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Abstract: This work focuses on the use of a char produced during the pyrolysis of a mixture of non-
recyclable plastics as a precursor for the preparation of porous activated carbon with high developed
adsorption uptake of lead in water. Physical and chemical activation was used to enhance the
porosity, surface area, and surface chemistry of char. The final activated carbon materials were deeply
characterized through N2 adsorption isotherms, scanning electron microscopy, Fourier transformed
infrared spectroscopy, analysis of the metal content by inductively coupled plasma mass spectroscopy,
and pH of point zero charge. The native char displayed a Pb adsorption uptake of 348 mg Pb·g−1 and
considerably high leaching of carbon, mainly organic, ca. 12%. After stabilization with HCl washing
and activation with basic character activators, i.e., CO2, NaOH, and KOH, more stable adsorbents
were obtained, with no organic leaching and a porous developed structure, the order of activation
effectiveness being KOH (487 m2·g−1) > NaOH (247 m2·g−1) > CO2 (68 m2·g−1). The activation with
KOH resulted in the most effective removal of Pb in water with a saturation adsorption uptake of
747 mg Pb·g−1.

Keywords: pyrolytic char; chemical activation; adsorption; lead; plastic waste

1. Introduction

Plastic pollution is one of the most challenging environmental hazards. The fast
rate of plastic consumption and very short time of use before disposal overwhelms the
ability to manage them after disposal. Currently, over 350 tons of plastics are produced by
developed countries annually, and this number is expected to quadruple by 2050 due to
more demand in the market [1]. Plastics frequently end up in natural ecosystems due to
inadequate collection and disposal. Larger plastic debris, known as macroplastics, degrade
into microplastics that pollute aquatic ecosystems, mainly oceans [2]. The recycling rates
of plastic are very low even in developed countries, i.e., around 10% [3]. Furthermore,
only 15–20% of all plastic waste is recycled using conventional mechanical methods such
as sorting, grinding, washing, and extrusion [4]. The rest add to the burdens of landfills,
filling them to their limits. Therefore, non-recyclable plastic fractions have been proposed
as a source for tertiary technologies such as pyrolysis, in which polymers become lighter
monomers under an inert atmosphere at high temperatures [4,5]. This technology aims
at the circular management of plastics’ life and transforms them into gaseous substances,
liquid, and solid products [6]. The gas product can be used as an energy source to provide
the energy required for the pyrolysis process. The liquid product is an important renewable
material for the generation of chemicals and fuel [7]. The solid residue is made of coke and
ash, also known as char, and has little value as fuel.

Recently, the possibility of using char from pyrolysis of the plastic mixtures has been ex-
plored as a potential adsorbent [8]; however, the limited porosity compromises the potential
of this solid as an adsorbent of metals in water, e.g., lead [9], among others [10]. Upgrading
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the char by activation has proven to be an attractive strategy to prepare porous carbona-
ceous materials with outstanding adsorption properties for a wide range of pollutants in
water, such as dyes [11], anthropogenic organic contaminants of emerging concern [12], or
metals [13]. Physical and chemical activation has been demonstrated to be an extraordinary
strategy for producing porous carbonaceous materials. The most efficient activation agents
include the CO2 atmosphere [14] as a physical method and NaOH or KOH under an inert
atmosphere [15,16] as a chemical procedure.

Lead pollution in water can be ascribed to natural or artificial causes. Lead is one of
the most hazardous contaminants, and its presence in drinking water is still a recurring
problem around the world, especially in those countries that still use lead plumbing
materials for water pipes or have not completely replaced them, such as the USA [17].
Lead pipes require careful corrosion control to prevent leaching into the aqueous media.
Natural groundwater can also be polluted with lead due to close contact with ores [18].
In addition, lead can be present in the wastewater of many industries, including metal
plating, paint, or battery storage industries [19]. Lead remediation can be performed using
separation methods such as osmosis or adsorption. The use of adsorption is a convenient
and affordable technology, accessible in many water treatment scenarios. Adsorption has
been widely used due to the high efficiency of the removal from aqueous effluents and the
diversity of materials to reach that purpose. Some examples of materials with high metal
adsorption ability include carbonaceous materials [20,21], silica [22], zeolites [23], treated
biomass [24], or metal-organic frameworks [25]. Using chars recycled from waste is a useful
strategy to revalorize waste into a valuable material with metal adsorption properties [26].
The available data to date applied to lead adsorption is focused on the revalorization of
biomass residues [27–32] or other wastes rich in carbon, such as tires [33–35], or mixtures
of both [9,10].

