈−→H , ∂v〉 ≤ 0, μ ≤ u0 for u0 ∈ R and

lim
r(p)→∞ μ = u0,

then, μ = u0.
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Proof To prove the first statement, let us define on �k the function μ̂ := μ − u0. From our
assumptions we have that μ̂ ≥ 0 and

lim
r(p)→∞ μ̂ = 0.

Furthermore, using (5) we obtain

〈∇μ̂, ∂
v 〉 = |∂

v |2 = |∇μ|2 ≥ 0.

Moreover, from our assumptions and (13) we have

div(∂
v ) = �μ = k〈−→H , ∂v〉 ≥ 0.

Reasoning by contradiction, suppose that μ �= u0. Hence, for some p ∈ �k we have
μ̂(p) > 0, so that μ̂ �= 0. Thus, we can apply [2, Thm. 2.2] to conclude that

〈∇μ̂, ∂
v 〉 = |∇μ|2 = 0.

Therefore, μ must be constant on �k and since μ is asymptotic to u0 we obtain μ = u0,

reaching a contradiction. The proof of (ii) is analogous defining on �k the function μ̃ :=
u0 − μ and using the vector field −∂

v instead of ∂
v in the computations. ��

In particular, for a spacelike submanifold ψ : �k −→ L
n+2 in the Lorentz–Minkowski

spacetime L
n+2, using Beltrami’s equation �ψ = k

−→
H , we derive from Theorem 7 the next

result.

Corollary 8 Let ψ : �k −→ L
n+2 be a complete, orientable, non-compact spacelike sub-

manifold in L
n+2 with ψ = (ψ0, ψ1, . . . , ψn+1). Assume that there is j ∈ {1, . . . , n + 1}

such that �(ψ j − ψ0) ≥ 0 and ψ j − ψ0 ≥ u0, for u0 ∈ R. If

lim
r(p)→∞(ψ j − ψ0) = u0,

where r(p) = d(p, o) is the Riemannian distance function on �k from a fixed point o ∈ �k ,
then ψ factorizes through the lightlike hyperplane x j − x0 = u0.

Remark 9 For the case of a spacelike hypersurface (k = n+1), the orientability assumption in
Corollary 8 can be dropped. Indeed, the orientation and time orientation of L

n+2 guarantees

the orientability of�n+1. In general, if the ambient spacetime M
n+2

is orientable, then every

spacelike hypersurface in M
n+2

is also orientable.

Remark 10 Note that for the codimension two case, under the assumptions of Lemma 2, �n

is locally isometric to Mn . Therefore, if the plane fronted wave verifies the TCC, then the
Ricci curvature of �n will be non-negative (4). In the particular case where n = 2, this fact
means that the Gaussian curvature of �2 is non-negative. Hence, if �2 is also complete, it

must be parabolic by [11]. More generally, in a plane fronted wave M
n+2 = R

2 × Mn with
Mn parabolic, a simply connected complete codimension two spacelike submanifold with
μ = u0 or everywhere orthogonal to 2∂u − H∂v is also parabolic due to Lemma 2 and the
fact that parabolicity is invariant under quasi-isometries [10, Cor. 5.3].

Furthermore, for parabolic spacelike submanifolds we have the next theorem.
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Theorem 11 Let ψ : �k −→ M
n+2

be a parabolic spacelike submanifold in a plane fronted

wave. If 〈−→H , ∂v〉 ≥ 0 (resp., 〈−→H , ∂v〉 ≤ 0) and sup�k μ < +∞ (resp., inf�k μ > −∞),
then μ = u0. In addition, if �n is a simply-connected codimension two submanifold, then
the wavefront is parabolic.

Proof From (13), if 〈−→H , ∂v〉 ≥ 0 holds, μ would be a superharmonic function on a parabolic
manifold. Thus, if it is bounded from below, it must be constant. We can prove the other case
in a similar way.

To conclude, the last statement is a consequence of the fact that in the codimension two
case, ifμ is constant and�n is simply connected, then it is globally isometric to thewavefront
[7, Prop. 4.6]. ��

As an immediate consequence of Theorem 11 we deduce that plane fronted waves do
not admit compact spacelike hypersurfaces which are everywhere non-contracting or non-
expanding.

