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Abstract. In this paper we study the existence of positive solution to the Kirchhoff
elliptic problem{

−
(
1 + γG′

(
‖∇u‖2

L2(Ω)

))
Δu = λf(u) in Ω,

u = 0 on ∂Ω,

where Ω is an open, bounded subset of R
N (N ≥ 3), f is a locally Lipschitz

continuous real function, f(0) ≥ 0, G′ ∈ C(R+) and G′ ≥ 0. We prove the
existence of at least two solutions with L∞(Ω) norm between two consecutive
zeroes of f for large λ.
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1. Introduction

We consider the following Kirchhoff elliptic boundary value problem{
−

(
1 + γG′

(
‖∇u‖2

L2(Ω)

))
Δu = λf(u) in Ω,

u = 0 on ∂Ω,
(Pλ,γ)

where Ω is an open, bounded subset of RN (N ≥ 3), G ∈ C1(R+) with G, G′ ≥ 0,
γ ≥ 0 and f is a locally Lipschitz continuous real function defined in [0, ∞) with
f(0) ≥ 0. We extend f to (−∞, 0) by f(s) = f(0) ≥ 0 for every s < 0 to guarantee
that any solution of (Pλ,γ) is nonnegative. In the semilinear local case, γ = 0, it is
well known (see [2]) that maximum principle implies the nonexistence of solution
u with ‖u‖L∞(Ω) = α provided that f(α) ≤ 0. K. J. Brown and H. Budin proved
in [4], by using variational methods, how changes in the sign of f lead to multiple
positive solutions of the equation for sufficiently large λ.
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In [6] P. Hess proved for λ big enough the existence of w1,λ, . . . ,
wm,λ, u1,λ, . . . , um−1,λ, 2m − 1 positive solutions of the nonlinear elliptic eigen-
value problem (Pλ,0), if f(0) > 0 and the graph of f has m positive humps and
m − 1 negative humps, each positive hump having greater area than the previous
negative hump. More precisely, if αk denotes the right end point of the k-th positive
hump and F (s) :=

∫ s

0
f(t)dt, then it is assumed that f(0) > 0, f(α1), . . . , f(αm) = 0

and

max{F (s) : 0 ≤ s ≤ αk−1} < F (αk), k = 2, . . . , m.

He showed that w1.λ ≤ α1 and ‖wk+1,λ‖L∞(Ω), ‖uk,λ‖L∞(Ω) ∈ (αk, αk+1) for every
k = 1, . . . , m − 1. Moreover, w1,λ ≤ w2,λ ≤ . . . ≤ wm,λ and
uk,λ ≤ wk+1,λ for every k = 1, . . . , m − 1 since wk,λ is the maximal solution of
(Pλ,0) in [0, αk] with k = 1, . . . , m.

Z. Liu proved, in [9], assuming that f(0) > 0 and under the hypotheses in [6]
that all those solutions are ordered, is that to say, w1,λ < u1,λ < w2,λ < u2,λ <
w3,λ < · · · < um−1,λ < wm,λ.

E. N. Dancer and K. Schmitt have shown in [5] that this relation between the
area of the positive hump and the previous negative one is necessary for the existence
of a positive solution with norm in the interval corresponding to the positive hump.
Indeed, they showed that if 0 < α < β are two consecutive zeroes of f such that
f(s) > 0 for every s ∈ (α, β) then a necessary condition for the existence of solution
u with ‖u‖L∞(Ω) = r ∈ (α, β) is∫ r

s0

f(s)ds > 0, ∀s0 ∈ (0, α). (1.1)

In [7] J. Garćıa-Melián and L. Iturriaga have studied problem (Pλ,0) for a
nonnegative function f with r positive zeros, α1, . . . , αr. They showed that, for
large enough λ, there exist at least two solutions wk,λ, uk,λ with ‖wk,λ‖L∞(Ω) <
αk < ‖uk,λ‖L∞(Ω) if f verifies a suitable non-integrability condition near each of its
zeros. Specifically this condition is: there exists δ > 0 such that∫ αk+δ

αk

f(t)

(t − αk)
2(N−1)

N−2

dt = +∞ (1.2)

for k = 1, ..., r. In addition, they obtained that

lim
λ→+∞

‖wk,λ‖L∞(Ω) = lim
λ→+∞

‖uk,λ‖L∞(Ω) = αk.

They used the sub- and supersolutions method and topological degree arguments
combined with the use of a suitable Liouville theorem.

