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LINEAR ORTHOGONALITY PRESERVERS BETWEEN FUNCTION SPACES

ASSOCIATED WITH COMMUTATIVE JB∗-TRIPLES

DAVID CABEZAS AND ANTONIO M. PERALTA

Abstract. It is known, by Gelfand theory, that every commutative JB∗-triple admits a repre-
sentation as a space of continuous functions of the form

CT

0 (L) = {a ∈ C0(L) : a(λt) = λa(t), ∀λ ∈ T, t ∈ L},

where L is a principal T-bundle and T denotes the unit circle in C. We provide a description
of all orthogonality preserving (non-necessarily continuous) linear maps between commutative
JB∗-triples. We show that each linear orthogonality preserver T : CT

0
(L1) → CT

0
(L2) decomposes

in three main parts on its image, on the first part as a positive-weighted composition operator,
on the second part the points in L2 where the image of T vanishes, and a third part formed
by those points s in L2 such that the evaluation mapping δs ◦ T is non-continuous. Among the
consequences of this representation, we obtain that every linear bijection preserving orthogonality
between commutative JB∗-triples is automatically continuous and biorthogonality preserving.

1. Introduction

Along this note, F will stand for R or C. A couple of functions a, b from a set L to K are called disjoint
or orthogonal if their pointwise product (denoted by ab) is zero, that is, they have disjoint cozero sets,
where the cozero set of a function a : L → F is defined by coz(a) = {t ∈ L : a(t) 6= 0}. Let F(L,F)
denote the linear space of all functions from a set L to F. A mapping ∆ : F(L1,F) → F(L2,F)
is called separating or disjointness preserving or orthogonality preserving if it maps orthogonal or
disjoint functions to orthogonal or disjoint functions (i.e. ab = 0 ⇒ ∆(a)∆(b)). If the equivalence
ab = 0 ⇔ ∆(a)∆(b) = 0 holds for all a, b ∈ F(L1,F) we say that ∆ preserves orthogonality in both
directions or is biorthogonality preserving.

After the pioneering contributions by Abramovich [1], Beckenstein, Narici, and Todd [4], Zaanen
[24], and Arendt [3], among others, it was revealed that for every orthogonality preserving bounded
linear mapping T : C(K1) → C(K2), where K1 and K2 are compact Hausdorff spaces, there exists
h ∈ C(K2) and a mapping ϕ : K2 → K1 being continuous on the set {t ∈ K2 : h(t) 6= 0} satisfying

T (f)(t) = h(t)f(ϕ(t)),

for all f ∈ C(k), t ∈ K. By relaxing the hypothesis of continuity, Beckenstein, Narici and Todd
found certain conditions on a orthogonality preserving linear mapping T : C(K1) → C(K2), and
on the compact Hausdorff spaces K1 and K2, to guarantee that such a mapping T is automatically
norm continuous. That is, for example, the case if K1 is first countable and if T satisfies that
for any pair of points s1 6= s2 in K2 there exist a, b in C(K1) such that coz(a) ∩ coz(b) = ∅ and
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T (a)(s1) 6= 0, T (b)(s2) 6= 0. For any real or complex valued continuous function a on a locally
compact Hausdorff space L, the symbol supp(a) will stand for the support of a, that is, the closure
in L of the cozero set of a.

The most conclusive and influencing result was established by Jarosz in [16], where he provided a
complete description of all linear orthogonality preserving maps between C(K)-spaces. A conclusion
which was subsequently extended by Jeang and Wong to the setting of orthogonality preserving
linear maps between C0(L)-spaces for locally compact Hausdorff spaces L (see [17]). The main
consequences of these description assert that every orthogonality preserving linear bijection between
C(K)- or C0(L)-spaces is automatically continuous and bi-orthogonality preserving. Font and
Hernández extended this conclusion for orthogonality preserving linear maps between subalgebras
of C0(L)-spaces [12].

Commutative unital real C∗-algebras can be also represented as spaces of continuous functions.
By virtue of the Gelfand theory for commutative real C∗-algebras, every commutative unital
real C∗-algebra A is C∗-isomorphic (and hence isometric) to a real function algebra of the form
C(K)τ = {f ∈ C(K) : τ(f) = f}, where K is a compact Hausdorff space, τ is a conjugate
linear ∗-automorphism of period-2 on C(K) expressed, via Banach-Stone theorem, in the form

τ(f)(t) = f(σ(t)) (t ∈ K), where σ : K → K is a topological involution (i.e. a period-2 home-
omorphism) (compare [19, Proposition 5.1.4]). In the setting of real C∗-algebras it is established
in [14, 22] that every orthogonality preserving linear bijection between commutative unital real
C∗-algebras is automatically continuous.

In a general C∗-algebra A the notion of “orthogonality” for any couple of elements a, b ∈ A can be
extended in two directions: zero product ab = 0 and C∗-orthogonality ab∗ = b∗a = 0 (denoted by
a ⊥ b). Working with the second notion, Wolff gave a complete characterisation of all bounded linear
and symmetric orthogonality preserving maps from a unital C∗-algebra into another C∗-algebra [23].
Each C∗-algebra belongs to the strictly wider class of JB∗-triples as introduced in [18] with respect
to the triple product {a, b, c} = 1

2 (ab
∗c + cb∗a). C∗-algebra problems can benefit from both the

language and the techniques of JB∗-theory. That was the case of (C∗-)orthogonality preserving
bounded (non-necessarily symmetric) linear operators between general C∗-algebras whose precise
form was described by Burgos, Fernández-Polo, Garcés, Mart́ınez and the second author of this
note in [5]. By providing a partial positive answer to a problem posed by Araujo and Jarosz in [2],
it was proved in [7, 8] that every biorthogonality preserving linear surjection between two compact
C∗-algebras or between two von Neumann algebras or between two atomic JBW∗-triples containing
no infinite-dimensional rank-one summands is automatically continuous.

