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We develop a unified algebraic model which satisfactorily describes the internal structure of pion and
kaon as well as heavy quarkonia (ηc and ηb). For each of these mesons, we compute their generalized parton
distributions (GPDs), built through the overlap representation of their light front wave function, tightly
constrained by the modern and precise knowledge of their quark distribution amplitudes. From this three-
dimensional knowledge of mesons, we deduce parton distribution functions (PDFs) as well as electro-
magnetic form factors and construct the impact parameter space GPDs. The PDFs for mesons formed with
light quarks are then evolved from the hadronic scale of around 0.3 to 5.2 GeV, probed in experiments. We
make explicit comparisons with experimental results available and with earlier theoretical predictions.
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I. INTRODUCTION

The generalized parton distributions (GPDs) have
emerged as a comprehensive tool to describe hadron
structure probed in hard scattering processes [1–8].
GPDs connect hadron electromagnetic form factors
(FFs) [9], measured in elastic processes, to longitudinal
parton distributions (PDFs) which are probed in deep
inelastic scattering [10]. They provide a kaleidoscopic
view of the three-dimensional spatial structure of hadrons,
written as a function of the longitudinal momentum
fraction x, the momentum transfer t, and the skewness
variable ξ (longitudinal momentum transfer); furthermore,
Fourier transform of the GPDs yields the transverse spatial
distribution of partons correlated with x [11], the so-called
impact parameter space GPDs (IPS-GPDs).
Most physical observables related to mesons can be

calculated through a combined knowledge of their Bethe-
Salpeter amplitude (BSA) and the quark propagator
[12,13]. While in principle it can accurately be achieved
through a cumbersome computation of the quark propa-
gator Schwinger-Dyson equation (SDE) and the Bethe-
Salpeter equation (BSE) in close connection with full

QCD [14], calculation of a plethora of experimentally
interesting quantities such as FFs [15–22], distribution
amplitudes (PDAs), PDFs [23–29], and, especially, GPDs
[30–34], remains a highly nontrivial pursuit. However, our
understanding of the intricate interplay between the quark
propagator and the meson BSA permits us to construct
their simple Ansätze sufficiently efficacious to make
reliable predictions and amicable enough to offer algebraic
manipulations. In this article, we carry out this algebraic
model (AM) construction for pseudoscalar mesons in
terms of a form-invariant spectral density. The most
attractive feature of this AM is that the spectral density
is explicitly written in terms of the leading-twist PDA,
whose existing reliable information allows us to circum-
vent the need to construct any ad hoc Ansatz for the
spectral density.
We begin with an evidence-based Ansatz for the quark

propagator and the BSA in terms of a spectral density
function which is form invariant for all the ground-state
pseudoscalar mesons. The Bethe-Salpeter wave function
(BSWF) can then be readily constructed, whose subsequent
projection on to the light front yields the highly sought-after
light front wave function (LFWF). Its integration over the
transverse momentum squared (k2⊥) gives us access to the
valence-quark PDA. We exploit our current detailed and
accurate knowledge of the PDAs of pseudoscalar mesons
[27,35] to determine the parameters of our model. We use
the overlap representation of the LFWF [3] to compute the
GPDs of pion, kaon, ηc, and ηb. From this three-dimensional
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knowledge of these mesons, different limits/projections lead
us to deduce the PDFs, FFs, and the IPS-GPDs, which are
then compared to available experimental extractions of these
observables.
This article has been organized as follows. In Sec. II, we

present our generalized AM for the quark propagator and
the BSA of the pseudoscalar mesons under consideration in
terms of a spectral density function. It allows us to derive the
leading-twist LFWF in Sec. III by merely appealing to the
definition of its Mellin moments. The resulting LFWF
permits establishing a closed and simple algebraic con-
nection with the PDA, so that the need to specify a spectral
density is completely avoided if the PDA is known.
Section IV details the extraction of GPDs through the
overlap representation of the LFWFs as suggested in [3], in
the so-called Dokshitzer—Gribov—Lipatov—Altarelli—
Parisi (DGLAP) kinematic region, and a series of distribu-
tions derived therefrom: PDFs, FFs and IPS-GPDs. In
Sec. V, we particularize our AM to produce a collection
of distributions, using inputs from previous SDE predic-
tions, and compare (when possible) with available theoreti-
cal calculations and experimental data. Finally, in Sec. VI,
we present a summary of our work and the scope of
our model.

II. ALGEBRAIC MODEL

The internal dynamics of a meson can be described, in a
fully quantum-field theoretic formalism, via its BSWF. In
terms of the associated BSA (ΓM), and the quark (antiquark)
propagators [Sq;ðh̄Þ], the BSWF reads

χMðk−; PÞ ¼ SqðkÞΓMðk−; PÞSh̄ðk − PÞ; ð1Þ

where k− ¼ k − P=2 and P2 ¼ −m2
M is the (negative) mass

squared of the meson M. The labels q and h̄ which denote
the valence quark and antiquark flavors are in general
different but might also be the same. Although the propa-
gators and BSA might be obtained from solutions of the
corresponding SDEs and BSEs, useful and relevant insight
can be extracted from sensibly constructed simpler models.
Plain expressions for the quark (antiquark) propagator

and BSAs that capture QCD’s key nonperturbative traits are
given by

Sqðh̄ÞðkÞ ¼ ½−iγ · kþMqðh̄Þ�Δðk2;M2
qðh̄ÞÞ; ð2Þ

nMΓMðk; PÞ ¼ iγ5

Z
1

−1
dw ρMðwÞ½Δ̂ðk2w;Λ2

wÞ�ν; ð3Þ

where Δðs; tÞ ¼ ðsþ tÞ−1, Δ̂ðs; tÞ ¼ tΔðs; tÞ, kw ¼ kþ
ðw=2ÞP. Herein, Mqðh̄Þ is a mass scale akin to a constituent
mass for a given quark flavor and nM is a normalization
constant that will be determined later. The function ρMðwÞ
can be regarded as a spectral density, whose particular form
determines the pointwise behavior of the BSA, therefore

having a crucial impact on the meson observables. The
parameter ν > −1 controls the asymptotic behavior of the
BSA; this is discussed in detail below. Finally, Λ2

w ≡ Λ2ðwÞ
is defined as follows:

Λ2ðwÞ ¼ M2
q −

1

4
ð1 − w2Þm2

M þ 1

2
ð1 − wÞðM2

h̄
−M2

qÞ: ð4Þ

Notice that, unlike kindred models [30–34,36–40] which
have been employed successfully to compute an array of
GPD-related distributions, we have promoted Λ → Λw to
incorporate a w dependence. Keeping in mind the efficacy
of earlier models, we point out some key differences which
yield a simplification of relevant integrals and closed
algebraic expressions relating different distributions:

(i) We retain the constant term from the original models,
setting it to Mq.