The above condition (1.2) was improved in [3] by B. Barrios, J. Garćıa-Melián
and L. Iturriaga under the assumption that f has an isolated positive zero α such
that

f(t)

(t − α)
N+2
N−2

is decreasing in (α, α + δ) for some small δ > 0. (1.3)

They proved, still for nonnegative f , that for large enough λ there exist at least
two ordered positive solutions wα,λ < uα,λ verifying the properties ‖wα,λ‖L∞(Ω) <
α < ‖uα,λ‖L∞(Ω) and wα,λ(x), uα,λ(x) → α uniformly on compact subsets of Ω as



Multiplicity of Solutions for an Elliptic Kirchhoff Equation

λ → +∞. The existence of these solutions holds independently of the behavior of f
near zero or infinity.

In this paper we are interested in the multiplicity results for the Kirchhoff prob-
lem (Pλ,γ) (in the case γ > 0) providing a description of the behavior of solutions
for λ → +∞. Thus, in addition to f(0) ≥ 0 we only assume
(H) There exists 0 < α < β such that f(α) = f(β) = 0, f(s) > 0 for every s ∈ (α, β)

and

rα = inf
{

r ∈ (α, β) :
∫ r

s0

f(s)ds > 0, ∀s0 ∈ (0, α)
}

is finite.

We observe that f may change sign and that hypothesis (H) implies that (1.1) is
satisfied for every r ∈ (rα, β).

In order to state the main result we use the following notation:

S = {(μ, u) : u ∈ H1
0 (Ω) ∩ L∞(Ω) solves (Pμ,γ), μ > 0}

and for any B ⊂ S, μ > 0 we define Bμ = {u : (μ, u) ∈ S}.

Theorem 1.1. Assume that f is a locally Lipschitz continuous real function with
f(0) ≥ 0 and satisfies (H). Assume also that G ∈ C1(R+) with G, G′ ≥ 0 and γ ≥ 0.
Then there exists λ > 0 such that, for every λ > λ, problem (Pλ,γ) admits at least
two solutions uλ, wλ ∈ H1

0 (Ω) ∩ L∞(Ω) with uλ �= wλ and ‖uλ‖L∞(Ω), ‖wλ‖L∞(Ω) ∈
(rα, β). Moreover, one of the following alternatives holds:
1. There exists an unbounded continuum Σ ⊂ S such that Σλ has at least two

elements.
2. Sλ is infinite.

Even more limλ→+∞ ‖wλ‖L∞(Ω) = β and, if we assume that f is nonnegative, and it
satisfies (1.3), then limn→∞ ‖uλn

‖L∞(Ω) = α for some sequence
λn → +∞.

We observe that in contrast with the semilinear case, γ = 0, due to the lack
of a convenient comparison result for the Kirchhoff problem (Pλ,γ) we have no
information on whether the solutions are ordered or not.

With respect to the plan of the paper, in the second section we show the main
nonexistence results for (Pλ,γ), we establish the existence of λ and main properties
of the solution wλ as a minimum of a truncated functional. The third section is
devoted to the existence of the second solution uλ using some Leray-Schauder degree
computations which leads to the continuum alternative. Finally, in the last section
we collect all the results leading to the proof of the main result.

2. Qualitative Properties of Solutions

In this section we collect the main results concerning with the existence, nonexis-
tence and main properties of solutions to the problem (Pλ,γ).

Let us remark that we are mainly interested in positive bounded solutions and
the interaction between its L∞(Ω) norm and the positive zeroes of f . Thus, for
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every k > 0, we may take

fk(s) = f(max{0, min{s, k}}), s ∈ R. (2.1)

and consider the truncated problem{
−

(
1 + γG′

(
‖∇u‖2

L2(Ω)

))
Δu = λfk(u) in Ω,

u = 0 on ∂Ω.
(Pk)

This truncated problem provides us with bounded solutions to (Pλ,γ) as it is stated
in the following lemma.

Lemma 2.1. Let u ∈ H1
0 (Ω) be a weak solution to (Pk), then u ∈ L∞(Ω) and u is a

solution to (Pλ,γ) if ‖u‖L∞(Ω) ≤ k. �
The next result is related to the nonexistence of bounded solutions with a

specific L∞(Ω) norm.

Lemma 2.2. There is no bounded solution to (Pλ,γ) with L∞(Ω) norm equal to r > 0
in the following cases:
1. f(r) ≤ 0.
2. f(s) > 0 for every s ∈ (α, r], f(α) = 0 and

∫ r

s0
f(s)ds ≤ 0 for some s0 ∈ (0, α).

