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Abstract

Several uniqueness results for non-compact complete stationary space-
like surfaces in an n(≥ 3)-dimensional Generalized Robertson Walker
spacetime are obtained. In order to do that, we assume a natural in-
equality involving the Gauss curvature of the surface, the restrictions of
the warping function and the sectional curvature of the fiber to the surface.
This inequality gives the parabolicity of the surface. Using this property,
a distinguished non-negative superharmonic function on the surface is
shown to be constant, which implies that the stationary spacelike surface
must be totally geodesic. Moreover, non-trivial examples of stationary
spacelike surfaces in the four dimensional Lorentz-Minkowski spacetime
are exposed to show that each of our assumptions is needed.

Keywords: Stationary surfaces, Parabolic Riemannian surfaces, Generalized
Robertson-Walker spacetimes.

1 Introduction

Spacelike surfaces with zero mean curvature in an n(≥ 3)-dimensional space-
time are surfaces whose induced metric is Riemannian and they are locally
critical points of the area functional. In the 3-dimensional Lorentzian setting,
the expression maximal is more utilized than stationary because of the fact that
such a surface is a local maximum of the area functional in relevant spacetimes
(see [14] for instance). Agreeing with [5], for ambient spacetimes of dimension
greater than three, the term“stationary” is more suitable for a spacelike sur-
face with zero mean curvature. Stationary spacelike surfaces in 4-dimensional
spacetimes are a relevant role in mathematical Relativity. Indeed, a stationary
spacelike surface may be seem as a limit of trapped surfaces which are inside
the horizon of events around a singularity. Trapped surfaces are usually con-
sidered to be compact. We are interested here in parabolic stationary surfaces,
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i.e., stationary spacelike surfaces Σ2 such that the only nonnegative superhar-
monic functions on Σ2 are the constants. Obviously, this property is satisfied in
the compact case. The study of stationary spacelike surfaces has always been
subject for many researchers in the past decades. For instance, in [2] Alías and
Albujer proved that in a Lorentzian product −R ×M2 ≡ (R ×M2,−dt2 + gM )
with Gauss curvature of M2 satisfying KM ≥ 0, any complete maximal surface
is totally geodesic, moreover if M2 is not flat then these surfaces are just the
slices {t0} × M2. Further in [3] they developed their results for surfaces with
non-empty boundary. We also observe that in [1] Albujer constructed maxi-
mal surfaces in −R × H2, where H2 is the hyperbolic plane of constant Gauss
curvature −1, in order to justify these curvature restriction on the Riemannian
surface M2. Moreover, new uniqueness properties of complete maximal surfaces
in Lorentzian product spacetimes −I×M2, where KM ≥ −κ for some constant
κ > 0 were obtained by the second and the third authors in [13], by means of
an extension of a well-known result by Nishikawa in [15]. In [18] the third au-
thor and Rubio proved several uniqueness results for complete maximal surfaces
in −R ×f R2 ≡ (R × R2,−dt2 + f(t)2g0) which is a 3-dimensional Robertson-
Walker spacetime with fiber the Euclidean plane (R2, g0) and warping function
f : R → R+ extending the uniqueness results of Latorre and the third author
in [11]. The results in [2] were extended to 3-dimensional GRW spacetimes by
Caballero, the third author and R.M. Rubio in [7].

It was proved by Alías, Estudillo and the third author in [4] that the only
compact stationary spacelike surfaces Σ2 in a 3-dimensional GRW spacetime
−I ×f M with Gauss curvature satisfying

KΣ ≥ f ′(τ)2 +KM

f(τ)2
, (1)

where τ is the restriction of the projection πI to Σ2 and KM stands for the sec-
tional curvature of M restricted to Σ2, are the totally geodesic ones. This result
was obtained using a universal integral inequality whose equality characterizes
the totally case, [4, Theorem 9]. As the Example 1 below shows, the assumption
(1) does not imply the same conclusion if the hypothesis compact is changed to
complete, in general. Thus, the following question arises in a natural way,

Under what assumptions a (non-compact) complete stationary space-
like surface in a GRW spacetime with Gauss curvature satisfying (1)
must be totally geodesic?