(ii) There is a term linear in w which is the only term not
symmetric under w ↔ −w. This asymmetry allows
us to study mesons with different-flavored quarks
and is hence accompanied with the multiplicative
factor of ðMh̄

2 −M2
qÞ. When quark-antiquark are of

the same flavor, this term ceases to contribute by
construction.

(iii) Then, we have a quadratic term in w2 which has
the coefficient proportional to m2

M. We choose the
coefficients of each power of w to ensure that the
condition

jMh̄ −Mqj ≤ mM ≤ Mh̄ þMq ð5Þ

guarantees the positivity of Λ2ðwÞ.
When quark and antiquark have the same flavor, the left

part of the inequality is trivially satisfied. We consider
isospin symmetry, i.e., Mu ¼ Md. In any other case, like
that of a kaon or heavy-light mesons, the ratioMh̄=Mq must
be set with care. Realistic solutions of the quark SDE
provide useful benchmarks [41]. Note thatmM < Mh̄ þMq
is satisfied for Nambu-Goldstone bosons. One can find
sensible values for the constituent masses to uphold this
inequality for the ground-state pseudoscalar mesons.
Combining Eqs. (1)–(3), the BSWF acquires the follow-

ing Nakanishi integral representation (NIR):

nMχMðk−; PÞ ¼ Mq;h̄ðk; PÞ
Z

1

−1
dw ρ̃νMðwÞDν

q;h̄
ðk; PÞ; ð6Þ

where the profile function, ρ̃νMðwÞ, has been defined in
terms of the spectral density as

ρ̃νMðwÞ≡ ρMðwÞΛ2ν
w : ð7Þ

The functionMq;h̄ðk ¼ pþ P;PÞ has the following tensor
structure that also characterizes χMðk; PÞ:
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Mq;h̄ðk; PÞ≡ −γ5½Mqγ · Pþ γ · kðMh̄ −MqÞ
þ σμνkμPν − iðk · pþMqMh̄Þ�: ð8Þ

Due to the trace over Dirac indices [cf. Eq. (13)], the last
two terms containing an even number of γ matrices in the
above Eq. (8) do not contribute to the leading-twist LFWF
and, consequently, the PDA. The function Dν

q;h̄
ðk; PÞ is a

product of quadratic denominators,

Dν
q;h̄
ðk;PÞ≡Δðk2;M2

qÞΔðk2w−1;Λ2
wÞνΔðp2;M2

h̄
Þ: ð9Þ

Feynman parametrization enables us to combine the
denominators in Eq. (9) into a single one. Then, a suitable
change of variables and a subsequent rearrangement in the
order of integration yields the expression

nMχMðk−; PÞ ¼ Mq;h̄ðk; PÞ
Z

1

0

dαFMðα; σνþ2Þ; ð10Þ

FMðα;σνþ2Þ ¼ νðνþ 1Þ
�Z

1−2α

−1
dw

Z
1

2α
w−1þ1

dβ

þ
Z

1

1−2α
dw

Z
1

2αþðw−1Þ
wþ1

dβ

� ð1− βÞν−1ρ̃νMðwÞ
σνþ2

;

ð11Þ

where σ ¼ ðk − αPÞ2 þ Λ2
1−2α, and α, β are Feynman

parameters. Since only ð1 − βÞν−1 depends on β, integration
over dβ can be performed directly, thus yielding

FMðα; σνþ2Þ ¼ 2νðνþ 1Þ
�Z

1−2α

−1
dw

�
α

1 − w

�
ν

þ
Z

1

1−2α
dw

�
1 − α

1þ w

�
ν
�
ρ̃νMðwÞ
σνþ2

: ð12Þ

As we explain in the Appendix, this extra algebraic
integration allows us to completely derive ρ̃νMðwÞ in terms
of the PDA. In the next section, we shall explicitly see that
when employing this model for the BSWF, many quantities
and relations of interest can be obtained in a purely
analytical manner.

III. LIGHT FRONT WAVE FUNCTIONS AND
PARTON DISTRIBUTION AMPLITUDES

For a quark q within a pseudoscalar meson M, the
leading twist (2-particle) light front wave function, ψq

M, can
be obtained via the light front projection of the meson’s
BSA as

ψq
Mðx; k2⊥Þ ¼ tr

Z
dkk

δxnðkMÞγ5γ · nχMðk−; PÞ; ð13Þ

where δxnðkMÞ ¼ δðn · k − xn · PÞ; n is a lightlike four-
vector, such that n2 ¼ 0 and n · P ¼ −mM; as mentioned
before, x corresponds to the light front momentum fraction
carried by the quark. The trace is taken over color and Dirac

indices. The notation
R
dkk

≡ R d2kk
π has been employed and

the 4-momentum integral is defined as usual:

Z
d4k
ð2πÞ4 ¼

�
1

16π3

Z
d2k⊥

��
1

π

Z
d2kk

�
: ð14Þ

The moments of the distribution are

hxmiψq
M
¼

Z
1

0

dx xmψq
Mðx; k2⊥Þ

¼ tr
1

n · P

Z
dkk

�
n · k
n · P

�
m
γ5γ · nχMðk−; PÞ: ð15Þ

From Eqs. (10)–(15), one arrives at

hxmiψq
M
¼

Z
1

0

dααm
�
12

nM

YMðα; σνþ1⊥ Þ
νþ 1

�
;

YMðα; σνþ1⊥ Þ ¼ FMðα; σνþ1⊥ ÞðαMh̄ þ ð1 − αÞMqÞ; ð16Þ

where σ⊥ ¼ k2⊥ þ Λ2
1−2α. Uniqueness of the Mellin

moments [Eqs. (15) and (16)] implies the connection
between the Feynman parameter α and the momentum
fraction x; therefore, one can identify the LFWF as

