
Renewable Energy 199 (2022) 87–102

Available online 1 September 2022
0960-1481/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data-driven mapping of hourly wind speed and its potential energy 
resources: A sensitivity analysis 

Antonio-Juan Collados-Lara a,*, Leticia Baena-Ruiz b, David Pulido-Velazquez b, Eulogio Pardo- 
Igúzquiza c 

a Department of Civil Engineering, University of Granada, Water Institute, Ramón y Cajal, 4, 18003, Granada, Spain 
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A B S T R A C T   

Renewable energies play a significant role to mitigate the impacts of climate change. In countries like Spain, 
there is a significant potential of wind energy production which might be a key resource. In this research, we 
obtain wind power at 80 m height and wind turbine energy (assuming a specific turbine). To achieve this 
objective we produce an optimal mapping of the hourly “instantaneous surface wind speed” (height 10 m), based 
on the available data. An extensive region (Granada Province, south Spain) is studied with a spatial resolution of 
300 m, during a long period (1996–2016). It allows us to assess the intra- and inter-daily variability of wind 
energy resources. Several interpolation approaches are tested and a cross validation experiment is applied to 
identify the optimal approach. The obtained maps were compared with the results obtained in the stations with 
two common frequency distributions (Rayleigh and Weibull). This is the first time that this sensitivity integrated 
analysis is performed over an extensive region (12600 km2) for a long time period (20 years) at fine spatio-
temporal resolution (300 m, hourly scale). The results can be very valuable for a preliminary analysis of potential 
optimal location of wind energies facilities.   

1. Introduction 

The assessment of wind speed fields and wind speed frequency dis-
tribution in specific locations can be very useful for the analyses of 
different practical problems: design of engineering structure (eg. 
bridges; [1], data-driven wildfire [2], energy productions [3]. In this 
research we focused on the analyses of their influence on the potential 
wind energy production. It is a type of renewable energy, which is 
gaining significance as a strategic resource to mitigate greenhouse gases 
emissions and the impacts of climate change. In 2019 Europe had 205 
GW of wind energy capacity, which is the 15% of the electricity that the 
EU-28 consumed in 2019 [4]. Although Germany and Spain have the 
largest cumulative installed wind energy capacity in Europe, there are 
still regions in those two countries where, even being the wind condi-
tions optimal, there are not wind energy facilities or there are a reduced 
number of them [5]. 

At a global scale, long-term wind speed information is included in 
two widely used data sources, The Climate Forecast System Reanalysis 

(CFSR) and the European Centre for Medium-Range Weather Forecasts 
(ECMWF). The ERA5 is the updated fifth generation of the ECMWF at-
mospheric reanalysis of the global climate. It replaces the ERA-Interim 
(ERA-I). ERA5 and ERA-I both have global coverage, however ERA5 
provides several advantages over ERA-I. There is a horizontal spatial 
resolution of 80 km for ERA-I and 31 km for ERA5 and ERA5 provides 
hourly analysis, while ERA-I provides 6-hourly analysis. ERA5 provides 
a global product of the history of the atmosphere for the historical period 
1979–2020 obtained by combining a forecast model and data assimi-
lation systems to reanalyse past observations. The product has a spatial 
resolution defined by a mesh with around 31 km of grid side. Another 
product with higher resolution (around 9 km of grid side) is the ERA5- 
Land, whose data is a replay of the land component of the ERA5 
climate reanalysis with a finer spatial resolution. The analyses of the 
ERA5-Land, product showed a significant bias in meteorological vari-
ables in some regions [6,7]. The CFSR, produced by the National Centers 
for Environmental Prediction (NCEP), was estimated, designed and 
executed as a global coupled atmosphere-ocean-land surface-sea ice 
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system to estimate the state of these coupled domains and generates 
hourly data with a 0.5◦ horizontal resolution (approximately 56 km) 
over the period 1979 to 2011 [8]. The CFSR has also been extended as an 
operational, real time product from 2011 to the present. In the frame-
work of CMIP (https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmi 
p5) and CORDEX (https://cordex.org/) projects, multiples global 
(with resolution around 200 × 200 km) and regional climatic models 
(with resolutions between 10 and 50 km) has been employed to perform 
future predictions and to approximate historical values through rean-
alyses experiments. Nevertheless, in the literature we find examples 
where significant bias between the statistics of these climatic data and 
the local observation is pointed [9,10]. 

We also find wind speed products with a higher spatial resolution as 
the Global Wind Atlas (GWA). The version GWA 3.0 is a free, web-based 
application developed, owned and operated by the Technical University 
of Denmark (DTU). It combines ERA5 dataset from the for the simulation 
period 2008–2017 with a Weather Research and Forecasting (WRF) 
mesoscale model using a grid spacing of 3 km, which is used as input in a 
microscale modeling system over the globe using the WAsP calculation 
of local wind climates for every 250 m at five heights (10 m; 50 m; 100 
m; 150 m and; 200 m). The high-resolution details of the surface 
elevation and surface roughness are found to improve the long-term 
means when compared to observations but a higher resolution does 
not automatically mean higher quality [11].In countries like Spain, 
where there is still a significant potential of wind energy production, it 
might be a key resource if it is used in an optimal way. It requires a 
rational planning of the wind turbines location (large scale, medium or 
small scale turbines) based on an optimal mapping of the potential en-
ergy resources. 

These global products have a coarse spatial resolution (in the case of 
CFSR and ERA-Interim) and do not represent the temporal (intra- and 
inter-daily) resolution (in the case of WaSP tool) which are needed for 
local planning. To this end, long time meteorological measurements at 
different locations are needed to obtain a distributed map in a large area, 
although field measurements sometimes has drawbacks related to the 
lack of data in certain periods or the scarce of meteorological stations in 
large areas. Then, the wind speed can be also characterized by proba-
bility density functions [12] in the stations. The energy production of a 
turbine can be estimated by integrating the wind speed frequency dis-
tribution within the turbine power curve [13], so the selection of the 
probability density function is an important factor that influences the 

potential wind energy [14,15]. Over decades, several studies have been 
conducted to analyze the most suitable probability density functions 
[16–19] being still a challenging task [20,21]. Although many distri-
bution functions (Gaussian, Gamma, Log Normal, Gumbel) has been 
proved to fit well the wind speed distribution at different sites, Weibull 
and Rayleigh distributions are the most widely used [15,16,22]. How-
ever, many studies reveal that sometimes the two-parameter Weibull 
probability function is not quite accurate to fit the wind speed when it 
takes low values [19,23,24]. 

