UNIVERSIDAD DE (GRANADA

E.T.S DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACION

A » an <

1
v
|
m
<
<

0/53\0

UNIVERSIDAD
DE GRANADA

Departamento de Ciencias de la Computacién e Inteligencia Artificial
Programa de Doctorado en Tecnologias de la Informacién y la Comunicacion

Presented to obtain the degree of

Doctor of Philosophy

Probabilistic Methods for Image and Signal
Classification. Applications to Medicine and
Volcanology.

presented by
Miguel Lopez Pérez

supervised by
Rafael Molina Soriano and Aggelos K. Katsaggelos



Editor: Universidad de Granada. Tesis Doctorales
Autor: Miguel Lopez Pérez

ISBN: 978-84-1117-474-9

URI: https://hdlLhandle.net/10481/76832



https://hdl.handle.net/10481/76832

Agradecimientos
(Acknowledgments)

Muchas gracias a todos los que me han ayudado, soportado, acompanado y/o apoyado
a lo largo del camino de la tesis. Sin vosotros no habria sido asi. Lo mejor de la tesis
son los amigos que he conocido por el camino.

Primero agradecerle a mi director Rafael Molina. Por su esfuerzo, paciencia e ideas
han sido clave no solo para la finalizacion de la tesis si no para mi desarollo académico,
profesional y personal. También a todo el grupo de investigacion, Javier, Miguel, Nicolés,
Santiago, Juanga, Pablo (PHK), Fernando, Arne. Colaborar y trabajar con vosotros ha
sido esencial también. Al final, todo es un trabajo en equipo. Siempre nos quedard el
chino David y la Herradura. También a todos los que nos han visitado, Neel, Shuowen.
Algtn dia hablaré vuestros idiomas. No solo investigadoras de mi grupo, también Valery,
Luz, Carmen, ha sido un placer trabajar con vosotras. He aprendido mucho de vosotras.

Also thank you to my co-advisor Professor A. K. Katsaggelos and professor L.
Cooper. For your welcome to USA and your guidance in digital pathology. Thanks
to both of you, I completed the international adventure with interesting insights. Also,
to my NU colleagues. Specially to Semih. He is totally a kardegim. Also to Yunan. All
of you made me feel like in home.

Quiero aprovechar estas lineas para agradecer también a mi familia, mi madre, mi
abuela, mi tia. Por apoyarme desde siempre. A los que no estan también, me haria
ilusién que vieran esta hazana que nunca hubieran pensado.

Al DB3 goloso por las tardes de trenes, dardos y montanas. Por nuestra habilidad
también para resolver enigmas y por la scape room que nunca hicimos. Especialmente
Andrea por ayudarme y apoyarme como la que mas.

A mis amigos de Algeciras de toda la vida, a pesar de los afios todo sigue igual, sois
un gran apoyo. Tenemos que celebrar esto con un islita. También a los del grado en
matemadticas, los panas son para siempre, y a todos los que he conocido en Granada. A
los fluxions por ser el proyecto en el que confio. La ciencia puede ser divertida gracias
a ellos. También, a Pato y Tomé por ayudarme a mantener la cordura en el ultimo afio

de tesis gracias a la impro.



Abstract

Probabilistic methods have achieved empirical success in many predictive modeling
and inference tasks. Prominent among probabilistic classifiers are Gaussian Processes
(GPs). They are popular because of their expressiveness and the possibility of intro-
ducing prior beliefs. They use (probabilistic) uncertainty in modeling and inference.
However, GPs can not easily estimate complex functions with stationary kernels. To
overcome this limitation, Deep Gaussian Processes (DGPs) arise as their hierarchical
extension. They combine the complexity of deep models while retaining the advantages
of GPs.

Many areas of study take advantage of these models to solve decision-making problems.
This thesis proposes and studies probabilistic methods based on GPs and DGPs for clas-
sification problems which range from supervised to weakly supervised ones. The studied
models cover realistic annotation scenarios: an expert provides labels for all samples,
an expert provides only label for bags of samples, and finally, multiple expert and non-
expert participants provide annotations, which may not agree. The data utilized in
this thesis come from: volcanology, where we have access to fully annotated data sets,
histology, where to alleviate the annotation task, several medical students are asked to
annotate the images and computerized tomography, where annotations are provided at
scan but not slide level. We find that probabilistic models based on GPs and DGPs

outperform state-of-the-art Deep Learning models for these problems.
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Resumen

Los métodos probabilisticos han logrado un gran éxito experimental en muchas tar-
eas de modelado predictivo. Entre los clasificadores probabilisticos destacan los Procesos
Gaussianos (GP), los cuales son populares por su expresividad, la posibilidad de intro-
ducir conocimiento previo y utilizar la estimacion de la incertidumbre en el modelado y
la inferencia. Sin embargo, los GPs no pueden estimar facilmente funciones complejas
con nucleos estacionarios. Para superar esta limitacion, surgen los Procesos Gaussianos
Profundos (DGP) como su extensién jerdrquica, combinando la complejidad de los mod-
elos profundos a la vez que conservan las ventajas de los GPs.

Muchas dreas de estudio pueden aprovechar estos modelos para afrontar problemas de
toma de decisiones. Esta tesis propone y estudia métodos probabilisticos basados en
GPs y DGPs para problemas de clasificacion que van desde los supervisados hasta los
débilmente supervisados. Los modelos estudiados cubren escenarios realistas de an-
otacién: un experto proporciona etiquetas para todas las muestras (aprendizaje su-
pervisado), un experto proporciona sélo etiquetas para bolsas de muestras (Multiple
Instance Learning), y finalmente, multiples participantes expertos y no expertos pro-
porcionan anotaciones, las cuales pueden no coincidir (crowdsourcing). Las aplicaciones
vistas en esta tesis son: vulcanologia, donde hemos tenido acceso a conjuntos de datos
totalmente anotados por un experto, histologia, donde para aliviar la tarea de anotacién
se ha pedido a varios estudiantes de medicina que anoten las imégenes, y deteccién de
hemorragias en imagenes de tomografia computarizada, donde las anotaciones se han
proporcionado a nivel de escaner pero no de diapositiva. Finalmente, concluimos que los
modelos probabilisticos basados en GPs y DGPs superan los resultados obtenidos por

los modelos de Deep Learning en el estado del arte para estos problemas.



Resumen extendido

Introduccién

Los métodos probabilisticos, ademés de ser de gran interés y utilidad en la comunidad
de aprendizaje automatico, han alcanzado un gran poder predictivo en muchas tareas
de toma de decisiones (Murphy, 2022). Estos modelos son capaces de abordar tareas
complejas de modelado y aprendizaje, siendo adecuados en distintos ambitos. En este
marco probabilistico, destacan por su relevancia los llamados Procesos Gaussianos (GPs).
Son modelos no paramétricos con aplicaciones en regresién y clasificacién (Rasmussen
& Williams, 2006). Tienen un gran poder predictivo, siendo capaces de obtener un alto
rendimiento en bases de datos externas. Dado que los GPs estiman la incertidumbre
en el modelado y la prediccion, pueden medir con precisién la confianza en el resultado.
Sin embargo, sélo pueden representar un niimero limitado de funciones. Los Procesos
Gaussianos Profundos (DGPs) superan esta falta de expresividad gracias a su estructura
jerdrquica (Damianou & Lawrence, 2013). Constan de varios GPs apilados, de forma
que la salida de un GP es la entrada del siguiente GP. Los DGPs combinan las mejores
caracteristicas de los modelos profundos y los GPs, permitiendo asi representar funciones
mas complejas a la vez que conservan las ventajas de los GPs. Por estas razones, los
GPs y los DGPs se han utilizado en diferentes areas con resultados prometedores, como
puede ser la medicina (Kandemir, 2015), (Li et al., 2021), la teledeteccién (Svendsen,
Martino, & Camps-Valls, 2020; Svendsen, Morales-Alvarez, Ruescas, Molina, & Camps-
Valls, 2020), y la fisica (Bishnoi, Ravinder, Grover, Kodamana, & Krishnan, 2021), entre

muchos otros.

Ademids del aprendizaje supervisado en su version clésica, esta tesis también abarca
el estudio de aproximaciones para lo que se conoce como aprendizaje débilmente super-
visado. En algunas areas de aplicacion, como puede ser la medicina, la obtencién de
etiquetas procedentes de fuentes expertas es dificil debido al alto coste que conlleva el
proceso de etiquetado. En estos casos, se necesita la supervisién débil (Zhou, 2018).
En esta tesis se han introducido GPs para dos tipos de clasificacién débilmente super-
visada: crowdsourcing (Morales—Alvarez, Ruiz, Coughlin, Molina, & Katsaggelos, 2022) y
Multiple Instance Learning (MIL) (Hauimann, Hamprecht, & Kandemir, 2017). Crowd-

sourcing distribuye el esfuerzo de etiquetado entre multiples anotadores con diferentes

w
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grados de experiencia. Los métodos de crowdsourcing suelen modelar el comportamiento
ruidoso e inexacto de los anotadores y la etiqueta real de los expertos. En lo que re-
specta a MIL, los enfoques consideran etiquetas globales. Los anotadores expertos no

proporcionan una etiqueta para cada muestra, sino para un conjunto (bolsa) de ellas.

Objetivos y estructura de la tesis

Esta tesis propone y aplica clasificadores probabilisticos basados en GPs y DGPs. En
concreto, se estudia su aplicaciéon a problemas supervisados y débilmente supervisados
de clasificacién automatica de senales sismicas de volcanes e imagenes médicas. En el
caso de las aproximaciones supervisadas, abordamos la clasificacién de senales volcanicas
e imagenes histopatolégicas. En cuanto a las débilmente supervisadas, nos centramos
en aplicar crowdsourcing en histopatologia, donde multiples estudiantes de medicina
proporcionan anotaciones ruidosas, y en MIL, donde los médicos expertos sélo propor-
cionan etiquetas globales para escdneres de tomografia computarizada. El aprendizaje
supervisado se aborda en los capitulos 2-3 y el débilmente supervisado en los capitulos
4-5.

El capitulo 2 incluye nuestra contribucién a las aplicaciones en el drea de la vul-
canologia. Abordamos el problema de la clasificacién automatica de las ondas volcanicas-
sismicas. Ademsds, introducimos los GPs y DGPs a la comunidad vulcanolégica y
mostramos como estos métodos probabilisticos superan al resto de los presentados hasta
ahora. Esta seccién también incluye una breve e intuitiva introduccién a los modelos de
GPs y DGPs utilizados en el resto de la tesis.

El capitulo 3 incluye la aplicacion de los GPs y DGPs a la clasificacién de cancer en
imégenes histopatolégicas. Introducimos el uso de GPs y DGPs en problemas de clasifi-
cacidén del cancer de prostata. Ademds, presentamos rasgos morfoldgicos que codifican la
informacién a nivel de glandula, y mostramos que combinando estas caracteristicas con
DGPs, podemos competir con métodos de Deep Learning (DL). También presentamos
un nuevo conjunto de datos publicos de cancer de préstata con anotaciones de expertos.

El capitulo 4 estudia el uso de GPs para el aprendizaje de crowdsourcing en patologia
digital. Predecimos tanto la anotacién de los expertos como el comportamiento de cada
anotador. Lo comparamos con otros enfoques de crowdsourcing basados en DL. Ademaés,
ilustramos con mapas de segmentacién los resultados obtenidos.

El capitulo 5 propone un modelo probabilistico basado en DGPs para problemas
MIL. Aplicamos este modelo combinado con una red neuronal convolucional (CNN)
de atencion a la deteccion de hemorragias intracraneales en tomografia computarizada.
Este modelo es entrenado en dos fases, donde en la primera, la CNN extrae los rasgos,
y en la segunda, los DGPs realizan la clasificacién del escidner. Ademd&s, comparamos
su comportamiento con otras aproximaciones basadas en CNNs de atencién y GPs.

Concluimos que la complejidad de los DGPs ayuda a tener un mejor rendimiento a nivel
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de escaner. En concreto, reduce considerablemente el niimero de falsos positivos.

Conclusiones

Esta tesis demuestra que los métodos probabilisticos basados en GPs y DGPs son ca-
paces de superar a los métodos de DL en diferentes escenarios de etiquetado (en nuestro
caso, aprendizaje supervisado y débilmente supervisado) y dominios (en nuestro caso,

vulcanologia y medicina). Las principales conclusiones que se extraen son las siguientes:

1. En lo que respecta a la clasificacién de senales sismicas de volcanes, los GPs y
DGPs superaron a los métodos de DL funcionando mucho mejor en la deteccién
de clases raras. Ademads, los GPs y DGPs estimaron mejor la incertidumbre,

proporcionando probabilidades méas precisas.

2. En cuanto a la deteccién del cancer de prostata, demostramos que las carac-
teristicas extraidas del espacio de densidad éptica codificaban informacién maés
relevante que las extraidas del espacio RGB. Ademés, las caracteristicas mor-
folégicas y de textura obtuvieron los mejores resultados al clasificarlos con GPs
o DGPs. Demostramos que los GPs y DGPs superaron a cualquier otro clasifi-
cador no profundo, y también fueron competitivos con los métodos basados en
DL. Finalmente, demostramos empiricamente que los GPs y DGPs son maés efi-

cientes que los métodos basados en DL.

3. En cuanto a la clasificacién usando crowdsourcing en céancer, un GP entrenado
con caracteristicas extraidas de una red neuronal profunda preentrenada fue capaz
de obtener mejores resultados que los métodos basados en DL. Los GPs usando
crowdsourcing modelaron automaticamente las etiquetas ruidosas y la experiencia
de cada anotador. Este modelo, entrenado con etiquetas ruidosas, fue competitivo
con el entrenado con anotaciones de expertos en la clasificacién del cancer de mama.
Observamos que el crowdsourcing es una solucién factible para la falta de datos
etiquetados, ya que las imédgenes de cancer pueden ser anotadas masivamente por

estudiantes de medicina.

4. En cuanto al uso de MIL en la deteccion de hemorragias cerebrales, el DGP-
MIL propuesto logré mejores resultados que el basado en DL y GP no profundos.
Ademsds, demostramos la necesidad de modelos jerarquicos basados en GPs para
aprender funciones complejas en aplicaciones reales. Este modelo fue capaz de
obtener mejores resultados tanto a nivel de escaneo como de cortes, y su precisién
fue notablemente mejor. Fue capaz de identificar con mayor precision los falsos
positivos, resultando asi en un clasificador méas robusto para su uso en medicina.

Estos resultados abren una nueva puerta para el etiquetado eficiente y la posibili-
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dad de entrenar modelos mas potentes con una menor dependencia del etiquetado

exhaustivo por un experto.
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Chapter 1

Introduction

The next generation of data-efficient
learning approaches relies on us
developing new algorithms that can
propagate stochasticity or uncertainty
right through the model

Neil Lawrence

Probabilistic methods are of great interest and use in the machine learning commu-
nity (Murphy, 2022). They can deal with difficult modeling and learning tasks, being
suitable for many different scenarios. In this framework, Gaussian Processes (GPs) are
very popular. GPs are fully probabilistic non-parametric models with applications in
regression and classification (Rasmussen & Williams, 2006). Since GPs estimate the
uncertainty in modeling and prediction, they can accurately measure the confidence on
the outcome. GPs encode prior information in a kernel function, acting as a strong reg-
ularizer. In contrast to deep models, they have to learn fewer parameters to estimate a
complex model. These characteristics usually lead to a better generalization capability.
In brief, GPs perform well in unseen data, even when data is scarce. However, they
can only represent a limited number of functions. Deep Gaussian Processes (DGPs)
overcome this lack of expressiveness due to their hierarchical structure (Damianou &
Lawrence, 2013). They consist of several stacked GPs, where the output of one GP is
the input to the next GP. DGPs combine the best features of deep models and GPs.
This hierarchical extension can represent more complex functions while retaining the
advantages of GPs. For these reasons, GPs and DGPs have been used in different ar-
eas with promising results: medicine (Kandemir, 2015; Li et al., 2021), remote sensing
(Svendsen, Martino, & Camps-Valls, 2020; Svendsen, I\/Iorales—Alvarez, et al., 2020), and
physics (Bishnoi et al., 2021), among many others.