In this paper we will give several answers to this question, focusing our attention
in natural assumptions on the Gauss curvature, that lead to the parabollicity
of the spacelike surface, and a remarkable smooth function naturally defined
on the surface, that satisfies a certain partial differential equation from the fact
that the mean curvature vector field vanishes everywhere.
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2 Preliminaries

Let (Mn−1, g) be an (n−1)-dimensional Riemannian manifold and let I ⊂ R

be an open interval of the real line R. An n-dimensional Generalized Robertson-
Walker (GRW ) spacetime M

n
:= −I ×f M

n−1is the warped product with base
(I,−dt2), fiber (Mn−1, g) and warping function f : I → R+. Thus, it is a time
orientable Lorentzian manifold with the metric

〈 , 〉 = −π∗

Idt
2 + f2(πI)π∗

Mg, (2)

where, as usual, πI , πM denote the corresponding projections onto I, Mn−1

respectively. Thus, M
n

becomes a spacetime when it is endowed of the time
orientation defined by the timelike vector field ∂/∂t [6]. In the case f = 1 the
GRW spacetime is called static and it is denoted by −I×Mn−1, in other words,
a static GRW spacetime is the Lorentzian product of a negative definite open
interval and a Riemannian manifold.

Let x : Σ2 → M
n

be a spacelike surface, i.e, x is an immersion and the
induced metric x∗〈 , 〉 on Σ2 is Riemannian. The timelike vector field T :=
f(πI)∂/∂t ∈ X(M

n
), decomposes along x as follows

T = T⊤ + TN (3)

where, at any point of Σ2, T⊤ is the tangent component and TN is the normal
component of T . The vector field T satisfies ∇XT = f ′(πI)X , for all X ∈
X(M

n
), where ∇ is the Levi-Civita connection of the Lorentzian metric (2), i.e,

it is conformal with LT 〈 , 〉 = 2f ′(πI)〈 , 〉 and closed. This property on M
n

is translated, via the Gauss and Weingarten formulas (see [16, Chapter 4] for
instance), to Σ2 as it follows

∇XT
⊤ = AT NX + f ′(τ)X, ∇⊥

XT
N = −σ(T⊤, X) (4)

where X ∈ X(Σ), ∇ is the Levi-Civita connection of the induced metric, which
is denoted by the same symbol as in (2), AT N is the Weingarten endomorphism
corresponding to TN ∈ X

⊥(Σ), τ := πI ◦ x, ∇⊥ is the normal connection and σ
is the second fundamental form.

Let us consider the smooth function u := −〈TN , TN〉 = f(τ)2 + |T⊤|2 ≥
f(τ)2 > 0 on Σ2. From the first equation in (4) we get the following expression
for the gradient of u, ∇u = 2AT NT T . Therefore

|∇u|2 = 4〈A2
T NT

⊤, T⊤〉. (5)

In the case the mean curvature vector field of Σ2 vanishes identically, we call Σ2

a stationary spacelike surface. Under previous assumption, previous formula is
written as

|∇u|2 = 2tr(A2
T N )|T⊤|2, (6)

because in this case we have A2
T N − 1

2 tr(A2
T N )I = 0, where I is the identity

transformation.

Any spacelike surface will be assumed to be connected.
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As shown in [4], from the Gauss and Codazzi equations, when H = 0, for-
mulas (4) and the expression of the curvature tensor R of M

n
in terms of the

warping function and the curvature of M [16, Prop. 7.42], we get for the Lapla-
cian of u

∆u = 2

(

KΣ − f ′′(τ)

f(τ)

)

|T⊤|2 + 2tr(A2
T N ). (7)

A direct computation from (6) and (7) gives

Lemma 2.1. Let x : Σ2 → M
n

be a stationary spacelike surface. For the
function u = −〈TN , TN〉 > 0 on Σ2 we have

∆ log u=2

(

KΣ − f ′′(τ)

f(τ)

)

− 2f(τ)2

u2

{(

KΣ − f ′′(τ)

f(τ)

)

u− tr(A2
T N )

}

. (8)

In the order to go further, around any p ∈ Σ2 consider a local orthonormal
normal frame {ξ1, ..., ξn−2} where ξn−2 is, at any point, collinear to TN . Thus,
we have 〈ξi, ξj〉 = δij , 1 ≤ i, j ≤ n − 3, 〈ξn−2, ξn−2〉 = −1. Under the
assumption that Σ2 is stationary, the Gauss equation becomes

2KΣ = 2K −
n−3
∑

i=1

tr(A2
ξi

) +
1

u
tr(A2

T N ) (9)

where K is, at any point q ∈ Σ2, the sectional curvature in M
n

of the spacelike
tangent plane dxq(TqΣ) ⊂ Tx(q)M

n
. Next, K may be expressed in terms of the

warping function and the sectional curvature KM of the fiber as it follows [4,
Lemma 2].