Probability functions are useful to assessments in the wind stations 
but an adequate characterization of the wind requires distributed fields. 
Geostatistical approaches are useful to generate fields of spatially 
correlated variables. They use variogram functions to consider the 
spatial correlation of the experimental data. Some geostatistical ap-
proaches allow to consider extra information through means of a sec-
ondary variable well-sampled and correlated with the target variable. 
These multivariate kriging techniques (e.g. regression kriging or kriging 
with external drift) are useful in the case of data scarcity [25]. Normally, 
elevation is the most commonly used secondary data to estimate climatic 
variables. Elevation can also be used to correct wind estimates [26]. 
Interpolation methods have been previously applied for the assessment 
of hydrological [eg. snow cover area [27,28] and climatic variables, 
mainly precipitation and temperature fields [29,30], but also wind 
speed mapping in some European regions. For example, in Flanders [31] 
the mean wind speed values were obtained but as the conclusions of this 
study pointed out, it is not sufficient for accurate wind energy applica-
tions. They also pointed the necessity of including additional informa-
tion, such as seasonal maps and statistics on diurnal variability, to 
improve the energy map applications for further applications. In Sicily 
[32], also estimated wind speed using time series that cover a period 
smaller than 3 years. They pointed out that the size of the available time 
series is very important to estimate the periodical variability of the wind. 
The meteorologists generally state that it takes 30 years of data to 
determine long-term values of weather or climate and that it takes at 
least 5 years to arrive at a reliable average annual wind speed at a given 
location. 

The aim of this research is to provide an estimation of the instanta-
neous hourly wind speed and wind potential energy in the province of 
Granada (south of Spain), which has a wide topographic and climatic 
variability. As a novelty in this research we analyze the sensitivity of the 
potential energy production to the interpolation methods [ordinary 

Fig. 1. Flow chart of the proposed methodology.  
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kriging (OK), regression (R), regression kriging (RK), and kriging with 
external drift (KED)], the variable interpolated (different transformation 
functions of the wind speed: U10, U80, and logarithm of U10). These 
geostatistical approaches to obtain wind fields are also compared to a 
more simple interpolation method (Thiessen polygons (TP)). We also 
analyze the sensitivity to the wind speed frequency distribution (Weibull 
and Rayleigh) to obtain estimations in the data points. This analysis 
allowed us to obtain potential wind power at 80 m height for an 
extensive region (the entire province of Granada, 12600 km2) at fine 
temporal (hourly) and spatial (300 m) resolutions for a long time period 
(20 years). We also used a large turbine (80 m height) to calculate the 
potential energy production of the turbine. The analysis requires an 
extensive computational effort due to the fine temporal and spatial 
resolutions and the long period covered. From a practical point of view 
the results can be very valuable for a preliminary analysis of optimal 
wind energies facilities location in Granada Province. This work is also 
useful from the methodological point of view. It includes a general 
method that can be applied to any case study. 

2. Method 

A flowchart of the proposed method has been represented in Fig. 1. 
Our methodology has three main parts: the generation of optimal wind 

speed and energy production fields for the entire case study (section 
2.1), the calculation of wind speed and energy production in the stations 
(section 2.2) and the comparison of both results for the stations (section 
2.3). 

2.1. Optimal interpolation of hourly wind speed. Sensitivity to the applied 
geostatistical approach and the transformation of the target variable 

Wind speed is affected both by local scale phenomena and large scale 
weather movements. Geostatistical approaches are specially indicated to 
capture the spatial variability of data through the variogram analysis 
[33]. Geostatistical estimations will represent the variability of wind 
speed if the database represents the variability of wind in a region. In 
this study we elaborated a wind speed database as complete as possible 
(we used data coming from five public and private agencies and/or 
research organizations) for the province of Granada (see section 3). We 
also included elevation as secondary variable (after analyzing several 
variables as roughness or distance to the coastline) in the approach to 
take into account topography which is especially relevant in the case 
study (it varies from 0 to 3479 m.a.s.l) (see section 3). 

We tested three different transformations of the wind speed data to 
obtain the fields. We estimated wind speed at height of 10 m (U10), at 
80 m (U80) and the logarithm of U10. The logarithm of the target var-
iable is commonly tested in geostatistical approaches to improve the 
estimates and the U80 represents the mesoscale wind which is spatially 
more homogeneous than the surface wind (U10). Both variables are 
related with Equation (1) [31,34]. 

U80 =U10⋅
log
(

80
rug

)

log
(

10
rug

) (1)  

where rug is the roughness length which can be calculated from land 

Fig. 2. Case study. Location of the observation points and elevation map (a) 
and Roughness map (1996–2003) (b). 

Fig. 3. Hourly wind speed data for the stations GR02 (a) and 5514 (b) in the 
period September 04, 1996–October 02, 2016. 
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cover [35]. 
Note that this formulation may lead uncertainty caused by the 

complex nature of the wind flow and site conditions such as local 
meteorology and topography. Data measurements can also include 
systematic and/or random errors that could be propagated through the 
modelling [36]. Moreover, the estimation of the roughness length can 
vary significantly depending on the land cover product use for the 
calculation [37], although it not necessarily depends on the resolution of 
the product [38]. Moreover, roughness assignment is not a straightfor-
ward task due to it depends on vegetation height and density, among 
other things, which is not depicted in the land cover resource and might 
affect to the vertical distribution of the wind speed [39]. Many previous 
studies have analysed the impact of the uncertainty on the wind resource 
estimation [36,38]. 