This work focuses on the activation of a non-porous carbonaceous char obtained from
the pyrolysis of a mixture of non-recyclable plastic waste. Different physical/chemical
activators with basic character have been explored, i.e., CO2, NaOH, and KOH, comparing
them to an N2 blank test. The properties of the activated chars were assessed by N2
adsorption isotherms, Scanning Electron Microscopy (SEM), Fourier Transformed Infrared
Spectroscopy (FTIR), and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) for
the analysis of the metal content. Also, the behavior of the solids as potential adsorbents
was studied in terms of organic and inorganic carbon leaching, as well as metal lixiviation.
The solids, due to their high basic character, were able to raise the pH of the solution after
being suspended. Their ability to remove lead from an aqueous solution was evaluated,
and the isotherms of adsorption were obtained and corrected concerning the precipitation
contribution due to the pH rise.

2. Materials and Methods
2.1. Chemicals

Analytical grade chemicals (HCl, NaOH, and KOH) were acquired from Sigma-
Aldrich® and used as received. Ultrapure water (18.2 MΩ·cm) from a Direct-Q®-UV
system (Millipore®) was used in all the stock solutions preparation.

2.2. Synthesis of the Adsorbents from Pyrolysis Char and Characterization of the Solids

The char, namely “C”, was obtained from the pyrolysis of a mixture of plastics from
non-selective collecting from a local urban solid waste processing plant. The average
composition was rigid polypropylene (56%), high impact polystyrene (9%), expanded
polystyrene (10%), and polyethylene and polypropylene film (25%). The pyrolysis was
conducted under an N2 atmosphere (100 L·min−1) at 500 ◦C for 90 min, with a 10 ◦C·min−1

heating rate. The resulting char was ground and sieved, size below 500 µm. This char
powder was stabilized by acid washing to remove ash and leachable components with an
aqueous 1 M HCl solution (50 g·L−1 of char) [36], followed by ultrapure water washing
and drying step at 120 ◦C for 24 h. This stabilized char was labeled as “SC”.
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Different chemical activation procedures were considered to turn the char into a porous
carbonaceous solid. First, the activation of the char was carried out under a CO2 atmosphere
due to the good results provided by this technique in the literature [14]. Particularly, in the
activation step, a gas flow rate of 100 mL·min−1, a temperature of 760 ◦C, a heating rate of
10 ◦C·min−1, and a hold time of 1 h were used. Then, the resulted material was stabilized
with HCl, rinsed with water, and dried following the same procedure indicated above. This
obtained material was named “SC-CO2”. Alternatively, chemical activation under an N2
atmosphere (100 L·min−1) with the addition of NaOH and KOH (char: alkali ratio, 2:1 [37])
was carried out. In this case, for activation, a two-step process was adopted, including (i)
heating from room temperature to 300 ◦C at 10 ◦C·min−1 and holding at 300 ◦C for 1 h
to ensure the melting of the alkali, and (ii) heating from 300 ◦C to 760 ◦C at 10 ◦C·min−1

and then holding at 760 ◦C for 1 h. After the activation process, the material was stabilized
with HCl, rinsed with water, and dried following the same procedure indicated above.
The resulting activated carbons were named “SC-NaOH” and “SC-KOH” depending on
the chemical agent used. Finally, a blank activation test was performed under an N2
atmosphere under the same activation conditions as those used for SC-CO2 preparation to
analyze the influence of the physical and chemical agent, excluding the effect of thermal
treatment, on the properties of the final product. The resulting material from this test was
called SC-N2. Table S1 of the Supplementary Materials provides a summary of different
prepared activated carbons.