ψq
Mðx; k2⊥Þ ¼

�
12

nM

YMðx; σνþ1⊥ Þ
νþ 1

�
: ð17Þ

Notice that the above expression resembles the one derived,
for instance, in [30,31,40]. However, the crucial difference
is the w-dependent definition of Λw, Eq. (4). As mentioned
before, its particular form enables additional simplicity and
allows amicable algebraic manipulation as will be evident
shortly.
Integrating out the k⊥ dependence of ψq

Mðx; k⊥Þ yields
the PDA,

fMϕ
q
MðxÞ ¼ 1

16π3

Z
d2k⊥ψq

Mðx; k2⊥Þ; ð18Þ

where fM is the leptonic decay constant of the meson. From
Eqs. (12) and (17), it is seen that the only term in the above
equation that depends on k⊥ is 1=σνþ1⊥ ; then,

1

16π3

Z
d2k⊥

1

σνþ1⊥
¼ 1

8π2

Z
dk⊥

k⊥
ðk2⊥ þ Λ2

1−2αÞνþ1

¼ 1

16π2
1

νΛ2ν
1−2α

: ð19Þ
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Combining Eqs. (17)–(19), we arrive at the following
algebraic relation between ψMðx; k2⊥Þ and ϕMðxÞ:

ψq
Mðx; k2⊥Þ ¼ 16π2fM

νΛ2ν
1−2x

ðk2⊥ þ Λ2
1−2xÞνþ1

ϕq
MðxÞ: ð20Þ

The compact result above is a merit of the AM, we
have put forward. Throughout this manuscript, we shall
employ dimensionless and unit-normalized PDAs,R
1
0 dxϕq

MðxÞ ¼ 1. The resulting PDA and LFWF are
expressed in a quasiparticle basis at an intrinsic scale,
intuitively identified with some hadronic scale, ζH, for
which the valence degrees of freedom fully express the
properties of the hadron under study. Most results herein
are quoted at ζH (unless specified otherwise). However,
for the sake of simplicity, the label ζH shall be omitted. It
is worth reminding that the quark and antiquark PDA are
connected via momentum conservation,

ϕq
Mðx; ζHÞ ¼ ϕh̄

Mð1 − x; ζHÞ; ð21Þ

a constricted and firm connection that prevails even after
evolution [42–44].
Some practical corollaries of the AM and Eq. (20):
(i) Given a particular form of ϕq

MðxÞ, the ψq
Mðx; k2⊥Þ can

be obtained quite straightforwardly.
(ii) As long as, we have reliable access to ϕq

MðxÞ, there is
no actual need to construct the profile function ρ̃νðwÞ
(although it can be properly identified, as we explain
in the Appendix).

(iii) It also works the other way around. A sensible
choice of ρ̃νMðwÞ and model parameters yields
algebraic expressions for both ϕq

MðxÞ and ψq
Mðx; k2⊥Þ.

(iv) In fact, the present AM can be reduced to the toy
model employed in Refs. [37–39] with appropriate
substitutions. It also faithfully reproduces the results
obtained from the more sophisticated Ansatz in
Refs. [30–32].

(v) The degree of factorizability of the LFWF is clearly
exposed through Eqs. (4) and (20).

Regarding the last point, let us consider the chiral limit
(mM ¼ 0, Mq ¼ Mh̄); then, Λ2

1−2x ¼ M2
q and

ψq
Mðx; k2⊥Þ ¼

�
16π2fM

νM2ν
q

ðk2⊥ þM2
qÞνþ1

�
ϕq

MðxÞ: ð22Þ

The bracketed term no longer depends on x; hence, the x and
k⊥ dependence of ψMðx; k2⊥Þ has been completely factor-
ized. Conversely, as captured by Eq. (20), a nonzero meson
mass and quark/antiquark flavor asymmetry, namely m2

M ≠
0 and ðM2

h̄
−M2

qÞ ≠ 0, yield a LFWFwhich correlates x and
k2⊥. So, one should expect an increasingly dominant role of x
and k2⊥ correlations in heavy-quarkonia and heavy-light
systems. Notably, a soft Q2 dependence might also be

introduced in the definition of the PDA [45,46], Eq. (18),
producing the following compact expression:

ϕðx;Q2Þ ¼
�
1 −

Λ2ν
1−2x

½Q2 þ Λ2
1−2x�ν

�
ϕðxÞ

⟶
ν¼1

�
Q2

Q2 þ Λ2
1−2x

�
ϕðxÞ: ð23Þ

Clearly, ϕðx;Q2 → ∞Þ ¼ ϕðxÞ, which is the limit we take
for the sake of the discussion. In the next section, we shall
exploit the virtues of Eq. (20) to compute the pseudoscalar
meson GPDs in the overlap representation.

IV. GENERALIZED PARTON DISTRIBUTIONS

The valence quark GPD can be obtained from the overlap
representation of the LFWF [5], namely,

Hq
Mðx; ξ; tÞ ¼

Z
d2k⊥
16π3

ψq�
M ðx−; ðk−⊥Þ2Þψq

Mðxþ; ðkþ⊥Þ2Þ;

x� ¼ x� ξ

1� ξ
; k�⊥ ¼ k⊥ ∓ Δ⊥

2

1 − x
1� ξ

: ð24Þ

If pðp0Þ denotes the initial (final) meson momentum, then
P ¼ ðpþ p0Þ=2 and −t ¼ Δ2 ¼ ðp − p0Þ2 (the latter
defines the momentum transfer); Δ2⊥ ¼ Δ2ð1 − ξ2Þ−
4ξ2m2

M. In addition, the longitudinal momentum fraction
transfer is ξ ¼ ½−n · Δ�=½2n · P�. Both x and ξ have
support on ½−1; 1�, but the overlap representation is only
valid in the DGLAP region, jxj > ξ. The kinematical
completion (the extension to the ERBL domain), required
to fulfill the polynomiality property [5], can be achieved
through the covariant extension from Refs. [33,34,36,37].
Notwithstanding, the GPD is even in ξ and only nonzero for
the valence quark if x > −ξ (the antiquark GPD is nonzero
if x < ξ); hence, in the following, we shall restrain ourselves
to ξ ≥ 0. Notice again that Eq. (24) implies that the meson is
described as a two-body Fock state. This picture is then
valid at the hadronic scale, in which the fully dressed quark/
antiquark quasiparticles encode all the properties of the
meson.
We now work out the expression for the valence quark

GPD in detail by substituting Eq. (20) in Eq. (24):