Wind speed is a variable with spatial continuity which changes 
gradually. Geostatistical approaches take into account the spatial cor-
relation information to estimate fields. Moreover, geostatistical tech-
niques allow us to use a secondary variable to reduce the uncertainties of 
the estimates. It is also useful when data of the target variable are scarce. 
The studied area was divided into a finite number of cells of 300 m 
resolution to obtain hourly wind speed estimates. We estimated the 
fields in each cell taking as location the coordinates of the centroid of the 
cell and as elevation the average within the cell (from a 5 m resolution 
digital elevation model). In this way the estimated fields represent the 
entire cell and not only the centroid. We used four well known geo-
statistical approaches (OK, R, RK, and KED) to estimate wind speed 
fields [25,29]. OK uses only data of the target variable to obtain the 
estimates and the variogram to quantify the spatial correlation. R uses 
monthly regression models that relate wind speed and elevation. RK uses 
the monthly regression models in a first procedure. The second pro-
cedure uses the residues of the R to spatially interpolate them using the 
OK technique. The final estimates are the sum of the R estimate and OK 
of residuals estimate. In KED the relationship between wind speed and 
elevation is integrated in the kriging process as external drift that in-
fluences the kriging parameters. OK, RK, and KED uses information of 
spatial correlation of the data. It is quantified through the variogram. We 
fitted a variogram for each month and variable transformation. In the 
case of OK the variogram of the estimated variable is used and in the case 
of RK and KED the variogram is fitted by using the residuals obtained in 
the monthly regression models using elevation as explanatory variable. 
We also assessed the TP method to estimate wind speed. It is a simple 
method which is based on the assumption that measured wind speed at 
any station can be applied halfway to the next station in any direction, 

Table 1 
Sill and range of the variograms fitted for the studied variables and its residuals in the regression model with elevation for the different months of the year.  

Month Variograms of the variables Variograms of the residuals 

Sill Range (km) Sill Range (km) 

U10 U80 LN(U10) U10 U80 LN(U10) U10 U80 LN(U10) U10 U80 LN(U10) 

1 2.21 5.03 0.71 5.00 2.20 4.50 1.48 3.88 0.65 3.30 3.00 2.10 
2 2.82 6.77 0.71 6.00 2.40 3.30 2.09 5.62 0.65 3.90 2.10 4.20 
3 2.17 4.88 0.56 3.90 3.00 3.30 1.48 3.86 0.47 4.50 2.40 3.30 
4 2.01 4.69 0.56 4.50 3.30 4.50 1.46 3.88 0.49 3.30 2.10 3.30 
5 1.56 3.62 0.59 4.20 2.40 1.80 1.08 2.94 0.52 3.00 2.10 5.10 
6 1.43 3.46 0.63 0.90 0.90 0.90 1.08 3.01 0.57 1.80 2.10 8.40 
7 1.73 3.80 0.87 2.10 1.80 9.60 1.20 3.07 0.80 2.10 1.80 8.40 
8 1.93 4.01 0.72 3.30 1.80 9.30 1.06 2.74 0.52 4.20 3.00 2.40 
9 1.80 3.71 0.75 3.00 1.80 11.40 1.05 2.63 0.58 5.10 3.30 3.00 
10 1.92 3.81 0.73 6.30 4.20 9.60 1.10 2.59 0.55 2.40 2.10 4.50 
11 1.81 4.24 0.70 6.00 6.00 9.00 1.24 3.39 0.61 3.30 3.90 5.40 
12 1.85 4.10 0.78 3.90 4.20 8.40 1.21 3.21 0.68 4.50 2.40 6.90  

Fig. 4. Variograms fitted for the U10 (a) and its residuals in the regression 
model with elevation (b) for February. 

Table 2 
Mean error, mean squared error, and mean standardized squared error of the 
approaches tested obtained in the cross validation procedure (transformations of 
the variable and interpolation methods).  

Estimation technique Transformation ME MSE MSSE 

Ordinary kriging – 0.06 3.61 1.85 
Ordinary kriging Mesoscale 0.12 3.88 1.90 
Ordinary kriging Logarithm − 0.56 3.95 0.41 
Regression – 0.17 4.47 3.50 
Regression Mesoscale 0.24 4.63 3.35 
Regression Logarithm − 0.94 5.33 1.16 
Regression Kriging – 0.03 3.46 0.87 
Regression Kriging Mesoscale 0.21 4.50 1.14 
Regression Kriging Logarithm − 0.63 3.84 0.17 
Kriging with external drift – 0.04 3.52 1.57 
Kriging with external drift Mesoscale 0.10 3.78 1.67 
Kriging with external drift Logarithm − 0.56 4.48 0.26 
Thiessen polygons – 0.20 6.23 –  

A.-J. Collados-Lara et al.                                                                                                                                                                                                                      



Renewable Energy 199 (2022) 87–102

91

which means that for any point wind speed is equal to the observed wind 
speed at the closest station. It allows to know how geostatistical ap-
proaches improve the estimations compared to this commonly used 
method. 

The different combinations of geostatistical methods and wind speed 
transformation of data (12 approaches in total) and the TP method were 
assessed by using a cross validation experiment. In geostatistics the term 
“cross validation” [40,33] is generally accepted as the following pro-
cedure also known as the leaf-one-out cross-validation: 0) The vario-
gram of the variable of interest (wind speed in our case) is estimated 
using the complete set of n experimental data, 1) One datum is elimi-
nated from the data set, 2) The rest n-1 data are used to produce an 
estimate of the variable at the location where the datum was eliminated, 
3) The true error incurred in this process is calculated by (Actual Value - 
Estimated Value) 4) Steps 1 to 3 are repeated for the n experimental 
data. 5) Cross-validation statistics are calculated by using the n true 
errors. We compared three statistics obtained from the cross validation 
experiment: the mean error (ME), the mean squared error (MSE), and 
the mean standardized squared error (MSSE). The ME is the bias of the 
estimation, whose value should be around zero. The MSE is the accuracy 
of the estimate and the value should be as small as possible. The MSSE is 
the evaluation of how well (statistically) the kriging variance is a 

realistic measure of uncertainty. Note that MSSE is not obtained for TP 
because it does not provide variance of the estimation. The value of 
MSSE should be around 1 if the kriging variance is a good measure of 
uncertainty. 

The selected geostatistical approach in the cross validation experi-
ment is used to estimate wind speed (U10 and U80). The wind power at 
80 m height (PU80) can be calculated according Equation (2): 

PU80=
1
2

ρU803 (2)  

where ρ is the air density. 
The wind turbine power can be also calculated from wind speed at 

the height of the turbine (see Equation (1)) by using the power curve of 
the turbine. The energy production for the studied period is also ob-
tained taking into account the working time of the turbine. Note that in 
this work we assumed that the instantaneous hourly value of wind speed 
represent 1 h to calculate the wind turbine energy. We assume that, in 
our case study, due to the fine temporal resolution (1 h) the difference 
between using mean wind speed values or instantaneous wind speed 
values to calculate energy production are small. 