Despite the multiple advances on orthogonality preserving linear maps between C∗- and JB∗-
algebras (cf. [6]), almost nothing is known about orthogonality preserving linear maps between
general JB∗-triples, not even in the case of commutative JB∗-triples. This paper presents the first
advances on orthogonality preserving linear maps between JB∗-triples. It is worth to note that
JB∗-triples form a class of complex Banach spaces strictly wider than C∗-algebras whose roots
are on the theory of holomorphic maps on complex Banach spaces of arbitrary dimension and the
classification of bounded symmetric domains (the abstract definition will not be presented here, the
reader can consult [18] and the subsequent references). In this note we shall focus on the particular
subclass of all commutative JB∗-triples. The complex Banach spaces in this latter subclass admit
a representation as closed subspaces of C0(L)-spaces that are not, in general, closed for the usual
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pointwise product but admits a triple product {·, ·, ·} satisfying certain axioms (see [18] for more de-
tails). More concretely, let T denote the unit sphere of C. By the Gelfand theory for JB∗-triples (see
[18, Corollary 1.11]), each commutative JB∗-triple E can be (isometrically) identified via a triple
isomorphism (i.e., a linear bijection preserving triple product), with the norm closed subspace of
a C0(L) consisting of all T-homogeneous (or T-equivariant) continuous functions on a principal
T-bundle L, that is, a T-symmetric (i.e., TL = L) subset of a locally convex Hausdorff complex
linear-space L such that 0 /∈ L and L ∪ {0} is compact with triple product given by {a, b, c} = abc
with pointwise products (see also [11]). In other words,

E ∼= CT

0 (L) := {a ∈ C0(L) : a(λt) = λa(t) for every (λ, t) ∈ T× L}.

The space CT

0 (L) is equipped with the supremum norm and the triple product defined above.

Our aim in this note is to provide a full description of all orthogonality preserving linear maps
between commutative JB∗-triples. Our main result reads as follows:

Theorem 1.1. Let L1 and L2 be two principal T-bundles, and T : CT

0 (L1) → CT

0 (L2) a (non-
necessarily continuous) linear orthogonality preserving map. Then, the following statements hold:

(a) L2 admits a decomposition as a disjoint union L2 = Lz
2∪L

d
2∪L

c
2 of (possibly empty) T-symmetric

subsets

Lz
2 := {s ∈ L2 : δs ◦ T ≡ 0},

Ld
2 := {s ∈ L2 : δs ◦ T is discontinuous},

Lc
2 := {s ∈ L2 : δs ◦ T 6= 0 and continuous},

where Lz
2 is closed and Ld

2 open.

(b) There exists a multi-valued mapping ϕ̂ from Lnz
2 = Lc

2 ∪ Ld
2 into L̂1 = L1 ∪ {0} satisfying the

following properties:

(b.1) ϕ̂(λs) = ϕ̂(s) for all λ ∈ T, s ∈ Lnz
2 .

(b.2) For each s ∈ Lnz
2 and any t1, t2 ∈ ϕ̂(s) we have t1 ∈ Tt2. The map ϕ̂ can be viewed as a

continuous mapping from Lnz
2 into L̂1/T, defined by s 7→ q1(t), where q1 is the canonical

projection from L̂1 onto L̂1/T and t is any element in ϕ̂(s).

(b.3) For every a ∈ CT

0 (L1),

ϕ̂(s) 6⊂ supp(a) =⇒ δs ◦ T (a) = T (a)(s) = 0 ∀s ∈ Lc
2 ∪ Ld

2.

(c) There is a continuous selection of ϕ̂ in Lc
2, ϕ : Lc

2 → L̂1, and a non-vanishing bounded contin-
uous function r : Lc

2 → R+ satisfying: ϕ(λs) = λϕ(s) and r(λs) = r(s), for all λ ∈ T, s ∈ Lc
2

and

(1.1) T (a)(s) = r(s) a(ϕ(s)), for all s ∈ Lc
2 and every a ∈ CT

0 (L1).

(d) The set F = ϕ̂(Ld
2) is a disjoint finite union of the form Tt1 ∪ · · · ∪ Ttm with each tj ∈ L̂1.

It is worth to note that in Theorem 1.1 we understand that two elements a, b in a commutative
JB∗-triple CT

0 (L) are orthogonal if they have zero pointwise product, even if the function defined
by their pointwise product is not, in general, an element in CT

0 (L). This is not the formal definition
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of orthogonality in JB∗-triples. Elements a, b in a JB∗-triple E are called orthogonal if {a, b, x} = 0
for all x ∈ E (cf. [5]). However, it can be easily checked, from the expression of the triple product
on CT

0 (L) in the form {a, b, c} = abc, that a and b are orthogonal in CT

0 (L) if and only if they have
zero pointwise product, or equivalently, disjoint cozero sets.

It is known that, for each locally compact space L̃, the Banach space C0(L̃) is isometrically iso-
morphic to a CT

0 (L)-space for an appropriate principal T-bundles L (cf. [21, Proposition 10] or
[13, Lemma 3.1]). However, there exist principal T-bundles L for which the space CT

0 (L) is not
isometrically isomorphic to a C0(L)-space (cf. [18, Corollary 1.13 and subsequent comments]). So,
there exist abelian JB∗-triples which are not isometrically isomorphic to commutative C∗-algebras.
Therefore, the previous result is a strictly sharper version of the result by Jeang and Wong for
linear orthogonality preservers on C0(L)-spaces (cf. [17]).

The main theorem will be proved along section 2 via a non-trivial adaptation of the available tech-
niques employed by Abramovich [1], Jarosz [16] and Jeang and Wong [17]. The arguments in the
setting of CT

0 (L) will require a more sophisticated interplay between algebra, topology and analysis.
Among the conclusions of our main result we shall establish in Theorem 2.16 that every orthogo-
nality preserving linear bijection between commutative JB∗-triples (i.e. CT

0 (L)) is bi-orthogonality
preserving and automatically continuous.

We cannot conclude this section without commenting that CT

0 (L)-spaces also appear in other re-
search lines in functional analysis. A Banach space is called a Lindenstrauss space if its dual is
isometric to L1(Ω,Σ, µ) for some measure space (Ω,Σ, µ) (cf. [20, 15, 21, 13]). An isometric char-
acterization of Lindenstrauss spaces was established by Olsen in [21]. A locally compact Hausdorff
space L is called a locally compact Tσ-space if there exists a continuous mapping T × L → L,
(λ, t) 7→ λt, satisfying λ(µt) = (λµ)t and 1t = t, for all λ, µ ∈ T, t ∈ L. Every principal T-bundle
is a locally compact Tσ-space. We can extend the product by elements in T to the one-point com-
pactification L ∪ {ω} of L by simply setting λω = ω (λ ∈ T). The Banach subspace of C0(L) of all
T-homogeneous or T-equivariant functions on L is usually denoted by Cσ(L), that is,

Cσ(L) := {a ∈ C0(L) : a(λt) = λa(t) for every (λ, t) ∈ T×X}.