Together with classical supervised learning, one important topic covered in this thesis

is weakly supervised learning. In some areas of application, such as medicine, obtaining

fine-grained expert labels is difficult due to the high cost of the data labeling process.
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In these cases, weak supervision is needed (Zhou, 2018). GPs have been introduced
for two types of weakly supervised classification: crowdsourcing (Morales—Alvarez et al.,
2022) and Multiple Instance Learning (MIL) (Haufimann et al., 2017). Crowdsourc-
ing distributes the effort of labeling among multiple annotators with varying expertise.
Crowdsourcing methods usually model the noisy annotator behavior and the expert
ground truth. Regarding the MIL setting, it usually considers coarse-grained labels.
Expert annotators do not provide a label for each sample but for a bag of them.

This thesis proposes and applies probabilistic classifiers based on GPs and DGPs.
Specifically, we study their application to supervised and weakly supervised problems in
volcano-seismic signals and medical images. Regarding the supervised ones, we address
volcano-seismic signal and histopathological images classification. If we focus on the
weakly supervised ones, we address crowdsourcing in histopathology, where multiple
medical students provide noisy annotations, and MIL, where the expert doctors only
provide global labels for whole CT scans.

The rest of the chapter is structured as follows. First, Section 1.1 provides a brief
and intuitive introduction to our tool, GPs, and DGPs. We describe their mathemat-
ical formulation and include graphical examples for a deeper understanding. Then,
Section 1.2 covers the supervised learning tasks addressed in this thesis. These appli-
cations range from volcanology to medicine. Then, Section 1.3 introduces the weakly
supervised approaches, i.e., crowdsourcing with histopathological images and Multiple
Instance Learning in CT scans. Section 1.4 collects the objectives. Section 1.5 explains
the methodology used. Finally, Section 1.6 discloses the results and structure of the rest
of the thesis.

1.1 Gaussian Processes

Before introducing the areas of application studied in the thesis, we provide a brief and
graphical introduction to GPs and DGPs, the probabilistic classifiers studied. Also, this
theory is presented in the papers included in this thesis.

A Gaussian Process prior assumes a multivariate normal distribution on the latent
variable f = (f1,..., fn)T given X. A mean and a kernel (covariance) functions define
this prior distribution. Without loss of generality, the mean function u(x) is usually
set to 0. The kernel k(x,x’) encodes the prior belief about the data. It encapsulates
the characteristics of the functions that the GP is going to estimate. The most popular
kernel is the Squared Exponential (SE). It has a great power of representation. Also, it
imposes smoothness on the latent function f. The SE kernel is defined as ksg(x;, x;) =

— i —x,]1?

o7 ), where the parameters C and [ are usually estimated by maximum

Cexp (
likelihood.
Once we have modeled the latent function f using a GP prior, we have to define

the observation model p(y|f), where y is the noisy observed variable. The observation
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model depends on the specific task. For binary classification, the common likelihood is
the Bernoulli distribution, i.e., p(y;|fi) = Ber(y;;sigmoid(f;)). The joint density of y

and f becomes,

N
p(v.f) = [[ pwalfa) p(f) . (1.1)
n=1

likelihood

where we assume independence across the instance labels given the latent variables.
The goal becomes the estimation of the model parameters, in this case C' and [, and the
calculation of the (posterior distribution of) latent function given the (observed) training
data p(fly).

One main drawback of Gaussian Processes is their scalability. They have a high
computational cost O(N?3) because their formulation involves the inversion of an N x N
matrix. Sparse GPs have been proposed to overcome the scalability problem (Titsias,
2009). They use M < N inducing points u,, which are GP realizations at inducing
locations z,,. We can see this as f(z) = u. The inducing points encode the informa-
tion of the observations in a few points. Their locations {z,,}}_, are estimated while
learning. This approach lightens the computational cost to O(nM?). However, the pos-
terior distribution is intractable and approximate inference must be used. The Scalable
Variational Gaussian Process (SVGP) inference is the state of the art for sparse GPs
(Hensman, de G. Matthews, & Ghahramani, 2015). Furthermore, it allows to train in

mini-batches. The joint density in this case is given by

N
p(y,f,w) = [ pWal fa) p(f10; Z)p(u; 2), (1.2)
- \—,—/
&,_/ sparse GP prior
likelihood
the semicolon notation indicates which are the deterministic inputs of each function.

The goal here is to calculate p(u, f|y) and estimate the model parameters.

Figure 1.1 shows an example of Sparse Gaussian Processes for a 1-dimensional regres-
sion problem. In a regression problem, we observe noisy data produced by an unobserved
latent function. The goal is to approximate the latent function by learning a function
from the noisy data. We see that the GP mean approaches the latent function. Further-
more, the latent function is inside the confidence interval. The estimated uncertainty
reflects the lack of knowledge of the model, for instance, in areas with less inducing
points. Also notice that the optimal location for the inducing points is where the func-
tion has more variations. Figure 1.2 shows an example of GPs for binary classification
in a 1-dimensional toy problem. In (a), we draw samples for the posterior distribution of

the latent variable p(f|y). Note that all the samples share the same level of smoothness.



Chapter 1. Introduction 4

x  noisy observed data

GP mean

* estimated inducing locations
latent function

Confidence interval

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.1: Example of a Sparse Gaussian Process on a 1-dimensional regression problem.

..........

0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 1.2: 1-dimensional binary classification problem with the input dimension on the
x-axis and the output dimension on the y-axis. In (a) we draw the distribution of the
latent function p(f.). In (b) we draw p(y. = 1).

In (b), the sigmoid function squashes the latent functions to obtain the probabilities of

the observed samples.

1.1.1 Deep Gaussian Processes

A DGP is a hierarchical model which consists of several stacked SVGPs (Damianou &
Lawrence, 2013). We define {F'}£ | latent variables where each F! follows a GP prior
with input locations given by F!=!. We consider F¥ = X. We denote ff1 4 as the latent
variable value for the n-th instance in the dimension d (being 1 < d < D') for the layer
I. Notice that in this problem D = 1. The vector f} contains all the dimensions for the
n-th instance in the I-th later. For binary classification, again, the likelihood is defined

by a Bernoulli distribution,

p(yalfF) = o (fE)m (1o (fF) 7. (1.3)
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layer 1 layer 2 layer 3

P |

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.3: 3-layer Deep Gaussian Process for binary classification. We saw the latent
representation of each hidden layer.

Assuming independence across the instance labels given the latent variables, we obtain,

N

p(Y[E") = [ p(unl £1)- (1.4)

n=1

Because of the computational cost, we introduce again the so called sparsity. We
have M!~! inducing locations Z!~! at each layer | with inducing values U’ for each

dimension. So we can write the joint density function,

N
p(Y {F, UM,) = [ p(unl £})
n=1
likelihood
L
x [[p(®'U5F -, 2 p(uh 2. (1.5)
=1

DGP prior

Exact inference is unfeasible for DGPs. In this thesis, we follow the Doubly Stochastic
Variational Inference Salimbeni and Deisenroth (2017). Furthermore, it allows to train

in mini-batches.

Figure 1.3 shows samples of the latent function across the hidden layers of a DGP,
from the first and second layer, which are the hidden representation features learned.
Then, the third (final) layer is the output for the final classification. We can see that the
first layer are actually shallow GPs. Then, when we apply a GP to these features we can
obtain more complex patterns as shown in the second and third layers. The flat regions
are smooth while the jumps in the decision boundaries are abrupter. Despite being a
simple problem, we can see the superiority of DGPs over GPs. This fact encourages
their use for complex tasks as the studied throughout this thesis and the introduced in

the following sections.
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1.2 Supervised learning

The data utilized for this task in this thesis come from volcanology and histopathology.

This section introduces both fields and contextualizes the contributions.

1.2.1 Volcano-seismic signals

Volcanoes pose a hazard to property and population in several geographic areas. For this
reason, high-risk volcanoes are monitored to avoid further damage. Stations placed near
volcanoes perform this monitoring process. They capture the elastic waves produced by
different phenomena. These seismic signals offer insights into the internal dynamics of
the volcano. The objective is to classify seismic events from the registered signals and
associate them to their original geophysical source mechanism. A good classification of
these events can lead to the detection of events that precede eruptions. These events
are crucial to obtain an early-warning system that can help evacuate people and save
lives. Furthermore, we can also explain the dynamics of the volcano by analyzing the
spotted patterns. Unfortunately, as it happens in other areas, such as medical imaging,
large enough databases with high-quality labels are even more scarce. For this reason,
GPs, which have never been applied to this problem before, are also suitable.

In Chapter 2, we classify events recorded at the Volcdn de Fuego de Colima, in
Colima (Mexico). It is a complex scenario where hierarchical models based on deep
neural networks have been proposed. The Deep Belief Network (DBN) and a stacked
denoising autoencoder (sSDNA) were compared to other state-of-the-art isolated events
classifiers in this database (Titos, Bueno, Garcia, & Benitez, 2018). We propose GPs
and DGPs to address this problem with satisfying results. GPs and DGPs models

outperformed DNNs and estimated better the uncertainty in the predictions.

1.2.2 Histopathological images

According to the World Health Organization, cancer is a leading cause of death world-
wide, accounting for nearly 10 million deaths in 2020. The gold standard for cancer
detection is a biopsy. An expert pathologist has to analyze the samples on a microscope,
a process which is subjective and time consuming.

Digital scanners allow the storage of these samples as histological images. Then, Ma-
chine Learning (ML) methods can analyze these images. These facts encourage automa-
tizing the diagnosis task. Computer-Aided Diagnosis (CAD) systems use ML techniques
to help pathologists to provide an accurate and fast diagnosis. CAD systems decrease
the workload considerably, enabling doctors to focus on problematic cases.

CAD systems in histopathology have incorporated popular DL, methods successfully.
For example, DL methods previously presented for object classification have been used

in histopathology with satisfying results, such as VGG16, Inception v3, ResNet50, or
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EfficientNet (Ferlaino et al., 2018; Koné & Boulmane, 2018; Yang et al., 2021). Transfer
learning adapted this models for medical imaging (Ahmed et al., 2021; Shallu & Mehra,
2018). These deep neural networks have also been used as a backbone for segmentation
models (Kim et al., 2021; Priego-Torres, Sanchez-Morillo, Fernandez-Granero, & Garcia-
Rojo, 2020).

Chapter 3 includes the contributions of this thesis to histological cancer classification.
We introduce GPs to the digital pathology community. We compare GPs and DGPs
to DL methods. We show that GPs and DGPs are competitive to state-of-the-art DL

methods and, in some cases, perform better.

1.3 Weakly supervised learning

So far we have studied the use and performance of GP and DGPs in supervised tasks.
However, the use of supervised models may not be feasible in some medical imaging prob-
lems. The need for expert doctors to label data, often results in weakly labeled databases.
This thesis also contributes to weakly supervised learning problems by proposing prob-
abilistic methods based on GPs and DGPs.

1.3.1 Crowdsourcing in histopathological images

Crowdsourcing has emerged as a solution for efficient labeling. The main idea is to engage
a broad set of participants to annotate the images. Typically, the degree of expertise
varies among the participants. Thus, crowdsourced labeled data suffer from high labeling
noise. One common approach is to fix/aggregate all the labels in a previous step, for
example, majority voting. These methods tend to fail when most images have only one
label. Generally, it is better to keep each annotation and model the reliability of each
annotator separately (Karimi, Dou, Warfield, & Gholipour, 2020). Then, the method
simultaneously estimates a latent classifier that weights the labels of each annotator with
estimated reliability. Regarding this crowdsourced framework, Nir et al. (2018) applied
crowdsourcing to prostate cancer grading in histopathology images. Morales-Alvarez et
al. (2022) first proposed GPs for crowdsourcing (SVGPCR) to detect glitches in LIGO.

In Chapter 4, we adapt SVGPCR to breast cancer classification with promising
results. We predict the ground truth from non-expert annotations. We also estimate

the participants’ reliability and behavior.

1.3.2 Multiple Instance Learning in CT scans

Intracranial hemorrhage (ICH) has high mortality and can produce permanent disabil-
ity, thus, early diagnosis and proper treatment are essential for recovery. Computed
Tomography (CT) is a non-invasive technique for ICH diagnosis. CT scans are cheap

and accessible for patients and provide fast results for radiologists. A CT scan produces
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several images (slices) of the brain from different angles. Consequently, radiologists can
misdiagnose cases due to fatigue while screening these trials Strub, Leach, Tomsick, and
Vagal (2007). CAD systems can reduce the workload of radiologists and provide a fast
and accurate diagnosis.

DL methods based on CNNs have been widely studied in ICH detection. The most
straightforward way is to apply DL models at the slice level (Cho et al., 2019; Phong et
al., 2017), which consists in training models with the labeled slices and then to predict
at slice level. However, it is expensive to collect labels at the slice level. Scan labels are
easy to obtain since they already appear in the clinical report. To leverage scan labels,
3D CNNs have been applied (Jnawali, Arbabshirani, Rao, & M.d, 2018; Titano et al.,
2018). The main problem with these approaches is that 3D CNNs are computationally
expensive. Furthermore, 3D CNN can not localize where the injury is, which is crucial
for an interpretable prediction.

Multiple Instance Learning allows the easy obtention of labeled data. Since obtaining
fine-grained annotations is high-time consuming, one feasible approach is using coarse
ones. MIL avoids the exhaustive labeling of the image. It relies instead on global labels,
which describe and diagnose the whole medical scan. This framework is specially difficult
for supervised ML methods because they do not know the exact patterns of the studied
disease. Commonly, MIL methods can predict local and global labels on unseen whole
medical scans. The local prediction is of real utility for practical implementation. MIL
has been studied in medical imaging both in histopathological images, and CT scans
(Campanella et al., 2019; Wu, Schmidt, Herndndez-Sanchez, Molina, & Katsaggelos,
2021).

Chapter 5 proposes a probabilistic model based on Deep Gaussian Processes for MIL.
It is the first time that DGPs are proposed for this problem. We study the application of
ICH detection in CT scans. As commented before, globals labels of CT scans are already
in the clinical report. MIL methods overcome the limitations of 3D CNNs. They do not
need a large amount of computational resources and also can predict at slice level. We

predict at slice and scan level achieving excellent results compared to CNNs.

1.4 Objectives

After introducing the problems addressed in this thesis, we present the main objectives.
They include the development of probabilistic methods based on GPs and DGPs and
their application to different classification problems in medicine and volcanology. We
consider both fully (supervised) and weakly supervised tasks. Specifically, the objectives

of the thesis are as follows:

e To develop state-of-the-art methods for automatic classification of volcano-

seismic signals with Gaussian Processes and Deep Gaussian Processes.
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So far, GP-based models have not been applied in the field of volcanology. Only DL
methods have been studied in this domain. We truly believe that, due to the small
databases, GPs and DGPs-based models will perform better than state-of-the-art

deep neural networks.

e To develop state-of-the-art methods for supervised classification in dig-
ital pathology with Gaussian Processes and Deep Gaussian Processes.
Although Gaussian Processes have been applied with success in this field, DGPs
have not ever been proposed for histopathological problems. We seek to study the
behavior and performance of these probabilistic classifiers compared with state-of-
the-art DL methods. We also investigate the feasibility of using both handcrafted

and deep features.

e To address crowdsourcing classification in medical imaging using Gaus-
sian Processes. Since labeling in this domain poses a problem, this thesis aims
to study for the first time a probabilistic GP-based model with data collected
from multiple non-expert participants. Here, the problem is twofold. The objec-
tive is both to discern the ground truth and how to model the noisy behavior of

non-expert. Qur goal is also to estimate the reliability of each participant.

e To improve state-of-the-art Multiple Instance Learning methods for
medical imaging with Gaussian Processes and Deep Gaussian Processes.
MIL provides a solution for sparse labeling. This thesis aims to tackle this problem
with GPs and DGPs and study them against previous methods based on shallow
GPs and DL. Our objective is not only to predict at bag level but also instance

level, in other words, to localize the lesion.

1.5 Methodology

To fulfill the objectives, we present below the methodology designed for this thesis. As
the study involves an exhaustive experimentation and all the objectives must be proved
empirically, the methodology is close to the scientific method. The guidelines applied
will be:

1. Observation: We first study the literature regarding GPs and DGPs as well as

previous techniques used in the addressed domains.

2. Data collection: We collect real-world data from different sources to both train

and assess the algorithms. We consider public databases whenever possible.