2.2. Mean wind speed and potential energy production in the stations. 
Sensitivity to the assumed statistical distribution (Rayleigh or Weibull) 

The mean hourly wind speed can be calculated from the empirical 
data although a probability density function is usually fitted. The 
probability density function (PDF) indicates the probability of observing 
a wind speed during a fraction of time [14]. In this study we used the 
Weibull and Rayleigh probability density functions. Note that the wind 
speed data with values equal to zero were transformed to 0.01 to fit 
these functions. 

The Weibull probability density function is defined by Equation (3). 

fW(u)=
(

k
c

)

⋅
(u

c

)k− 1
⋅exp

[

−
(u

c

)k
]

(3)  

where u is the wind speed at a considered height (U10, U80), fW(u) is the 
probability of observing wind speed u (if u < 0, fW(u) = 0), c is the scale 
parameter, and k is the shape factor of the distribution. Different 
methods can be used to estimate these parameters (graphically through 
probability plots, or by analytical methods such as least squares or 
maximum likelihood estimation). 

The cumulative probability function (FW(u)) of the Weibull distri-
bution is defined by Equation (4). 

FW(u)= 1 − exp
[

−
(u

c

)k
]

(4) 

The Rayleigh probability density function is a particular case of the 
Weibull model when the shape factor c is assumed to be equal to 2. The 
probability density (fR(u)) and the cumulative distribution (FR(u)) 
functions of the Rayleigh model are given by Equations (5) and (6) 
respectively. 

fR(u)=
π
2

⋅
u

v2
avg

⋅exp

⎡

⎣ −
(π

4

)
⋅

(
u

v2
avg

)k
⎤

⎦ (5)  

FR(u)= 1 − exp

[

−
(π

4

)
⋅

(
u

v2
avg

)2]

(6) 

The mean of the wind speed measurements, Weibull and Rayleigh 
distributions is calculated following Equations (7)–(9) respectively: 

uavg = u (7)  

μW = c ⋅ Γ
(

1+
1
k

)

(8) 

Fig. 5. Results of the cross validation experiment: mean error (a), mean 
squared error (b), and mean standardized squared error (c). 
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μR =

̅̅̅
π

√

2
⋅c (9)  

where N is the number of observing wind speed data; Γ is the gamma 
function. 

The wind power density (P(u)) can be assessed by using wind data 
from measurements or from Weibull and Rayleigh distributions 
following Equations (10)–(12) respectively. 

P(u)
A

=
1
2
⋅ρ⋅

1
N

⋅
∑N

i=1
u3

i (10)  

P(u)W

A
=

1
2
⋅ρ⋅c3⋅Γ⋅

(
k + 3

k

)

(11)  

P(u)R

A
=

3⋅
̅̅̅
π

√

8
⋅ρ⋅c3 (12)  

where P(u)A is the wind power density per swept area of turbine (W/m2) 

calculated by using the wind speed measurements, P(u)W
A is the wind 

power density per swept area of turbine (W/m2) calculated by using the 
Weibull distribution function, P(u)RA is the wind power density per swept 
area of turbine (W/m2) calculated by using the Rayleigh distribution 
function, and ρ is the air density (kg/m3). 

Considering a specific wind turbine, the power production can be 
calculated from the power curve of the turbine. 

First of all, we analyze the hourly wind speed measurements avail-
able in the stations. Pre-processing tasks were made to original data in 
order to organize them and remove some irregular values. We calculate 
the mean hourly wind speed from the empirical data and from the 
Weibull and Rayleigh distribution functions in order to analyze the 
suitability of a probability distribution to estimate the mean wind speed 

and potential energy production. 
We also analyze the sensitivity of the wind speed estimation to the 

statistical characteristics of the time series and the hypothesis assumed 
about the data frequency distribution. 

We considered four statistics to evaluate the performance of the 
fitted distributions, namely R2, root mean square error (RMSE), mean 
absolute percentage error (MAPE) and total absolute bias error (MABE) 
(Equations (13)–(16)) are used to evaluate the goodness-of-fit of the 
selected distributions for wind speed data. 

R2 = 1 −

∑n
i=1(Oi − Ei)
∑n

i=1(Oi − u)
(13)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Oi − Ei)

2

√

(14)  

MAPE=
1
n

⋅
∑n

i=1

⃒
⃒
⃒
⃒
Ei − Oi

Oi

⃒
⃒
⃒
⃒⋅100 (15)  

MABE=
1
n

⋅
∑n

i=1
|Ei − Oi| (16)  

where n is the number of wind measurements, Oi is the observed wind 
speed value, Ei is the estimated wind speed value, and u is the mean wind 
speed from observations. 

2.3. Comparison of results in the stations vs estimated values in the cells 
where the stations are located 

In those estimation grids where the wind stations are located, we 
compare the mean wind speed values obtained from the available 
measurements with those obtained from the complete series of 

Fig. 6. Instantaneous U10 for the times 03:00, 09:00, 15:00, and 21:00 of November 13th, 2004.  
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estimated values in the grid. Note that the estimation values are referred 
to the each estimation cell and not to the centroid of the cell (see section 
2.1). Anyway, we assume that the fine spatial resolution (300 m) used in 
this work allow to compare the results in the stations with the results in 
the cells. We assume that the wind speed patterns in the cell represent 
relatively well each point within it. Considering a specific wind turbine, 
we also compare the power production calculated from the available 
measurements with those obtained from the complete series of esti-
mated values in the grid. 

In order to compare the mean value of wind speed and wind power 
density from the empirical data (observed data or estimated series) and 
from distribution functions (Weibull and Rayleigh) we use the relative 
difference (δ) (Equation (17)). 

δ (%)=

⃒
⃒
⃒
⃒
Xdistribution function − Xempirical data

Xempirical data

⃒
⃒
⃒
⃒⋅100 (17)  

where Xdistribution function represents the mean hourly wind speed or the 
mean wind power density calculated from the Weibull and Rayleigh 
distribution functions and Xempirical data represents the mean hourly wind 
speed or the mean wind power density calculated from the empirical 
data (observed and estimated fields). 