Hq
Mðx; ξ; tÞ

¼ ð16π2fMνÞ2ϕq
MðxþÞϕq

Mðx−ÞΛ2ν
1−2xþΛ

2ν
1−2x−

×
Z

d2k⊥
16π3

1

ððk−⊥Þ2 þ Λ2
1−2x−Þνþ1

1

ððkþ⊥Þ2 þ Λ2
1−2xþÞνþ1

:

ð25Þ

As usual, integration on k⊥ can be performed by intro-
ducing Feynman parametrization and a suitable change of
variables, such that the integral in Eq. (25) becomes
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2π

16π3
Γð2νþ2Þ
Γ2ðνþ1Þ

Z
1

0

duuνð1−uÞν
Z

∞

0

dk⊥
k⊥

ðk2⊥þM2ðuÞÞ2νþ2

¼ 1

16π2
Γð2νþ1Þ
Γ2ðνþ1Þ

Z
1

0

du
uνð1−uÞν
½M2ðuÞ�2νþ1

; ð26Þ

where the function M2ðuÞ depends on the model param-
eters, as well as the kinematic variables x, ξ, t. It acquires
the form M2ðuÞ ¼ c2u2 þ c1uþ c0, where

c2 ¼
ð1 − xÞ2
ð1 − ξ2Þ2 t;

c1 ¼ −
ð1 − xÞ2
ð1 − ξ2Þ2 tþ Λ2

1−2xþ − Λ2
1−2x− ;

c0 ¼ Λ2
1−2x− : ð27Þ

Thus, the GPD can be conveniently expressed as

Hq
Mðx; ξ; tÞ ¼ Nϕq

MðxþÞϕq
Mðx−ÞΛ2ν

1−2xþΛ
2ν
1−2x−

×
Γð2νþ 2Þ
Γ2ðνþ 1Þ

Z
1

0

du
uνð1 − uÞν
½M2ðuÞ�2νþ1

: ð28Þ

Notice that in the chiral limit, M2ðuÞ reduces to

M2ðuÞ ¼ −tuð1 − uÞ ð1 − xÞ2
ð1 − ξ2Þ2 þM2

q; ð29Þ

and so the integration on du in Eq. (28) can be carried out
algebraically for specific values of ν > −1. In particular,
ν ¼ 1 recovers the results in [33,34,37–39]. Beyond the
chiral limit, an algebraic expression is found for t ¼ 0:

Hq
Mðx;ξ;0Þ¼Nϕq

MðxþÞϕq
Mðx−Þ

Λ2ν
1−2xþ

Λ2ν
1−2x−

Γð2νþ2Þ
Λ2
1−2x−

× 2F̃1

�
1þν;1þ2ν;2νþ2;1−

Λ2
1−2xþ

Λ2
1−2x−

�
; ð30Þ

where pF̃qðu; v; w; zÞ is the regularized hypergeometric
function. Conversely, taking ξ ¼ 0, an expansion of M2ðuÞ
around −t ≈ 0 yields an algebraic solution for Eq. (28):

Hq
Mðx;0;tÞ ≈t→0

N
½ϕq

MðxÞ�2
Λ2
1−2x

�
1−cð1Þν ð1−xÞ2

�
−t

Λ2
1−2x

�
þ���

�
;

cð1Þν ¼ð1þνÞð1þ2νÞ
2ð3þ2νÞ ; N ¼

�Z
1

0

dx
ϕ2

MðxÞ
Λ2
1−2x

�−1
: ð31Þ

In the next section, we will focus on the forward limit of the
GPD (t ¼ 0, ξ ¼ 0) which defines the valence quark DF.
For the time being, we can make an insightful connection
with light front holographic QCD (LFHQCD) approach,
Refs. [47,48], recalling the following representation for the
zero-skewness valence quark GPD therein:

Hq
Mðx; 0; tÞ ¼ qMðxÞ exp½tf̂qMðxÞ�; ð32Þ

where f̂qM is some profile function to be determined. An
expansion around −t ≈ 0 of this expression, and a sub-
sequent comparison with Eq. (31), enable us to identify

f̂qMðxÞ ¼ cð1Þν ð1 − xÞ2
Λ2
1−2x

: ð33Þ

The parametric representation of the GPD in Eq. (32)
provides a fair approximation of the zero skewness GPD in
Eq. (28) except for intermediate values of momentum
transfer. It is also useful in extracting insights concerning
the IPS-GPDs, as will be addressed below.
We now proceed to discuss the derivation of PDFs, FFs,

and IPS-GPDs, as inferred from the knowledge of the
GPDs in the DGLAP kinematic region.

A. Parton distribution functions

The first term of the Taylor expansion in Eq. (31)
corresponds to the valence quark PDF, namely,

qMðxÞ≡Hq
Mðx; 0; 0Þ ¼ N

½ϕq
MðxÞ�2
Λ2
1−2x

; ð34Þ

where qMðxÞ is unit normalized. Recalling that the distri-
butions have been derived at ζH, the corresponding anti-
quark PDF is simply obtained as

h̄Mðx; ζHÞ ¼ qMð1 − x; ζHÞ: ð35Þ

Furthermore, the factorization properties of the LFWF in the
chiral limit yield the simple relation:

qMðx; ζHÞ ¼
½ϕq

Mðx; ζHÞ�2R
1
0 dx½ϕq

Mðx; ζHÞ�2
; ð36Þ

thus stressing that the degree of factorizability of the AM is
manifest via the quantityΛ2

1−2x. As long as, we havem
2
M ≈ 0

and also ðM2
h̄
−M2

qÞ ≈ 0, a factorized LFWF will produce
sensible results. This is the case of the SDE results from
Refs. [26,27], in which Eq. (36) was employed to compute
the kaon PDF from its PDA. For the purpose of this work,
factorizability will not be assumed and we shall consider the
more general case, Eq. (34). The set of relations described in
this section also shows that if the input PDA behaves like
ϕðx → 1Þ ∼ ð1 − xÞ (as prescribed by QCD [42]), the PDF
will exhibit the large-x behavior qMðx; ζHÞ ∼ ð1 − xÞ2.
Finally, it is worth recalling that neither Eq. (36) nor
Eq. (35) remain valid for ζ > ζH, due to the evolution
equations obeyed by the PDFs [49–52].
All distributions described so far have been obtained from

the LFWF at the hadron scale, ζH; as described before, at
this low-energy scale, the fully dressed quasiparticles

PSEUDOSCALAR MESONS: LIGHT FRONT WAVE FUNCTIONS, … PHYS. REV. D 106, 034003 (2022)