A complex Cσ-space is any complex Banach space which is isometric to a space Cσ(L) for some
Tσ-space L. A complex CΣ-space is a Banach space which is isometric to a Cσ(K) for some compact
Tσ-space K such that λt 6= t for all t ∈ K, λ ∈ T\{1}. Every C0(L)-space is a Cσ(L)-space (cf.
[21, Proposition 10]), and every Cσ(L)-space is a commutative JB∗-triple in the sense of Kaup
[18] (see also [13, Section 2]). It was proved by Olsen that a complex Banach space is a Cσ-space
(respectively, a CΣ-space) if and only if it is a Lindenstrauss space and the union of {0} with
the extreme points of the closed unit ball of its dual space is weak∗-closed (respectively, it is a
Lindenstrauss space and the set of extreme points of the closed unit ball of its dual space is weak∗-
closed) [21, Theorems 12 and 14]. Friedman and Russo proved in [13, Theorem 5] that the image
of each contractive projection on C0(L) is a Cσ-space.

2. Proof of the main result

This section is devoted to provide a proof of Theorem 1.1. It will be obtained after a series of
results in which we mix techniques of algebra, topology and analysis.
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Henceforth, given a normed space X , we shall denote its unit sphere by S(X). The next lemma,
which has been borrowed from [11, Remark 3.4] states a kind of Urysohn’s lemma in the context
of CT

0 (L)-spaces.

Lemma 2.1. [11, Remark 3.4] Suppose L is a principal T-bundle. Let W be a T-symmetric open
neighbourhood of t0 in L which is contained in a compact T-symmetric subset. Then, there exists a
function h ∈ S(CT

0 (L)) satisfying h(t0) = 1 and h(t) = 0 for all t ∈ X\W .

As the previous lemma, the next T-symmetric separation result will be frequently employed along
the document.

Lemma 2.2. [9, Lemma 3.5] If Tt1 6= Tt2 in a principal T-bundle L, there exist open T-symmetric
subsets V1, V2 ⊂ L satisfying:

• Ttj ⊂ Vj for j = 1, 2;

• Vj is compact for j = 1, 2;

• V1 ∩ V2 = V1 ∩ V2 = ∅.

In [17, Section 3], Jeang and Wong adapt the arguments by Jarosz in [16] to the case of orthogonality
preserving operators on C0(L)-spaces using the one-point compactification. We need to go one step
further in order to deal with the T-symmetric nature of our problem.

For a principal T-bundle L, we shall consider the one-point compactification L̂ = L∪ {0}. Now, let

us take the quotient space L̂/T, with the equivalence relation given by the group T, i.e.

t1 ∼ t2 ⇐⇒ t2 ∈ Tt1 for t1, t2 ∈ L and T0 = {0}.

When equipped with the quotient topology, L̂/T is a compact Hausdorff space. The quotient map

q : L̂ → L̂/T is always continuous and, in our case, it is also open. Namely, if U ⊂ L̂ is open, q(U)

is open in the quotient if and only if q−1
(
q(U)

)
= TU is open in L̂, which is clear.

Given a locally compact Tσ-space L, we consider the commutative C∗-algebra of all T-invariant
functions in C0(L), that is,

Chom
0 (L) = {f ∈ C0(L) : f(λt) = f(t), ∀t ∈ L, λ ∈ T},

equipped with the pointwise product and complex conjugation and the supremum norm. When L
is compact the symbol Chom(L) will denote the unital commutative C∗-algebra of all T-invariant
functions in C(L). If CT

0 (L) is a commutative JB∗-triple for a principal T-bundle L, the pointwise

product fa clearly lies in CT

0 (L) for any a ∈ CT

0 (L) and f ∈ Chom(L̂), where L̂ = L ∪ {0}. In

other words, CT

0 (L) is a Chom(L̂)-module under the pointwise product. Furthermore, the mapping

(a, b) 7→ 〈a, b〉(t) := a(t)b(t) defines an structure of Hilbert Chom(L̂)-module on CT

0 (L) in the usual
sense.

For each f ∈ Chom(L̂), the universal property of the quotient topology ensures the existence of a

continuous function f̂ : L̂/T → C such that f̂(t+ T) = f(t) for all t+ T = Tt ∈ L̂/T.
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L̂ C

L̂/T

f

q
f̂

Lemma 2.3. The operator ·̂ : Chom(L̂) → C
(
L̂/T

)
is a well-defined linear surjective and isometric

∗-homomorphism.

Proof. The fact that ·̂ is a linear ∗-homomorphism follows clearly from the pointwise ∗-operations.
Next, since

‖f̂‖∞ = sup
¶
|f̂(t+ T)| : t+ T ∈ L̂/T

©
= sup

¶
|f(t)| : t ∈ L̂

©
= ‖f‖∞

for all f ∈ Chom(L̂), ·̂ is an isometry. Thus, B := ·̂
Ä
Chom(L̂)

ä
is a C∗-subalgebra of C

(
L̂/T

)
. We

shall next proof that B separates points and zero in L̂/T. Given t1 + T 6= t2 + T in L̂/T, we have

Tt1 ∩ Tt2 = ∅ in L̂. Thus, by Lemma 2.2, there exist disjoint open T-symmetric neighborhoods
V1, V2 of t1 and t2 respectively with disjoint T-symmetric compact closures. Using Lemma 2.1, we

can find orthogonal functions a1, a2 ∈ CT(L̂) satisfying aj(tj) = 1 and aj |“L\Vj
≡ 0 for j = 1, 2.

Taking (for example) b = a1 + 2a2 ∈ CT(L̂), we have b(tj) = j for j = 1, 2. Hence, |b| ∈ Chom(L̂)

satisfies 0 6= ˆ|b|(t1 + T) = 1 6= ˆ|b|(t2 + T) = 2.

Finally, we conclude by the Stone-Weierstrass theorem [10, Corollary 8.2] that B = C
(
L̂/T

)
, so ·̂

is surjective. �

We are now in condition to work within the framework of Theorem 1.1. We recall that, as in the
statement of the main theorem, we set

Lz
2 := {s ∈ L2 : δs ◦ T ≡ 0},

Ld
2 := {s ∈ L2 : δs ◦ T is discontinuous},

Lc
2 := {s ∈ L2 : δs ◦ T 6= 0 and continuous}.

Clearly, Lz
2, L

d
2 and Lc

2 are mutually disjoint, T-symmetric and L2 = Lz
2 ∪ Ld

2 ∪ Lc
2. Besides, Lz

2

is closed. Namely, if (sλ)λ is a net in Lz
2 converging to s0 ∈ L2, for each a ∈ CT

0 (L1) we have
0 = δsλ ◦ T (a) = T (a)(sλ) → T (a)(s0) by the continuity of T (a) for all a ∈ CT

0 (L1), so δs0 ◦ T ≡ 0.
Hence, the set Lnz

2 = L2\L
z
2 = Ld

2 ∪ Lc
2 is open in L2.