The textural properties were assessed by N2 adsorption–desorption isotherms at 77 K
in an ASAP 2020 apparatus of Micromeritis®. The specific surface area was calculated
by the BET method (SBET), the specific surface area of micropore (SMP) was estimated
by the t-plot method, the total pore volume (VT) was calculated from the N2 uptake at
p/p0 = 0.99, and the volume micropore (VMP) from the t-plot method. The morphology of
the particles was evaluated by Scanning Electron Microscopy in a FEG-ESEM QUEMSCAN
650F device of FEI QuantaTM. The presence of functional surface groups was studied by
Fourier Transformed Infrared (FTIR) spectroscopy in a PerkinElmer® Spectrum 65 FT-IR
device working within 550–4000 cm−1.

2.3. Adsorption Tests and Behavior of the Samples in Water

Batch adsorption tests were carried out in 100 mL Erlenmeyer flasks at room tempera-
ture (20 ◦C) containing Pb within 10–500 mg·L−1 with an adsorbent dose of 0.5 g·L−1 and
200 rpm stirring. According to previous studies of lead adsorption, the pH was set between
5 and 6. For pH adjustment, dropwise addition of NaOH or HCl solutions (1 or 0.1 M)
was carried out. The pH was monitored in a Crison BasiC 20 device. The lead adsorption
isotherms were obtained after adsorbent–lead solution contact for 24 h, keeping constant
the adsorbent dose. Aqueous samples were filtered with Nylon Filters (0.45 µm), and the
concentration of Pb in water was obtained by Atomic Absorbance (AA) spectrometry in a
PerkinElmer® PinAAcle 500 Flame device. Adsorption experiments were carried out in
triplicate, and the average value was represented. The relative standard deviation was
lower than 5%.

The pH at the point of zero charge (pHpzc) was determined by a standard acid–base
titration method [38]. Briefly, solutions of 50 mL were prepared at different pH values
between 2 and 11 by adding NaOH or HCl. Next, the solid was added at a dose of 0.5 g·L−1

and kept under stirring until reaching a constant pH value. The pHpzc was obtained as the
intersection of the curve of final versus initial pH with the bisector. The metal leaching of the
solids was carried out at 3 different pH values, i.e., 3, 7, and 11, at a dose of 0.5 g·L−1. The
metal present in the aqueous solution after 24 h of contact was analyzed in an Inductively
Coupled Plasma Mass Spectroscopy (ICP-MS) in a PerkinElmer® Optima8300 device, with
samples filtered as mentioned above. The lixiviation degree of the whole metal content in
the solid samples was determined by acid digestion according to standard EN 13656:2000.
Moreover, the released Total Organic Carbon (TOC) and Inorganic Carbon (IC) in the water
were analyzed in a Shimadzu® TOC-VCSH analyzer.



Appl. Sci. 2022, 12, 8032 4 of 17

3. Results and Discussions
3.1. Characterization of the Plastic Pyrolysis Char after Activation

The changes in the textural and porous properties were analyzed by N2 adsorption–
desorption isotherms; see results in Table 1. The char obtained from the pyrolysis of
the mixture of plastics displayed a poor surface area, 15 m2·g−1. The stabilized char
slightly raised the area to 19 m2·g−1, probably due to the removal of the ash content and
leachable content. The activation of the SC led to a considerable increment in the surface
area of the resulting materials. For example, the activation under a CO2 atmosphere led
to a material with 68 m2·g−1, poorly higher than the 49 m2·g−1 value obtained under
an inert N2 atmosphere. A further area increment was produced by chemical activation
under alkali presence. Thus, in the presence of NaOH, the resulting material developed
a specific area of 247 m2·g−1. Highly enhanced results were obtained if KOH was used,
leading to an almost doubled surface area, i.e., 487 m2·g−1. The N2 isotherms depicted in
Figure 1 performed a Type I according to IUPAC classification, characteristic of microporous
materials. Furthermore, the H3 type hysteresis loops described during the desorption step,
within relative pressures p/p0 = 0.45–0.99, which features parallel branches that finally go
up almost vertically, provide evidence of the presence of grove mesopores of non-rigid
generation by flaky particles as described for other materials in the literature [39,40]. The
microporosity percentage analysis of the samples followed a similar trend to the total BET
surface area, in which the relative importance of microporosity assessed either in terms of
surface or volume percentage followed the order SC-KOH > SC-NaOH > SC-CO2 > SC-N2.