3. Hypothesis formulation: We select state-of-the-art models and propose new

ones to improve the results. We address the problems presented in the objectives.
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4. Experimentation: We perform rigorous experimentation with the collected data
in step two. We use the computation resources of the Visual Information Processing
research group of the University of Granada. Since the datasets addressed in this

thesis are mostly imbalanced, the fl score is of crucial importance.

5. Hypothesis contrast: We compare, analyze and validate the results obtained in

the experimentation against the state-of-the-art techniques in the literature.

6. Demonstration or refutation of the hypothesis: We check if the extracted
conclusions agree with the hypothesis previously formulated. If the results do not

satisfy them, we will go back to step three and formulate a new hypothesis.

7. Thesis extraction: We formalize the conclusions during the research process and
justify the developed methods through the experimentation. All the proposals and

results are synthesized in this memory.

1.6 Results

This section provides the main results obtained using the methodology to pursue the
objectives. The main contributions are at the beginning of the corresponding chapter,
and Chapter 6 exposes the conclusions of these results and future work. In this thesis, the
results can be separated into two different problems: supervised and weakly supervised

learning.

1.6.1 Supervised learning

We address supervised learning using Gaussian Processes and Deep Gaussian Processes.
We develop probabilistic methods based on them with application in volcanology and
medical imaging.

Chapter 2 includes our contribution to volcanology in one journal article (JCR Q1).
We address the problem of the automatic classification of volcano-seismic waves. We in-
troduce GPs and DGPs to the volcanology community and show how these probabilistic
methods outperform state-of-he-art DL methods presented so far. The DL methods are
DBN and sDNA. We obtain not only better global results but also much better per-
formance in imbalanced classes. Also, the predictions of the GPs are more accurate.
Finally, GPs provide explainability about the importance of the different features. This
work also includes a brief and intuitive introduction to GPs and DGPs used in the rest
of the thesis.

Chapter 3 includes the application of GPs and DGPs to supervised cancer clas-
sification of histopathological images in one journal article (JCR Q1). We introduce
GPs and DGPs to prostate cancer classification. We design handcrafted features which

encode morphological information. We also obtain that by combining (morphological
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and texture) handcrafted features with DGPs, we fairly compete with state-of-the-art
DL methods in histopathology. These methods are Inception v3, Xception and VGG19.
We obtain that GPs and DGPs are computationally more efficient. Finally, we release a
new public dataset of prostate cancer with expert annotations from the Hospital Clinico

Universitario de Valencia.

1.6.2 Weakly supervised learning

Labeling medical images is costly and time-consuming. To alleviate the data collection
process, recent techniques rely on weakly supervised learning. Here, we present the main
results obtained from two different approaches: crowdsourcing and multiple instance
learning.

Chapter 4 studies the use of GPs for crowdsourcing learning in digital pathology
in one journal article (JCR Q1). We obtain that this probabilistic crowdsourcing model
outperforms other state-of-the-art DL methods. The backbone for feature extraction
used to compare and study the model is the VGG16. GPs for crowdsourcing predict
well the ground truth as well as the noisy annotator behavior. The segmentation maps
illustrate that this method is useful for medical image analysis. Finally, this crowd-
sourcing model performs closely to the one trained with expert labels. This framework
enables efficient labeling of medical images by engaging non-experts, for example, med-
ical students, instead of experts.

Chapter 5 proposes a probabilistic model based on DGPs for MIL problems in
one journal article (JCR Q1). We apply this model combined with an attention CNN
to intracranial hemorrhage detection in CT scans. We compare its behavior with other
approaches based on attention CNNs and shallow GPs. We conclude that the complexity
of DGPs helps perform better at the scan level. This approach allows to work with
larger databases since the global (bag) labels are in medical reports without the need for
expert doctors for data labeling. Finally, this system outperforms the precision reached
by previous approaches, thus, reducing considerably the number of false positives. This
result is of vital importance for practical systems in hospitals where the reliability of the

predicted results is fundamental.
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event classification.

e We elaborate an intuitive introduction for GPs and DGPs, including a graphical

motivation for the use of these models.

e We conduct a comprehensive and insightful study of GPs and DGPs against other
methods based on deep neural networks. GPs and DGPs outperform the rest and

also predict more reliable probabilities.
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Abstract

Automatic classification of volcano-seismic events is a key problem in volcanology. Due
to its complexity, Deep Learning (DL) techniques have become the tool of choice for this
problem, outperforming classical classifiers. The main drawback of this approach, when
applied to the classification of volcano-seismic events, is its tendency to overfit because
of the small-size available databases. In this work, we propose and analyze the use
of Gaussian Processes (GPs) and Deep Gaussian Processes (DGPs), their hierarchical
extension, for volcano-seismic event classification. We empirically prove the adequacy of
the proposed modelling with an insightful and exhaustive comparison with state-of-the-
art DL-based methods on a seismic database recorded at “Volcan de Fuego”, in Colima
(Mexico). The hierarchical structure of DGPs and the reduced number of parameters to
be automatically estimated become essential to achieve an excellent performance even
on small databases, capturing well the complex patterns of seismic signals for all classes
and in particular for those which have been hardly observed.

Keywords: Geoscience and remote sensing, geophysical signal processing, remote
monitoring, remote sensing, signal processing, volcanoes, volcanic activity, gaussian
processes, deep gaussian processes, deep learning.

1. Introduction

Geophysical processes like displacements of magma and other fluids or gases, or
fractures of solid materials in volcanic areas, are derived from the exchange of elastic
energy between volcanic structures and their surroundings. Seismic signals registered by
stations deployed near volcanoes capture elastic waves that reflect such exchanges. Their
study provides very valuable information. When properly interpreted, seismic signals
offer a useful insight into the internal dynamics of the volcano. Source mechanisms
originating them can be inferred from their analysis, together with information about
the earth’s crust materials traversed during the trip of the elastic wave towards the
station registering it [1][2].
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Detection and classification of seismic events consists of processing seismic registers
to spot events and associate them with their originary geophysical source mechanism
based on the characteristics of the signal. The source mechanism inference is a complex
task given the number of additional factors that influence the signal arriving at the
seismic station. The degree of elasticity/anisotropy of materials in the source location,
distance to the station, characteristics of the propagation path, or frequency response of
the registering instrument are examples of them. Once detected, the spotted patterns
in the sequence of events are analyzed to understand the physical model explaining the
dynamics of the volcano. They are also used in applications like early-warning monitoring
systems based on the detection of events precursors of eruptions.

In the last decades, the amount of seismic data available has increased enormously
together with the computing and storage capacity. These facts have encouraged the
geophysical community to explore the use of Machine Learning (ML) algorithms for
automatic classification of seismic events [3][4][5]. ML techniques avoid the tedious and
repetitive work of manual labeling, often done by geophysical experts, and increase the
capacity to process enormous volumes of data. They capture complex data correlations
not detectable by human experts. There is a wide range of possible ML algorithms usable
for automatic classification of seismic events. The election of the approach depends on
factors like the dimensionality of the data and corresponding classes, the size of the
labeled training database, the continuous/isolated classification objective needed, or the
interpretability of the model searched for.

Within the field of seismicity, the classification of volcano-seismic events presents
specific challenges derived from their origins. Simultaneous seismic events related to
liquid and /or gas-solid processes take place in the volcanic scenario. Tremors, long period
events, or surface effects like rockfalls, landslides, or pyroclastic density flows might
happen simultaneously generating complex seismic registers with overlapped events. In
addition, volcanic regions present changing propagation and site properties. Sismo-
volcanic sources are often shallower compared to tectonic ones. As a consequence, near-
source and surface-propagation effects complicate the analysis of the seismic signal. The
labeling task must therefore be carried out by expert geophysicists with a deep knowledge
of the particular volcano generating the data. This is a difficult, tedious, and time-
consuming task that requires deep expert knowledge and a strict maintenance of the
labeling criteria. For all these reasons, large enough databases with high quality labels
are scarce, but extremely necessary to improve the knowledge of the volcanic structures
and predict their behavior.

Supervised ML techniques for automatic classification of isolated volcano-seismic
events started around 2005 with the usage of Artificial Neural Networks (ANN) in the
pioneer [6]. Since then, interesting applications like [7], and models based on Support
Vector Machines (SVM) [8], combination of several shallow classifiers like ANN and SVM
[9] or ANN and Genetic Algorithms [10] have been developed. In parallel, Hidden Markov
Models [11][12][13][14] have been introduced to model temporal structures, providing
approaches to successfully detect and classify events in continuous seismic registers.

DL approaches, with higher degree of abstraction and knowledge extraction for com-
plicated data sets, became popular after the proposals of Hinton in 2006 [15] and Bengio
in 2012 [16] (accompanied by important advances in computational power). These two
works proposed, respectively, to use Restricted Boltzman Machines (RBMs) and De-
noising Autoencoders (DAs) to initialize hidden layers via unsupervised layer-by-layer
training, proving that Deep Networks could be trained well, with more optimal initial-
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izations and useful learned representations of the data.

DL was first applied to image processing and speech, and has spread its usage to
many disciplines, with attractive applications in the field of seismology. Examples of
them are the automatic P-phase picking approach in [17], the skip connection CNN
proposed in [18] to detect geyser related events in continuous registers, or the usage
of Deep Convolutional Autoencoders for seismic signal clustering in [19]. Classification
of volcano-seismic signals using Deep Neural Networks (DNNs) was first presented by
[20] with the implementation of a Deep Belief Network (DBN) and a stacked denoising
autoencoder (sDNA). Their classification performance was compared to the state-of-the-
art isolated events classifiers on the seismic events database of the Volcdn de Fuego de
Colima (México). The work in [21] implemented and compared three Recurrent Neural
Network (RNN) architectures (Vanilla, LSTM and GRU) to detect and classify volcano-
seismic events from the Volcdn de Decepcion (Antarctica) in continuous registers. Unfor-
tunately, the use of DL techniques is based on the availability of large amounts of data.
To overcome the lack of large databases of labeled volcano-seismic events necessary for
effective classification with DL architectures, Transfer Learning approaches based on DL
have been explored in [22] and [23].

In the ML scenario described so far, GP models were introduced in 2006 [24]. They
are non-parametric probabilistic models which deal with uncertainty in prediction and
modeling. Interesting connections between DNNs and GPs were studied in [25], where
the correspondence between GPs and priors for infinitely wide DNNs was established.
Their expressiveness and robustness to overfit have been largely praised. The prior
information in the kernel function of the GPs acts like a regularizer making them suitable
for not very large databases, which is the case in volcanology. This is in contrast to neural
networks which have to learn a huge amount of parameters to estimate a complex model
and so they tend to overfit on small databases. Furthermore, as N. Lawrence indicates
in his post [26], the next generation of data efficient learning approaches relies on us
developing new algorithms that can propagate stochasticity or uncertainty right through
the model. See also [27] and the seminar thesis [28].

Although GPs are very flexible, they suffer from a severe limitation. They are com-
monly used with stationary kernels which makes them unsuitable for complex patterns,
e.g. functions which combine flat regions with high-variability ones. Recent advances
have shown that any number of GP models can be stacked to implement deep hierar-
chies. These hierarchical models maintain the main advantages of GPs while learning
more abstract and complex models. Deep Gaussian Processes (DGPs) were first in-
troduced in [29] in 2013, their probabilistic DL modelling was very promising but the
inference procedure complicated. In 2017, [30] introduced the doubly stochastic varia-
tional inference model for DGPs which, since then, became the current state of the art
for DGP inference.

GPs, but not DGPs, have been used for different tasks in seismic problems, al-
though none of them have been ever used before for automatic seismic-event classifica-
tion. Specifically, GPs have been used for regression in seismic problems with promising
results in this field. The authors of [31] proposed a generative model for seismic moni-
toring. This model can recover weak events from the raw signal. They used GPs over
wavelet parameters to predict detailed waveform fluctuations based on historical events,
while degrading smoothly to simple parametric envelopes in regions with no histori-
cal seismicity. The authors of [32] proposed a new approximation for large-scale GPs,
specifically for GP latent variable models (GPLVM). They proposed to approximate the
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marginal likelihood of the full GP via a random Markov field in which local GPs are
connected by pairwise potentials. This approximation allows to efficiently perform in-
ference for spatial data and it was applied successfully to seismic location. The authors
of [33] used GP regression for anomaly detection, more specifically, for fault detection
in seismic data. Since the used GPs expected smooth functions, their results show that
fault points can be detected when the smooth trend of layers is disrupted by faulting.

This paper represents, to the best of our knowledge, the first contribution on the
use of GPs and DGPs for automatic seismic-event classification. An approach that is
tested here on the seismic dataset recorded at the Volcdn de Fuego de Colima, in Colima
(Mexico). Due to the complex character of this classification problem, the current state-
of-the-art methods are based on hierarchical deep models. We show here that GPs
outperform all the shallow classifiers and that they are competitive to DNNs. The
experiments also show that the 2-layer DGP model outperforms DNNs, in particular in
classes hardly represented. Additional experiments indicate that GPs and DGPs can
learn good models even when the database is small. When data is scarce, GPs are
the best performing models. With more data, deeper models, like the 4-layer DGPs
provide better results. The study on the prediction confidence of each model shows that
GP-based methods obtained probabilities closer to 1 than DNNs.

The rest of the paper is organized as follows. In section 2 we provide a brief intro-
duction to both GPs and DGPs. This introduction is expanded in appendix Appendix
A where a complete theoretical and intuitive description of GPs and DGPs for multi-
class classification problems is included. In section 3, we carry out an insightful and
exhaustive experimental analysis whose goal is to compare GPs and DGPs to current
state-of-the-art both shallow and deep classifiers on the database recorded at Volcdn de
Fuego de Colima, in Colima (Mexico) [20]. Conclusions are drawn in section 4.

2. Deep Gaussian Process classifier

In this section we provide a brief introduction to the use of GPs and DGPs for
multiclass classification problems. An extended and more detailed introduction can be
found in appendix Appendix A.

A multiclass classification problem with K classes consists of N labeled instances
{(%n, yn) }2_; where x,, € RP is the feature vector and y,, € {1,..., K} the class label of
the n-th instance. For each instance x,, its label y,, is modeled using K latent variables
f,. = {fu(xn) <, through a specific likelihood p(y|f,.). In this work we utilize the
robust max likelihood, which prevents overfitting in GPs.

In a GP based formulation of a supervised problem we assume that the distribution
of f = (f1,..., fn)T given X is a multivariate normal, where we assume zero mean for
simplicity and a kernel function k(- -) defines our covariance matrix. In this paper we use

—[1xi—x;[?
22

the squared exponential kernel (SE) defined as ksg(x;,x;) = 0% exp ( ), where

the parameters o and [ will be estimated from the observations. See Figures A.8, A.9 and
A.11 in appendix Appendix A for a better understanding of GPs. For scalability, we also
defined M < N inducing points u,, which are the realization of the GP in the locations
Zpm, that is, u,, = f(z,,). The inducing points summarize information from the entire
dataset in a few points. Their locations are learned in the optimization process too.
The posterior distribution for this model is not tractable so an approximate inference
method has to be used. In this work, we follow the scalable variational inference for GPs
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(SVGP) [34]. From here on, and to make explicit the inference procedure used, we will
refer to the single-layer GP as SVGP.

SVGPs are flexible non-parametric probabilistic models very frequently used in clas-
sification and regression problems. However, these models can only represent a restricted
class of functions. To overcome this limitation, hierarchical models based on GPs were
proposed [29]. DGPs use the outputs of a standard SVGP as the input to another
SVGP. If this is repeated L times, we obtain a hierarchy of SVGPs that is known as
a DGP with L + 1 layers. Due to its hierarchical structure it achieves a greater level
of abstraction and can capture more complex patterns. See Figures A.13 and A.14 in
appendix Appendix A for a better understanding of how DGPs tackle the complexity
in a toy example. Volcano seismic signals are very complex with classes that are difficult
to distinguish. We will see that DGPs are very suitable for our classification task.