For each s ∈ L2, let us define the set supp(δs◦T ) of all t ∈ L̂1 such that for every open T−symmetric

neighborhood U ⊂ L̂1 of t, there exists a function a ∈ CT

0 (L1) satisfying coz(a) ⊂ U and δs ◦T (a) =
T (a)(s) 6= 0. It is clear that T supp(δs ◦ T ) = supp(δs ◦ T ).

Proposition 2.4. The set supp(δ ◦ T ) is empty if and only if s ∈ Lz
2 (δs ◦ T ≡ 0).

Proof. Assume that supp(δ ◦ T ) = ∅ for some s ∈ L2. Then, for each t ∈ L̂1, there exists an open

T-symmetric neighborhood Ut ⊂ L̂1 such that for all a ∈ CT

0 (L1) with coz(a) ⊂ Ut, δs ◦ T (a) = 0.

Since L̂1 is compact, the open cover L̂1 =
⋃

t∈”L1

Ut must have a finite subcover {U1, . . . , Un}. Since

the canonical projection q : L̂1 → L̂1/T is open, {Ûj := q(Uj) : j = 1, . . . , n} is an open cover
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of the (compact and Hausdorff) quotient space L̂1/T. Therefore, there exists a partition of unity

subordinated to the cover: {“hj : j = 1, . . . , n} ⊂ C
(
L̂/T

)
. By Lemma 2.3, each “hj is the image

under ·̂ of a function hj ∈ Chom(L̂1). For all t ∈ L̂1 we have

n∑

j=1

hj(t) =

n∑

j=1

“hj(t+ T) = 1.

Furthermore, if t /∈ Uj, then t+ T /∈ Ûj, so hj(t) = “hj(t + T) = 0. This shows that h1, . . . , hn is a
partition of unity subordinated to the cover {U1, . . . , Un}.

The space CT

0 (L1) ⊂ CT(L̂1), so it is a Chom(L̂1)-module. Finally, given any a ∈ CT

0 (L1), we can
write a =

∑n
j=1 ahj, and coz(ahj) ⊂ coz(hj) ⊂ Uj . By the definition of each Uj, δs ◦ T (ahj) = 0,

and the linearity of δs ◦ T leads to δs ◦ T (a) = 0. The arbitrariness of a ∈ CT

0 (L1) allows us to
deduce that s ∈ Lz

2. �

Now, let us enumerate some properties of the set defined above.

Lemma 2.5. The following statements hold:

(1) # supp(δs ◦ T )/T = # q(supp(δs ◦ T )) = 1, for all s ∈ Lnz
2 .

(2) If s1 = λs2 ∈ L2 with λ ∈ T, then supp(δs1 ◦ T ) = supp(δs2 ◦ T ).

(3) If supp(δs ◦ T ) 6⊂ coz(a) = supp(a) for some s ∈ Lnz
2 and a ∈ CT

0 (L1), then δs ◦ T (a) = 0.

Proof.

(1) Suppose that t1, t2 ∈ supp(δs ◦ T ) satisfy Tt1 6= Tt2. By Lemma 2.2, there exist disjoint open
T-symmetric neighborhoods V1, V2 of t1 and t2, respectively, with disjoint T-symmetric compact
closures. For j = 1, 2, since tj ∈ supp(δs ◦ T ), there exists aj ∈ CT

0 (L1) satisfying coz(aj) ⊂ Uj

and T (aj)(s) 6= 0. Therefore, s ∈ coz(T (a1)) ∩ coz(T (a2)). However, coz(a1) ∩ coz(a2) ⊂
V1∩V2 = ∅. This contradicts the fact that T preserves orthogonality, so Tt1 = Tt2. This shows
that # supp(δs ◦ T )/T = # q(supp(δs ◦ T )) ≤ 1, the equality follows from Proposition 2.4.

(2) This follows straightforwardly from the fact that the cozero set of a function in CT

0 (L2) is
T-symmetric.

(3) Take any element t ∈ supp(δs◦T )\coz(a). There must exists an open T-symmetric neighborhood
U ∋ t such that U ∩ coz(a) = ∅. Since t ∈ supp(δs ◦ T ), there exists b ∈ CT

0 (L1) satisfying
coz(b) ⊂ U and δs ◦ T (b) 6= 0. Since coz(a) ∩ coz(b) = ∅ and T is orthogonality preserving, we
have coz(T (a)) ∩ coz(T (b)) = ∅. Therefore, T (b)(s) 6= 0 implies T (a)(s) = 0.

�

Proposition 2.4 along with property (1) in the previous lemma allow us to define a multi-valued
map:

(2.1) ϕ̂ : Lnz
2 → L̂1, ϕ̂(s) = supp(δs ◦ T ).
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Now, fix any s ∈ Lc
2 and consider the following subspaces

Js = {a ∈ CT

0 (L1) : ϕ̂(s) 6⊂ supp(a)}

= {a ∈ CT

0 (L1) : a vanishes on an open T-symmetric neighborhood of ϕ̂(s)},

Ks = {a ∈ CT

0 (L1) : a(t) = 0 ∀t ∈ ϕ̂(s)}.

Take any a ∈ Ks and any ε > 0, consider the closed sets

Aε = {t ∈ L1 : |a(t)| ≥ ε}, Bε = {t ∈ L1 : |a(t)| ≤ ε/2}.

The continuity of a ensures that ϕ̂(s) ⊂ int(Bε). Now, by Urysohn’s lemma and the identification of

Chom(L̂1) and C
(
L̂1/T

)
given by Lemma 2.3, we can find a function fε ∈ S

(
Chom(L̂1)

)
satisfying

0 ≤ fε ≤ 1, fε|Aε
≡ 1 and fε|Bε

≡ 0.

The Chom(L̂1)-module structure assures that fεa ∈ CT

0 (L1). Moreover, we have

int(Bε) ∩ coz(fεa) ⊂ Bε ∩ coz(fεa) = ∅,

so ϕ̂(s) 6⊂ coz(fεa) = supp(fεa), and we conclude that fεa ∈ Js. For all t ∈ L1, we have

|fε(t)a(t)− a(t)| = |a(t)||fε(t)− 1| ≤ ε,

since |fε(t)− 1| ∈ [0, 1] is equal to 0 unless a(t) < ε. Hence, ‖fεa− a‖ ≤ ε, and we deduce that Js
is dense in Ks. By Lemma 2.5(3), Js ⊂ ker(δs ◦ T ), which is closed because δs ◦ T is a continuous
linear functional (recall that s ∈ Lc

2). Thus, for any t0 ∈ ϕ̂(s) = t0T, ker(δt0) = Ks ⊂ ker(δs ◦ T ).
Since the two subspaces have codimension 1, it follows ker(δt0) = ker(δs ◦ T ). Therefore, there
exists a non-zero scalar rt0(s) (depending on both t0 and s) satisfying δs ◦ T = rt0(s)δt0 , i.e.,

(2.2) T (a)(s) = rt0(s) a(t0), ∀a ∈ CT

0 (L1).