Lemma 2.2. Let Σ2 be a spacelike surface in M
n
. Then the sectional curvature

in M
n

of the spacelike plane tangent to Σ2 is given by

K =
f ′′(τ)

f(τ)
+
f ′(τ)2 − f ′′(τ)f(τ)

f(τ)4
u+

u

f(τ)4
KM .

Now using the previous result, the Gauss equation (9) can be rewritten to
get

KΣ =
f ′′(τ)

f(τ)
+
f ′(τ) − f ′′(τ)f(τ)

f(τ)4
u+

u

f(τ)4
KM − 1

2

n−3
∑

i=1

tr(A2
ξi

) +
1

2u
tr(A2

T N ).

Taking into account that the gradient on Σ2 of τ satisfies ∇τ = −∂⊤
t , we obtain

|∇τ |2 = (u− f(τ)2)/f(τ)2. Therefore,

KΣ =
f ′(τ)2 +KM

f(τ)2
+

{

KM

f(τ)2
− (log f)′′(τ)

}

|∇τ |2 +
1

2u
tr(A2

ξi
)

− 1

2

n−3
∑

i=1

tr(A2
ξi

) − f ′′(τ)

f(τ)
. (10)

Now we can rewrite the conclusion of Lemma 2.1 with the help of the formula
(10) as it follows.
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Lemma 2.3. Let x : Σ2 → M
n

be a stationary spacelike surface. For the
function u = −〈TN , TN〉 > 0 on Σ2 we have

∆ log u = 2

(

KΣ − f ′(τ)2 +KM

f(τ)2

)

+
f(τ)2

u2

{

tr(A2
T N ) + u

n−3
∑

i=1

tr(A2
ξi

)

}

. (11)

Note that in the case u is constant, formula (11) gives

KΣ − f ′(τ)2 +KM

f(τ)2
≤ 0 (12)

everywhere on Σ2, and the equality holds in (12) if, and only if, AT N = Aξi
=

0, i = 1, 2, ..., n− 3, i.e., if, and only if, Σ2 is totally geodesic in M
n
.

3 Curvature and Parabolicity

A (non-compact) n(≥ 2)−dimensional Riemannian manifold (S, g) is said
to be parabolic if the only nonnegative superharmonic functions on S are the
constants. When n = 2, this notion is very close to the classical parabolicity
for Riemann surfaces. Moreover, it is strongly related to the behavior of the
Gauss curvature K of the Riemannian surface (S, g). Thus, a classical result
by Ahlfors and Blanc-Fiala-Hubber [10] asserts that if K ≥ 0, then a complete
Riemannian surface must be parabolic.

If Br and BR, 0 < r < R, denote geodesic balls centered at the same point
of a Riemannian manifold (S, g) with dimS ≥ 2, the quantity

1

µr,R

:=

∫

Ar,R

|∇ωr,R|2dS

is called the capacity of the annulus Ar,R := BR\Br, where ωr,R is the harmonic
measure of ∂BR with respect of the problem

∆ω = 0 in Ar,R, ω = 0 on ∂Br and ω = 1 on ∂BR. (13)

It is well known that a complete Riemannian manifold is parabolic if, and only
if, for any fixed arbitrary point of S we have

lim
R→∞

1

µr,R

= 0.

independent of r.
To end this section, we recall the following technical result [18, Lemma 2].

Lemma 3.1. Let S be an n(≥ 2)-dimensional Riemannian manifold and let
v ∈ C2(S) that satisfies v∆v ≥ 0. Let BR be a geodesic ball of radius R in S.
For any r such that 0 < r < R we have

∫

Br

|∇v|2dV ≤ 4 supBR
v2

µr,R

,
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where Br denotes the geodesic ball of radius r centered at p ∈ M and
1

µr,R

is

the capacity of annulus BR \Br.

4 Main results

We will obtain below several uniqueness theorems using the previous results
on parabolicity. The first result establishes sufficient conditions for a complete
stationary surface to be totally geodesic.