3. Practical Application: automatic events classification for the Volcan de
Fuego de Colima’, México

3.1. Database description

Section 3 analyses the performance of SVGP and DGP methods for classification
of volcano-seismic events. Classification experiments are carried out using a database
of 9.332 seismic events registered at the Voledn de Fuego de Colima in México [35].
These registers and their labels are the result of a careful and demanding process of
expert analysis and review, to eliminate human artefacts and noise, to identify source
mechanisms, and to analyse how site and path effects can influence waveforms. The
labeled database contains 7 different events (classes) with diverse spectral and temporal
characteristics, associated to 7 corresponding source mechanisms (REG, VTE, LPE,
TRE, EXP, COL, and NOISE). They can be grouped as follows:

i. Events originated by fractures of solid materials in the earth’s crust: Regional
Earthquakes (REG) and Volcano-tectonic Earthquakes (VTE). As a result of the
fracture, elastic waves containing P- and S-wave components associated respec-
tively to longitudinal and shear displacements are generated. If the fracture occurs
in the surrounding of the volcano, the event associated is identified as "VTE’, and
contains high frequencies reaching up to 40 Hz with durations from a few to tens
seconds. On the other hand, fractures that might occur in fault planes beyond the
volcanic region, can be registered by the seismometers in the volcanic area, being
labeled as 'REG’. REG events contain frequencies lower than those of VTEs, be-
cause the higher ones have been absorbed through the propagation path from the
fracture source location to the registering station. The database used in this work
contains 1.738 VTEs and 455 REGs.

ii. When no fracture occurs, volumetric modes of deformation of the volcanic struc-
ture (often triggered by displacements of water, gas, or mamga), produce Long
Period Fvents (LPE). They show frequencies of a few Hz (between 1 and 6 Hz for
the Volcan de Colima) and durations of a few seconds. Having spectral character-
istics and source mechanisms similar to those of LPEs but much longer duration,
Volcanic Tremors (TRE) identify a series of harmonic signals with sustained am-
plitude and variable duration from minutes to hours. The database used in this
work contains 2.699 LPEs and 1.170 TREs.
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iii. There are also certain events associated to the external activity of the volcano.
Often, sudden emissions of gas and ash to the atmosphere occur, and are recorded
by seismometers, receiving the name of Explosions (EXP). They are characterized
by a short-duration LPE, followed by high-frequency signals with a narrow energy
peak that can reach up to 20 Hz. Surface lava movements, or Lava Flows, (COL)
with durations of minutes and frequencies between 5 and 10 Hz, are also associated
to the external dynamics of the volcano. The database used in this work contains
2.699 LPEs, 278 EXPs, and 1.406 COLs.

iv. Finally, seismic noise (NOISE) registered by stations in absence of volcanic source
mechanisms, presents diverse amplitudes, frequencies and durations depending on
its nature (wind, sea, rain, cultural noise...). The database used contains 1.586
NOISE examples.

For comparison purposes, we follow the approach in [20]. The events used to feed
the models are parametrized to create input feature vectors with 21 features. Seismic
registers are first filtered in the band 1 to 25 Hz. Then, regardless of their duration, they
are divided into 3 segments of equal length (beginning, central part and ending of the
event). After that, following a common parametrization in the field, for each segment,
a feature vector of 5 Linear Predictive Coding (LPC) coefficients is calculated. The 15-
features vector so built is completed with 6 statistical features proposed in [36]. Features
16 to 18, parametrize the impulsiveness of the signal in the time domain by calculating
the 20", 50", and 80" cumulative-sum percentiles of the signal’s amplitude. Following
the same approximation in the frequency domain, features 19 to 21 calculate the 20",
50" and 80" cumulative-sum percentiles of the signal’s power spectral density.

3.2. FExperiments description

The chosen methods for this study are the following: the single-layer SVGP (SVGP)
and the 2-layer (DGP2), 3-layer (DGP3), and 4-layer (DGP4) DGPs. We also include an
exhaustive and insightful comparison to state-of-the-art shallow and deep classifiers. The
selected shallow classifiers are Support Vector Machine with linear (SVM-Lin) and radial
(SVM-Rad) kernels, Random Forest (RF), and a single-layer MLP. The deep classifiers
are the following deep neural networks (DNNs): Deep Belief Network with 2 (DBN-H2)
and 3 (DBN-H3) hidden layers, and Stacked Denoising Autoencoder with 2 (sDA-H2)
and 3 (sDA-H3) hidden layers. Configuration details for these classifiers, which were
tuned performing grid searches for the optimal number of neurons per layer, are fully
described in detail in [20].

The dataset is carefully split into four folds to perform a four-fold cross-validation
analysis. Taking into account the unbalanced nature of the classes of volcano-seismic
events, folds are carefully checked to ensure well-balanced statistically representative ex-
periments. For the sake of comparison between GPs and other deep learning approaches,
the exact same database and folds used in [20] are used in the present experiments. Given
the need to tune the system architecture, on each round of the cross-validation two folds
are used for training, one to search the optimal configuration (grid search for the possible
numbers of neurons per layer) and another to evaluate the classification results.

We use three different metrics to assess the performance: the f1 score, accuracy, and
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log loss. We define the multiclass accuracy and log loss as,

No. events classified correctly

accuracy = (1)

Total no. events

N
-1
log loss = N ,; log(p(yn) - €x,) (2)

being N the total number of events, the dot (-) denotes the scalar product and ey, the
one-hot encoding vector of the true class of the n-th instance. Notice that the accuracy
is the percentage of global success and the log loss measures not only the success but
the confidence of the classifier. We define the f1 score per class using the true positives
(TP), false negatives (FN) and false positives (FP) as

fl B 2x TP (3)
SO = S X TP + FN + FP’

and then, we take the average of them to obtain the multiclass macro average fl score.
Notice that this metric penalizes the misclassification of samples coming from underrep-
resented classes while the log loss and accuracy do not.

To provide a deep insight into the particular needs in classification of volcano-seismic
events, the rest of the experimental section has been structured as follows. Firstly in
subsection 3.3, we study the behavior and selection of hyperparameters using the val-
idation set. In addition to the selection of the model configuration, this experiment
also provides a better understanding of the presented models. Then, in subsections
3.4 and 3.5, we assess the generalization capability of the models on the test set. Fi-
nally, additional experiments of relevant interest in the area of knowledge are reported.
Given the lack of large high-quality labeled databases, the robustness of the classification
against different sizes of the dataset is studied in subsection 3.6. In addition, in order
to handle the difficulties to classify some events that could correspond to diverse source
mechanisms (including overlapped ones), confidence measures of the predictions for the
different classifiers are studied in subsection 3.7.

3.8. Selection of SVGP and DGP hyperparameters

In contrast to other classifiers where an exhaustive grid search is used for hyperparam-
eter tuning, in GP-based methods almost all the parameters are estimated automatically
and learned through an optimization process. Following common practice [30], we utilize
the same number of hidden units in each layer. Since in this problem we have a reduced
number of features, we set it to 7 after an empirical search. We use the SE kernel defined
in eq. (A.4). In this model the lengthscale [ associated to all the features is the same.
This is very useful to avoid overfitting in scenarios with small databases but features
frequently have different discriminative power. In the experiments, for an exhaustive
comparison, we also use the Automatic Relevance Determination (ARD) model, whose
kernel is defined by:

D . — . 2
kse-ARD (Xi, X;) = 02 exp <_ Z ||zi(d) — x;(d)|| ) 7 @

2
e 215

where z;(d) is the d-th coordinate of the feature vector x; and l; is its lengthscale
parameter.
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f1 score and log loss.

To adjust the number of inducing points we choose the following grid analysis: 10, 25,
50, 75, 100, 150 and 200 points. We report the following metrics for every combination
of inducing points and kernel (SE or SE-ARD): accuracy, fl-score and log loss, for both

training and validation sets.
Results on the training set

are shown in figure 1.

As the number of layers and

inducing points increases, the models perform better except for a slightly noisy behavior
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Figure 3: Estimated lengthscale values for the SVGP in test. The points represent the averaged values
and the bars the standard deviation. Lower (downwards) represents more importance of that feature for
the classifier.

Table 1: Averaged performance in test: fl score per class, macro-average f1 score and accuracy.
Noise EXP REG COL VTE TRE LPE Macro f1 Accuracy
No. Events 1586 278 455 1406 1738 1170 2699
SVM-Lin 0.9685 0.6639 0.9103 0.9419 0.9342 0.808 0.9275  0.8792+0.0045  0.9155+0.008
SVM-SE 0.9686 0.7186 0.8881 0.9475 0.9339 0.8463 0.9387  0.891740.0084  0.9232+0.0076

RF 0.9653 0.7188  0.9013  0.9478 0.941 0.8641  0.9413  0.8971£0.0093  0.928+0.0061
MLP 0.9711 0.7533  0.9003 0.9645 0.9468 0.8667 0.9485 0.9073+0.0068  0.9373+£0.007
SVGP 0.974 0.8002 0.9113 0.9756 0.9451 0.8927 0.9419 0.9201+0.0078 0.9408 +0.0027

Rel. Impr. (%) 0.2986 6.2259 1.2218 1.1509 -0.1796 2.9999 -0.6958 1.4108 0.3734

when few inducing points are used. On the validation set, see figure 2, more complex
architectures do not lead to better models. Once we have a sufficiently high number of
inducing points, we cannot capture more information to have a better performance in
the validation set. To summarize the essential information of the analysis, 100 points
are enough.

We also compare both the SE and SE-ARD kernels to find out whether there are
features more relevant than others. We can see that the ARD results are in general
slightly better. For example, looking at figure 2, SVGP, DGP2, and DGP3 reach a
0.92 f1 score value with ARD, while for SE DGP2 hardly reaches this value. Such
improvement will be helpful when detecting underrepresented classes since this global
metric gives weight to them.

To conclude this section. In general, the SE-ARD kernel model performs better
than SE. Furthermore, SE and SE-ARD become stable once they reach 100 inducing
points. Based on these results, we chose the SE-ARD kernel and 100 inducing points
as hyperparameters of the SVGP and DGP models for the subsequent evaluation of the
test sets.

3.4. Performance of shallow classifiers

In this subsection, we assess the generalization capability of shallow SVGP with 100
inducing points and SE-ARD kernel against the shallow state-of-art classifiers: SVM
with linear (SVM-Lin) and SE (SVM-SE) kernels, RF with 120 estimators and a single-
layer MLP.

In Table 1, we report per class and global f1 scores, and accuracy. Additionally, we
calculated the 95% confidence interval for the global metrics. The number of events per
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class and the relative improvement (Rel. Impr %) of the SVGP compared to MLP are
also analyzed. The different classes of events present diverse difficulties for classification,
depending on the number of instances per class and the variability and specificity of their
associated features. EXP and REG are the most challenging types of events. There are
two reasons for their lower classification results. First the number of examples per class is
very small compared to the rest of classes. Second, their spectral and temporal properties
are similar to those of other classes, making the discrimination more challenging. We
can see this fact clearly reflected in the fl score per class in Table 1.

SVM-Lin is the worst performing model although it is competitive compared to SVM-
SE and RF. Furthermore, as it can be seen, SVGP outperforms every shallow method.
In particular, although MLP is better for two classes, SVGP achieves the best accuracy,
working specially well on the challenging classes, i.e. EXP and REG. This behavior
is a consequence of using non-parametric models against those with a large number of
parameters.

The usage of SE-ARD provides a better model convergence, avoiding certain noise
introduced by less discriminative or redundant features. Besides, it points out which
are these more noisy features and which are the most effective ones. We estimated the
lengthscale for every dimension of the input feature vector. Lower values indicate higher
discriminative power of these features. Figure 3 shows the lengthscale values for the 21
features per event used to feed the classifiers described in section 3.1. For each segment
of event (beginning, central and final part), LPC coefficients 1 to 2 (features 1,2,6,7,11,12
in the feature vector) have the highest relevance. In particular, the shortest lengthscale
values correspond to time domain (features 16 to 18), while LPC coefficients 3 to 5 in the
central segment of signal (features 7 to 9) present the smallest discriminative relevance.
Notice that the most discriminative features have shorter deviation, being relevant across
different folds while less discriminative features do not.

Experiments in this subsection show that using a SVGP we are able to outperform
widely used shallow methods such as SVM, RF or MLP, mainly when the number of
events is scarce. Furthermore, information about the discrimintative potential of the
input features can be extracted when using SVGP and the SE-ARD kernel.

3.5. Performance of deep classifiers

The complexity of seismic events motivates the use of DL although the reduced
number of data may make them prone to overfitting. As we will see, the use of deep
non-parametric models overcomes this problem. In this subsection, we compare the
best shallow method, i.e. the SVGP, together with its hierarchical extensions, DGPs,
i.e. DGP2, DGP3 and DGP4, to the DBN and the sDA reported in [20]. Both DBN
and sDA with two and three hidden layers denoted by DBN-H2, DBN-H3, sDA-H2 and
sDA-H3, respectively, are considered. These models use the log loss as the cost function
minimizing it with stochastic gradient descent. To avoid overfitting, an early stopping
criterion and dropout with p = 0.20 are used.

In Table 2, we report per class and global f1 scores and accuracy. Additionally, we
calculated the 95% confidence interval for the global metrics. For the sake of comparison,
the relative improvement of the best DGP technique over the best DNN technique is
also presented for each class of events. The results confirm the advantages of using deep
models for this problem. The reported metrics are better than those in the previous
section except the ones related to the SVGP. SVGP is very competitive to DNNs. It has
a lower accuracy (0.9408) than the best DNN, sDA-H2 (0.9432), but the global {1 score is

10
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Table 2: Averaged performance in test: F1 score per class, macro-average F1 score and accuracy.
Noise EXP REG COL VTE TRE LPE macro F1 Accuracy
No. Events 1586 278 455 1406 1738 1170 2699
DBN-H2 0.9756 0.7542  0.9143 0.9729 0.9430 0.8898 0.9485 0.9140£0.0065  0.940440.0068
sDA-H2 0.9741 0.7778 0.9151 0.9697 0.9484 0.8978 0.9511 0.9192+0.006 0.943240.0066
DBN-H3 0.97 0.77 0.89 0.97 0.95 0.89 0.95 0.91+£0.0074 0.9387+0.0069

sDA-H3 0.97 0.78 0.91 0.97 0.94 0.89 0.95 0.92+0.0054 0.94104-0.0068

SVGP 0.974 0.8002 0.9113 09756  0.9451 0.8927 0.9419  0.9201£0.0078  0.9408+0.0027

DGP2 0.9789 0.8391 0.9175 0.9789 0.9461 0.9103 0.9478  0.931240.0034 0.9477+0.0043

DGP3 0.9765 0.8095 0.9031 0.9723  0.943 0.899 0.9447  0.9211+£0.0066  0.9419+0.0058

DGP4 0.982 0.8264 0.9182 0.9803 0.9497 0.9055 0.9472  0.9299+0.0095 0.947940.0065
Rel. Impr. (%) 0.6560 7.5769 0.3388 0.7606 -0.0316 1.3923 -0.3470 1.2174 0.4983

similar in both, i.e SVGP (0.9201) and sDA-H3 (0.92). Specifically, SVGP outperforms
the DNNs for the class EXP showing the capacity of GP models to handle difficult and
imbalanced datasets. This fact is confirmed looking at the best DGP models, DGP2 and
DGP4. Both models outperform the rest in accuracy and fl score obtaining the best
global accuracy value and also performing better in difficult and less represented classes.
In addition, DGP2 is statistically significant with respect to DNNs since their confidence
intervals do not overlap. Regarding the fl score per class, the best GP-based models,
i.e. DGP2 and DGP4, perform remarkably well for difficult classes. Specially, they work
notably well in EXP, COL, REG and TRE while DNNs only outperform DGPs in the
LPE and VTE classes which, together with NOISE, are more easy to identify. It is also
worth to point out that DGP2 is the best classifier identifying EXPs (0.8391), with a
high relative improvement (7.57%). As it can be observed, the relative improvement is
inversely related to the number of events in the class, and in these cases the difference
seems significant. The improvement in the detection of EXP obtained when DGPs are
used is very important in monitoring volcanic environments because together with the
LPE and VT they are often precursors of volcanic activity [2].

In figure 4, we depict accuracy, fl score, and log loss for the GP-based models.
Average values of the four cross-validation experiments are depicted with a dot, within
an interval line covering the results’s standard deviation for the four experiments. This
figure provides a better understanding of the results shown in Table 2. DGP2 and DGP4
are the best performing models while SVGP and DGP3 perform worse. In contrast to
DGP2, DGP4 suffers from larger standard deviation values. This higher variance in the
results indicates the presence of overfitting in complex models. In this sense, DGP2, with
a very good performance too, appears to be the model with the greatest generalization
capability.