034003-5



(valence quarks) express all hadron properties. This is also
the case of the valence-quark PDF which, computed at ζH,
entails that all the hadron’s momentum is carried by the
fully dressed valence quarks. From the experimental point
of view, the access and interpretation of PDFs and GPDs at
ζH imply certain technical and conceptual complications
[10]; only above certain energies, typically the mass of the
proton, parton distributions can be properly extracted. In
particular, experimental data for the case of the pion are only
available at ζ ¼ ζ5 ≔ 5.2 GeV [53,54] (the same for the
uKðxÞ=uπðxÞ ratio [55]), whereas ζ ¼ ζ2 ≔ 2 GeV is a
typical scale for lattice QCD and phenomenological fits
[56–58]. To produce a consistent picture when evolving the
hadronic scale PDF, we shall follow the all-orders scheme
introduced in Refs. [24–27,59] for pion and kaon PDFs,
extended to their GPDs in Refs. [30,31], and employed
recently in the calculation of the proton PDFs as well [60].
This scheme is based upon the assumption that an effective
charge α̂ allows all beyond leading-order effects to be
absorbed within it, thus arriving at a leading-order-like
DGLAP evolution equation. Notably, if the evolution is
performed via the computation of several Mellin moments,
it is not necessary to specify the pointwise behavior of
the effective charge [31] (assuming its existence would be
sufficient). To evolve the distributions directly, the exercise
we carry out in this article we take α̂ from Ref. [27], which
implies setting ζH ¼ 0.33ð1� 0.1Þ GeV. In Sec. V, we
present numerical results for evolved pion and kaon PDFs
for specific model inputs described therein.

B. Electromagnetic form factor

The contribution of the q quark to the meson’s elastic
electromagnetic form factor (EFF) is obtained from the
zeroth moment of the GPD:

Fq
MðtÞ ¼

Z
1

−1
dxHq

Mðx; ξ; tÞ: ð37Þ

An analogous expression holds for the antiquark h̄, such
that the complete meson EFF reads

FMðtÞ ¼ eqF
q
MðtÞ þ eh̄F

h̄
MðtÞ; ð38Þ

where eq;h̄ are the valence-constituent quarks electric
charges in units of the positron charge. Due to polyno-
miality properties of the GPD, the EFF does not depend on
ξ; therefore, one can simply take ξ → 0:

Fq
MðtÞ ¼

Z
1

0

dxHq
Mðx; 0; tÞ: ð39Þ

A Taylor expansion around t ≈ 0 yields

Fq
MðtÞ ≈t→0

1 −
ðrqMÞ2
6

ð−tÞ þ � � � ; ð40Þ

ðrqMÞ2 ¼ −6
dFq

MðtÞ
dt

����
t¼0

; ð41Þ

where rqM denotes the contribution of the quark q to the
meson charge radius, rM. Comparing the above equations
with the integration of Eq. (31) on x, one obtains a
semianalytical expression for rqM:

ðrqMÞ2 ¼ 6

Z
1

0

dx f̂qMðxÞqMðxÞ; ð42Þ

showing the charge radius is tightly connected with the
hadronic scale PDF (and thus with the corresponding
PDA). The antiquark result is obtained analogously. This
contribution to rM reads

ðrh̄MÞ2 ¼ 6

Z
1

0

dx f̂h̄MðxÞqMð1 − xÞ; ð43Þ

where f̂h̄MðxÞ is defined in analogy to its quark counterpart
in Eq. (33),

f̂h̄MðxÞ ¼
cð1Þν ð1 − xÞ2

Λ2
2x−1

: ð44Þ

Summing up the quark and antiquark contributions, the
meson charge radius reads

r2M ¼ eqðrqMÞ2 þ eh̄ðrh̄MÞ2: ð45Þ

Clearly, in the isospin symmetric limit, eq þ eh̄ ¼ 1 yields
FMðtÞ ¼ Fq

MðtÞ and so rM ¼ rqM. For the neutral pseudo-
scalars, in the isospin symmetric limit, eq þ eh̄ ¼ 0 implies
FM would be strictly zero, producing rM ¼ 0; thereby, we
focus only on the individual flavor contribution (FM → Fq

M)
in such cases (e.g., heavy quarkonia). Finally, note that if
the charge radius is known, then Eqs. (42)–(45) can be
employed to fix the model parameters.

C. Impact parameter space GPD

The IPS-GPD can be obtained straightforwardly by
carrying out the Fourier transform of the zero-skewness
GPD, Hq

Mðx; 0; tÞ:

uMðx; b2⊥Þ ¼
Z

∞

0

dΔ
2π

ΔJ0ðb⊥ΔÞHu
Mðx; 0; tÞ; ð46Þ

where J0 is the cylindrical Bessel function. This distribu-
tion is interpreted as the probability density of finding a
parton with momentum fraction x at a transverse distance
b⊥ from the center of transverse momentum of the meson
under study. It is extracted in its totality by the GPD’s
properties in the DGLAP region. Exploiting the represen-
tation of the GPD from Eq. (32), we can obtain an analytic
expression:
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uqMðx; b2⊥Þ ¼
qMðxÞ

4πf̂qMðxÞ
exp

�
−

b2⊥
4f̂qMðxÞ

�
: ð47Þ

Containing an explicit dependence on the PDF, Eq. (47)
reveals a clear inter-relation between the momentum and
spatial distributions. In fact, the PDF is recovered from

qMðxÞ ¼ 2π

Z
∞

0

db⊥b⊥qðx; b⊥Þ. ð48Þ

Furthermore, considering the mean-squared transverse
extent (MSTE),

hb2⊥ðxÞiqM ¼ 1

rM

Z
∞

0

db⊥ bq
Mðx; b⊥Þb2⊥; ð49Þ

bq
Mðx; b⊥Þ ≔ 2πrMb⊥uqMðx; b⊥Þ: ð50Þ

The IPS-GPD defined in Eq. (47) yields the plain relation:

hb2⊥ðxÞiqM ¼ 4

Z
1

0

dx f̂qMðxÞqMðxÞ: ð51Þ

Integrating over x, and comparing with Eq. (45), one is left
with a compact expression for the expectation value:

hb2⊥iqM ¼ 2

3
r2M

� ðrqMÞ2
eqðrqMÞ2 þ eh̄ðrh̄MÞ2

�
; ð52Þ

i.e., the expectation value of the MSTE of the valence quark
is directly correlated with the meson charge radius. In the
isospin symmetric limit, the following expected result
[30,31] is recovered:

hb2⊥iqM ¼ 2

3
r2M: ð53Þ

Interestingly, in the chiral limit, all the algebraic expres-
sions from this section, valid only at ζH, become plainly
analogous to those from the factorized Gaussian model
in [30,31].
In the following section, we shall provide a collection of

results for the distributions discussed so far, using SDE
predictions as model inputs.