Theorem 4.1. Let x : Σ2 → M
n

be a complete stationary spacelike surface in
a GRW spacetime M

n
= −I ×f M

n−1. If

KΣ ≥ f ′(τ)2 +KM

f(τ)2
≥ 0 (14)

and the function u = −〈TN , TN〉 on Σ2 satisfies

u ≤ Cf(τ)2 + C, (15)

for some positive constant C, then Σ2 must be totally geodesic.

Proof. Recall first of all the well-known formula ∆φ(h) = φ′(h)∆h+φ′′(h)|∇h|2,
that holds true for any smooth function h on Σ2 and φ a real function two times
differentiable. If we put h = u, φ(u) = log u and ∆ log u = ψ, we can write

∆u = ψu+
|∇u|2
u

. (16)

In order to obtain the conclusion let us define the auxiliary function

h(t) =
1

(1 + t)α
,

t > 0, for each positive constant α. We have

h′(t) =
−α

(1 + t)α+1
,

h′′(t) =
α(α+ 1)

(1 + t)α+2
,

and
h′′(t)

h′(t)
= −α+ 1

1 + t
.

Consider h(u) and note that h(u) < 1, i.e., h(u) is bounded from above. Using
(16) we get
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∆h(u) = h′(u)∆u+ h′′(u)|∇u|2

= h′(u)

(

ψu+
|∇u|2
u

)

+ h′′(u)|∇u|2.

From (2.3) let us observe that

ψu = ψ̃u+
f(τ)2

u
tr(A2

T N )

where

ψ̃ = 2

(

KΣ − f ′(τ)2 +KM

f(τ)2

)

+
f(τ)2

u

n−3
∑

i=1

tr(A2
ξi

) ≥ 0.

Here we considered assumption (14). Note that by (6) we have

|∇u|2 = 2tr(A2
T N )(u − f(τ)2)

with |T⊤|2 = u− f(τ)2. Therefore we obtain the following expression

∆h(u) = h′(u)ψ̃u+
h′(u)tr(A2

T N )

u

(

f(τ)2 + 2(u− f(τ)2) +
2uh′′(u)

h′(u)
(u− f(τ)2)

)

.

(17)

Note that, h′(u) ≤ 0, so if f(τ)2 + 2(u − f(τ)2) +
2uh′′(u)

h′(u)
(u − f(τ)2) is non-

negative, we have that ∆h(u) ≤ 0, i.e., the non-negative function h(u) on Σ2 is
superharmonic.

Claim: Since h(t) = (1 + t)−α, if we denote

θ := f(τ)2 + 2(u− f(τ)2) +
2uh′′(u)

h′(u)
(u − f(τ)2),

then θ ≥ 0 for some 0 < α ≤ 1.

In fact we have

θ = f(τ)2 + 2(u− f(τ)2) − 2u(u− f(τ)2)(α + 1)

1 + u
(18)

=
1

1 + u
[f(τ)2(1 + u) + 2(u− f(τ)2)(1 + u) − 2u(u− f(τ)2)(α + 1)]. (19)

Thus, it is sufficient to prove that

f(τ)2(1 + u) + 2(u− f(τ)2)(1 + u) − 2u(u− f(τ)2)(α + 1) ≥ 0,

i.e.,

−f(τ)2 + (2α+ 1)f(τ)2u+ 2u− 2u2α ≥ 0, (20)

(u− f(τ)2) + (2α+ 1)f(τ)2u+ u− 2u2α ≥ 0. (21)
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Since u− f(τ)2 ≥ 0, we just need to prove that

(2α+ 1)f(τ)2u+ u− 2u2α ≥ 0, (22)

or equivalently

u ≤ 2α+ 1

2α
f(τ)2 +

1

2α
(23)

that holds from our hypothesis (15) if we choose α > 0 small enough. Therefore,

for u ≤ Cf(τ)2 + C, where the constant C =
1

2α
, we have (23), whence θ ≥ 0.

Hence h(u) is superharmonic. By (14), using a classical result by Ahlfors and
Blanc-Fiala-Hubber [10] that asserts that a complete Riemannian surface with
non-negative Gauss curvature must be parabolic, we have h(u) is a constant,
which implies u is also constant, whence Σ2 is totally geodesic.

When the function u is bounded we have the following consequence. Al-
though this result follows directly from Theorem 4.1 we give an alternative
proof of a local character.