In conclusion, deep GPs capture the complex patterns of seismic signals better than
DNNs, benefiting from the use of full probabilistic non-parametric models. These results
prove the adequacy of the GP-based models for classification of volcano-seismic events.
Furthermore, GPs not only perform well globally but, specially, on these important
classes. Finally, DGP2 is the best performing model with good global accuracy, a reduced
variance and with the best result on the most challenging class, i.e. EXPs.

3.6. Robustness to the size of the training set

In the previous subsection, we showed the superiority of GP-based models against
DNN ones in test performance. In seismic data, usually, we only have access to a small
amount of labeled data, so it is also interesting to analyze the behavior of the studied
methods when only a small dataset is provided. In this subsection, we vary the amount of

11
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Figure 5: Accuracy, fl score and log loss metrics varying the percentage of training samples available:
25%, 50%, 75%, and 100% of the training set.

training data available, using: 25%, 50%, and 75% of the whole dataset. The experiment
reveals more about the adequacy of the proposed approach in scenarios where data are
scarce. Figure 5 shows the accuracy, f1 score, and log loss performance of GP-based
models. We can clearly see the need of data as the depth of the model increases. When
only 25% of the training set is used, DGP4 performs poorly in contrast to the goodness of
SVGP and DGP2. The SVGP performance does not improve much with the increase in
data, in fact, it is the worst model with the entire dataset. In contrast, DGP4 improves
enormously as the percentage of data increases. This fact suggests that shallow models
are better in scenarios with small datasets while deeper models such as DGP4 play an
interesting role when more data are available. We also find that DGP2 performs very
well through the different experiments achieving very good results both with less and
more data. Table 3 provides an accuracy comparison between the DNN values reported
in [20] and those obtained by our GP-based models. Relative improvements of the best
DGP model over the best DNN model are also described. The superiority of GPs is
clear. For 25% and 50% of the data, DGP4 has not yet learned a good model, being
inferior to the best DNN. However for 25%, 50%, and 75% all GP models outperform
the best DNN.

As DNNs tend to overfit due to the huge amount of trainable parameters, they are
more sensitive to smaller database sizes. In contrast, GPs use prior knowledge which
acts like a strong regularization. They learn a good model even when a reduced dataset
is provided. In summary, as the experiment confirms, GPs perform very well, and better

12
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Table 3: Accuracy metric varying the percentage of training samples available among the 25%, 50% and
75% of the training set. The 100% corresponds to the entire training set.

Accuracy 25% 50% 75% 100%
DBN-H2 0.9069 0.9306 0.9283  0.9404
sDA-H2 0.9017  0.9121  0.9283  0.9432

DBN-H3 0.9125  0.922 0.928 0.9387
sDA-H3 0.9077  0.9209 0.9297 0.941

SVGP 0.9196 0.9356 0.9386  0.9408
DGP2 0.9194 0.9382 0.9427 0.9477
DGP3 0.9142  0.9359 09372  0.9419
DGP4 0.8971  0.9279  0.9369 0.9479

Rel. Impr. (%) 0.7562  0.8167 1.3983  0.4983
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Figure 6: Accuracy and fl score metrics varying the classification probability threshold. A sample is
predicted if the output probability of the highest class probability is higher than the selected threshold,
otherwise this sample is unclassified.

than DNNs, for all data sizes.

3.7. Bvaluating the confidence in the predictions

In volcano-seismic applications, it is of paramount importance to analyze the confi-
dence of class predictions. Classification results are often used in early-warning tasks:
detecting sequences of certain events which are precursors of eruptions; so trustable pre-
dictions together with a good quantification of their uncertainty are of high interest to
design early warning systems. In this section, to analyse the quality of the predictions, we
introduce a decision threshold over the probabilities output of the classification systems.
By considering as classified only events assigned to a class with probability greater than
the threshold and varying this threshold we can increase the confidence of the system.
Two studies are performed:

i) First, we study accuracy and fl score when different threshold values are used (0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 0,95 y 0.99). The results are shown in figure 6. As we increase
the threshold we are predicting less examples correctly, therefore accuracy and f1
score decrease. We can see that most samples are predicted with at least a 0.99
probability, we misclassify only the 7% if we change the threshold from 0.4 to 0.99.
Note that 0.99 is a very demanding threshold being most samples predicted with

13
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very high probability (close to 1). The faster decrease of f1 score suggests that there
is more uncertainty in the less represented classes.

In accuracy, for low thresholds, i.e. 0.4, 0.5, and 0.6, DGP2 and DGP4 classify more
events correctly than SVGP and DGP3 but with higher thresholds this difference
decreases (or is reduced). Regarding f1 score, we observe the same behavior. So the
number of events classified with high probabilities is almost the same in all cases,
but DGP2 and DGP4 are able to give more confidence to doubtful samples.

ii) For a complete understanding of the classifier confidence, figure 7 shows the distri-
bution of the predicted probabilities per class. X-axis represents the probability of
belonging to the class predicted. Y-Axis represents the cumulative density function
of these probabilities for each class of events. Comparing the probability CDF's for
different models, the figure provides information about how trustable the different
classifications are.

Firstly, we confirm that few samples are predicted with very low probability; indeed,
the most of the predictions are close to 1. This fact confirms that the models are
confident on the predictions. They define good decision boundaries and identify
every class well. All classifiers have a similar performance except for EXP and
TRE; as we saw in section 3.5, both are the most difficult types of events. For these
events, DGP2 and DGP4 perform better than SVGP and DGP3. This fact matches
with the log loss reported in figure 4.

In figure 4 of paper [20], the authors reported the same cumulative density functions
of classification probabilities values, for DNNs. We can see that GP-based methods
outperform DNN ones in this experiment. For example, in EXP, the difference
is quite clear. 50% is predicted with a 0.9 probability or more by the DNNs; in
contrast, GPs predicted more than 60% with high probability, i.e. 0.9 or more.

In conclusion, in this work, we observed that, for this database, the probabilities
given by the GPs are more trustworthy than the ones provided by the DNNs and the
best performing GP-based model, i.e. DGP2, is also the most confident.

4. Conclusion

In this work, we have introduced to the seismic community the usage of SVGPs and,
their hierarchical extension, DGPs for automatic volcano-seismic event classification. We
tested them on the seismic database recorded at Volcdn de Fuego de Colima, in Colima
(Mexico).

Due to the complexity of this problem, state-of-the-art methods are based on hierar-
chical deep models, i.e. DNNs. However, they require more data than usually available.
The obtained results indicate that SVGPs outperform all the shallow classifiers. More-
over, they are competitive to DNNs. The 2-layer DGP outperforms DNNs avoiding
overfitting. It attains both good accuracy and f1 score, and performs better than DNNs
on difficult classes.

We have proven the adequacy of GPs with additional experiments. The experiments
indicate that they can still learn good models even when the database is small. When
data is scarce SVGP was the best performing method. Besides, with more data, deeper
models, like 4-layer DGPs are an interesting option with promising results. In general,
the 2-layer DGP performed very well through different percentages of training data.
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Figure 7: Cumulative distribution function of the probabilities given by the GP classifiers per class. In
the Y-axis we represent the proportion of samples of that class with a certain predicted probability or
less. In the X-axis we represent these predicted probabilities.
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Finally, we carried out an exhaustive study on the prediction confidence. GP-based
methods obtained probabilities closer to 1 than DNNs.

These experiments suggest that GP-based methods are able to classify very well
seismic events, specially interesting classes like EXP, REG and LPE, even when data
is scarce. Besides, they take into account the model uncertainty, being a trustworthy
system for volcanologists. In short, we have shown that GPs and DGPs can be applied
with success to seismic problems.

Appendix A. Detailed introduction of Gaussian Processes and Deep Gaus-
sian Processes

In this appendix, we provide a more detailed introduction to the use of GPs and
DGPs for multiclass classification problems. We explain their probabilistic formulation,
provide some intuition and examples of them, and describe how inference is carried out.
An in-depth study of the inference methods followed here can be found in [34] for GPs
and in [30] for DGPs.

A multiclass classification problem with K classes consists of N labeled instances
{(Xn,yn)}Y_, where x,, € RP is the feature vector and y, € {1,..., K} the class label
of the n-th instance. We define the N x D matrix X as the feature matrix where in
the n-th row we have the feature vector of the n-th instance. In this work the features
(D = 21) are extracted from the raw signal, more information about them is provided
in subsection 3.1. We also define y the vector that gathers the labels of the samples.
Once the supervised classifier is trained, it is able to provide the class label y, for any
unseen instance X..

Appendiz A.1. Single-layer GPs

For each instance x,,, its label y,, is modeled using K latent variables f,, . = { fk(xn)}f:1
through a specific likelihood p(y|f,,.). The likelihood squashes the values of the latent
variable defined in R to the [0, 1] interval. Notice that this likelihood plays a similar role
as the output neurons play in DNNs. For example, the so extended softmax function
can be used here. In this work we utilize the robust max likelihood, which prevents
overfitting in GPs. It is defined by

l1—-¢ k=argmax f,;
P(yn = klfy,) = 1<<K (A.1)

c .
1 otherwise

with k € {1,...,K} and 1 — % > ¢ > 0 which is usually fixed to an small value, in this
work it was fixed to 10~3. For simplicity, we denote the latent variables by fi(x,) = frk-

We factorize the likelihood assuming that the class labels are independent for the
different samples:

N
p(y[F) = [] pnlfn.), (A.2)

where p(yy|f, ) is given by eq. (A.1). The N x K matrix F gathers the K latent variables
for the N instances. The (n, k) term corresponds to the k-th latent variable for the n-th
instance. The n-th row of F is denoted by f, ., and the k-th column by f;.

Having defined the observation model, we now turn our attention to the definition
of the prior model on F. Notice that, at observation level, if the class of the n—th
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Figure A.8: One dimensional example of a GP. We draw several samples from a GP with an SE kernel
varying the lengthscale. Shorter values of the lengthscale | produce wriggly curves while larger values
produce flat functions.

0.0 0.2 0.4 0.6 0.8 1.0

Figure A.9: One dimensional example of a GP with an SE kernel (I = 0.1 and ¢® = 1). We have
observed the values in z; = 0.2, z2 = 0.6 and x3 = 0.8. Then, we predict in 100 unobserved points
X, of the [0,1] interval given these observations. We draw p(Fx|X., X, F, ®) with X = {x1, 22,23} and
F = {f(z1), f(z2), f(z3)}: the blue line is the mean and the blue shadow the 0.95 confidence interval.
We also draw several samples from this distribution in orange. Observe that almost all samples are
contained in the confidence interval.

sample is k, fpr(xpn) is larger than f, ;(x,),j # k and that we are assuming that a
priori fj, and f;, j # k are independent. So we need to model now the a priori behavior
of each f;,7 = 1,..., K. We use a GP to define an a priori independent distribution
for each column component of the latent matrix. A GP is an infinite collection of
random variables in which every finite subset is Gaussian distributed. It can be seen as
a prior over functions. So we assume that the columns of the latent variable F', {fk}szl,
follow independent GP priors. For every k, it imposes that { fmk}fzvzl follow jointly a
Gaussian distribution N (f;|0, Kxx), where the covariance matrix is obtained using a
kernel function k(-,-) [24]. We can write the prior distribution of the latent function as

K K
p(F|®,X) = [ p(f:/©,X) = [[ M(fsl0, Kxx), (A.3)
k=1 k=1

where © are the kernel hyperparameters. The covariance matrix Kxx = K(X,X) =
(k(x4,%4))s,; encodes the properties of the desirable function (e.g. smoothness).
In this work we use the squared exponential (SE) kernel:

_ o~ ]2
ksg(xi,x;) = o? exp <Hxl2lzxj”) , (A.4)

this kernel has a great power of representation and it is used in many different scenarios
[24]. In this case, we have to estimate the lengthscale [ and variance o2 hyperparameters.
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Note that functions drawn from a GP with an SE kernel are infinitely differentiable
leading to smooth functions which are desirable in most problems. In figure A.8 assuming
that z1,...,2zy are 100 points evenly distributed in the interval [0, 1], we show several
samples of a GP with different elections of the lengthscale, we can notice that it controls
the level of smoothness. Larger values of this parameter produce flat functions while
shorter values lead to wriggly functions. Assuming that the GP has been observed only
at 1 = 0.2 , x9 = 0.6, 23 = 0.8 we show in figure A.9 the observed values together
with the predicted values f(X,) for X, being 100 points evenly distributed in the [0, 1]
interval. The use of a GP imposes that f(X.), f(z1,),..., f(x3) are jointly Gaussian
from which we can obtain the distribution of f(X,) given f(x1,),...,f(x3). We also
include their 0.95 confidence intervals.
The joint distribution of the probabilistic framework defined here is given by

p(y,F,X|®) = p(y|F) p(F|X,O). (A.5)
S—— —
likelihood  GP prior

Approximate inference methods, such as Laplace Method or Expectation Propaga-
tion, have a computational cost of O(KN?3) because they involve the inversion of an
N x N dimensional matrix. To amend this problem, we use the sparse approximation
of GPs [34]. We define M < N inducing points for each GP. These inducing points are
latent variables, they are the values of the GP realization at the inducing point locations
Z = {z1,...,zy} C RP. We gather them in the M x K matrix U. The (m,k) term
corresponds to the k-th latent variable of the m-th inducing point. The m-th row of U
is denoted by u,, ., and the k-th column by u;. As we have indicated these inducing
points can be seen as U = F(Z). We are summarizing the value of the true latent
function through the inducing points so it is important to optimize on their location. It
is expected that these optimal locations will end up close to informative places as the
decision boundaries. The probabilistic model of the sparse approach is given by

p(y,F,U|®) = p(y|F) p(F|U,©®)p(U|O), (A.6)
——
likelihood GP prior
Notice that
b(y. F|©) = / p(y[F)p(F[U, ©)p(U|©)dU, (A7)

and so the above factorization does not modify the modelling. Fortunately, it provides
us with a tool to perform tractable inference. We show the probabilistic graphical model
using inducing points in figure A.10.

In this work, we follow the scalable variational inference for GPs (SVGP) [34]. It
will allow to estimate the model parameters ® and also to approximate the posterior
distribution p(F, Uly, ®) by the distribution q(F,U). Using the joint distribution and
Jensen’s inequality we obtain the well known evidence lower bound (ELBO):

p(y,F,U|®)

F0) UdE. (A.8)

log p(y|®) > / A(F, U) log

notice that this bound is valid for every q(F, U) distribution. It is straightforward to see
that maximizing the ELBO is equivalent to minimize the Kullback-Leibler divergence
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—

Figure A.10: Probabilistic graphical model of a scalable variational gaussian process (SVGP). Dark
circles stand for observed variables while light circles stand for latent variables.

between ¢(F,U) and p(F,Uly,®). The SVGP approximation utilizes the following
parametric form for q:

q(F,U) =q(F|U,0)q(U) (A.9)
q(F|U,®) = p(F|U, ©) (A.10)
K
q(U) = [ N (ugmy, Sp) (A.11)
k=1
and then the ELBO can be rewritten as:
logp(y[|®) >
p(y|F)p(F|U)p(U)
/ AU (FIU) og P S A auar
U
= Epwjuyqu) log p(Y[F) + Equ) <2§U§)
N K
= Z Eq, ) log p(yilfn,:) — Z K L(q(ug)||p(uz)), (A.12)
n=1 k=1

where K L is the Kullback-Leibler divergence. The derivation in eq. (A.12) allows to see
the ELBO as the sum of two terms: the first one is a fidelity term imposing that the
latent classifier must classify well, and the second one a regularization term over the
latent variable in the inducing points. Our final goal then becomes to find the optimal
kernel hyperparameters e, inducing locations Z and variational parameters of q(U), i.e.
1y, S;, by maximizing the ELBO in eq. (A.12). Furthermore, since the ELBO factorizes
over the instances, we can use mini-batches for optimizing this function reducing the
computational cost, in this case considering that M < N, the computational cost is
O(NyM?K), where N is the mini-batch size.