3. Case study and data available 

The Granada province is located in southeast of Spain (Fig. 2a). It 
covers a surface of around 12600 km2. It has a complex terrain including 
a wide range of elevations (from 0 to 3479 m a.sl.). Most of the territory 
has a Mediterranean climate although there is also a mountain climate in 
the highest parts, and subtropical on the coast. 

Currently the province of Granada has 21 wind power plants with a 
total wind power of 402.21 MW. It represents 51.5% of the total 
renewable power of the province [41]. Nevertheless, there are still large 
areas with a high wind potential production where wind power plants 
could be installed. 

Wind data come from different databases from public and private 
agencies and/or research organizations: Spanish Meteorological Agency 
(AEMET), Institute for Agricultural and Fisheries Research (IFAPA), 
Regional Government of Andalusia (REDIAM), the commercial enter-
prise CETURSA, and Sierra Nevada Natural Park (PNSN). 

Data from 94 meteorological stations in the period 1996–2016 were 
used in this study. Only 55 meteorological stations are located within 
Granada province. The other 39 stations belong to the surrounding re-
gions out of the Granada province limits (see Fig. 2a). All the meteo-
rological stations were used to estimate the hourly wind speed in the 
study area within a grid of 300 × 300 m (140395 cells in total) but only 
the 55 stations within Granada province were used to fit the PDF. 

Fig. 7. Maps of mean wind speed at a height of 10 m for the different months of the year.  
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Wind speed is measured at height of 10 m in the meteorological 
stations. The original data from the different sources were pre-processed 
in order to organize the data and remove some irregular values. Some of 
these tasks included to remove certain extremely high values and/or 
data from periods that presented anomalies (for example calm wind 
speed for long periods, which might be measurement errors). Most of 
data suppliers had made a previous validation procedure of the wind 
variable, so most of data did not have abnormal values. On the other 
hand, missing values were not considered. The interpolation was made 
only with the available values for each date. 

The 55 stations located within Granada province are located between 
10 and 3479 m a.s.l. The data coverage, calculated as the percentage of 
hours with wind speed data in the analysed period (September 04, 
1996–October 02, 2016), is between 6 and 96%. The minimum hourly 
wind speed in the stations is 0 m/s, and the mean and maximum hourly 

wind speed varies between 0.48 and 6.34 m/s and 4.19–55.47 m/s 
respectively. The percentage of data with calm wind (v = 0 m/s) is 
between 0 and 40% and with low wind speed (below 2 m/s) is between 
11 and 98%. In Fig. 3 the data series for the stations GR02 and 5514 are 
showed (see its location in Fig. 2). The percentage of available data in 
the studied period for these stations is 77.7% and 72.7% respectively. In 
the rest of the stations the average percentage of available data is 51.3%. 

The wind power potential depends on air density and temperature 
besides wind speed. The literature typically considers constant (tem-
poral and spatial) average air density and temperature (reference air 
density, 1.225 kg/m3, corresponding to the sea level and 15 ◦C) to 
calculate wind energy production (e.g Refs. [31,42]. In this work, due to 
the high variation of elevation in Granada province, we considered 
spatially varying air density and temperature at each location. Air 
density varies with pressure and temperature following equation (18): 

ρ= P
R ⋅ T

(18)  

where ρ (kg/m− 3) is the air density, P (Pa) is the air pressure, R is the gas 
constant for air (287 J/kg-K), and T is the temperature (K). 

We considered a pressure of 101325 Pa and a Temperature of 15 ◦C 
for the cells located at sea level and calculated them in the rest of cells 
according the change of elevation. Note that we assumed the environ-
mental lapse rate (6.5 ◦C Km− 1) [43] to compute air temperature. In the 

Fig. 8. Maps of mean wind speed at a height of 80 m for the different months of the year.  

Table 3 
Statistics of goodness of fit for Weibull and Rayleigh distribution functions.  

Statistic Weibull distribution Rayleigh distribution 

R2 0.95–0.99 0.94–0.99 
RMSE 1.3 × 10− 3 – 4.4 × 10− 2 3.4 × 10− 4 – 3.5 × 10− 2 

MAPE 7.8 × 10− 4 – 6.5 × 10− 1 2.9 × 10− 4 – 7.2 × 10− 1 

MABE 8.8 × 10− 3 – 1.4 × 10− 1 5.5 × 10− 3 – 1.4 × 10− 1  
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case of the pressure, we used the following equation to calculate it at the 
different elevations from pressure at sea level and the change in 
elevation: 

P(z)=P0e− αZ (19)  

where P(z) is the pressure at z elevation, P0 is the pressure at sea level, 
and α is a constant defined by equation (20): 

α=
ρ0g
P0

(20)  

where g is the gravity acceleration. 

The wind power turbine AW 70–1500 of 80 m hub height from 
ACCIONA company was considered to calculate the turbine wind power 
production in the meteorological stations and in all cells within the 
estimation grid. The turbine has cut-in speed of 3 m/s and cut-out speed 
of 25 m/s. 

Fig. 2b shows the roughness map calculated from Corine Land Cover 
(CLC) dataset, following the proposal by Ref. [35]. For the studied 
period we considered two roughness maps from 1996 to 2003 and from 
2004 to 2016 because the CLC dataset changed. 

4. Results 

4.1. Optimal interpolation of hourly wind speed. Sensitivity to the applied 
geostatistical approach and the interpolated variable 

The first step before to the application of the geostatistical ap-
proaches was the assessment of the spatial correlation through the 
calculation of the variogram for the target variable and its trans-
formations. We used an exponential model variogram fitted for each 
month. In the case of OK the variogram of the estimated variable was 
used to obtain the variogram and in the case of RK and KED the vario-
gram was fitted by using the residuals obtained in the monthly regres-
sion models using elevation as explanatory variable. The sill and the 
range of the fitted variograms are showed in Table 1. An example of the 
fitted variogram for the U10 and the residuals of U10 in the regression 
model is showed in Fig. 4 for the month of February. 