Table 1. Textural properties of the char from plastic pyrolysis before and after activation.

Sample SBET
(m2·g−1)

SMP
(m2·g−1)

SMP/SBET
(%)

VT
(cm3·g−1)

VMP
(cm3·g−1)

VMP/VT
(%)

C 15 1 5.4 0.025 - -

SC 19 18 92.2 0.040 0.036 90.0

SC-N2 45 6 12.6 0.082 0.003 3.0

SC-CO2 68 18 26.9 0.094 0.008 9.2

SC-NaOH 247 185 74.9 0.217 0.084 38.9

SC-KOH 487 414 85.0 0.300 0.180 60.0
SBET: specific surface area; SMP, specific surface area of micropore; SEXT: specific external surface area; VT: total
pore volume; VMP: volume of micropore.

Microporosity is expected to be produced as a consequence of the reaction of the alkali,
e.g., NaOH or KOH, with the carbon and oxygen in the char, which enhances the gasifica-
tion reaction and release of CO and CO2. Moreover, the corresponding alkali carbonates
(Na2CO3 or K2CO3) and oxides (Na2O or K2O) promote the reaction at dynamic sites in the
carbonaceous material, leading to the generation of plenty of porous channels [41]. If the
efficiency of the two alkalis is compared, KOH has been reported to be more efficient than
NaOH in producing a larger amount of micropores [16,42,43], which explains the larger
porosity obtained for SC-KOH. This boosted porosity has been linked to the thermodynam-
ics of the reaction between the alkali and carbon. The temperature required to trigger the
reaction is lower in the case of KOH [44].
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Figure 1. N2 adsorption–desorption isotherms of the char from plastic pyrolysis before and after activation.

The morphology of the particles was assessed by SEM. Micrographs of the char
before and after activation are depicted in Figure 2. Despite the high heterogeneity of the
char produced after pyrolysis, a consequence of the heterogeneity of the rejected plastic
mixture, the SEM depicted micrographs suggested the presence of irregular flakes with
low roughness onto the surface. These images support the already deduced morphology
of the mesoporous described during the hysteresis desorption loop of N2 isotherms, as
flaky aggregates are easily recognized. Compared to the native char, the stabilization
after HCl washing and the latter thermal treatment is likely to increase the superficial
irregularities, not as much as those monitored after chemical activation, though. Thus, the
thermal chemical activation with CO2, NaOH, or KOH considerably produced microscopic
cavities and raised the imperfections of the surface [45], which explains the higher porosity
registered in these samples. This porosity development is mainly due to the release of
excess gases, i.e., CO and CO2, during the activation process [41].

The composition of the superficial chemical groups of all the samples was assessed
by FTIR in general terms analysis due to the complexity of the mixture pyrolyzed. The
results are depicted in Figure 3. An important modification of the chemical structure can be
observed after the chemical activation of the native char. The original char displayed broad-
band of maximum ca. 3400 cm−1, which is attributed to superficial hydroxyl moiety [46].
After the stabilization with HCl, the –OH groups were completely removed. No signals
corresponding to aliphatic groups of aliphatic hydrocarbons of alkanes or alkenes, peaks
that should appear within 2800–3000 cm−1 [47], were detected. The peaks at 1600 cm−1 and
1700 cm−1 were assigned to aromatic C=O and aromatic COOH/C=O stretching, respec-
tively [47]. These oxygenated groups considerably decreased in intensity after stabilization
with HCl washing and practically disappeared after thermal chemical activation. Moreover,
a doubled peak characteristic of n-ring C=C stretch and conjugated C=C stretch (around
1400 cm−1) [46] were well defined in the original char and also were partially destroyed
during HCl washing and, finally, almost depleted after thermal treatment. The C-O-C peak
located at ~1300 cm−1, which was not observed in the original char, is linked to stretching
mode in acids, ethers, and esters [48], increasing its intensity in the stabilization process
with HCl to almost disappear after chemical activation. Finally, in the region of lowest
wavelength values, a peak located at 880 cm−1 appeared due to the presence of C-H of
methyl groups or C-H out-of-plane bend [49]. In this case, after chemical activation, a
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small definition of this peak can be observed. Also, the aromatic C-H was registered in
the original char at around 750 cm−1 [50], lowering the intensity after the stabilization
and disappearing after the thermal treatment displayed an important intensity after the
stabilization with HCl. The thermal treatment led to the decrease in this peak in the sample
treated with N2, and it was not observed after chemical activation in the rest of the samples.
In summary, it can be deduced that the thermal treatment was mainly responsible for the
removal of all the characteristic groups, especially the oxygenated ones.
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Figure 3. FTIR spectra of the char from plastic pyrolysis before and after activation.