V. COMPUTED DISTRIBUTIONS

Now that, we have shown a variety of algebraic results for
different distributions of partons (and some other quan-
tities), we will particularize the inputs of the AM. The
starting point is Eq. (20), which directly relates the leading-
twist LFWF with the PDA such that, with the prior
knowledge of ϕq

MðxÞ, the LFWF is derived straightfor-
wardly; the produced physical picture would be valid at
ζH. Given the robustness of the SDE formalism to compute
PDAs, we shall employ predictions obtained within this

framework as model inputs [27,35]. The specific set of
PDAs, we consider is the following (x̄ ¼ 1 − x):

ϕu
πðxÞ ¼ 20.226xx̄½1 − 2.509

ffiffiffiffiffi
xx̄

p þ 2.025xx̄�;
ϕu
KðxÞ ¼ 18.04xx̄½1þ 5x0.032x̄0.024 − 5.97x0.064x̄0.048�;

ϕc
ηcðxÞ ¼ 9.222xx̄ exp½−2.89ð1 − 4xx̄Þ�;

ϕb
ηbðxÞ ¼ 12.264xx̄ exp½−6.25ð1 − 4xx̄Þ�: ð54Þ

The expressions above properly capture our contemporary
knowledge of such distributions, namely, the soft endpoint
behavior and the dilation/compression with respect to the
asymptotic distribution [42]:

ϕasyðxÞ ¼ 6xð1 − xÞ: ð55Þ

As can be seen in Fig. 1, pion and kaon PDAs are dilated
with respect to ϕasyðxÞ, while those containing heavy quarks
are narrower. As noted for the kaon, the asymmetry between
the s- and u-quark masses produces a skewed distribution,
while the rest of the PDAs are symmetrical.

FIG. 1. Upper panel: pion and kaon PDAs at ζH . Lower panel:
the corresponding ones for ηc and ηb. The distributions were
obtained within the SDE formalism in Refs. [27,35], and para-
metrized according to Eqs. (54). For comparison, the asymptotic
distribution, ϕasyðxÞ ¼ 6xð1 − xÞ, is also shown.
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The remaining ingredients are the parameter ν and the
constituent masses Mq. Regarding the former, ν ¼ 1 is a
natural choice since it yields the correct asymptotic
behavior of the BSWF [12]. Concerning the values of
the constituent masses, we shall employ available exper-
imental [61], SDE [15,20–22,62], and lattice QCD [63,64]
results on the charge radii as benchmarks, and determine
Mq via Eq. (45). Table I collects the constituent quark
masses that define our AM and the corresponding
charge radii.
With the AM fully determined, the produced LFWFs are

shown in Fig. 2. It is clear that the heavier mesons exhibit a
much slower damping as k2⊥ increases. Furthermore, just as
the PDAs, the LFWFs as a function of x are found to be
more compressed in this case.
The valence-quark GPDs are then obtained appealing to

the overlap representation of the LFWF [Eqs. (24), (28)].

Pion and kaon results are shown in the bottom panel of
Fig. 3, while those of ηc and ηb can be found in Fig. 4. The
GPDs for the heavier mesons naturally have a narrower
profile along the x axis and are harder along the −t-axis.
Moreover, the upper panel of Fig. 3 also displays a
comparison between the GPDs obtained directly from
Eq. (28) and the approximate representation of (32). The
derived valence-quark PDFs are found in Fig. 5. As one
would expect from Eq. (34), the characteristic features
exhibited by the PDAs, of dilation and narrowness, are
filtered into PDFs. To emphasize it, we notice that the plots
in the above-mentioned figure display the scale-free parton-
like profile:

qsfðxÞ ¼ 30x2ð1 − xÞ2: ð56Þ

Given our preferred valueMs ≈ 1.8Mu, the s-in-K momen-
tum fraction at the hadronic scale is hx; ζHisK ¼ 0.55, about
4% larger than typical values [26,27]. The pion and kaon
PDFs are then evolved from the hadronic scale,
ζH ¼ 0.33ð1� 0.1Þ GeV, to the experimentally accessible
scale of ζ5 ≔ 5.2 GeV. The evolution procedure is
detailed, for instance, in Refs. [31,59]. Figure 6 displays
the outcome. In the top panel of this figure, the valence
quark as well as gluon and sea quark pion PDFs are shown.
At the evolved scale, we find typical values of momentum
fraction distribution in pion [26,27]: hx; ζHivalπ ¼ 0.41ð4Þ,
hx; ζHiseaπ ¼ 0.14ð2Þ, hx; ζHiglueπ ¼ 0.45ð3Þ. The bottom
panel of Fig. 6 compares the valence quark PDFs in pion

TABLE I. Model inputs: meson and quark masses (in GeV).Mq
values are fixed via Eq. (45) using the quoted charge radii. In the
case of ηc and ηb, we quote rqM ¼ rh̄M rather than rM, which is
strictly zero. The list of distribution amplitudes entering the
relevant equations is found in Eq. (54).

Meson mM rM (in fm) Quark Mq

πþ 0.14 0.659 [15,61] u 0.317
Kþ 0.49 0.600 [20–22] s 0.574
ηc 2.98 0.255 [63,64] c 1.65
ηb 9.39 0.088 [62] b 5.09

FIG. 2. LFWFs of the pion, kaon, ηc, and ηb obtained from Eq. (20) and the inputs described in Sec. V. Herein, we have depicted
ψMðx; k2⊥Þ → ψMðx; k2⊥Þ=ð16π2fMÞ. Mass units in GeV.
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and kaon. Then again, our choice ofMs produces a slightly
larger momentum fraction for the s valence quark at such
scale, hx; ζ5isK ¼ 0.25, and a smaller one for the u quark,
hx; ζ5iuK ¼ 0.17. Concerning the large-x exponents of the
valence quark distributions, we find that

uπ;Kðx → 1; ζ5Þ ∼ ð1 − xÞβeff ; βeff ≈ 2.8; ð57Þ

where βeff must be interpreted as an effective exponent
rather than that obtained from the known evolution
equations of βðζHÞ [27,65]. Moreover, the x domain of

applicability and interpretation of βðζHÞ is not without its
ambiguities and requires special care [66]. The electro-
magnetic FFs are displayed in Figs. 7 and 8. As can be
noted therein, pion and kaon FFs agree with the available
experimental data [67–69] and previous SDE calculations
[15,70]. The ηc FF is compared with lattice QCD [63,64]
and SDE results in the CI model [71]. Similarly, the ηb
result is contrasted with CI model results and with previous
determinations with an AM for heavy quarkonia [72]. Both
ηc and ηb form factors show a satisfactory compatibility
with earlier reliable predictions.