Corollary 4.2. Let x : Σ2 → M
n

be a complete stationary spacelike surface in
a GRW spacetime M

n
= −I ×f M

n−1, such that u = −〈TN , TN〉 is bounded on
Σ2. If

KΣ ≥ f ′(τ)2 +KM

f(τ)2
≥ 0. (24)

then Σ2 must be totally geodesic.

Proof. From (24), Lemma 2.3 gives

∆ log u ≥ f(τ)2

u2

(

tr(A2
T N ) + u

n−3
∑

i=1

tr(A2
ξi

)

)

≥ 0, (25)

and therefore

∆u ≥ f(τ)2

u

(

tr(A2
T N ) + u

n−3
∑

i=1

tr(A2
ξi

)

)

+
|∇u|2
u

≥ 0. (26)

Therefore, u∆u ≥ 0 and using Lemma 3.1 we arrive to the following local
integral estimation of the length of the gradient of u

∫

Br

|∇u|2dV ≤ 4 supBR
u2

µr,R

≤ 4 supΣ u
2

µr,R

, (27)

where R is the radius of a geodesic ball BR in Σ2 centered at a point p ∈ Σ2, and
Br, 0 < r < R, is a geodesic ball centered at the same point p and contained in
BR.
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Note that (24) also says that the Gauss curvature of Σ2 is nonnegative.
Hence, the Ahlfors and Blanc-Fiala-Hubber Theorem can be used again to con-

clude that Σ2 is parabolic. In this case, we know limR→∞

1

µr,R

= 0, accord-

ingly to [10]. Now the proof ends taking into account (27) which implies that
∇u(p) = 0 for any p ∈ Σ2, i.e., the function u is constant on Σ2 which implies
that the equality holds in formula (12). Therefore, Σ2 must totally geodesic
from formula (11).

Corollary 4.3. Let x : Σ2 → M
n

be a complete stationary spacelike surface in
a static GRW spacetime M

n
= −I ×Mn−1 such that u = −〈(∂/∂t)N , (∂/∂t)N 〉

(or equivalently |∇τ |) is bounded on Σ2. If KΣ ≥ KM ≥ 0, then Σ2 must be
totally geodesic.

Remark 1. The assumption f ′(τ)2 + KM ≥ 0 is only used at the ends of
the proofs of Theorem 4.1 and Corolary 4.2 to assert KΣ ≥ 0 because KΣ ≥
f ′(τ)2 +KM

f(τ)2
. However, we arrive to the same conclusion in these results if we

change the assumption (14) to

KΣ ≥ f ′(τ)2 +KM

f(τ)2
and KΣ ≥ 0.

On the other hand, taking into account that the assumption KΣ ≥ 0 is only
needed to assert that Σ2 is parabolic, the same conclusion of Theorem 4.1 and
Corolary 4.2 is obtained, if we changed the assumption (14) by

KΣ ≥ f ′(τ)2 +KM

f(τ)2
and Σ2 is parabolic.

Moreover, the parabolicity of Σ2 can be also derived from other curvature as-
sumptions which are well known in the literature [10], [12].

Formula (7) suggests that other assumptions on the curvature together with
the parabolicity of the stationary surface implies its rigidity in the GRW space-
time. For the case that the function u is controlled by the squared warping
function and the surface has Gauss curvature nonnegative we have the follow-
ing result,

Theorem 4.4. Let x : Σ2 → M
n

be a complete stationary spacelike surface in
a GRW spacetime M

n
= −I ×f M

n−1. If

KΣ ≥ max

{

f ′′(τ)

f(τ)
, 0

}

(28)

and the function u = −〈TN , TN〉 on Σ2 satisfies

u ≤ Cf(τ)2 + C, (29)
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for some positive constant C, then

KΣ ≤ f ′(τ)2 +KM

f(τ)2
(30)

and equality holds if, and only if, Σ2 is totally geodesic.

Proof. Let u = −〈TN , TN〉 and consider the function v =
−1

(1 + u)α
on Σ2,

where α > 0 is constant. Note that −1 < v < 0, in particular, it is bounded
from above. From (28) we have KΣ ≥ 0, and thus, the classical result by Ahlfors
and Blanc-Fiala-Hubber [10] ensures that Σ2 is parabolic. Let us show now that
v is subharmonic.

We compute first the gradient of v. For any X ∈ X(Σ), we have

〈

∇
( −1

(1 + u)α

)

, X

〉

= X

( −1

(1 + u)α

)

=
α

(1 + u)α+1
X(u)

=

〈

α∇u
(1 + u)α+1

, X

〉

.