Proof. Observe that if u ∈ H1
0 (Ω)∩L∞(Ω) is a solution of (Pλ,γ) with ‖u‖L∞(Ω) = r

and ‖u‖H1
0 (Ω) = r0 then

−Δu =
λ

1 + γG′(r0)
f(u) ≡ f̃(u).

Thus, the first item is a direct consequence of the strong maximum principle (f̃(r) ≤
0, see [2]) and the second is proved in [5] (

∫ r

s0
f̃(s)ds ≤ 0).

Remark 2.3. Combining the results in the previous two lemmas, in the case f(k) =
0, any solution u to (Pk) it is also a solution to (Pλ,γ) satisfying ‖u‖L∞(Ω) < k. In
addition, we may consider the functional Ik : H1

0 (Ω) → R given by

Ik(u) =
1
2

∫
Ω

|∇u|2 +
1
2
γG

(∫
Ω

|∇u|2
)

− λ

∫
Ω

∫ u

0

fk(s)ds, u ∈ H1
0 (Ω),

and observe that Ik ∈ C1(H1
0 (Ω)) and critical points of Ik are solutions to (Pk).

The existence of solution to (Pk) when f(k) = 0 is then standard as it is stated
in the following lemma:

Lemma 2.4. Assume that f(k) = 0 for some k > 0. Then there exists a solution u
to (Pλ,γ) with ‖u‖L∞(Ω) < k.

Proof. Observe that, since fk is bounded (which also implies that any solution of
(Pk) belongs to L∞(Ω)), the functional Ik is coercive. In addition, Ik is weak lower
semicontinuous which implies that Ik has a global minimum wλ which, taking into
account Remark 2.3, is a solution of (Pλ,γ).

The solution given by Lemma 2.4 may be the trivial one and in the next result
we give sufficient conditions to prove that it is not the trivial one. The proof follows
closely that of [6] and we include it here for the reader convenience.
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Lemma 2.5. Assume that f(k) = 0 for some k > 0 and that for some
0 < ε < k there exists 0 < s0 < k − ε < s1 < k such that

max
0≤s≤k−ε

{∫ s

0

fk(t)dt

}
=

∫ s0

0

fk(t)dt,

∫ s1

s0

fk(t)dt > 0.

Then there exists λε > 0 such that ‖wλ‖L∞(Ω) ≥ k − ε for every λ > λε, where wλ

is the minimum of Ik established in Lemma 2.4.

Proof. Assume that ‖wλ‖L∞(Ω) < k − ε and observe that, in this case∫
Ω

∫ wλ

0

fk(t)dt ≤
∫

Ω

max
0≤s≤k−ε

{∫ s

0

fk(t)dt

}

= |Ω|
∫ s1

0

f(t)dt − |Ω|
∫ s1

s0

f(t)dt. (2.2)

Now we take v ∈ C∞
0 (Ω) with ‖v‖L∞(Ω) ≤ k and v(x) = s1 > k − ε when x �∈ Ωδ ≡

{x ∈ Ω : dist(x, ∂Ω) < δ} for some δ.
Therefore, using (2.2) we have:∫

Ω

∫ v

0

fk(t)dt =
∫

Ω\Ωδ

∫ s1

0

fk(t)dt +
∫

Ωδ

∫ v

0

fk(t)dt

= |Ω|
∫ s1

0

f(t)dt +
∫

Ωδ

∫ v

s1

fk(t)dt

≥
∫

Ω

∫ wλ

0

fk(t)dt + |Ω|
∫ s1

s0

f(t)dt − C|Ωδ|.

Now we fix δ > 0 such that η ≡ |Ω| ∫ s1

s0
f(t)dt − C|Ωδ| > 0 and we have that

Ik(v) − Ik(wλ) ≤ 1
2

∫
Ω

|∇v|2 +
1
2
γG

(∫
Ω

|∇v|2
)

− λ

∫
Ω

∫ v

0

fk(s)ds + λ

∫
Ω

∫ wλ

0

fk(s)ds

≤ 1
2

∫
Ω

|∇v|2 +
1
2
γG

(∫
Ω

|∇v|2
)

− λη.

On the other hand for λ > λε ≡ 1
η

(
1
2

∫
Ω

|∇v|2 + 1
2γG

(∫
Ω

|∇v|2)) (since v is
fixed) we have that

Ik(v) < Ik(wλ).