The metallic composition of the solid samples before and after activation is summa-
rized in Table 2. Diverse metals have historically been used in plastic production, either as
pigments or stabilizers. As observed in Table 2, the concentration of metals in the solids
was in the ppb range, except for Ti, Zn, Ba, and Sb, which raised until the ppm level, which
is consistent with what has also been reported in the characterization of plastics [51,52]
and pyrolyzed plastics chars [8]. The presence of a relevant amount of Ti is expected since
TiO2 is overwhelmingly used as a white pigment [53]. ZnO and Sb2O3 are also frequently
used as multifunctional additives, not only due to their pigmentation properties but also
as flame retardants or due to their fungicide abilities [52]. Barium sulfate is frequently
added as an inert filler to increase the stiffness and hardness of plastics [52]. If the amount
of Ti, Zn, Ba, and Sb are compared among the samples, a raising tendency in terms of
concentration tendency of the metals after stabilization and chemical activation in which
temperature is raised to 760 ◦C can be seen due to the slight mass loss during the chemical
activation, keeping the metallic content in the final solid.
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Table 2. Metallic composition (mg·kg−1) of the char from plastic pyrolysis before and after activation.

Element C SC SC-N2 SC-CO2 SC-NaOH SC-KOH

Li 14 16 29 28 10 8

Ti 43,249 59,395 55,978 106,635 48,744 49,696

V 17 18 26 37 13 66

Cr 281 555 749 1221 453 1457

Mn 220 174 341 663 348 701

Co 8 11 8 39 8 14

Ni 192 318 231 1152 269 462

Cu 275 302 350 1095 163 173

Zn 2331 1791 303 29,109 5126 134

Ga 42 78 134 35 59 45

Se 0 0 0 1 0 0

Rb 17 18 27 18 6 17

Sr 383 204 236 145 400 254

Mo 13 22 23 143 12 13

Cd 1 1 0 0 0 0

Sn 78 63 49 120 52 44

Sb 182 2492 2369 3230 2430 8832

Ba 928 1786 3012 683 1282 826

W 10 124 14 48 39 18

Hg 0 1 0 1 0 0

Pb 457 487 132 453 189 36

3.2. Stability and Pb Adsorption of the Activated Pyrolysis Plastic Char in Water

The behavior in terms of stability, e.g., plausible leaching of organic matter and metals,
of the activated char in the aqueous solution is very important due to the given potential
application, i.e., as an adsorbent of contaminants in water. Accordingly, special attention
was paid to the possible lixiviation of metals and organic and inorganic carbon. As the pH
of the aqueous media is highly relevant to adsorption processes, the leaching effect was
assessed at 3 different pH values, i.e., 3, 7, and 11.