Once the ELBO is optimized and the variational parameters computed, we can make
predictions on an unseen test sample x,. The value of the latent variable f, on this point
X, is given by

p(furlx, ©, X, y) = / p(fulw)p (| ©)duy,

~ Eq(uk)p(f*,k|uk)
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where the mean and the covariance matrix are defined by:

p=K, ;K iy, (A.14)
2 = ko + K, 7K 5 Sk — Kz K, LKy ). (A.15)

Finally, the class label is obtained using

p(ys) = / Dy [£)p(E]x.. €, X, y)df.. (A.16)

this integral is intractable and it can be computed using numerical algorithms, e.g.
Gaussian-Hermite quadrature.

In figure A.11, we depict a 1-D binary toy example to provide a better understanding
of the SVGP model. The observation model is

1 Yn 1 1—-yn
bl de) = (1) (1 1) (A17)

with y, € {0,1},z, € R. Notice that here we only have one SVGP. The blue dots are
class 0 and 1 observations, they have been observed at x € [0,1]. In figure A.11a, the
blue line represents the mean of the posterior latent function distribution and the blue
shadow the confidence interval. The wider this shadow the more uncertainty. We can
see that there is more uncertainty in the middle of the interval because there are no
observations there. This latent function takes values in R so it has to be squashed into
the [0, 1] interval using the likelihood. In figure A.11b, the black line goes from 0 to 1
and corresponds to the value of p(y.) for y, = 1 in eq. (A.16). Notice how this value
takes into account all the possible values of fi.

Appendiz A.2. Deep Gaussian Processes

In this subsection, we detail the hierarchical extension of SVGP. Roughly speaking,
the idea behind DGPs is to stack several SVGPs. If we use the output of one SVGP as
the input of another SVGP and we repeat this procedure L times we define the (L + 1)
layer. DGP were first introduced in [29].

As it happens to SVGP, exact inference is also intractable for DGPs. In this work, we
follow the doubly stochastic inference proposed in [30]. We introduce, at each layer [, M
inducing points U’ at inducing locations Z!~!. The joint distribution of the probabilistic
framework defined here is given by

=

p(y, {F, UY)) = [] plwal £))
n=1
likelihood
L
< [[p(® UL F 27 p(Uh 271,
=1

(A.18)

DGP prior

we consider F¥ = X, and each factor in the product is the joint distribution over (F!, U?)
of a SVGP in the inputs (F!~!,Z!~1), but rewritten with the conditional probability
given U'. We introduce here the semicolon notation to clarify which are the inputs in

20



Chapter 2. Automatic Classification of Volcano-Seismic Events 33

10

-10

0.0 0.2 0.4 0.6 0.8 1.0
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Figure A.11: One dimensional binary classification problem. The blue points represent the observations.
In (a) we draw p(f.): the blue line is the mean and the blue shadow the 0.95 confidence interval on the
predictions. The classifier has more uncertainty in the region where there are no observations. In (b) we
squash the latent function to the [0,1] interval, the black line is p(y. = 1).
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Figure A.12: Probabilistic graphical model of a deep gaussian process with L layers. Dark circles stand
for observed variables while light circles stand for latent variables. The dotted arrow refers to the
inductive process for building the general deep model.

the equations. We also consider the same amount of inducing points in every layer but
notice that the hidden size of each layer can be different. F! and U are N x D! and
M x D! matrices, respectively. In this case, Z!~! is a M x D'! matrix. We show the
graphical probabilistic model in figure A.12, it illustrates the hierarchical construction
of this architecture.

Following the same approach used in the single-layer case, we use variational inference
to find a posterior distribution approximation q({F, Ul}{;l):

L
a{F, UML) = [[p(F'[ULF T, 20 )q(Uh), (A.19)
=1

where we impose the factorization q(U!) = A(U!/m!,S"). The ELBO can then be
written

1ng /Hp Fl|Ul Fl 1 Zl 1) (UZ)

[Ty plynl£1) T, p(FY UL FL Z (Ul 271

o [, p(F[UL FI-L, Z-1)q(U)

. = (A.20)
x HdUldFl

=1

N L
= Eqer ) llogp(ynlfy,) Z q(Uh|lp(Uh Z 1)),

n=1 =1

Now, we also estimate the model parameters for every layer, the variational parameters
of q(U') and the inducing point locations Z!~!. Again, the first term corresponds to
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a fidelity term and the second one to a regularization of the latent variable at each
layer. In this case, the second term is tractable since it is the KL divergence between
Gaussians. However, the first term involves the marginals of the posterior at the last
layer, q(fnLy .) which is analytically intractable. Fortunately, it can be sampled efficiently
using univariate Gaussians.

Marginalizing out the inducing points in eq. (A.19), the posterior distribution for the
GP layers {F'}£ | becomes

L L
a({F' ) =] [ a(F'jm! 8" ¥, Z =) = T [ V(F'| & (A.21)
=1 =1

where [fi!], = pp zi- 1(fl 1) and [T l]j = Ygi 4i- 1(fl 1 fl 1). The specific form of
the functions fi, 711 and Ygt -1 can be found in [30 Eqs (7-8)]. Notice that we
are able to compute the n-th marginal at each layer N/ (f,ll|[ O, [fll],m) since it only
depends on the corresponding n-th input of the previous layer. So taking a sample of
q(fi .) is straightforward, we have to recursively sample from the first to the last layer
t} — fﬁ — = ﬁf Specifically, we first sample from e!, ~ A(0,I:) and then for
l=1,...,L we sample:

~

ffl’: = Mml,Zlfl(ﬁlL:l) + Eln . \/Esl7zl—1(f‘7ll:1, f}lh_l) (A.22)

In summary, the expectation Eq(fﬁ:)[log p(ynlfL.)] in the ELBO (see eq. (A.20)) can
be approximated with a Monte Carlo sample generated using eq. (A.22). Since the ELBO
factorizes across data points and the samples can be drawn independently for each point
n, scalability is achieved through sub-sampling the data in mini-batches. The complexity
to evaluate the ELBO and its gradients is O(N,M? 3 1 D'). Notice how the number
of layers, and specifically the hidden dimension of each one, increases the computational
cost in comparison to a single layer SVGP.

Once the ELBO is optimized, we can make predictions on an unseen test sample
X.. The value of the latent variable ff’: can be approximated by taking S samples!
from the posterior up to the (L — 1)-th layer using x, as initial input. This yields a set
{f,ffl(s) S . Then, the density over f,fz is given by the Gaussian mixture (recall that
all the terms in eq. (A.21) are Gaussians):

CQ \

S
Z (£-m", 85 £l 71 (s), 2571, (A.23)

The code to perform DGP inference and prediction is integrated within GPflow (a
GP framework built on top of Tensorflow) and is publicly available?.

To illustrate the intuition behind DGPs, we show in figure A.13 samples from a 3-
layer DGP on a 1D binary classification problem. We equipped each layer with an SE
kernel and drew samples from the posterior distribution of the latent function at every
layer. The SE kernel produces very smooth functions in the first layer. However, the
concatenation of these simple functions produces more complex fuctions as we increase

'Results become stable after a few samples. Here, S was set to 100.
2https://github.com /ICL-SML/Doubly-Stochastic-DGP
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Figure A.13: Samples from the posterior distribution of the latent function at every layer of a 3-layer
DGP on a 1D binary classification problem. Every layer is endowed with an SE kernel. The observations
are described by the blue points on the third picture. Every layer provides a higher level of abstraction
producing more complex patterns.
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Figure A.14: Comparison of a SVGP, a 2-layer DGP (DGP2) and a 3-layer DGP (DGP3) on a 1D
binary classification problem. Deeper models are able to capture better the decision boundary, see the
zoomed-in areas.
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the depth. In the last layer, it captures very sophisticated patterns combining flat regions
with high-variability ones. These patterns can not be captured by a shallow GP with
a stationary kernel. A comparison between a shallow SVGP and DGPs in this problem
is shown in figure A.14. Both models perform very well because the problem is very
simple, however, we can still notice one of the main differences between SVGPs and
DGPs. Deeper models are able to make an abrupter jump defining better the decision
boundary, see the zoomed-in areas. In this case, the SVGP is more uncertain on the
decision boundary. All this motivates the use of DGPs instead of SVGPs for problems
that require the capture of complex patterns.
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classification using morphological and texture features and assess the generalization

capability on an external database.

e We provide a fast and automatic method for analyzing whole slide images of the

prostate and discerning whether there is cancer or not and where.
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Abstract

Background and objective:

Prostate cancer is one of the most common male tumors. The increasing use of
whole slide digital scanners has led to an enormous interest in the application of
machine learning techniques to histopathological image classification. Here we
introduce a novel family of morphological descriptors which, extracted in the
appropriate image space and combined with shallow and deep Gaussian process
based classifiers, improves early prostate cancer diagnosis.

Method:

We decompose the acquired RGB image in its RGB and optical density hema-
toxylin and eosin components. Then, we define two novel granulometry-based
descriptors which work in both, RGB and optical density, spaces but perform
better when used on the latter. In this space they clearly encapsulate knowledge
used by pathologists to identify cancer lesions. The obtained features become
the inputs to shallow and deep Gaussian process classifiers which achieve an
accurate prediction of cancer.

Results:

We have used a real and unique dataset. The dataset is composed of 60 Whole
Slide Images. For a five fold cross validation, shallow and deep Gaussian Pro-
cesses obtain area under ROC curve values higher than 0.98. They outperform
current state of the art patch based shallow classifiers and are very competitive
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to the best performing deep learning method. Models were also compared on
17 Whole Slide test Images using the FROC curve. With the cost of one false
positive, the best performing method, the one layer Gaussian process, identifies
83.87% (sensitivity) of all annotated cancer in the Whole Slide Image. This
result corroborates the quality of the extracted features, no more than a layer
is needed to achieve excellent generalization results.

Conclusion:

Two new descriptors to extract morphological features from histological im-
ages have been proposed. They collect very relevant information for cancer
detection. From these descriptors, shallow and deep Gaussian Processes are ca-
pable of extracting the complex structure of prostate histological images. The
new space/descriptor/classifier paradigm outperforms state-of-art shallow clas-
sifiers. Furthermore, despite being much simpler, it is competitive to state-of-art
CNN architectures both on the proposed SICAPv1 database and on an external
database.

Keywords: Prostate cancer, Histopathological Images, Gaussian Processes,
Variational Inference, Granulometries, Deep Gaussian Processes.

1. Introduction

According to the World Health Organization, prostate cancer is the most
common non-cutaneous cancer in men [1]. A histological diagnosis of prostate
cancer is almost always required prior to instituting therapy for any stage of
the disease. Pathologists determine the grade of cancer based on the formation,
disposition, and structure of the glands (nuclei, lumen, cytoplasm and stroma)
in the tissue, scoring the samples between 1 to 5, following the Gleason grading
system [2], see Figure 1.

(a) (b) (c) (d)

Figure 1: Examples of Gleason grades of histological images: (a) benign; (b) grade 3; (c)
grade 4; (d) grade 5.

Tissue histopathological slides can nowadays be acquired and digitally stored
thanks to the advent of whole slide digital scanners. The widespread use of
such scanners has led to an increasing interest on applying machine learning
techniques to classify these images, for a review of this topic, see [3]. Due to
the large resolution of the images obtained under the microscope, evaluating
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each single diagnostic test manually is a very time-consuming task. This fact
encourages the research on CAD algorithms that decrease pathologists workload
by recognizing obviously benign cases so that experts can focus on the delicate
ones [4].

In digital brightfield microscopy, tissues are usually stained before digitiza-
tion and evaluation by pathologists. Hematoxylin and Eosin (H&E) are prob-
ably the most widely used combination of stains. Since Color Deconvolution
(CD), that is, H&E separation, is a very important preprocessing step, several
methods have been developed (see [5] for a recent review). One of the first CD
methods, which is widely used, was proposed by Ruifrok et al. [6]. This is a
supervised method where the stain color vectors are obtained by measuring the
relative absorption of each stain in single-stained images. These color vectors
are used on all the WSI images to obtain their RGB and Optical Density (OD)
space H&E images. CAD algorithms based on hand-driven approaches use RGB
space H&E images, while deep learning approaches work directly with the orig-
nal RGB images. In this paper we will show that the selection of the space
where H&E are represented significantly affects the performance of classifiers.

Two approaches are currently being used in the literature to detect tumor-
ous prostatic tissues. One is based on segmenting the images and identifying
the regions of interest (ROIs), while the other utilizes patches for classification
purposes. In this work, we follow the second approach: the entire whole slide im-
age (WSI) is split into patches and each one is analyzed independently. While
pathologists use several scales (magnification factors), most machine learning
algorithms use a single one. Gupta et al. [7] compare different scales for train-
ing and test in breast histology. They conclude that with suitable features
together with an ensemble classifier framework, such as bagging or boosting,
the classification can be made largely magnification invariant. For a selected
magnification factor and patch size, a feature extraction process to encode the
relevant information of the images must be carried out.

Nowadays, the remarkable progress in the deep learning field allows to auto-
matically compute high-abstraction feature maps by means of neural networks
based on stacks of convolutional blocks (a.k.a. convolutional neural networks
or CNNs). CNNs are being successfully applied in many computer vision tasks.
In the particular case of histological images, CNNs have also benefit of the au-
tomatic feature extraction for the classification of different tumoral patterns in
diverse organs [8]. Le Hou et al. [9] use a CNN for path-based classification
which achieves good results discriminating different cancer subtypes in WSIs.
The BACH challenge! resulted in several works [10, 11, 12] in which the dif-
ferent types of breast cancer including in-situ carcinoma, invasive tumor, and
benign tumor were automatically identified by means of well-known CNN archi-
tectures: Inception v3, Xception and ResNet. A fine-tuning process of the same
architectures was carried out by Ferlaino et al. [13] to robustly localize and
classify placental cells using histological images. Shallu et al. [14] demonstrated

Ihttps://iciar2018-challenge.grand-challenge.org/
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that transfer learning is better than training from scratch in breast cancer histo-
logical image classification, obtaining very good accuracy with the VGG16 and
VGG19 architectures. In prostate cancer histology, CNNs have recently been
utilized for semantic segmentation grading [15, 16]. These methods provide for
each pixel its probability of belonging to each class.

According to Komura et al. [3], the relevant information to classify histolog-
ical images is related to texture and morphology. Although CNNs are able to
learn these feature representations, textural and morphological tissue properties
can also be manually captured by a suitable hand-crafted descriptor avoiding
specific hardware requirements and reducing computational cost. Therefore,
the information (descriptors) extracted from each patch becomes the key to a
successful tissue classification. Generic descriptors, such as HOG [17], LBP [18],
SIFT [19] or Gabor filters [20] are frequently used for prostate cancer detection.
Kumar et al. [21] show that LBP are as good as deep features and dictionaries
with the benefits of easy computation and low dimensionality. Recent works in
the field [22, 23, 24, 25] also indicate that descriptors based on structural and
morphological properties of the prostatic tissue could outperform those based
on standard features. It is also possible to combine a convolutional neural net-
work with handcrafted features as Zhou et al. [26] but it is not widely used in
the literature.

In a hand-driven learning paradigm, once a descriptor has been selected,
a suitable classifier must be chosen. Although ensemble classifiers as Random
Forests [27], Adaboost [19] or Xgboost [28] have been used, it could be said that
Support Vector Machine (SVM) is the preferred classifier [23, 29, 30]. Unfortu-
nately, nonparametric probabilistic models which take into account the uncer-
tainty of the predictions, particularly Gaussian Processes (GPs) [31], which are
in the state-of-art in classification, have been less used. It has long been known
that neural networks with an infinite width are equivalent to Gaussian Processes
with a certain covariance kernel. GPs have the advantage of been nonparamet-
ric, unlike neural networks that have to learn a large number of parameters
in order to have a sufficiently complex model. GPs allow us to use a sound
framework with a well defined inference procedure. Prior models in the form of
different kernels can be used to encapsulate knowledge on the problem at hand.
Model parameters can be automatically estimated without hand-tuning and
predictions go beyond point estimates to provide very important information
on uncertainty. They are starting to be used in histological image classification.
Kandemir et al. [32] proposed a multi-instance relational learning based on
GPs for histhopathology images. For the multi-instance purpose, they process
each image as a bag and each patch as an instance. In order to capture the
differences in cell formations caused by the disease status, they also introduce
relational learning between instances and add relational side information from
the spatial positions of segmented cells. More recently, with the purpose of
facing more complex models, Deep Gaussian Processes (DGPs) [33] have been
proposed. Unlike deep learning that requires a large dataset to learn a good
model, DGPs can be applied with success even when data is scarce. In the last
years, the ML, community has experienced a remarkable interest in DGPs which
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are a hierarchical extension of GPs. Roughly speaking, they are deep architec-
tures (like CNNs) whose layers are modelled by probabilistic GPs. This brings
all the advantages of using GPs and provides much more power to approximate
complex patterns in data. Results are really promising, surpassing CNNs in
several problems. Unfortunately, in spite of its representation power, there are
hardly any works in histopathology that make use of DGPs, see, however, Kan-
demir et al. [34] who apply a two-layer DGP model in histopathology cancer
classification using an asymmetric transfer learning approach. The dataset used
was built from two different tissues: breast and esophagus.