The different geostatistical approaches and transformations of vari-
ables were tested under a cross validation procedure. We also compared 
them with the TP estimation method. All the geostatistical approaches 
proposed in this work provide better performance than the TP method in 
terms of MSE (see Table 2). In total 12 geostatistical approaches were 
compared in terms of ME, MSE, and MSSE. The mean values of these 
statistics for the different years of the studied period (1996–2016) are 
showed in Fig. 5. In general there are not big differences between the 
different years. The mean values for the entire period are collected in 
Table 2. The approaches without variable transformation show better 
results than the rest for all the geostatistical techniques. The mesoscale 
transformation is better than logarithm transformation for OK, R, and 
KED while logarithm transformation is better for RK. The estimation 
approach with the lower ME and MSE is RK without transformation with 
0.03 m/s and 3.46 (m/s)2 but other approaches as OK and KED without 
transformation show similar results. RK without transformation has also 
the best MSSE which indicates that the kriging variance is a realistic 
measure of uncertainty. 

RK without transformation of variable is selected to estimate U10. 
The estimation is done at hourly temporal scale and 300 m spatial res-
olution for studied period (1996–2016). We generated instantaneous 
U10 maps each hour for the studied period. An example of these maps is 
observed in Fig. 6 which represents instantaneous U10 for the times 

Fig. 9. Mean wind speed (80 m height) calculated from the wind speed measurements and Weibull and Rayleigh distributions.  

Fig. 10. Relationship between wind calm observations and performance for the 
Weibull (a) and Rayleigh (b) distribution functions. 
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03:00, 09:00, 15:00, and 21:00 of November 13th, 2004. In general the 
higher areas show higher values of U10. For this day, mean U10 for the 
times 03:00, 09:00, 15:00, and 21:00 is 1.62, 2.32, 3.38, and 2.23 m/s. 
The generated hourly information was also used to obtain average 
monthly values. The mean U10 in the different months of the year for the 
studied period is represented in Fig. 7. Higher mean U10 are observed 
from January to April (winter and beginning of spring) with the highest 
mean value of 2.37 m/s in February. Lower values are observed from 
September to December (autumn) with the lowest value of 2.00 m/s in 
October and November. In general the areas with higher U10 are higher 
elevation areas (Sierra Nevada and some higher areas of the north of the 
province) and some coastal areas. 

We also obtained mean monthly maps for U80 which refers to the 
height of the large wind turbines (Fig. 8). We observe a similar distri-
bution than U10. Higher mean U80 are observed from February to April 
(end of winter and beginning of spring) with the highest mean value of 
3.60 m/s in February. Lower values are observed from September to 
December (autumn) with the lowest value of 3.04 m/s in November. In 
this case the differences of U80 by elevation are not so higher than for 
U10 but in general the areas with higher U80 are higher elevation areas 
too (Sierra Nevada and some higher areas of the North of the province). 

4.2. Mean wind speed and potential energy production in the stations. 
Sensitivity to the assumed statistical distribution (Rayleigh or Weibull) 

The frequency distribution can be obtained in accordance with the 
empirical histogram or assuming a type of distribution function. The 
most commonly assumed for wind analyses are the Weibull and the 
Rayleigh distributions. Matlab® code was used to fit the optimal PDF 
(Weibull and Rayleigh) to both wind data from the 55 meteorological 
stations and wind estimations in the grid cells where the stations are 
located. This function uses the maximum likehood method to estimate 
the parameters of PDF. The goodness of fit statistics of distribution 
functions (Weibull and Rayleigh) to the data from the 55 stations are 
summarised in Table 3. All the statistics show that both Weibull and 
Rayleigh distributions are good enough to fit the wind data in the case 
study. 

Fig. 9 shows the mean hourly wind speed calculated directly from 
measurements in meteorological stations and by using a Weibull and 
Rayleigh distribution functions (Equations (6)–(8)). Although the 
goodness of fit parameters take similar values in both Weibull and 
Rayleigh distributions, we observe that Weibull distribution usually 
estimates a mean wind speed similar to the calculated from observa-
tions, although in some stations the differences are considerable. The 
Rayleigh distribution usually underestimates the mean wind speed but 
these differences between the stations are quite similar. 

The discrepancy in the mean wind speed at some sites is due to the 
distribution of wind speed presents some anomalies. We analyze the 
time series characteristics that might affect the performance of the 
Weibull distribution function in terms of mean wind speed. We observe 
(Fig. 10) that the highest differences in the mean wind speed are related 
to meteorological stations having a high number of wind data obser-
vations of calm wind (u = 0 m/s). The Weibull distribution in those 
stations also has small shape parameter values and larger scale factor, 
which results in high mean wind speed. On the contrary, the Rayleigh 
distribution shows lower differences regarding to the observations when 
the mean wind speed takes low values (≤2 m/s). 

4.3. Comparison of results in the stations vs estimated values in the cells 
where the stations are located 

In those estimation grids (300 m resolution) where the wind stations 
are located we compare the mean U80 values obtained from the avail-
able measurements and the application of distributions functions 
(Weibull and Rayleigh) with those obtained from the complete series of 
estimated values (using RK) in the grid (Fig. 11a). Assuming a turbine 
AW 70–1500 of 80 m height, we also compare the potential energy 
production obtained from the available measurements with those ob-
tained from the complete series of estimated values in the grid 
(Fig. 11b). 

The analysis of the relative difference in the mean wind speed and 
energy production calculated by using the distribution functions (Wei-
bull and Rayleigh) and the empirical data (observations in meteoro-
logical stations and RK estimations) yields different results. The mean 

Fig. 11. Relative error in wind speed (a) and turbine energy production (b) calculated from distribution functions and from observed and estimated series.  
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wind speed and energy production calculated from Weibull distribution 
are more similar to the RK estimations. However, the differences be-
tween using observation or estimations and the Rayleigh distribution to 
calculate the mean wind speed and energy production are not 
significant. 

The distributions functions used have a good fit to the data (RMSE is 
below 0.044 m/s (see Table 3)). RK have also a good performance in the 
cross validation experiment (RMSE 1.87 m/s (see Table 2)). Note that 
the procedure to obtain RMSE in both approaches (distributions and RK 
estimation) is different and cannot be compared. In the cross validation 
procedure each experimental data is dropped from the experimental 
data set in turn and it is calculated from the remaining experimental 
data. However all the data are used to fit the Weibull and Rayleigh 
functions. Note that the geostatistical estimations use the available data 
as outputs when they are available. If we do not use the cross validation 
experiment to assess the performance, we would obtain a RMSE of 0.0 
for RK. 