This equation is quite similar to the one we are looking for in the main theorem (cf. equation (1.1)),
and it makes clear that the function ϕ we are seeking must be a continuous selection of ϕ̂.

We shall start by studying the dependence on t0 ∈ ϕ̂(s). If we take another element in ϕ̂(s), it will
be of the form µt0 for some µ ∈ T. Applying equation (2.2), we get

rt0(s)a(t0) = T (a)(s) = rµt0(s)a(µt0) = µrµt0(s)a(t0) ∀a ∈ CT

0 (L1),

and taking any a ∈ CT

0 (L1) with a(t0) 6= 0 (its existence is assured by Lemma 2.1) we deduce
rµt0(s) = µrt0(s) for each s ∈ Lc

2 and t0 ∈ ϕ̂(s) = supp(δs ◦ T ). For each s ∈ Lc
2 We shall select the

unique element t ∈ ϕ̂(s) satisfying rt(s) > 0.

Lemma 2.6. Let L be a principal T-bundle. Each non-zero weighted evaluation functional αδs
(with α ∈ C\{0} and s ∈ L) on CT

0 (L) can be uniquely written in the form rδŝ, where r ∈ R+ and
ŝ ∈ Ts ⊂ L.

Proof. For all a ∈ CT

0 (L), we have αδs(a) = |α| α
|α|a(s) = |α|a

Ä
α
|α|s
ä
= |α|δ α

|α|
s(a), so αδs = |α|δ α

|α|
s.

Next, assume that r1δŝ1 = r2δŝ2 with r1, r2 ∈ R+ and ŝ1, ŝ2 ∈ L. If ŝ2 /∈ Tŝ1, we could find (by
Lemma 2.2) an open T-symmetric neighborhood of ŝ1, V , with compact T-symmetric closure, not
containing ŝ2. Then, Lemma 2.1 would ensure the existence of a function a ∈ CT

0 (L) satisfying
r1 = r1δŝ1(a) = r2δŝ2(a) = 0, which is impossible. Thus, ŝ2 = µŝ1 for some µ ∈ T. For any
a ∈ CT

0 (L), we have r1a(ŝ1) = r1δŝ1(a) = r2δŝ2(a) = r2δµŝ1(a) = r2a(µŝ1) = µr2a(ŝ1), and taking
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(again by Lemma 2.1) a such that a(ŝ1) 6= 0, we get r1 = µr2. But since both r1 and r2 are positive,
µ must be 1 and the uniqueness is proved. �

With the previous lemma in mind, we can write the functional rt0 (s)δt0 in equation (2.2) uniquely

in the form r(s)δϕ(s) with r : Lc
2 → R+ and ϕ : Lc

2 → L̂1, where ϕ is a selection of ϕ̂. Thus,

(2.3) T (a)(s) = r(s)a(ϕ(s)), ∀a ∈ CT

0 (L1), s ∈ Lc
2.

We have arrived at equation (1.1), but some properties of the mappings r and ϕ remain to be
shown.

Lemma 2.7. For each s ∈ Lc
2 and µ ∈ T, ϕ(µs) = µϕ(s) and r(µs) = r(s). In particular,

ϕ(Lc
2) = ϕ̂(Lc

2).

Proof. Applying equation (2.3) with µs and µ ∈ T, we get

r(µs)a(ϕ(µs)) = T (a)(µs) = µT (a)(s) = µr(s)a(ϕ(s)).

By Lemma 2.5(2), we have ϕ(µs) ∈ supp(δµs ◦ T ) = supp(δs ◦ T ) = Tϕ(s), so ϕ(µs) = γϕ(s) for
some γ ∈ T. Then,

µr(s)a(ϕ(s)) = r(µs)a(ϕ(µs)) = r(µs)a(γϕ(s)) = r(µs)γa(ϕ(s)), for all a ∈ CT

0 (L1),

and by taking moduli at both sides we get r(µs) = r(s) > 0 (because we may assume a(ϕ(s)) 6= 0
by Lemma 2.1). Consequently, µ = γ and we conclude that ϕ is T-homogeneous. �

The topological properties of ϕ and r are quite more complicated to obtain. Thanks to Lemma
2.5(1), the assignment s 7→ t+T, where t is any element in ϕ̂(s), gives a well-defined mapping from

Lnz
2 to L̂1/T. By a little abuse of notation, we shall denote this mapping by the same symbol ϕ̂

and we shall simply note the domain and codomain spaces.

Lemma 2.8. The mapping ϕ̂ : Lnz
2 → L̂1/T is continuous.

Proof. If ϕ̂ were not continuous, there would exist a convergent net (sα)α → s in Lnz
2 such that

tα+T = ϕ̂(sα) 6→ ϕ̂(s) = t+T. Since L̂1/T is compact, we may assume that tα+T → t′+T 6= t+T.

By Lemma 2.2, there exist open disjoint neighborhoods U,U ′ ⊂ L̂1/T of t+T and t′+T respectively.

Let V = q−1
1 (U) and V ′ = q−1

1 (U ′), where q1 is the quotient mapping from L̂1 onto L̂1/T. Then V
and V ′ are open disjoint T-symmetric neighborhoods of t and t′ respectively.

Since t ∈ supp(δs ◦ T ) = ϕ̂(s), there exists a ∈ CT

0 (L1) such that coz(a) ⊂ V and T (a)(s) 6= 0.
Keeping in mind that sα → s, T (a) is continuous and tα + T → t′ + T, we can find α large enough
to satisfy T (a)(sα) 6= 0 and tα + T ⊂ U ′ (which is equivalent to tα ∈ V ′).

Since tα ∈ supp(δsα ◦ T ) = ϕ̂(sα), there exists b ∈ CT

0 (L1) satisfying coz(b) ⊂ V ′ and T (b)(sα) 6= 0.
Finally, from the above arguments we have coz(a)∩coz(b) ⊂ V ∩V ′ = ∅ and T (a)(sα)T (b)(sα) 6= 0,
which contradicts the hypothesis that T preserves orthogonality. Hence, ϕ̂ is continuous. �

Lemma 2.9. The mapping r : Lc
2 → R+ is locally bounded at every point of Lc

2.
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Proof. Fix s0 ∈ Lc
2. The open neighborhoods of ϕ̂(s0) = ϕ(s0) + T ∈ L̂1/T are of the form V + T

with ϕ(s0) ∈ V open. Since ϕ̂ : Lnz
2 → L̂1/T is continuous, for each open and T-symmetric

neighborhood U of ϕ(s0) in L̂1, there exists an open T-symmetric neighborhood W of s0 in Lc
2 such

that ϕ̂(W ) ⊂ U + T, so ϕ̂(s) ∈ ϕ̂(W ) ⊂ U + T, and hence ϕ(s) ∈ ϕ̂(s) = supp(δs ◦ T ) ⊂ TU = U,
for all s ∈ W .