Once a patch classifier has been learned (using either hand-crafted or learned
features), an image level evaluation is needed for prostate cancer diagnosis.
Some works utilize a multiple instance learning approach and provide an over-
all WSI diagnosis, see Campanella et al. [35]. Another approach, which is
frequently followed, is presented in Litjens et al. [8]. For each pixel, the proba-
bility of being cancerous is estimated from the patch probabilities, constructing
a heat map for the WSI. This probability map is then thresholded to classify
every WSI pixel as cancerous or benign.

In this work we approach the classification of prostate histological images by
first calculating the OD of each WSI to then estimate its H&E concentration
components (we will show that OD is a better space than RGB for feature
extraction and classification tasks). Hand-crafted features, which are expected
to capture the expertise of pathologists, are then extracted from patches of these
two concentration components. Finally, patches are classified using single-layer
and multilayer Gaussian processes into benign and cancerous classes. We also
carry out a validation at WSI level. We predict the per pixel probability of being
cancerous and validate the obtained probability map. GPs and DGPs perform
similarly and they are competitive to the tested shallow and deep classifiers. In
other words, the quality of our OD extracted features does not require more
than a single-layer GP to outperform the best performing classifiers.

The rest of the paper is organized as follows, in section 2 we introduce and
describe a new WSI database of histological prostate images which has been
manually annotated by experts. In section 3, we explain how the CD task
is performed on each WSI and describe how to obtain its RGB and OD H&E
representations. In section 4, we motivate and define our new two morphological
descriptors, we explain how the proposed framework, to discriminate between
cancer and benign tissue in prostate, tries to mimic the way of analysis of a
pathologist. In section 5, we provide an introduction to GPs and its hierarchical
extension, DGP, in supervised learning. In section 6 we carry out a comparative
study of several classifiers using the proposed features in a real clinical database
provided by pathologists from the Hospital Clinico of Valencia. The performed
experiments show that the classifier based on GP and deep GP together with the
proposed features extracted in the OD space outperforms the current state of
the art shallow classifiers and it is competitive to state-of-art deep convolutional
neural netwok classifiers. In the experimental discussion we provide an insightful
analysis. We use the area under the curve (AUC) for the evaluation of patch
classification and FROC for diagnosis (detection) of prostate cancer in Whole
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Slide Image. We also analyze its complexity and computational cost compared
to CNNs. Besides, to assess the robustness, we use the database proposed in [15,
29] for external validation. Finally, in Section 7 we summarize the conclusions
extracted from our experimental results.

2. Material: SICAP database

The lack of large and public databases of prostate histopathological images
has prevented researchers from a rigorous and meaningful comparison of su-
pervised learning methods on these images. To the best of our knowledge, only
three public databases containing histological prostate images are available. The
first one, which is the result of a joint work by the National Cancer Institute and
the National Human Genome Research Institute, both from United States, has
generated comprehensive, multi-dimensional maps of the key genomic changes
in 33 types of cancer. However, the fact of not providing pixel-wise annotations
along with a large amount of missing labels makes this database 2 inappropriate
to validate new methodologies. The second one, the public database released by
the authors of [36], is composed by 886 images and their corresponding pixel-
wise annotations according to the Gleason scale. Unfortunately, only isolated
tissue spots, representing characteristic patterns, are provided which prevents a
patch size comparison and a full WSI classification. The third one, a database
used in [15, 29] is composed by 625 different grade patches with a pixel-wise
mask provided by pathologists. No WSIs are provided.

In this work, we present the SICAPv1 database, publicly available at https:
//cvblab.synology.me/PublicDatabases/SICAPv1.zip. It was obtained by
a team of pathologists working at the Hospital Clinico of Valencia. Biopsies of
48 different patients were processed, hematoxylin and eosin stained and then
digitized using the Ventana iScan Coreo scanner at 40x magnification. The
database consists of 79 WSI: 19 correspond to benign prostate tissue biopsies
(negative class) and 60 to pathological prostate tissue biopsies (positive class).
Note that the entire dataset was divided into two subsets, 60 WSI (17 benign
and 43 pathological) were used to learn the models and the remaining 19 images
(two benign, seven diagnosed as grade 3, eight corresponding to grade 4 and two
grade 5 WSIs) to test them. The malignant regions of the pathological images
were carefully pixel-wise annotated by an expert team of pathologists. For this
purpose, experts manually annotated the relevant tumoral areas using an online
in-house application based on the OpenSeadragon functional core [37].

In order to automatically analyse these gigapixel images, the images were
downsampled from 40x to 10x and divided in patches with a 50% overlap. To
test the influence of the patch size, different sizes were selected: 5122 and 10242,
resulting on the two different datasets detailed in Table 1. Note that malignant
patches were extracted from the annotated tumoral areas in the positive class

?https://portal.gdc.cancer.gov/
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Table 1: SICAPv1 database description. Number of training WSIs and number of 5122 /10242
associated patches.

Benign Grade 3 Grade 4 Grade 5 Pathological

#WSIs 17 18 15 10 43
#5122 patches 6725 380 589 173 1142
#10242 patches 1909 113 181 50 344

images. Patches less than 25% inside a malignant area were not considered.
And benign patches were extracted from benign WSIs.

3. Color deconvolution

For each WSI, the three-channel image information is the RGB intensity
detected by a brightfield microscope observing a stained prostate histological
slide. H&E are the stains usually used in pathology: Hematoxylin highlights
the nuclei in purple and Eosin the stroma and cytoplasm in pink. Each M x N
image is denoted by I with columns i, = (¢, ...,imn. )T, ¢ € {R,G, B}.

We follow the color deconvolution approach described in [6]. According to
the Lambert-Beer’s law we can express the OD for channel ¢ of the slide as
ye = —log(i./i%) € RMNX1 where i = 255 is the incident light and division
inside the logarithm is performed element-wise. Slides are stained using ng = 3
stains, s € {H, E, Res} (to obtain a unique stain decomposition we consider a
third stain which represents the residual part) then the observed OD multichan-
nel Y = [yr,ya,y5] € RMV*3 can be decomposed as a matrix multiplication
YT = MCT, where C = [cy, Co, c3] € RMN*3 5 the stain concentration matrix,
with cg, the s-th column of C, containing at each pixel position the concentra-
tion of stain color s and M € R3*3 denoting the normalized stain matrix of the
fixed form exposed in [6]. Notice that the s-th column of M, my, denotes the
specific color of stain s.

The stain concentration matrix can then be recovered using CT = M~1Y7T.
Concentrations are transformed back to color (RGB) images using y3®? =
exp(—mgcl), s € {H, E}. Features are usually extracted from the single chan-
nel images exp(—cs), s € {H, E'} in the so called RGB space. In this work, we
propose to perform this step in the OD space where stains are linearly separa-
ble, that is, directly on cg,s € {H, E}. Figure 2 shows three different images
from three different biopsies (and patients), one benign and two pathological,
and their corresponding OD concentrations, Hematoxylin in the first row and
Eosin in the second one. OD Hematoxylin captures nuclei infomation while OD
Eosin contains information on stroma and cytoplasms.

4. Granulometry-based descriptors

Granulometry is a technique based on mathematical morphology. Size dis-
tributions of different elements in an image are obtained applying a series of
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Figure 2: Hematoxylin (second row) and Eosin (third row) optical densities for three samples:
a) Benign; b) and c¢) pathological.

morphological opening (or closing) operations with increasing-size structuring
elements. The obtained size distribution provides shape and size information.
In this paper, we propose the use of the classic formulation of granulometry
as a new descriptor used in histhological images and define a new variant for
prostate cancer classification which makes use of morphological reconstruction.
The two proposed descriptors are explained below.

4.1. Granulometry-based descriptor

Based on a pyramid of morphological operators, granulometry calculates the
size distribution of bright and dark objects present in an image. Let z be either
a whole gray level image or an image patch. We can define a morphological
descriptor, using the opening operator +;(z) applied to the image z with a SE
(window) of size 7. This opening operator can be expressed as the combina-
tion of an erosion (¢;(z)) followed by a dilation (d;(z)), both with the SE of
size i. When this opening is computed with a SE of increasing size (\), we
obtain a morphological opening pyramid (or granulometry profile) which can be
formalized as:

IT,(z) = {I1yx : Iy = va(2), VA € [0, 5,25, ..., Nmaz) }- (1)
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where N, represents the maximum size of the structuring element, and the
sizes increase in steps s.

Making use of the opening pyramid (II,), the granulometry curve or pattern
spectrum of z, PSr(z,n), can be defined as:

m(llyn(2)) — m(Ilyni1(2))
m(z)

PSr(z,n) = ,n>0 (2)
where m(z) is the Lebesgue measure of z and it is computed as the area of z in
the binary case and the volume in the gray-scale case (sum of pixel values).

PSr(z,n) (also called size density of z) maps each size n to a measure of the
bright image structures with this size: loss of bright image structures between
two successive openings. It is a probability density function (a histogram) in
which a large impulse in the pattern spectrum at a given scale indicates the
presence of many image structures at that scale.

By duality, a closing, ¢;(z) is defined as the dilation of z followed by an
erosion, both with a SE of size i. In the same way, a morphological closing
pyramid is an anti-granulometry profile and can be computed on the image
performing repeated closings with a SE of increasing size (\) defined as:

Hy(z) = {Il, : Oy, = oa(2),VA € [0, ..., Nz} (3)

The concept of pattern spectrum extends to the anti-granulometry curve
PS¢ (z) with respect to the family of closings ®:

m(lyn(2)) = m(Ilen—1(2))
m(z)

PSy(z,—n) = ,n>0. (4)
Notice that this spectrum characterises the size of image structures with low
level intensities.
Both granulometry and anti-granulometry descriptors are concatenated to
construct the final descriptor (Gran).

4.2. Geodesic Granulometry-based descriptor

In this work, we introduce a variant of the granulometry, named geodesic
granulometry, which is based on geodesic transformations.

A geodesic transformation involves two images: a marker image (or patch)
y and a reference image z. The geodesic dilation is the iterative unitary dilation
of z with respect to y, that is:

60" (z) = 6V6{" 1) (z), being 61 (z) = dp(z) Ay. (5)

The reconstruction by dilation is the successive geodesic dilation of z regard-
ing y up to idempotence, that is:

5 i . i _ s(i+1
Ry(z) = 5§,)(z), so that 5§,)(z) = 5§,+ )(z). (6)
The reconstruction by erosion can be obtained as its dual operator:
R;(2) = [Ry.(2°)]", (7)
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being z¢ the complement image (or patch).

The reconstruction by dilation removes from the reference z the bright ob-
jects unconnected with the marker y. The underlying idea on which the new
descriptor is based is to only consider in the granulometry spectrum the ob-
jects totally removed in each opening (closing) step. Using ~(z) as indicated
in Equation (1) can lead to the inclusion in the pattern spectrum of fragments
of objects partially removed in the process. To solve this shortcoming, we
modify the granulometry profile (Equation (1)) by using the geodesic open-
ing given by 7"(z) = Rg(z)(z). By duality, the proposed geodesic closing, to
be used in the computation of the anti-granulometry profile, (Equation (3)) is
¢"(z) = R, (2). The new geodesic granulometry descriptors will be denoted
PS[(z,n) and PS%(z, —n), respectively.

Both geodesic descriptors are concatenated to construct the final descriptor
(GeoGran).

4.8. Granulometry profiles for prostate cancer detection

The proposed framework, to discriminate between cancer and benign tissue
in prostate, tries to mimic the way of analysis of a pathologist. Basically, the
cancer destroys the tissue structure. A benign tissue is formed by glands, each
of them with a lumen surrounded by cytoplasm and nuclei, distributed in a
background of stroma (which also contains sparsely distributed nuclei) (Figure
2(a)). As cancer progresses, glands begin to proliferate and merge, destroying
the structure of benign tissues. Cytoplasm and lumens disappear and stroma is
invaded by nucleis. Figure 2, (first row), shows three different cancer stages ((a)
benign, (b) grade 3, (c) grade 5). To capture in a descriptor the tissue structure,
we propose to use PSgs with H as input image. This encodes the structure of the
glands by recovering the structure of the nuclei which formed the gland frontiers
(those that enclosed their lumen and cytoplasm). The granulometric profiles,
I1,, for the three image examples are shown in Figures 3(c), 4(c) and 5(c). To
capture stroma information, PSt is applied on the E component. Figures 3(a),
4(a) and 5(a) show the II, profiles for the three examples. Figures 3, 4
and 5 also depict in columns (b) and (d) the geodesic profiles IT”, and IIf,,
respectively. Note that II7, (columns (d)), for the three cases, shows that the
results for different steps (different sizes of SEs) of the granulometric profile do
not change. This suggests that stroma information more accurately extracted in
PST, is the most relevant information to discriminate between pathological and
benign tissues (as results presented in the experimental section corroborate).

5. Probabilistic model and inference

In this section we provide a brief introduction to the use of GPs and DGPs
in supervised learning. An in depth study of these models can be found in [31]
and [38]. Let us assume that we have n labeled training samples {(x;,v:)}"
where x; € R? is the feature vector, y; € {0,1} for a binary classification
problem, and y; € R for a regression one. We use either y; = f; + ¢; or
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Figure 3: Granulometry profiles (steps s = 1,4, 16) for image (a) in Figure 2: (a) Ily; (b) II7,;
(0) Ty (d) 7.

p(yslfi) = ¥ (fi)o' =¥ (f;) depending on whether we are dealing with a re-
gression or classification problem, respectively. We assume that the noise in the
regression problem is uncorrelated Gaussian of variance p? and o(+) denotes the
sigmoid function. We have used f; instead of f(x;) for simplicity. Notice that
to tackle both problems we need to model the behavior of the function f(-) on
seen and unseen samples x.

5.1. Single-layer Gaussian Process

In a GP based formulation of a supervised problem we assume that the
distribution of f = (fi,..., fn)T given X is a multivariate normal, A'(0,X),
where the zero mean is assumed for simplicity and o;; = k(x;,x;). where k(-,-)
is a kernel function. The use of kernel functions will guarantee that X is always
a semidefinite positive matrix (independently of the number of samples and the
features in X). In this paper we use the squared exponential kernel (SE), also
known as Radial Basis Function (RBF), defined as:

k(x,x') = Cexp(—/|lx — x'||*). (8)

where the parameters C' and v will be estimated from the observations (the
learning task).
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Figure 4: Granulometry profiles (steps s = 1,4, 16) for image (b) in Figure 2: (a) ILy; (b) TI7,;
() Ty (d) 7.

Now we have all the ingredients we need to model our supervised learning
problem using GPs. Given'y = (y1,...,yn)" we write

p(y.f) = Hp(yilfi)p(flx) (9)

and proceed with the learning and inference tasks. We first learn the model
parameters (C,~ and for a regression problem p? as well) by maximizing on
them the marginal log-likelihood, that is,

log p(y) = log / p(y|F)p(£1X)df (10)

which will allow us to calculate p(f]y) and finally perform inference: given a
new feature vector x*, we calculate

p(fuly, X X) = / p(f.lX, x., E)p(£| X, y)df (11)

which will allow us to predict yx=. There are two problems that must be faced
when using GP in supervised learning. The first one, which is easier to handle,
comes from the fact that in classification problems the prior distribution is not
conjugate for the observation model. That is usually handled by maximizing
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Figure 5: Granulometry profiles (steps s = 1,4, 16) for image (c) in Figure 2: (a) Ily; (b) TI7,;
(0) Ty (d) 7.