Corollary 12 In a plane fronted wave there are no compact spacelike hypersurfaces with
signed mean curvature.

Moreover, if we consider a spacelike hypersurface in a plane fronted wave and choose its
normal unitary vector N such that 〈N , ∂v〉 < 0, we obtain from Theorem 7 the next result
for parabolic spacelike hypersurfaces (compare with [16, Thm. 4] and [19, Thm. 4]).

Corollary 13 In a plane fronted wave there are no parabolic spacelike hypersurfaces with
non-positive mean curvature and μ bounded from above nor parabolic spacelike hypersur-
faces with non-negative mean curvature and μ bounded from below.

Also, by means of Theorem 11 we can deduce the following non-existence result for
parabolic weakly trapped submanifolds in a plane fronted wave.

Theorem 14 In a plane fronted wave there are no codimension two parabolic weakly future
trapped (resp., weakly past trapped) submanifolds with inf�n μ > −∞ and sup�n ν < +∞
(resp., sup�n μ < +∞ and inf�n ν > −∞).

Proof Let us assume the existence of a codimension two parabolic weakly future trapped
submanifold in a plane fronted wave withμ bounded from below and ν bounded from above.
From Theorem 11 we obtain that it satisfiesμ = u0. Moreover, from (18) we obtain�ν > 0,
which combined with the upper bound of ν and the parabolicity of the submanifold implies
that ν is constant and therefore, the submanifold would be extremal, reaching a contradiction.
We can prove the other case in an analogous manner. ��

Using these ideas we get the next rigidity result for the extremal case in codimension two,
which extends [7, Thm. 4.10] to the non-compact case.

Theorem 15 In a plane fronted wave the only codimension two parabolic extremal subman-
ifolds with μ and ν bounded (either from above or below) are the (necessarily parabolic)
wavefronts.

Proof From (13) we obtain thatμ is a bounded harmonic function in a parabolic Riemannian
manifold. Thus, μ = u0 on �n . In addition, from (18) we have that since ν is also a bounded
harmonic function ν = v0. ��
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In addition, using Yau’s result obtained in [20, Cor. 1] we can extend this result to codi-
mension two spacelike submanifolds with non-negative Ricci curvature.

Theorem 16 In a plane fronted wave the only complete codimension two extremal submani-
folds with μ and ν bounded (either from above or below) and whose Ricci curvature verifies
Ric ≥ 0 are the wavefronts.

To conclude, we can provide another extension to the non-parabolic case by means of
Theorem 7 as follows.

Theorem 17 Let ψ : �n −→ M
n+2

be a complete, orientable, non-compact extremal sub-
manifold in a plane fronted wave that satisfies the TCC. If μ and ν are bounded (either from
above or below) by u0, v0 ∈ R, respectively, and

lim
r(p)→∞ μ = u0,

then �n is a wavefront.

Proof From Theorem 7, we obtain that μ = u0. Moreover, if M
n+2

satisfies the TCC, [7,
Prop.12] guarantees that �n has non-negative Ricci curvature. Now, using (18) and our
assumptions we obtain that ν is a bounded harmonic function on a Riemannian manifold
with non-negative Ricci curvature. Thus, it is constant by [20, Cor. 1]. ��
Example 18 A remarkable family of codimension two spacelike submanifolds in a plane

fronted wave M
n+2

satisfying μ = u0 are the spacelike graphs introduced in [7, Sec. 4].
Namely, given a smooth function h ∈ C∞(�), where� is an open domain in Mn and u0 ∈ R,
the graph

�n
u0(h) = { (

u0, h(x), x
) ∈ R × R × Mn : x ∈ �

}
, (19)

defines a codimension two spacelike submanifold, for any h and u0.
Note that, as a direct consequence of (18), the mean curvature of the graph �n

u0(h) is−→
H = (�h/n) ∂v . Clearly, each of these graphs is a wavefront if and only if h is constant.
Thus, the assumptions in Theorems 15, 16 and 17 cannot be weakened, since wewould easily
find counterexamples within this family of spacelike graphs.
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