Fix now a0 ∈ CT

0 (L1) with a0(ϕ(s0)) = 1, it exists by Lemma 2.1. Given ε > 0, there exits an open
T-symmetric neighborhood Uε of ϕ(s0) satisfying

|a0(t)− 1| = |a0(t)− a0(ϕ(s0))| < ε, for all t ∈ Uε.

By the conclusion in the first paragraph, we can find Wε open and T-symmetric such that s0 ∈ Wε

and ϕ(s) ∈ Uε for all s ∈ Wε, so

|a0(ϕ(s)) − 1| < ε, for all s ∈ Wε.

We have shown that the mapping s 7→ a0(ϕ(s)) is locally bounded at s0. In particular, for ε = 1/2,
we have

1/2 < |a0(ϕ(s))| < 3/2, for all s ∈ W1/2.

Having in mind the expression of T as a composition operator on Lc
2 given by equation (2.3), we

have T (a0)(s) = r(s)a0(ϕ(s)) for all s ∈ W1/2, so

r(s)|a0(ϕ(s))| = |T (a0)(s)| ≤ ‖T (a0)‖∞.

We conclude that r(s) ≤ 2‖T (a0)‖ for all s ∈ W1/2. �

Proposition 2.10. The mapping ϕ : Lc
2 → L̂1 is continuous.

Proof. Fix s0 ∈ Lc
2, and let (sα)α be a net in Lc

2 converging to s0. The net (ϕ(sα))α lies in the

compact space L̂1, so it must have a convergent subnet. We may assume (up to a renaming of the

index set) that (ϕ(sα))α is convergent to t0 ∈ L̂1. By the continuity of the mapping ϕ̂ : Lnz
2 → L̂1/T

(cf. Lemma 2.8), (ϕ(sα) + T)α = (ϕ̂(sα))α → ϕ̂(s0) = ϕ(s0) + T in L̂1/T. On the other hand,
(ϕ(sα) + T)α → t0 + T. Therefore, Tt0 = ϕ̂(s0), so t0 = γϕ(s0) for some γ ∈ T.

By Lemma 2.9, there exist an open T-symmetric neighborhood W ∈ s0 and a constant M > 0
satisfying 0 < r(s) ≤ M, for all s ∈ W . Therefore, r(sα) ⊂ [0,M ] for α large enough. By the
compactness of [0,M ], up to taking a new subnet, we may assume that r(sα) converges to some
r0 ∈ [0,M ].

Fix a0 ∈ CT

0 (L1) such that T (a0)(s0) 6= 0, this is possible because supp(δs0 ◦ T ) = ϕ̂(s0) 6= ∅. Let
us observe that, by (2.3), a0(ϕ(s0)) 6= 0. By a new application of (2.3), we have

r(sα)a0(ϕ(sα)) = T (a0)(sα),

where the left hand side term converges to r0a0(γϕ(s0)) and the right hand side term converges to
T (a0)(s0) = r(s0)a0(ϕ(s0)) 6= 0. We get r0γa0(ϕ(s0)) = r(s0)a0(ϕ(s0)), and dividing by a0(ϕ(s0))
we conclude that r0 = r(s0) and γ = 1. Therefore, ϕ(sα) → ϕ(s0). �

Corollary 2.11. The mapping r : Lc
2 → R+ is continuous.



LINEAR ORTHOGONALITY PRESERVERS BETWEEN COMMUTATIVE JB∗-TRIPLES 11

Proof. Fix s0 ∈ Lc
2, since ϕ(s0) ∈ ϕ̂(s0) = supp(δs0 ◦T ), given any open T-symmetric neighborhood

of ϕ(s0), U , we can find a0 ∈ CT

0 (L1) such that coz(a0) ⊂ U and T (a0)(s0) 6= 0. By the continuity
of T (a0), there exists an open T-symmetric neighborhood W of s0 in Lc

2 satisfying T (a0)(s) 6= 0
for each s ∈ W , and thus, by equation (2.3), a0(ϕ(s)) 6= 0 for each s ∈ W . Finally, observing that
r(s) = T (a0)(s)/a0(ϕ(s)) for all s ∈ W , we deduce that r is continuous at s0. �

We now have full control of T (a), with a arbitrary in CT

0 (L1), over the elements of Lc
2. Our next

goal is a measure of the size of the image of the multi-valued mapping ϕ̂ over the “discontinuous
part” Ld

2.

Proposition 2.12. There exist t1, . . . , tm in L̂1 such that the image of the set Ld
2 under the multi-

valued mapping ϕ̂ coincides with the disjoint union Tt1 ∪ · · · ∪ Ttm. Equivalently, the mapping

ϕ̂ : Ld
2 → L̂1/T has finite image.

Proof. Assume on the contrary that there exits a sequence {sn} ⊂ Ld
2 satisfying that the multi-

valued mapping ϕ̂ satisfies ϕ̂(sn) 6= ϕ̂(sm) for n 6= m. Pick tn ∈ ϕ̂(sn), we have tnT ∩ tmT = ∅ for
all n 6= m. Since the functional δsn ◦ T is discontinuous, for all M > 0 there exits anM ∈ CT

0 (L1)
such that ‖anM‖ ≤ 1 and T (anM )(sn) > M .

For each n ∈ N and any open T-symmetric neighborhood Un of tn, we can find an open T-symmetric
set Vn with compact T-symmetric closure satisfying tn ∈ Vn ⊂ Vn ⊂ Un (see [9, Remark 3.4]).
Take any function fn ∈ S

(
Chom

0 (L1)
)
such that 0 ≤ fn ≤ 1, fn|Vn

≡ 1 and fn|L1\Un
≡ 0. Let

1 ∈ Chom(L̂1) denote the mapping t 7→ 1. We have anM = anMfn + anM (1 − fn), with both anMfn
and anM (1− fn) in CT

0 (L1). We have coz(anMfn) ⊂ coz(fn) ⊂ Un and

coz(anM (1− fn)) ⊂ coz((1− fn)) ⊂ L1\Vn ⊂ L1\Vn.

Thus, coz(anM (1− fn)) ⊂ L1\Vn, and we get

supp(anM (1− fn)) ∩ supp(δsn ◦ T ) = supp(anM (1− fn)) ∩ Ttn ⊂ supp(anM (1− fn)) ∩ Vn = ∅.