FIG. 3. Zero-skewness valence quark GPDs for pion (left) and kaon (right), employing the model inputs described in Sec. V. Upper
panel: a comparison between the GPDs obtained directly from Eq. (28) (solid lines) and those produced by the algebraic representation
in Eq. (32) (dashed lines). Lower panel: equivalent three-dimensional picture, resulting from Eq. (28). Mass units in GeV.

FIG. 4. Valence quark GPDs obtained from Eq. (28) for ξ ¼ 0 employing the model inputs described in Sec. V. Left panel: ηc GPD.
Right panel: ηb GPD. Mass units in GeV.
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The IPS-GPDs are derived from the approximate
LFHQCD-inspired parametrization of the GPD, introduced
in [48] and quoted in Eq. (32). For illustrative purposes, we
have considered the convenient representation of Eq. (50),
which produces the pion and kaon results shown in Fig. 9.
The quark region is identified with x > 0, while the
antiquark lies in the x < 0 domain. The symmetry in the
pion case is a natural consequence of the isospin symmetry,
whereas the contraction on the s-in-K distribution is a result
ofMs being larger thanMu. In fact, as the constituent quark
mass becomes larger, it is expected that the quark plays an
increasingly major role in determining the center of trans-
verse momentum; furthermore, the distributions become
narrower and the maximums become larger. Given the
compact representation of the IPS-GPDs, the values
ðxmax; bmax⊥ ÞqM where bq

Mðx; b⊥Þ acquires its global maxi-
mum, can be readily identified:

bmax⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f̂qMðxmaxÞ

q
; ð58Þ

and xmax is the real-valued solution of

qMðxÞf0ðxÞ − 2q0MðxÞfðxÞ ¼ 0: ð59Þ

It is thus clear that a constant PDF yields the point particle
limit ðjxmaxj; bmax⊥ ÞqM → ð1; 0Þ. The location of the maxi-
mum and its value are reported in Table II for different
mesons. Finally, according to Eq. (52) and our model
inputs, we report the expectation values of the MSTE for
the kaon:

hb2⊥iuM ¼ 0.76r2K; hb2⊥isM ¼ 0.47r2K; ð60Þ

while for the heavy quarkonia and pion in isospin sym-
metric case, we can infer the result from Eq. (53).

FIG. 5. Valence quark PDFs at ζH . Upper panel: the solid (blue)
line corresponds to pion and the dotted (cyan) line corresponds to
the light-quark PDF in kaon. Lower panel: the dotted-dashed
(red) line corresponds to ηc, the dotted (purple) line corresponds
to ηb; again, the solid (blue) line corresponds to pion. For all these
panels, the dashed (black) line corresponds to the partonlike
profile qsfðxÞ ¼ 30x2ð1 − xÞ2.

FIG. 6. Evolved PDFs at ζ5 ≔ 5.2 GeV. Upper panel: the
plots correspond to the evolved pion PDF. The solid (blue)
line corresponds to the u valence quark, the dashed (cyan) line
corresponds to the gluon contribution, and the dotted-dashed
(red) line corresponds to sea contribution. The data from [54] are
rescaled according to the Aicher-Schafer-Vogelsang analysis in
[53]. Lower panel: the dotted (cyan) line corresponds to u-in-K
valence-quark PDF, the dotted-dashed (blue) line is analogous
for the s̄ quark, and the solid (purple) line corresponds to the u
valence quark in the pion. The error bands account for the
variation of the initial scale, ζH ¼ 0.33ð1� 0.1Þ GeV.
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For the pion and kaon, one can visually verify these
tabulated results in Fig. 9. This completes the presentation
of computed results.

VI. SUMMARY AND SCOPE

In this article, we put forward a fairly general AM for the
pseudoscalar meson BSWF, which preserves its primary

attractive feature of guaranteeing most calculations con-
tinue to be analytic. For systematic and visual clarity, we
italicize its main features and our key results as follows:

(i) The key functions of the model are the spectral
density ρMðwÞ and ΛðwÞ, which play the defining
role for the dominant BSA [Eq. (3)], of the pseu-
doscalar mesons we study.

(ii) The function ΛðwÞ, defined through Eq. (4), is
quadratic in w which is as high as we can go in
the power of this polynomial while still preserving
the analytic nature of the calculations involved. In all
previous models, ΛðwÞ was merely taken as a
constant mass scale Λ.

(iii) Allowing Λ to become a function of the variable w
allows us to connect LFWF with PDA algebraically
[Eq. (20)], without having the need to rather arbi-
trarily concoct the spectral density.

FIG. 7. Pion and kaon electromagnetic FFs. Left panel: the (purple) band represents our pion results with the model parameters
described in Sec. V. The bandwidth accounts for a 5% variation of the benchmark charge radius in Table I. Dashed (black) line is the
SDE result for the pion [15]. Right panel: analogous results for the kaon FF. Diamonds, rectangles, and circles represent the
experimental data from Refs. [67–69]. Lower (gray) band is the SDE result for the kaon [70].

FIG. 8. ηc and ηb electromagnetic FFs. Left panel: the purple band represents our ηc results with the model parameters described in
Sec. V. The bandwidth accounts for a 5% variation of the benchmark charge radius in Table I. Right panel: analogous results for ηb. For
comparison, we have included lattice QCD results from Refs. [63,64], as well as SDE-driven predictions in the contact interaction (CI)
model and a former algebraic model for heavy quarkonia [71,72].