Therefore,

∇v =
α

(1 + u)α+1
∇u (31)

Next, using the well-known formula div(hX) = X(h)+h div(X), for any smooth
function h on Σ2 and any X ∈ X(Σ) and (31) we obtain

∆v = div

(

α

(1 + u)α+1
∇u
)

= ∇u
(

α

(1 + u)α+1

)

+
α

(1 + u)α+1
∆u . (32)

Taking into account that

∇u
(

α

(1 + u)α+1

)

= −α(α+ 1)(1 + u)−α−2 (∇u)(u)

= − α(α+ 1)

(1 + u)α+2
|∇u|2,

formula (32) can be rewritten as follows

∆v = − α(α + 1)

(1 + u)α+2
|∇u|2 +

α

(1 + u)α+1
∆u (33)
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By using (6) and (7), formula (32) gives

∆v =
2α

(1 + u)α+1

(

K − f(τ)′′

f(τ)

)

(u− f(τ)2)

+
2α

(1 + u)α+1
tr(A2

T N )

[

1 − α+ 1

1 + u
(u− f(τ)2)

]

=
2α

(1 + u)α+1

(

K − f(τ)′′

f(τ)

)

(u− f(τ)2)

+
2α

(1 + u)α+1
tr(A2

T N )

[

1 − αu+ αf(τ)2 + f(τ)2

1 + u

]

.

Note that, in order to prove that ∆v ≥ 0 from previous formula, it remains to
show that

1 − αu+ αf(τ)2 + f(τ)2 ≥ 0,

or equivalently

u ≤ α+ 1

α
f(τ)2 +

1

α
,

which holds true if we choose α =
1

C
.

Hence, the function v < 0 satisfies ∆v ≥ 0 for this choice of α. Therefore, v
is constant from the parabolicity of Σ2. From (31), u is also constant. Formula
(11) gives the inequality

KΣ ≤ f ′(τ)2 +KM

f(τ)2
,

and the equality holds if, and only if, Σ2 is totally geodesic.

In particular, we have the following result for the case u is bounded.

Corollary 4.5. Let x : Σ2 → M
n

be a complete stationary spacelike surface in
a GRW spacetime M

n
= −I ×f M

n−1, such that u = −〈TN , TN〉 is bounded on
Σ2. If

KΣ ≥ max

{

f ′′(τ)

f(τ)
, 0

}

then

KΣ ≤ f ′(τ)2 +KM

f(τ)2

and equality holds if, and only if, Σ2 is totally geodesic.
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5 Examples

Example 1. Consider the four dimensional Lorentz-Minkowski spacetime L4,
i.e., L

4 = R
4 endowed with −dx2

1 + dx2
2 + dx2

3 + dx2
4. For each w : R

2 → R,
harmonic and non-constant, the mapping

ψw : R2 → L
4, ψw(x, y) = (w(x, y), x, y, w(x, y))

is clearly a spacelike immersion whose induced metric on R2 is just the Euclidean
one dx2 + dy2, for any w. Obviously, the mean curvature vector field of ψw is
identically zero. Thus, ψw : R2 → Ł4 is a stationary spacelike surface for any
w, and it is totally geodesic if and only if w(x, y) = ax+ by + c, for a, b, c ∈ R.

For ∂t(= ∂x1) = (1, 0, 0, 0), write along ψw as ∂t = ∂⊤
t + ∂N

t and then
−1 = 〈∂⊤

t , ∂
⊤
t 〉 + 〈∂N

t , ∂
N
t 〉. We want to compute 〈∂N

t , ∂
N
t 〉. First we have

∂⊤

t =
〈

∂⊤

t ,
∂ψw

∂x

〉∂ψw

∂x
+
〈

∂⊤

t ,
∂ψw

∂y

〉∂ψw

∂y
,

where
∂ψw

∂x
=

(

∂w

∂x
, 1, 0,

∂w

∂x

)

and
∂ψw

∂y
=

(

∂w

∂y
, 0 , 1 ,

∂w

∂y

)

are orthonormal everywhere. Taking into account

〈

∂⊤

t ,
∂ψw

∂x

〉

=
〈

∂t,
∂ψw

∂x

〉

= −∂w

∂x
and

〈

∂⊤

t ,
∂ψw

∂y

〉

=
〈

∂t,
∂ψw

∂y

〉

= −∂w

∂y
,

we have

〈∂⊤

t , ∂
⊤

t 〉 =

(

∂w

∂x

)2

+

(

∂w

∂y

)2

.