This implies that ‖wλ‖L∞(Ω) > k − ε for every λ > λε and we finish the proof.

The following result is concerned with the existence of solution having L∞(Ω)-
norm between two consecutive zeros 0 < α < β when (H) is satisfied.

Lemma 2.6. Assume (H) satisfied. Then there exist λ, λ > 0 such that

Λ = {λ ≥ 0 : (Pλ,γ) admits solution u with α ≤ rα < ‖u‖L∞(Ω) < β}
is a nonempty closed set with [λ, +∞) ⊂ Λ ⊂ [λ, +∞).
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Proof. Using Lemma 2.4 we have the existence of a global minimum wλ of Iβ which
is a solution to problem (Pλ,γ). This solution may be the trivial one and we will
prove now that, for large enough λ, ‖wλ‖L∞(Ω) ∈ (rα, β). This is a consequence of
Lemma 2.5 with k = β, ε = β−α and s1 > rα. (Moreover, as in the proof of Lemma
2.5 we also have that limλ→+∞ Iβ(wλ) = −∞).

As a consequence [λ, +∞) ⊂ Λ for any λ > λε. In particular Λ �= ∅ and we can
take λ = inf Λ. Observe that, since (P0,γ) admits only the trivial solution, 0 �∈ Λ.

Now we prove that Λ is closed and as a consequence λ > 0. Let λn be a
convergent sequence in Λ and denote λ = limn→∞ λn.
Let take un ∈ H1

0 (Ω) ∩ L∞(Ω) with rα < ‖un‖L∞(Ω) < β satisfying{
−

(
1 + γG′

(
‖∇un‖2

L2(Ω)

))
Δun = λnf(un) in Ω,

un = 0 on ∂Ω.

Observe that the sequence λnf(un)
(
1 + γG′

(
‖∇un‖2

L2(Ω)

))−1

is
bounded in L∞(Ω). In addition, applying [8, Theorem 6.1] we deduce that the
sequence un is bounded in C0,γ(Ω). Consequently, Ascoĺı-Arzelá Theorem assures
that un possesses a subsequence converging strongly in C(Ω) to u ∈ L∞(Ω) with
rα ≤ ‖u‖L∞(Ω) ≤ β.

Moreover, taking un as test function and using that f is continuous we get that
un is bounded in H1

0 (Ω). This implies, in particular, that u ∈ H1
0 (Ω) and, up to a

subsequence, un → u weakly in H1
0 (Ω). In addition, taking un − u as test function,

we can also assure that un strongly converges to u in H1
0 (Ω) and we can pass to the

limit and it follows that{
−

(
1 + γG′

(
‖∇u‖2

L2(Ω)

))
Δu = λf(u) in Ω,

u = 0 on ∂Ω.

Since u solves (Pλ,γ) the strong maximum principle allows us to assure that rα �=
‖u‖L∞(Ω) �= β (see Lemma 2.2). Therefore we have proved that λ ∈ Λ, i.e. Λ is
closed and we conclude the proof.

Remark 2.7. Assume that (H) is satisfied and denote by wλ the minimum of Iβ

established in Lemma 2.6 for every λ ≥ λ. Then, as a consequence of Lemma 2.5,
for every ε > 0 there exists λε > 0 such that ‖wλ‖L∞(Ω) ≥ β − ε for every λ > λε.

Remark 2.8. Observe that when f(k) �= 0, Lemma 2.4 also gives a
bounded solution to (Pk) which is not necessarily a solution to (Pλ,γ) unless it
is less than k. Moreover, Lemma 2.5 is also true for solutions to (Pk). Thus, if
α < k < β, with α, β as in Remark 2.7 we have that the norm of this bounded
solution to (Pk) has to be greater than k.

3. Leray-Schauder Degree Computations

In this section we perform the Leray Schauder degree computations to obtain the
multiplicity result, again we follow closely [6].
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Observe that u solves (Pλ,γ) and ‖u‖L∞(Ω) ≤ k if and only if

u = (−Δ)−1

(
λfk(u)

(
1 + γG′

(
‖∇u‖2

L2(Ω)

))−1
)

≡ Φλ,k(u).

Moreover, Φλ,k : H1
0 (Ω) → R is compact and we can use Leray-Schauder degree

theory.

Lemma 3.1. For every λ, k > 0, there exists R > 0 such that deg(I − Φλ,k, BRλ
(0),

0) = 1.