We observe similar differences of the distributions with the data and 
the estimations (Fig. 11). On the other hand, the RK estimations allow us 
to obtain spatio-temporal distributed wind fields (section 4.1) while 
distributions functions allow to obtain them only at stations (section 
4.2). The spatio-temporal distributed wind fields are used to obtain 
potential energy production maps in the following section. 

4.4. Estimation of the potential energy production maps 

The U80 data are used to calculate wind power at 80 m height 
(PU80). Due to variability of elevation in Granada province (from 0 to 
3479 m a.s.l.) we used a variable value of air density instead of 
considering the standard value of 1.225 kg/m3 to calculate PU80. PU80 
maps (Fig. 12) gives an idea of the potential optimal location of wind 
energies facilities in Granada Province. Note that these maps do not 
depend on the kind of wind turbine, and therefore, they could be used 
for different companies and administrations. From January to April the 
mean PU80 in the Granada province is between 44.25 and 53.80 W/m2 

but it can be very variable depending on the location (minimum of 3.47 
and maximum of 2115.05 W/m2). The rest of the year PU80 is lower 
(mean around 30 W/m2) with a high variability depending on de area 
(minimum of 1.90 and maximum of 1609.98 W/m2). In general the 
variability in P80 is associated to elevation but some areas located in the 
cost present also high values of PU80. 

The PU80 maps represent the potential power of wind but depending 
on the turbine used the effective power will be different. We also used 
the wind power turbine AW 70–1500 of 80 m height from ACCIONA 
company to calculate wind turbine power at 80 m height (TPU80) (see 
Fig. 13). In this case the TPU80 is expressed in KW because the 
geometrical characteristics of the turbine are known. We also used the 
operational characteristics of this turbine to calculate the percentage of 

Fig. 12. Maps of mean wind power at a height of 80 m for the different months of the year.  
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time that the turbine would have been working (3 m/s < U80 < 25 m/s) 
in the studied period (see Fig. 14). the minimum value in the province is 
5.0% and the maximum 99.9%. Higher elevation areas show a higher 
working time of the turbine. The mean working time as percentage for 
the province of Granada is 46.9%. We also calculated the wind turbine 
energy at 80 m height (TEU80) that the selected turbine would produce 
in the studied period (September 04, 1996–October 02, 2016) in each 
pixel of the estimation grid (see Fig. 15). The mean TEU80 for Granada 
province vary from 606.5 MWh (September) to 1115.6 MWh (March). 

5. Discussion 

This work provides wind, potential energy production, and energy 
production for specific turbine fields in the province of Granada (12600 
km2). We used a long period 1996 to 2016 (20 years) and high temporal 
(hourly) and spatial (300 m) resolutions. Others works assessed energy 
production from wind in regions as Sicily (25711 km2) [32] or Flanders 
(13.625 km2) [31]. Cellura et al. [32] used 29 wind stations (1.1 sta-
tions/1000 Km2) for a period of 3 years and [31] used 45 wind stations 
(3.3 stations/1000 Km2) for a period of 5 years. In this work we used 7.5 
stations/1000 Km2 and a period of 20 years. With respect the temporal 
resolution Cellura et al. [32] used hourly data (as in our study) and [31] 
used daily data. Moreover, these previous studies obtained an average 
wind speed map which is not sufficient for wind energy applications. In 

this study we presented monthly maps but the generated product allows 
to study daily variability because it is generated at hourly temporal 
resolution. 

From the, methodological point of view we also included trans-
formation of the target variable to assess the performance of the geo-
statistical approaches. The previous works used directly the target 
variable. We also used a variable air density depending on elevation to 
obtain the energy production. Note that our case study has a variation of 
elevation of around 3500 m and the air density is a key issue for energy 
production [31]. did not use a variable air density but in this case is 
justified because the elevation change in Flanders is minimal. However, 
the procedure used in this work is recommended for cases studies as 
Sicily which has a similar variation in elevation. 

We also compared mean values of our product with the ERA5-Land 
product (spatial resolution around 10 km) and the Global Wind Atlas 
(250m spatial resolution) and calculated the correlation coefficient of 
these maps (Fig. 16). ERA5-Land is not correlated with our product (R2 

< 0.15) and the GWA shows a moderate correlation (R2 = 0.25). We also 
obtained the R2 of mean wind speed with elevation in the station loca-
tions for the four sources of information (data, RK estimation, GWA, and 
ERA5-Land). The R2 is respectively 0.47, 0.66, 0.45, and 0.21. The data, 
RK estimation and GWA show a correlation with elevation. However 
ERA5-Land does not capture the local patterns of winds due to elevation. 
Note that ERA5-Land is a replay of the land component of the ERA5 with 

Fig. 13. Maps of mean wind turbine power at a height of 80 m for the different months of the year.  
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a finer spatial resolution and the calculation resolution of ERA5 is 30x30 
Km which seems not enough to capture the local wind patterns. Our case 
study has an important variation in elevation (from 0 to 3479 m.a.s.l) 
and ERA5-Land does not show higher wind speed for the higher areas. 
Others authors also pointed that ERA5 underestimates wind speeds, 
especially in mountainous areas [44]. ERA5 is a reanalysis product and 
it is well known that biases in observations and models can introduce 
spurious variability and trends into reanalysis output. On the other 
hand, GWA is quite correlated with elevation and the map is similar to 
our product. We also calculated the errors of the three products with 
respect the mean values of the data for each station (see Table 4). We 
confirmed that the ERA5-Land performance (RMSE = 2.37 m/s) is not 
enough to capture the local patterns of our case study. GWA shows an 
acceptable performance (RMSE = 1.54 m/s) but overestimate wind 
speeds (especially for higher elevations) and RK estimation shows the 
best results (RMSE = 0.66 m/s). Note that the database used for this 
study is as complete as possible (we used data coming from five public 
and private agencies and/or research organizations). On the other hand, 
our product provides hourly estimations for a long period that can be 
used for several applications (wind power, hydrology, and risk analysis) 
and the GWA is a map which is not variable in time. 