In the particular case, w(x, y) = x2 − y2, we have 〈∂⊤
t , ∂

⊤
t 〉 = 4x2 + 4y2. There-

fore,
u = −〈∂N

t , ∂
N
t 〉 = 1 + 4x2 + 4y2 → ∞ as x2 + y2 → ∞ ,

i.e., the function u on R2 is unbounded. Therefore, assumption (15) in Theo-
rem 4.1 cannot be dropped (note that formula (14) is obviously satisfied because
KR2 = 0).

Example 2. Consider the holomorphic functions φ1(z) = 1 − z2, φ2(z) =
i(1 + z2), φ3(z) = 2z and φ4(z) =

√
2(1 − z2), z ∈ C that satisfy

− φ2
1(z) + φ2

2(z) + φ2
3(z) + φ2

4(z) = 0, (34)

− |φ1(z)|2 + |φ2(z)|2 + |φ3(z)|2 + |φ4(z)|2 = 2(1 + |z|2)2 > 0. (35)

for any z ∈ C.
The map

ψ : C → L
4, ψ(z) = Real

∫

(

1 − z2, i(1 + z2), 2z,
√

2(1 − z2)
)

dz,
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defines a stationary spacelike surface in Ł4 thanks to (34) and (35), [9], and the
induced metric on C is,

g := (1 + |z|2)2 |dz|2. (36)

If we put z = x+ iy then we can equivalently describe ψ as follows

ψ(x, y) =
(

x− x3

3
+ xy2,−y− x2y+

y3

3
, x2 − y2,

√
2x−

√
2

3
x3 +

√
2xy2

)

, (37)

for all (x, y) ∈ R2.
Next, we prove that the Riemannnian metric (36) is complete. Recall that for

a non-compact Riemannian manifold, completeness is equivalent to the following
property [8, p. 153]: every divergent curve starting at any point, has infinite
length, i.e., in our case, for any (smooth) curve γ : [0,∞) → C, such that for
every compact subset C of C there exists t0 ∈ (0,∞) such that γ(t) /∈ C for any
t > t0, we have

lim
T →∞

∫ T

0

√

g(γ ′(t), γ ′(t)) dt = ∞ .

But this is true because the euclidean length of a divergent curve in C is ∞, and

∫ T

0

√

g(γ ′(t), γ ′(t)) dt ≥
∫ T

0

|γ ′(t)| dt

holds true, making use of (36).

On the other hand, being the induced metric (36) pointwise conformal to the
Euclidean one of C, its Gauss curvature, K, satisfies

K(z) = − 1

(1 + |z|2)2
∆ log(1 + |z|2) =

−4

(1 + |z|2)4
< 0, (38)

where ∆ =
∂2

∂x2
+

∂2

∂y2
is the usual Laplacian. Therefore, ψ is not totally

geodesic.

Finally, we compute 〈∂N
t , ∂

N
t 〉. As in Example 1 we have

∂⊤

t =
〈

∂⊤

t ,
1

λ

∂ψ

∂x

〉 1

λ

∂ψ

∂x
+
〈

∂⊤

t ,
1

λ

∂ψ

∂y

〉 1

λ

∂ψ

∂y
,

where λ(x, y) = 1 + x2 + y2. Using now (37) we get

〈

∂⊤

t ,
∂ψ

∂x

〉

=
〈

∂t,
∂ψ

∂x

〉

= −(1−x2 +y2) and
〈

∂⊤

t ,
∂ψ

∂y

〉

= 〈∂t,
∂ψ

∂y

〉

= −2xy,

and therefore

〈∂⊤

t , ∂
⊤

t 〉 =

(

1 − x2 + y2

1 + x2 + y2

)2

+

(

2xy

1 + x2 + y2

)2

.
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Thus, we obtain

u = −〈∂N
t , ∂

N
t 〉 = 1 + 〈∂⊤

t , ∂
⊤

t 〉 = 2
(1 + x2 + y2)2 − 2x2

(1 + x2 + y2)2
≤ 2,

for any (x, y) ∈ R2, i.e., the function u on R2 is bounded. Therefore, assumption
(14) in Theorem 4.1 cannot be dropped, although (15) is satisfied as this example
shows.
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