The organic content released in water was considerably diminished after thermal
chemical activation, see Figure 4. The original char from the pyrolysis of the plastics
performed the highest TOC release, over 120 mg·L−1, which supposes 12% of the mass
content. However, the HCl stabilization considerably reduced this effect, although still
high for an application as an adsorbent; in this SC sample, an important effect on the
pH was observed, with a higher TOC release when increasing the pH. The thermal and
chemical activation dramatically diminished the TOC leached, being minimal, below ca.
1 mg·L−1. The release of IC was also diminished with HCl stabilization and chemical
activation, leaching IC below 3 mg·L−1. Generally, a proportional increase of IC with pH
was observed due to the formation of carbonates. However, NaOH was an exception with
the IC lixiviated, approx. 22 mg·L−1 independently of the pH.
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The release of the leached metals during the contact of the solid samples was analyzed
by measuring the metals in the aqueous solution normalized by the maximum content of
metals in the solid samples. The results are represented in Figure 5. Among the metals
with the highest contribution, as the previously provided analysis of the composition of the
samples, Ti and Zn were not detected in the aqueous solution, probably due to the stability
of their oxides, in all the pH tested [54,55]. Sb and Ba appeared in moderate concentration
in the solids, and less than 10% was released in the original char, the stabilized, and the
thermal treated with N2 and CO2. The chemical activation with NaOH and KOH led to
samples that were more stable in this sense. From the rest of the metals detected in the
solid, Cu and Ni, which appeared in the solids at minor concentrations, were not detected
in the leaching tests. Figure 5 shows important leaching, in terms of percentage, of Mo and
W; however, it should be considered that the concentration of these metals is low in the
solids, range of ppb. The most hazardous metals detected in the solid samples, Cd, Hg, and
Pb, were at very low concentrations. The release of Cd was undetectable in the samples
with potential application as adsorbents, e.g., SC-NaOH and SC-KOH. Aqueous Hg and
Pb were not registered in any sample.

pH is one of the most important variables to study in adsorption processes due to
the high influence it may have during the application of this technology. The behavior of
the solid regarding the pH in an aqueous solution was evaluated by the determination
of the pHpzc. Figure 6 shows the results obtained for each sample. In general terms, the
samples displayed a basic character, except for SC and SC-N2. The sample SC represents the
char after HCl stabilization, which explains the acidic value for pHpzc below 2. However,
the sample SC-N2 can be assumed as neutral with no significant change in pH observed
in the tests, so the surface could be considered barely neutral. The activation with CO2,
NaOH, and KOH led in all the cases to activated carbonaceous materials with a strong
basic character describing an order SC-NaOH > SC-KOH > SC-CO2. The behavior of the
SC-NaOH was remarkably outstanding, able to raise the pH of the aqueous medium to
pH~11, whatever the initial pH was.
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and after activation.

The adsorption isotherms were obtained for each sample, taking samples at 3 different
times, 1 h, 2 h, and 24 h, i.e., equilibrium conditions. The results are displayed in Figure 7.
If the adsorption performances are compared, the following adsorption capacity order is
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observed: SC-NaOH > SC-KOH > C > SC-CO2 > SC-N2 > SC. The original char displayed a
moderate adsorption capacity; however, its direct application lacks interest, and a stabiliza-
tion step via washing is required to remove the highly easily released organic carbon. The
stabilized sample, SC, led to the lowest adsorption performance, but the treatment was effi-
cient in removing the release of undesirable organic matter. The activation with CO2 and N2
raised the adsorption ability concerning the SC sample; nevertheless, it was still insufficient
to reach the results obtained with the native char. The chemical activation with NaOH and
KOH considerably improved the adsorption results, leading to the solids with the highest
adsorption capacities, especially in the case of NaOH activation. Nonetheless, the pH
evolution during these experiments was a crucial variable since over pH = 6.0, according
to the acid-base equilibria, the Pb2+ ions start to precipitate as Pb(OH)2 [56], resulting in
the adsorption results initially registered being overestimated. This phenomenon has been
reported in the literature with adsorbents that display a strong basic character, contributing
to a precipitation mechanism of Pb rather than removal by adsorption of the ions onto the
surface of the solid [57]. Figure 8 shows the variation of the pH for each solid depending
on the initial Pb concentration tested. As depicted in this figure, the samples that were
more affected by the pH rise and, therefore, by the precipitation phenomena were those
with a strong basic character, i.e., SC-CO2, SC-NaOH, and SC-KOH, with SC-NaOH the
sample with the highest contribution of precipitation as the final pH was not lower than 6.9
with the maximum Pb concentration tested. As previously shown in Figure 6, the sample
SC-NaOH had a very strong basic acid character. Accordingly, a blank test to assess the
precipitation contribution was carried out in the absence of solid, but adjusting the pH to
the values registered during the equilibrium adsorption for each concentration tested. The
removal monitored by precipitation was used to correct the adsorption capacities isotherms,
as shown in Table 3. Low lead concentrations were highly affected by the precipitation
effect specially in adsorption tests performed by SC-N2, SC-CO2, SC-NaOH, and SC-KOH.
Only the SC sample did not show precipitation of lead since the pH of the liquid–solid
suspension was between 4 and 5 for all concentrations tested.
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Table 3. Experimental adsorption capacities and corrected adsorption capacities after precipitation.