TABLE II. Global maximum Iq
M ≔ max½bq

Mðx; b⊥Þ� and its
location ðxmax; bmax⊥ =rMÞ.
Meson ðxmax; bmax⊥ =rMÞqM Iq

M ðxmax; bmax⊥ =rMÞh̄M I h̄
M

π (0.90, 0.10) 3.19 ð−0.90; 0.10Þ 3.19
K (0.76, 0.18) 2.03 ð−0.88; 0.14Þ 4.79
ηc (0.53, 0.56) 3.99 ð−0.53; 0.56Þ 3.99
ηb (0.52, 0.60) 4.90 ð−0.52; 0.60Þ 4.90
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(iv) Despite having emphasized the previous point, the
fact remains that the spectral density can be extracted
unequivocally through the knowledge of the PDA.

(v) Given the most up to date pseudo-scalar meson
PDAs, we merely need to fix ν and Mq;h̄. As ν ¼ 1

is a natural choice, we can safely say that the quark
mass is the only free parameter to fix the model.

(vi) Crucially, the measure of factorizability of x and k⊥
in the LFWF is evident through Eqs. (4) and (20). An
immediate consequence is the hadronic scale relation
between the PDA and the PDF [Eq. (34)]. This
factorization is completely reinstated in the chiral
limit, thus reproducing known results [33,34,37–39]
as a particular case.

(vii) With the exception of the leading-twist PDAs (which
are external inputs) and the charge radii (used as
benchmarks to set the values of the constituent
masses, Mq), the rest of the distributions and other
quantities derived herein are predictions.

Notably, our ingenuous model faithfully reproduces
previously known results concerning pions [30–32]. Our
findings for the kaon are slightly different from those
reported therein but can readily and correctly be attributed
to the larger strange quark mass favored by this model.
However, the description of pion and kaon is compatible
with our experimental understanding of these mesons. It is
worth mentioning that our pion valence-quark PDF is also
compatible with the results from Ref. [73], in which the
authors also obtain a NIR for the BSWF, but through
the resolution of the corresponding BSE (modeling some of
the ingredients that go into the latter). Novel results
employing sophisticated mathematical techniques also val-
idate the NIR approach [74]. The distributions reported for

ηc and ηb, and other related quantities, are a completely
novel feature of our study. In general, when a comparison
is possible, our results also show agreement with other
theoretical treatments such as SDEs, lattice QCD, as well as
with experimental results. The structure of π0, ηc and ηb is
currently being investigated within this model, via two
photon transition form factors. In the future, we expect to
carry out kindred studies of mesons with heavy-light quarks
as well as adapt the procedure to study the entangled η − η0
system and eventually baryons.
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APPENDIX: ρðyÞ DIFFERENTIAL EQUATION

From Eqs. (12), (16)–(18), it is possible to derive the
relation between the PDA and the spectral density ρM:

φðyÞ¼ 1

2νFN

�Z
y

−1
dw

�
1−y
1−w

�
ν

þ
Z

1

y
dw

�
1þy
1þw

�
ν
�
ρ̃νMðwÞ

×
½ð1þyÞMqþð1−yÞMh̄�

Λ2ν
y

; ðA1Þ

where the variable y ¼ 1 – 2x has been introduced and we
have used the definitions φðyÞ≡ ϕq

Mð12 ð1 − yÞÞ and
FN ¼ 4

3
π2fMnM. The above integral equation can be

inverted to a differential equation by differentiating three

FIG. 9. Impact parameter space GPDs. The quark lies in the x > 0 domain, while the antiquark in x < 0. Left panel: pion results using
the inputs from Sec. V. Right panel: analogous results for the kaon. The conspicuous asymmetry in this case is due to the larger s-quark
mass: the s quark plays a larger role in determining the center of transverse momentum.
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times, with respect to y, and summing up the resulting
equations. This procedure yields an expression for ρM in
terms of derivatives of φ:

ηNρMðyÞ¼λð2Þν ðyÞφ00ðyÞþλð1Þν ðyÞφ0ðyÞþλð0Þν ðyÞφðyÞ; ðA2Þ
where ηN is a normalization factor such thatZ

1

−1
ρMðyÞdy ¼ 1;

while the other quantities are

λð2Þν ðyÞ ¼ −
1 − y2

χþ
; ðA3Þ

λð1Þν ðyÞ ¼ 2
νy
χþ

− 2
χ−
χ2þ

þ νχ−
Λ2
y
; ðA4Þ

λð0Þν ðyÞ ¼ f2νχ2þΛ2
yðχ2þ − 2ð1þ ð1 − νÞy2 þ νÞΛ2

yÞ
þ 4yð1 − νÞð2Λ2

y − νχ2þÞΛ2
yχþχ−

− ðνð1 − νÞχ4þ þ 2νχ2þΛ2
y − 8Λ4

yÞχ2−g=Θy; ðA5Þ
with the definitions χ� ¼ ð1 − yÞMh̄ � ð1þ yÞMq and

Θy ¼ −4ð1 − y2Þχ3þΛ4
y. By setting ν ¼ 1, λð1;0Þν are

reduced to

λð1Þ1 ðyÞ ¼ 2
y
χþ

− 2
χ−
χ2þ

þ χ−
Λ2
y
; ðA6Þ

λð0Þ1 ðyÞ ¼ −
ðχ2þ − 4Λ2

yÞðχ2þ − χ2−Þ
2ð1 − y2Þχ3þΛ2

y
: ðA7Þ

Furthermore, in the chiral limit,

λð2Þ1 ¼ −
ð1 − y2Þ
2Mq

; λð1Þ1 ¼ λð0Þ1 ¼ 0; ðA8Þ

ensuring that our model recovers known result [15]:

ϕq
MðxÞ ¼ ϕasyðxÞ ¼ 6xð1 − xÞ

⇔ ρMðwÞ ¼ ρasyðwÞ ≔
3

4
ð1 − w2Þ: ðA9Þ

Beyond the chiral limit, but still keeping the most natural
choice ν ¼ 1, the corresponding pion and kaon spectral
densities are plotted in Fig. 10. The input PDAs, para-
metrized according to Eqs. (54), are displayed in the
upper panel of Fig. 1.
Though for the purposes of this work (namely computing

LFWFs, GPDs, and distributions derived therefrom) the
determination of ρM is not required at all, it is worth
stressing that the AM we have introduced enables a
straightforward derivation of the spectral density from
the prior knowledge of the PDA, thus avoiding the need
of assuming a particular ad hoc representation for ρM. This
shall be useful for future explorations that require the
explicit knowledge of the BSWF, and hence of the spectral
density.
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