Proof. Let us consider H(t, u) = u − tΦλ,k(u), for every t ∈ [0, 1] and u ∈ H1
0 (Ω).

Since solutions to H(t, u) = 0 are bounded in L∞(Ω) we have that they are also
bounded in H1

0 (Ω) and, for big enough R > 0, H is a valid homotopy and the result
follows.

Observe that R depends on λ and k but it can be chosen constant in compact
sets.

Now we denote by Sk to the set of solutions to (Pλ,γ) with L∞(Ω)-norm less
that k. Recall that, when f(k) = 0, Sk is the set of solutions to (Pk). Let us denote

Uε,k =
{
v ∈ H1

0 (Ω) : dist(v, Sk) < ε
}

.

Lemma 3.2. Let 0 < α < β be two consecutive zeroes of f and λ > 0. Then there
exists ε > 0 such that deg(I − Φλ,β, Uε,α, 0) = 1 for every 0 < ε < ε.

Proof. It is clear that deg(I − Φλ,α, Uε,α, 0) = 1 since there is no solution of u =
Φλ,α(u) in BR(0) \ Uε,α.

Let us consider H(t, u) = u − tΦλ,α(u) + (1 − t)Φλ,β(u), for every t ∈ [0, 1] and
u ∈ H1

0 (Ω). We claim that H is a valid homotopy for small ε which implies the final
result. Indeed, assume on the contrary that for some εn → 0, tn → t ∈ [0, 1] and
un ∈ ∂Uεn,α we have that

un = tnΦλ,α(un) + (1 − tn)Φλ,β(un),

or equivalently

−
(
1 + γG′

(
‖∇un‖2

L2(Ω)

))
Δun = λ(tnfα(un) + (1 − tn)fβ(un)).

Whenever ‖un‖L∞(Ω) ≤ α, since fβ(un) = fα(un) we have that un ∈ Sα which is a
contradiction with the fact that un ∈ ∂Uεn,α, in particular
‖un‖L∞(Ω) > α. Moreover, since fβ(s) = fα(s) = 0 for every s ≥ β, using Lemma
2.2 we have that ‖un‖L∞(Ω) < β.

Observe that λ(tnfα(un)+(1−tn)fβ(un))
(
1 + γG′

(
‖∇un‖2

L2(Ω)

))−1

is bounded
in L∞(Ω) and, applying [8, Theorem 6.1] we deduce that the sequence un is bounded
in C0,γ(Ω). Consequently, Ascoĺı-Arzelá Theorem assures that un possesses a sub-
sequence converging strongly in C(Ω) to u ∈ L∞(Ω) with α ≤ ‖u‖L∞(Ω) ≤ β.

Moreover, taking un as test function we get that un is bounded in H1
0 (Ω). This

implies, in particular, that u ∈ H1
0 (Ω) and, up to a subsequence, un → u weakly
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in H1
0 (Ω). In addition, taking un − u as test function, we can also assure that un

strongly converges to u in H1
0 (Ω) and we can pass to the limit and it follows that{

−
(
1 + γG′

(
‖∇u‖2

L2(Ω)

))
Δu = λ(tfα(u) + (1 − t)fβ(u)) in Ω,

u = 0 on ∂Ω.

Even more, since εn → 0 and un ∈ Uεn,α we have that u ∈ Sα which also implies
that ‖u‖L∞(Ω) < α and this is a contradiction.

With the notation of Lemma 2.6, let us take now λ ∈ Λ and denote wλ the
solution of (Pλ,γ) with rα < ‖wλ‖L∞(Ω) < β. Let us denote Λ1 ⊂ Λ such that wλ is
the minimum of Iβ and let us recall that [λ, +∞) ⊂ Λ1. Observe that, by definition
of Λ, wλ �∈ Sα, in particular we can take 0 < ε < ε such that Uε,α ∩ Bε(wλ) = ∅ for
every 0 < ε < ε. In the following lemma we prove multiplicity of solution for every
λ ∈ Λ1.

Theorem 3.3. Assume that (H) is satsified. For every λ0 ∈ Λ1 one of the following
multiplicity results holds:
1. wλ0 is not an isolated solution to (Pλ0,γ).
2. There exists un unbounded continuum Σ ⊂ {(λ, u) : u solves (Pλ,γ)} such that

(λ0, wλ0) ∈ Σ and there exists a second solution vλ0 �= wλ0 with (λ0, vλ0) ∈ Σ.