Sample qe (mg·g−1)
Ci (mg·L−1)

10 20 50 100 200 500

C
Experimental 18.78 34.00 82.56 163.2 248.8 348.0

Corrected 13.95 27.02 82.56 163.2 248.8 348.0

SC
Experimental 0.602 2.801 11.41 21.61 44.80 94.05

Corrected 0.602 2.801 11.41 21.61 44.80 94.05

SC-N2
Experimental 15.64 36.56 73.60 117.2 124.1 154.0

Corrected 0.537 1.427 16.92 117.2 124.1 154.0

SC-CO2
Experimental 19.26 34.42 85.88 171.5 247.6 294.0

Corrected 0.709 1.298 3.758 22.03 243.2 294.0

SC-NaOH
Experimental 9.001 31.38 85.60 170.3 357.6 862.4

Corrected 0.373 1.129 3.859 31.19 94.64 315.8

SC-KOH
Experimental 20.32 33.72 98.98 193.4 371.8 701.0

Corrected 0.011 0.215 2.187 35.30 82.51 701.0

Different models frequently used in liquid phase adsorption were checked, i.e., the
two-parameter models of Freundlich [58] and Langmuir [59] and the three-parameter Sips’
model [60]. Table 4 summarizes the fitting results of each model for the case of equilibria
conditions after subtracting the contribution of precipitation. Freundlich’s model produced,
in general terms, the worst fitting results in those samples in which the saturation level was
close to being reached. The Freundlich equation considers that the energy of adsorption
on a homogeneous surface is independent of surface coverage, making it impossible to
predict the maximum adsorption capacity [61]. Langmuir’s model, which implies the ideal
assumptions of preferential monolayer coverage and energetic homogeneity of adsorption
sites, fitted quite well to almost all the experimental series. The Sips model provided, in
contrast, the best fitting results in all the samples. Sips’ model is the result of a combination
of both the Langmuir and Freundlich models, which is deduced to predict the heterogeneity
of the adsorption systems as well as to circumvent the limitations associated with the
increased concentrations of the adsorbate of the Freundlich model [62]. In turn, Sips leads
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to the production of an expression that allows for predicting the saturation capacity at high
concentrations, i.e., the qS value shown in Table 4.

Table 4. Adsorption isotherm fittings after precipitation correction.

Sample

Model Parameters

Freundlich Langmuir Sips

qe=KFCnF
e qe=KFCnF

e qe= qS(KSCe)nS

1+(KSCe)nS

KF nF R2 qL KL R2 qS KS nS R2

C 97.45 0.227 0.975 318.8 0.175 0.938 594.8 8.40 × 10−3 0.371 0.979

SC 0.501 0.888 0.997 424.6 7.77 × 10−4 0.998 220.8 2.11 × 10−3 1.171 0.999

SC-N2 66.81 0.146 0.984 133.6 1.514 0.836 259.9 1.26 × 10−2 0.240 0.992

SC-CO2 139.7 0.137 0.951 271.1 1.148 0.869 334.0 0.448 0.400 0.999

SC-NaOH 221.2 1.201 0.999 N/A N/A

SC-KOH 109.9 0.388 0.939 767.7 8.74 × 10−2 0.989 746.7 9.70 × 10−2 1.107 0.990

qe (mg·g−1) is the Pb2+ adsorbed at equilibrium; Ce (mg·L−1) is the remaining Pb2+ concentration at equilibrium;
KF (mg1−n·g−1·Ln) is the Freundlich constant; nF (dimensionless) is the exponent of Freundlich’s model; qL
(mg·g−1) is the Langmuir adsorption capacity; KL (L·mg−1) is the Langmuir constant; qS (mg·g−1) is the Sips
adsorption capacity; KS (L·mg−1) is the Sips constant; (mg·g−1) (mg−1·L); and, nS (dimensionless) is the exponent
of Sips’ model.