The obtained wind fields in the pixel where the stations are located 
were also compared to the wind speed and energy production in the 
stations showing similar results. Note that in general geostatistical es-
timations generate smoothed fields. We also included a sensibility 
analysis to the distribution function used to fit the observations in the 
stations. 

Regarding the suitability of fitting a probability function to the ob-
servations, the results highlight that Weibull distribution is more 
appropriate than Raileigh distribution to estimate mean wind speed, 
although the mean wind speed of Weibull distribution depends on the 
shape of the wind data distribution. Several previous works revealed 
that the two-parameter Weibull distribution is not appropriate for 
properly fitting wind data of low wind speed [15, 23,24]; Ounis and 
Aries 2020). A wind speed distribution with high frequencies of low 
wind speed is related to smaller value of the shape factor k in the cor-
responding Weibull distribution. The results show that the relative 

difference and absolute difference in the mean wind speed between the 
Weibull distribution and observations increase when the wind speed 
measures have a higher percentage of calm wind. Similar findings have 
also been obtained in previous works [45]. 

When we compare the mean values of the wind speed calculated by 
using the geostatistical approaches and by using Weibull or Rayleigh 
distribution functions, we observe that the estimations usually smooth 
the wind speed producing lower mean values. However geostatistical 
approaches allow to obtain spatially distributed fields (in this case with 
300 m spatial resolution) and the use of distribution functions in each 
station only allow to obtain energy production in these stations. The 
availability of spatio-temporal maps of wind speed and potential energy 
production is a key issue for local and regional administrations and wind 
energy companies. 

5.1. Hypothesis and assumptions 

Although we have demonstrated the utility of the proposed approach 
for mapping wind fields and potential energy production, we want to 
highlight some hypothesis, and assumptions that could be addressed in 
future research. 

- Note that geostatistical approaches incorporates the spatial vari-
ability of data to the estimation. If the database does not represent 
the spatial patterns of wind of the area, the errors will be propagated 
to the estimations. In this work we used a wind speed database as 
complete as possible (we used data coming from five public and 
private agencies and/or research organizations) for the province of 
Granada. However in some areas the density of data is low. The 
estimation in these areas has a higher level of uncertainty.  

- Geostatistical approaches do not incorporate physical laws in the 
estimations. Hence mass and energy balance is not considered in the 
generated fields.  

- In this paper the distribution functions Weibull and Rayleigh have 
been used to fit the hourly wind speed data at all meteorological 
stations and grid cells. Other distributions [46] could be more 
appropriate in some locations of the case study. 

- Note that the transformation of the U10 into U80 might lead un-
certainty in the use of the roughness length, which is not considered 
in this paper, but it could be made in future works. Moreover, the 
effect of other terrain local features on the vertical distribution of 
wind is not considered in this paper, which would require a detailed 
analysis.  

- Although the literature typically considers constant annual average 
air density [31] and we considered a spatially varying air density 
according the elevation, we assumed that the pressure at sea level 
and temperature are 101325 Pa and a 15 ◦C respectively. We also 
assumed that the temperature lapse rate is constant and equal to the 
environmental (6.5 ◦C Km-1). Future works could also explore the 
seasonal variation of air density [42].  

- Although potential wind power has been calculated, a specific wind 
turbine has been considered to calculate energy production. An op-
timum wind turbine could be analysed for each location in Granada 
province.  

- Although a fine temporal resolution is used, we assumed that the 
instantaneous hourly value of wind speed (instead mean value) 
represents 1 h to calculate the wind turbine energy.  

- The optimal location of the wind turbine would also include others 
criteria (protected areas, environmental impacts, etc.) which were 
not considered in this study.  

- This work is focused on potential energy resources and it does not 
analyze extreme wind values. Extreme winds are among the most 
damaging historically over Europe [47] and could be analysed in 
future works 

Fig. 14. Percentage of time that the turbine AW 70–1500 of 80 m height from 
ACCIONA company would have been working (3 m/s < U80 < 25 m/s) in the 
studied period (September 04, 1996–October 02, 2016). 
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6. Conclusions 

In this work we generated a product which is very valuable for a 
preliminary analysis of potential optimal location of wind energies fa-
cilities in Granada Province. We obtained optimal wind and potential 
energy fields for a 20 years period with hourly temporal resolution and 
300 m spatial resolution. We compared 12 geostatistical approaches 
which include four estimation techniques (OK, R, RK, KED) and three 
transformation of the target variable. The RK technique without trans-
formation of variables showed the best results in the cross validation 
experiment. 

The wind and energy production fields were compared to the ob-
tained in the stations by using distribution functions (Weibull and 
Rayleigh). Both showed similar results but the geostatistical approaches 
provided slightly smoothed values. However these differences are not 
important if we take into account that the geostatistical approaches 
allow us to obtain the wind resource in a distributed way for all the 
Granada province and not only for the stations. It is a key issue for the 
assessment of optimal location of wind energy facilities. 

Compared to previous works that intends to map the wind energy 
resource, this paper includes several advantages. The studied period is 
longer and the number of data is higher.It contributes to a better char-
acterization of the saptio-temporal variability of wind. We also included 
different transformations of the target variable for geostatistical 

assessment. The obtained product allow to assess the intra- and inter- 
daily variability and not only the mean values for the entire period 
studied. 

This work is useful from the methodological point of view. It includes 
a general method that can be applied to any case study. The paper also 
provides a very useful product to assess the optimal location of wind 
energy facilities in the province of Granada. 
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Fig. 15. Maps of wind turbine energy at a height of 80 m for the different months of the year in the period September 04, 1996 to October 02, 2016.  
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Fig. 16. Comparison of the RK estimation generated in this study with ERA5-Land (a) and the Global Wind Atlas (b).  

Table 4 
Mean error, mean squared error and root mean squared error of the three 
products (RK estimation, GWA, ERA5-Land) in the comparison with the mean 
values of wind speed at the stations.   

RK estimation GWA ERA5-Land 

ME (m/s) 0.02 − 0.47 1.60 
MSE (m/s)2 0.43 2.37 5.62 
RMSE (m/s) 0.66 1.54 2.37  
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