Lemma 2.5(3) ensures that T (anM (1− fn))(sn) = 0, so

(2.4) M < T (anM )(sn) = T (anMfn)(sn)

by linearity. Besides, ‖anMfn‖ ≤ ‖anM‖ ≤ 1.

By hypothesis, we can find a sequence (Un)n of open T-symmetric pairwise disjoint with tn ∈ Un

(apply Lemma 2.2 inductively). By the above arguments, we can also find open T-symmetric sets
Vn (n ∈ N) with compact T-symmetric closures satisfying tn ∈ Vn ⊂ Vn ⊂ Un.

Applying equation (2.4) with M = n4, we obtain a sequence (an)n in CT

0 (L1) such that ‖an‖ ≤ 1,
coz(an) ⊂ Un and T (an)(sn) > n4 for all n ∈ N. The an’s are mutually orthogonal and lie in the
closed unit ball. Since CT

0 (L1) is complete the element

a0 =

∞∑

n=1

1

n2
an

belongs to CT

0 (L1), as the limit of an absolutely convergent series. However, for each n ∈ N we have

T (a0)(sn) =

∞∑

k=1

1

k2
T (ak)(sn) =

1

n2
T (an)(sn) > n2.
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This is impossible, since |T (a0)(sn)| ≤ ‖T (a0)‖ < ∞ for each n ∈ N. We therefore conclude that
ϕ̂(Ld

2) is finite. �

The following statement can be easily deduced from the arguments above.

Remark 2.13. Let {sn} be a sequence in Lnz
2 such that ϕ̂(sn) 6= ϕ̂(sm) for all n 6= m. Then, the

set {‖δsn ◦ T ‖ : n ∈ N} must be bounded.

Remark 2.14. Let s1, s2 ∈ Lc
2 with ϕ(s2) = λϕ(s1) for some λ ∈ T. Then, for every a ∈ CT

0 (L1),
by Lemma 2.7 and (2.3), we have

δs2 ◦ T (a) = T (a)(s2) = r(s2)a(ϕ(s2)) = r(λs1)a(λϕ(s1))

= r(λs1)a(ϕ(λs1)) = T (a)(λs1) = δλs1 ◦ T (a).

Thus, δs2 ◦ T = δλs1 ◦ T = λδs1 ◦ T , so ‖δs2 ◦ T ‖ = ‖δλs1 ◦ T ‖. This together with the previous
remark and (2.3) show that the set

{‖δs ◦ T ‖ : s ∈ Lc
2} = {r(s) : s ∈ Lc

2}

must be bounded. Therefore, the mapping r : Lc
2 → R+ is globally bounded.

Let R := sup{r(s) : s ∈ Ls
2} ∈ R+. The unique statement which remains to be proved in Theorem

1.1 is given by next corollary.

Corollary 2.15. The set Ld
2 is open.

Proof. For any s ∈ Lz
2 ∪ Lc

2, we have ‖δs ◦ T ‖ =

®
r(s) ≤ R, if s ∈ Lc

2

0, if s ∈ Lz
2

.

Given any s0 ∈ Lz
2 ∪ Lc

2, there is a net (sλ) in Lz
2 ∪ Lc

2 converging to s0. For every a ∈ CT

0 (L1),
|T (a)(sλ)| = |δsλ ◦T (a)| ≤ ‖a‖∞R, and by the continuity of T (a) we have |δs0 ◦T (a)| = |T (a)(s0)| ≤
‖a‖∞R. We have shown that δs0 ◦ T is continuous with ‖δs0 ◦ T ‖ ≤ R, so s0 ∈ L2\Ld

2 = Lz
2 ∪ Lc

2.
Therefore, Lz

2 ∪ Lc
2 = L2\Ld

2 is closed. �

The proof of Theorem 1.1 is now completed. Our next goal will be a consequence of our main
theorem, which states a result on automatic continuity of orthogonality preserving linear bijections
between commutative JB∗-triples.

Theorem 2.16. Every orthogonality preserving linear bijection between commutative JB∗-triples
is bi-orthogonality preserving and automatically continuous. More concretely, let L1 and L2 be
two principal T-bundles, and T : CT

0 (L1) → CT

0 (L2) a linear bijective orthogonality preserving
map. Then, there exist a T-homogeneous or T-equivariant homeomorphism ϕ : L2 → L1 and a
non-vanishing bounded T-invariant continuous function r : L2 → R+ such that

T (a)(s) = r(s) a(ϕ(s)), for all s ∈ L2 and every a ∈ CT

0 (L1).

As a consequence, T is bi-orthogonality preserving, that is, T (a)⊥T (b) if and only if a⊥b for every
a, b ∈ CT

0 (L1).
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Note that the previous theorem automatically guarantees the continuity of T provided that T
satisfies three purely algebraic conditions: linearity, bijectivity and the preservation of orthogonal
elements.

Proof. Our departure point will be the the conclusion of Theorem 1.1. We shall first show that
Lz
2 6= ∅. For all s ∈ L2 there exists b ∈ CT

0 (L2) satisfying b(s) = 1 (cf. Lemma 2.1), since T is onto,
we can find a ∈ CT

0 (L1) satisfying T (a) = b. Thus, T (a)(s) = b(s) = 1, so δs ◦ T 6= 0. This implies
that Lc

2 = L2\Ld
2 is closed in L2 as Ld

2 is open.

We shall next prove that ϕ(Lc
2) ⊂ L1 = L̂1\{0}. Assume on the contrary that ϕ(s) = 0 for some

s ∈ Lc
2, by equation (1.1),

δs ◦ T (a) = r(s)a(ϕ(s)) = r(s)a(0) = 0

for every a ∈ CT

0 (L1). Then, δs ◦ T ≡ 0, so s ∈ Lz
2 = ∅, which is impossible.

We also know from Theorem 1.1 that ϕ̂(Ld
2) =

⋃
s∈Ld

2

supp(δs ◦ T ) coincides with a disjoint union of

the from Tt1 ∪ · · · ∪ Ttm, for some t1, . . . , tm ∈ L̂1 = L1 ∪ {0}. We shall show next that

(2.5)
each orbit of the form Ttj with tj ∈ L1 must be “non-isolated” in L1, in the sense

that for each open T-symmetric open set U containing tj we have U ∩ (L1\Ttj) 6= ∅.

Suppose, on the contrary, that Ttj is isolated in L1. Find sj ∈ Ld
2 satisfying supp(δsj ◦ T ) = Ttj .