In addition to extensively studied materials in the fields of wastewater treatment [22–25],
several researchers have utilized the char of pyrolysis as a raw material to produce activated
carbon and use it as an adsorbent of lead from aqueous solutions. Table 5 recompiles some
of the published works. The production of activated carbon as an adsorbent of lead from
aqueous solutions has been explored mainly from biomass wastes, with differences in the
properties and lead adsorption capacities of produced activated carbons. The variability
can be attributed mainly to differences in the composition of the raw materials but also
the differences in pyrolysis and activation conditions. Although biomass is the main
precursor to producing activated carbons from waste, the production of these adsorbents
from tire waste or mixtures of biomass and plastics has also been reported in the literature.
Regarding plastic waste, recently, Vieira et al. [63] and Wijesekara et al. [64] published
complete reviews about the preparation methods for carbon-based materials from plastic
waste. However, up to now, there have been very few reports about the conversion of
plastic waste to activated carbon adsorbents for wastewater treatment [65–67]. From the
results given in Table 5, it can be highlighted that the activated carbons produced from
plastic waste are effective adsorbents for lead removal from wastewater since the adsorption
capacities of SC-KOH (ca. 700 mg·g−1) was higher than many feedstocks reported in the
literature. Therefore, plastic wastes could be used as alternative sources for the mass
production of activated carbon.
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Table 5. Some published works about lead adsorption by activated carbons obtained from char of
pyrolysis of different precursors materials.

Type of Precursor Raw Material Activating Agent Lead Adsorption
Capacity (mg·g−1) Refs.

Biomass

Black cumin seeds H2SO4 18.0 [27]

Banana peel — 247.1 [28]

Apricot stone H2SO4 22.9 [29]

Potato peel H3PO4 + KOH 9.3 [30]

Coconut buttons H2SO4 + steam 92.7 [31]

Soybean oil cake K2CO3 476.2 [31]

Olive stone H3PO4 148.8 [32]

Tire waste

KOH 322.5 [33]

Physical (agent not specified) 327.9 [34]

KOH 49.7 [35]

Biomass and
plastic waste

Bamboo, sugarcane,
and neem

PET, PE, and PVC
— NA [10]

Biomass, tire, and
plastic waste

Forestry pine, used tires,
and plastic wastes — 1.87 [9]

Mixture of
non-recyclable plastics

Polypropylene, polystyrene,
and polyethylene KOH 747 This work

4. Conclusions

Plastics can be used as a source to prepare fuels, minimizing the impact of this waste
that might otherwise end up in a landfill. The solid chars generated in the process can
be considered a valuable carbonaceous source if activated for the preparation of porous
materials with potential adsorption properties, such as the removal of metals in water. The
original char displayed a moderate adsorption capacity (over 300 mg·g−1) but displayed
considerable leaching of organic matter, which indicates its usefulness as a plausible
adsorbent. Among the thermal chemical activation methods tested, i.e., thermal treatment
in the presence of CO2, NaOH, and KOH, the use of KOH resulted in the most beneficial
procedure for developing a porous structure with enhanced microporosity and potential
adsorption of lead in water, with a maximum adsorption capacity of ca. 700 mg·g−1.
Langmuir’s model fitted quite well to almost all the experimental series. The Sips model
provided, in contrast, the best fitting results in all the samples. All the activated carbon
materials displayed a remarkable basic character in aqueous solution; as a consequence,
low lead concentrations were highly affected by the precipitation effect, especially in
adsorption tests performed by SC-NaOH, which contributed to the removal of lead mostly
by precipitation due to the rise in pH.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12168032/s1, Table S1. Summary of experimental conditions
used for the preparation of the different activated carbons.
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