Proof. Observe that whenever wλ0 is isolated, taking into account that it is a min-
imum for Iβ, it is proved in [10, Theorem 1.1] that

deg(I − Φλ0,β, Bε(wλ0), 0) = 1, ε < ε.

Hence we may use [1, Theorem 4.4.1] to deduce the existence of the unbounded
continuum Σ with (λ0, wλ0) ∈ Σ. For the existence of the second solution vλ0 with
(λ0, vλ0) ∈ Σ we use the ideas of [1, Theorem 4.4.2] in the interval [a, b] with a < λ
and b = λ0, U1 = Bε(wλ0) and taking into account that U may depend continuously
on λ. Therefore we take

• Σα = {(λ, u) : λ ∈ [a, b], u solves (Pλ,γ), ‖u‖L∞(Ω) ≤ α},
• Vε,α = {(λ, v) ∈ R × H1

0 (Ω) : dist((λ, v), Σα) < ε},
• Vε,α(λ) = {u ∈ H1

0 (Ω) : (λ, u) ∈ Vε,α} and
• U(λ) = BR(0) \ V ε,α(λ), for every λ ∈ [a, b].

By construction we have that (Pλ,γ) has no solution on ∂Vε,α(λ) for every λ ∈ [a, b]
and (Pa,γ) has no solutions in V ε,α(a) and the result follows as in [1, Theorem 4.4.2].

Remark 3.4. Observe that deg(I − Φλ0,β, Bε(wλ0), 0) = 1 also implies, by the exci-
sion property combined with Lemma 3.1 and Lemma 3.2, that
deg(I − Φλ0,β, BR(0) \ (Uε,α ∪ Bε(wλ0)), 0) = −1 which also gives the multiplic-
ity result.

4. Proof of Theorem 1.1 Completed

We can take λ given by Lemma 2.6. Thus, for every λ > λ, Lemma 2.6 provides us
with the solution wλ with ‖wλ‖L∞(Ω) ∈ (rα, β) as the minimum of Iβ.
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The existence of the second solution uλ is consequence of Theorem 3.3 which
also provides the multiplicity alternatives. Observe that, since no solution exist with
L∞(Ω) norm in [α, rα] (see Lemma 2.2), then uλ ∈ Σλ implies ‖uλ‖L∞(Ω) ∈ (rα, β).

As a consequence of Lemma 2.5 (see also Remark 2.7) we have that

lim
λ→+∞

‖wλ‖L∞(Ω) = β.

Thus, only remains to prove that, if we assume that f is nonnegative and it satisfies
(1.3) then lim ‖uμn

‖L∞(Ω) = α for some divergent sequence μn. Indeed, in this case
rα = α and this is a consequence of the results in [3] where it is proved the existence
of vλ solution to {

−Δu = λf(u) in Ω,

u = 0 on ∂Ω,
(4.1)

with limλ→+∞ ‖vλ‖L∞(Ω) = α and ‖vλ‖L∞(Ω) > α. Thus, given λn → +∞ we can

take μn = λn

(
1 + γG′

(
‖∇vλn

‖2
L2(Ω)

))
and uμn

= vλn
. Since G′ ≥ 0 we have that

μn → +∞ and the proof is completed. �

Remark 4.1. Let us observe that the multiplicity result cannot be deduced directly
from the know results for the semilinear case. More precisely, given u a solution to
the semilinear problem (4.1) then u is also a solution to{

−
(
1 + γG′

(
‖∇u‖2

L2(Ω)

))
Δu = μf(u) in Ω,

u = 0 on ∂Ω,
(4.2)

with μ =
(
1 + γG′

(
‖∇u‖2

L2(Ω)

))
λ. This means that, for fixed λ, multiple solutions

to (4.1) may lead to solutions to (4.2) for different values of the parameter μ.
This is not enough to describe the global behavior in the case γ �= 0 since the

reverse depend on G and ‖u‖H1
0 (Ω):

λ =
μ(

1 + γG′
(
‖∇uμ‖2

L2(Ω)

)) ,

and we can assure that uμ is a solution to (4.1) for this value of λ but we cannot
assure that it is precisely vλ.

Remark 4.2. As in the semilinear case, depending on the behavior of f below α and
above β, the results proved in this paper may lead to the existence of solutions with
L∞(Ω) norm less that α or greater than β. Even more, the existence of multiple
zeroes of f may lead to a more general multiplicity result.
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Universidad de Granada
18071 Granada
Spain
e-mail: darcoya@ugr.es
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