Then, each function a ∈ CT

0 (L1) with a(tj) = 0 also satisfies supp(a) ∩ ϕ̂(sj) = coz(a) ∩ Ttj = ∅.
Namely, we can find an open and T-symmetric neighborhood of tj , U , such that Ttj = U ∩ L1,
so coz(a) ∩ U = ∅. Applying Lemma 2.5(3), we get δsj ◦ T (a) = T (a)(sj) = 0. We deduce that
ker(δtj ) ⊂ ker(δsj ◦ T ), and hence δsj ◦ T = αδtj for some α ∈ C. This contradicts the fact that
δsj ◦ T is discontinuous.

The next step will consist in proving that the T-symmetric set ϕ̂(L2)∩L1 =
(
ϕ(Lc

2)∪ ϕ̂(Ld
2)
)
∩L1 =

ϕ(Lc
2) ∪

(
ϕ̂(Ld

2) ∩ L1

)
is dense in L1. Otherwise, there would exist an element t ∈ L1 and an open

T-symmetric neighborhood W ∋ t satisfying W ∩ ϕ̂(L2) = ∅. Take, by [9, Remark 3.4], an open
T-symmetric set V with compact T-symmetric closure satisfying t ∈ V ⊂ V ⊂ W . By Lemma
2.1, we can find a ∈ CT

0 (L1) satisfying a(t0) = 1 and a|L1\V ≡ 0. Then, coz(a) ⊂ V ⊂ W , so
supp(a) ∩ ϕ̂(L2) = ∅. Thus, ϕ̂(s) = supp(δs ◦ T ) ∩ supp(a) = ∅, and hence Lemma 2.5(3) assures
that δs ◦ T (a) = T (a)(s) = 0 for all s ∈ L2. Therefore, T (a) ≡ 0, which is impossible because T is
injective. We have therefore proved that

(2.6) L1 = ϕ̂(L2) ∩ L1 = ϕ(Lc
2) ∪

(
ϕ̂(Ld

2) ∩ L1

)
.

Now, we claim that ϕ(Lc
2) = L1. Indeed, in order to simplify the notation, let us denote N =

ϕ̂(Ld
2) ∩ L1. Given any open (we can assume T-symmetric) set W , by (2.6), there exists tW

belonging to the intersection (ϕ(Lc
2) ∪ N ) ∩W . If tW ∈ ϕ(Lc

2) we are done. Otherwise, tW ∈ N
and it can be written in the form tW = λW tjW for some jW ∈ {1, . . . ,m} (cf. Theorem 1.1(d)).
Keeping in mind that there are finitely many orbits in N (see again Theorem 1.1(d)), there is no loss
of generality in assuming that W ∩N = TtjW , since we can always replace W with a smaller open
T-symmetric set. We know that the orbit TtjW is non-isolated in L1 (cf. (2.5)), so the density of
ϕ(Lc

2)∪N allows us to find t′W ∈ ϕ(Lc
2)∪N satisfying t′W ∈ W\TtjW . This leads us to t′W ∈ ϕ(Lc

2),
and consequently, the density of ϕ(Lc

2) in L1 follows from the arbitrariness of W .
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We isolate now the following property of T :

(2.7) For each a ∈ CT

0 (L1), we have T (a)|Lc
2
≡ 0 ⇒ T (a) = a = 0.

Namely, if T (a)|Lc
2
≡ 0 for some a ∈ CT

0 (L1), it follows from (1.1) that r(s)a(ϕ(s)) = 0 for all
s ∈ Lc

2, and by the properties of the function r we get a(ϕ(s)) = 0 for all s ∈ Lc
2. The continuity of

a combined with the fact ϕ(Lc
2) = L1 give a(L1) = a(ϕ(Lc

2)) = {0}, which proves that a = T (a) = 0.

We shall prove now that L2 = Lc
2, equivalently, L

d
2 = ∅. Assume, on the contrary, that there exists

s0 ∈ Ld
2. The element s0 does not belong to the closed set Lc

2. Thus, there exists a non-zero function
b ∈ CT

0 (L2) satisfying b(s0) = 1 and b|Lc
2
≡ 0 (cf. Lemma 2.1 and [9, Remark 3.4]). Since T is onto,

we can find a ∈ CT

0 (L1) such that T (a) = b. Noticing that T (a)|Lc
2
= b|Lc

2
≡ 0, the property in (2.7)

leads to a = T (a) = b = 0, which is impossible. Therefore, Ld
2 = ∅ and L2 = Lc

2.

Summarizing, there exist a T-homogeneous or T-equivariant continuous mapping ϕ : L2 → L1 and
a non-vanishing bounded T-invariant continuous function r : L2 → R+ such that

T (a)(s) = r(s)a(ϕ(s)), for all a ∈ CT

0 (L1), s ∈ L2.

It remains to prove that ϕ is a homeomorphism and T preserves orthogonality in both directions.
For the latter, we observe that if T (a)⊥T (c) for some a, c ∈ CT

0 (L1), we have a(ϕ(s))c(ϕ(s)) = 0 for
all s ∈ L2, since r is non-vanishing. The density of ϕ(L2) in L1 together with the continuity of a
and c give a(t) c(t) = 0, for each t ∈ L1, witnessing that T−1 is also orthogonality preserving. Thus,
by the arguments above, T−1 can be written in the form T−1(b) = r1 · (b ◦ ϕ1), ∀b ∈ CT

0 (L2), for
some non-vanishing bounded T-invariant continuous function r1 : L1 → R+ and a T-homogeneous
or T-equivariant continuous mapping ϕ1 : L1 → L2.

Finally, it remains to show that ϕ1 = ϕ−1. Indeed, for each a ∈ CT

0 (L1) and t ∈ L1, we have

a(t) = T−1(T (a))(t) = r1(t)T (a)(ϕ1(t)) = r1(t)r(ϕ1(t))a(ϕ(ϕ1(t))).

We claim that t′ := ϕ(ϕ1(t)) = t, for every t ∈ L1. Namely, if t′ /∈ Tt, we can find via Lemmata 2.2
and 2.1 an element a ∈ CT

0 (L1) such that a(t) 6= 0 and a(t′) = 0, which is impossible since r and r1
are non-vanishing. Hence, we may therefore assume that t′ = λt for some λ ∈ T. In such a case, we
have a(t) = r1(t)r(ϕ1(t))a(λt) = λr1(t)r(ϕ1(t))a(t) for each a ∈ CT

0 (L1), taking (again by Lemma
2.2) any a such that a(t) 6= 0 and keeping in mind that r and r1 are positive-valued, we must have
λ ∈ R+, so λ = 1. Similarly, it can be proved that ϕ1(ϕ(s)) = s, for all s ∈ L2. �
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(D. Cabezas) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071
Granada, Spain.

Email address: dcabezas@ugr.es
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