(d)

a lower bound of the marginal likelihood in eq. 10. This will also have the
effect of obtaining an approximation to p(f|y) but not the real one, however,
this problem is less relevant than the second one. Maximizing eq. 10 requires
inverting a matrix the size of the number of samples (an O(n?) operation) which
is prohibitive for large datasets.

The most popular approach to dealing with the computational burden of
GPs is to introduce m < n inducing points u = (u1,...,Uy,) which the in-
ference is based on. These are GP realizations at the inducing locations Z =
{z1,...,2,} C R? just like f is at the inputs X = {x1,...,%,} [39], in other
words, u = f(Z). We can rewrite the joint distribution as

N
p(v.f,w) = [ [ p(wilfi) p(f[w; X, Z)p(u; Z) (12)
ii,_/ GP prior
likelihood

where a semicolon is used to specify the inputs of the GP, this will clarify
multilayer-models notation.

Notice that we have overloaded the notation a bit to make clear the in-
troduction of the inducing points but no changes in the modelling have been
introduced since p(f) = [ p(flu; X, Z)p(u; Z)df.

Equipped with this decomposition, we go back to the marginal likelihood
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function in eq. 10 and use Jensen’s inequality to, following the approach in [40],
write

p(y|f)p(flu; X, Z)p(u; Z)

X Zyg(w) i (13)

logp(y) > / q(u)p(flu; Z) log

Now the optimization process becomes more involved. We have to estimate,
together with the model parameters (C,v and for a regression problem p? as
well), the parameters of the distribution q(u) which is usually assumed to be
a multivariate Gaussian, and the inducing point locations Z. The benefit is
that this learning process has become O(nm?). Finally, q(u) is used, instead of
p(fly), in eq. 11 for the inference (testing) process.

5.2. Deep Gaussian Processes

In standard (single-layer) GPs, the output of the GP is directly used to model
the observed response y. However, this output could be used to define the input
locations of another GP. If this is repeated L times, we obtain a hierarchy of
GPs that is known as a Deep Gaussian Process (DGP) with L+ 1 layers. DGPs
were first introduced in [33], they can be used for regression and classification
problems by placing appropriate likelihoods (like the ones introduced at the
beginning of this section) after the last layer.

Unfortunately, exact inference in DGP is intractable (beyond the the com-
putationally expensiveness of GPs and the non-conjugacy of the prior), as it
involves integrating out latent variables that are used as inputs in the next
layer (i.e. they appear inside a complex kernel matrix). To overcome this, again
m inducing points u' at inducing locations z*~! are introduced at each layer .
We write the joint distribution of the observation and DGP as

N
p(y, {f,u'}2) = [ [ plwsl £5) [ [ p(F [ €171, 2 )p (' 2 1) . (14)

=1

likelihood DGP prior

Here, f° = X, and each factor in the product is the joint distribution over (f!, u')
of a GP in the inputs (f=1,z!~1), but rewritten with the conditional probability
given u'. For notation simplicity, in this description the dimension of the hidden
layers has been fixed to one. This can be generalized straightforwardly, in this
case f',ul and z'~1,1 = 1,...,L will be matrices of the appropriate sizes, see
[33, 38].

To train the model, we follow the approach in [38] where the authors use the
Jensen’s inequality, with the posterior distribution approximation

a({f' '}y = [[p(Eu's #1712 )q(ud). (15)

=1
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where q(u') = NV (u'|m!, S"), to write

L
logp(y) > /Hp(fZIHZ;fl‘l,zl‘l)Q(ul)
=1

N L _ _ _
Hi:lp(yi|fiL)Hl=1 p(fl|ul3fl 'z l)p(ul§zl 1)Hduldfl

% log 7
[T, p(flul; £1-1, 1= 1)q(ul)

= ZEq(fL [log p(yil £) ZKL Dlip(u'’;z'~1)). (16)
=1
Now the optimization process of the above Evidence Lower Bound (ELBO)
becomes even more involved. We have to estimate, together with the model
parameters for each layer, the parameters of the distributions q(u') and the
inducing point locations z'.

The second term is tractable, as the KL divergence between Gaussians is
known. However, the expectation involves the marginals of the posterior at the
last layer, q(f%). As we will now see, although this distribution is analytically
intractable, it can be sampled efficiently using univariate Gaussians.

Marginalizing out the inducing points in eq. (15), the posterior for the GP
layers {f'}F | is

L L
a({fY ) =] Ta'Im', 8 £ 2 =T [V (E' | 2, (17)
=1

=1
Where the vector fi! is given by [u i = tmt zi- 1(le ) and the n x n matrix

o by [Z ]ij = Esl’zl—l(fil b fJ’- ). The specific form of the functions P! zl-1
and Xgi ,i-1 can be found in [38, Eqgs. (7-8)]. Although the distribution in
eq. (17) is fully coupled between layers (and thus the posterior in the last layer

is analytically intractable), the i-th marginal at each layer N(f!|[i];, [f)l]”)
only depends on the corresponding ¢-th input of the previous layer. This allows
one to recursively sample f} — fﬁz - fZL from all the layers up to the
last one by means of univariate Gaussians. Specifically, e} ~ N(0,1) is first
sampled and then for [ =1,..., L:

fil,: = le,zl_l(fil:l) + €li ’ \/Zsl,zl_l(fz‘l:lvfz‘l:l)' (18)

In summary, the expectation Eq;z)[log p(yi|f£)] in the ELBO (see eq. (16))
can be approximated with a Monte Carlo sample generated with eq. (18). Since
the ELBO factorizes across data points and the samples can be drawn indepen-
dently for each point ¢, scalability is achieved through sub-sampling the data
in mini-batches. The complexity to evaluate the ELBO and its gradients is
O(nm?2L). The code is integrated within GPflow (a GP framework built on top
of Tensorflow) and is publicly available?.

3https://github.com/ICL-SML/Doubly-Stochastic-DGP
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To predict in a new z., eq. (18) is used to sample S times* from the posterior
up to the (L — 1)-th layer using the test location as initial input. This yields
aset {fF71(s)}5_, with S samples. Then, the density over fL is given by the
Gaussian mixture (recall that all the terms in eq. (17) are Gaussians):

I

S
afh) = = 3 a(fHm®, ST fE (s), 25,
s=1

6. Experiments

In this section we carry out an exhaustive evaluation of the proposed classifi-
cation approach which, as we have already indicated, is based on the use of GPs
and DGPs and granulometry profiles on OD H&E images. First, we compare
the classification performance of GPs with the most popular shallow classifiers
using classical texture descriptors, granulometry profiles and a combination of
them extracted from OD H&E images. To show the importance of the space
where images are represented, we replicate the experiments using RGB H&E
images. Once we show that features should be extracted from OD H&E images
and that our approach is the best performing one when only shallow classifiers
are used, we proceed to compare it to state-of-art deep learning strategies based
on a variety of pre-trained CNNs. To demonstrate the generalization capability
of the patch-wise trained model, we carry out a validation at WSI level (for the
test set). We predict the per pixel probability of being cancerous and validate
the obtained probability map.Despite being much simpler, GPs and DGPs per-
form similarly and they are also competitive to the tested deep classifiers. In
other words, the quality of our OD extracted features does not require more
than a single layer GP toobtain excellent results. Finally, an external validation
has been carried out to assess the competitiveness of the proposed descriptor
together with the GP classifier against other models.

6.1. Feature extraction

As feature descriptors we computed the morphological descriptors PS¢ and
PSr on H and E, respectively, and their geodesic versions PSy and PS[. PSs
and PS§ with SE of increasing size in steps of s = 2 from 0 to 1,4, = 24, and in
steps of s = 4 for PSr and P.ST. from 0 t0 nyq, = 48. Note that we use Gran and
GeoGran labels to denote PS and PS" descriptors, respectively. Besides that,
to capture the texture information we use the uniform and rotationally invariant
Local Binary Patterns (LBP) [41] as baseline descriptor (with neighbourhood of
R =1 and P = 8) and the combination of it with a contrast measure, according
to the work of Guo et al. [42], obtaining an additional Local Binary Pattern
Variance (LBPV') descriptor. The different combinations of descriptors have
been labelled as GranLBP, GranLBPV, GeoGranLBP and GeoGranLBPYV.

4Results become stable after a few samples. Here, S was set to 100.
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Table 2: Performance of descriptors and classifiers in RGB space with a 5122 patch size.

AUC RF GP XgBoost
LBP 0.6663 +£0.1400  0.7003 £0.1190  0.6728 £ 0.1279
LBPV 0.7695 + 0.0565  0.8243 +0.0891  0.7912 + 0.0674
Gran 0.8549 £ 0.0856  0.8984 +£0.0641  0.8778 £0.0735
GeoGran 0.9089 £0.0494  0.8910 £0.0599  0.9095 + 0.0454
GranLBP 0.8331+0.0949  0.9111 £0.0492  0.8551 4 0.0842
GranLBPV 0.8758 £0.0611  0.9280 £ 0.0349  0.8908 £ 0.0509
GeoGranLBP  0.8958 + 0.0566 ~ 0.9014 £ 0.0507  0.9048 % 0.0469

GeoGranLBPV  0.9174 4+ 0.0351

0.9307 = 0.0307

0.9273 £ 0.0329

Table 3: Performance of descriptors and classifiers in OD space with a 5122 patch size.

AUC RF GP XgBoost
LBP 0.9300 £ 0.0603  0.9253 £ 0.0635  0.9262 £ 0.0615
LBPV 0.9351 +0.0373  0.9443 +£0.0314  0.9421 4+ 0.0243
Gran 0.9323 £0.0453  0.9516 +£0.0346  0.9461 £ 0.0322
GeoGran 0.9690 £ 0.0303  0.9636 £ 0.0242  0.9688 £ 0.0249
GranLBP 0.9436 + 0.0640  0.9581 £0.0422  0.9541 4+ 0.0524
GranLBPV 0.9370 £ 0.0340  0.9696 +0.0175  0.9573 + 0.0206
GeoGranLBP  0.9666 + 0.0408  0.9669 £ 0.0283  0.9700 % 0.0304

GeoGranLBPV  0.9692 4 0.0241

0.9807 £ 0.0097

0.9747 £ 0.0170

6.2. Comparison of shallow classifiers

To demonstrate the superiority of nonparametric probabilistic models based
on GPs and morphological features we compare GPs with different state-of-art
shallow classifiers on different extracted features. We compare the performance
of the models on OD and RGB spaces, testing two patch sizes, 5122 and 10242.

We use variational inference on a single-layer GP classifier with a RBF kernel.
We utilize a sparse model with 800 inducing points when the patch size is 5122.
For 10242 patch size we do not utilize inducing points. For comparison, we
use Random Forest (RF) and Extreme Gradient Boosting (XgBoost). These
tree-based ensemble models can capture complex patterns in data. They are
state-of-art shallow classifiers.

For each classifier we applied a five-fold cross-validation to validate and
compare the performance of the proposed granulometry descriptors (using the
described classifiers). Patches coming from the same image and the same patient
were assigned to the same fold. Consequently, we avoided correlation between
training and test sets which would distort the results. Due to the nature of
prostatic images, the amount of benign instances is significantly greater than
the cancerous ones. To deal with this imbalanced scenario, we built several
classifiers with the positive instances and a subset of the negative ones so that
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Table 4: Performance of descriptors and classifiers in RGB space with a 10242 patch size.

GP

XgBoost

AUC RF
LBP 0.6279 +0.1751
LBPV 0.7517 4+ 0.0847
Gran 0.8018 £0.1166
GeoGran 0.9269 4 0.049
GranLBP 0.7910 +0.1379
GranLBPV 0.8471 4+ 0.0820
GeoGranLBP  0.9079 + 0.0675

GeoGranLBPV  0.9338 + 0.0339

0.6900 + 0.1841
0.8222 1+ 0.1169
0.8785 £ 0.0525
0.9242 + 0.0398
0.8780 + 0.0512
0.9447 + 0.0252
0.9062 £ 0.0462
0.9293 £ 0.0510

0.6460 £ 0.1660
0.7638 £ 0.0934
0.8177 £ 0.1071
0.9242 £+ 0.0425
0.7955 + 0.1437
0.8536 + 0.0708
0.9146 £+ 0.0478
0.9289 + 0.0347

Table 5: Performance of descriptors and classifiers in OD space with a 10242 patch size.

GP

XgBoost

AUC RF
LBP 0.9433 £ 0.0615
LBPV 0.9244 4 0.0671
Gran 0.9408 4 0.0493
GeoGran 0.9826 + 0.0237
GranLBP 0.9525 £+ 0.0654
GranLBPV 0.9318 4 0.0480
GeoGranLBP  0.9760 & 0.0366

GeoGranLBPV  0.9789 + 0.0187

0.9353 + 0.0661
0.9684 £ 0.0217
0.9635 = 0.0320
0.9824 + 0.0165
0.9647 £+ 0.0488
0.9736 £ 0.0211
0.9800 £ 0.0230
0.9855 + 0.0089

0.9350 £+ 0.0640
0.9419 £ 0.0575
0.9590 £ 0.0448
0.9814 £+ 0.0256
0.9578 £+ 0.0603
0.9553 £+ 0.0386
0.9800 £+ 0.0277
0.9764 +£ 0.0218
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each classifier faces a balanced problem being the final prediction the average of
the predictions of each classifier. The evaluation metric we selected to compare
the performance of different methods is the area under the ROC curve (AUC).

Tables 2, 3 (5122) and 4, 5 (10242) summarize the obtained results. Analysing
all the tables, we observe that, in both spaces, key tumoral information is bet-
ter encoded by morphological than by texture features. More in depth, LBPV
and GeoGran perform better than LBP and Gran in both spaces. Regarding
the classifiers, GPs discriminate better than the others for all patch sizes and
spaces.

For every descriptor and classifier, the results obtained in the OD space are
superior to those achieved in the RGB space. This is the space used by the ma-
jority of current state-of-the-art methods. Moreover, texture and morphological
information for classification purposes are better captured in the OD space.

In summary, for both patch sizes, the best results are obtained in the OD
space when GeoGranLBPV are the input to a GP classifier. The obtained
AUCs are 0.9807 (5122) and 0.9855 (1024%). This fact suggests that texture
and morphology features provide complementary information to characterize
prostatic tumoral tissues. In the coming section we compare GPs and DGPs,
using the best performing features, to CNNs.

6.3. Comparison of deep classifiers

The previous experiment indicates that the proposed geodesic granulome-
tries (GeoGran) in combination with texture information (LBPV) allows us to
create a descriptor GeoGranLBPV able to accurately classify histopathological
tissues using GPs. We now compare GPs and DGPs used on GeoGranLBPV
extracted from OD images to CNNs used on raw images. Three of the most
well-known deep convolutional neural networks for image classification: VGG19
[43], Xception [44] and Inception v3 [45] are utilized. The main reason to select
these CNNs was their wide use in the detection of tumoral tissues in histological
images [46, 10, 11, 12, 13, 14].

For this comparison, the cross validation setup used for shallow classifiers was
utilized. Together with the two GPs described in the previous section, a three-
layer DGP classifier [38] with RBF kernel was used on the extracted features.
Our model employs 100 inducing points per layer. Although with shallow GPs
we achieved a very good performance, the DGP is used here as a nonparametric
multi-layer classification model to carry out a comparison between the deep
structure of VGG19, Xception, and Inception v3 and a GP based counterpart.

The parameters of the CNN were optimized following the procedures de-
scribed in Table 6. In this experiment, due to the reduced number of samples
of our data set, we fine-tuned the architectures, initializing them with the best
weights obtained in the ImageNet challenge [47] and re-trained them using our
raw RGB histological images as input. The re-training process was performed
using the binary cross entropy loss function, from the layers indicated in Table
6 to the end of the networks. Early stopping, with fifteen epochs of patience
value, was used to prevent overfitting. Synthetic data was automatically created

19



Chapter 3. Automatic classification of histopathological images

62

Table 6: Empirically-tuned hyperparameters for Inception v3, Xception and VGG19.

Architecture Layer name Optimizer Learning rate
VGG19 ‘block3_convl’ Stochastic Gradient Descent 1-107*
Inception v3 ‘mixed?’ Nesterov Adam 1-107°
Xception ‘add10’ Stochastic Gradient Descent 1-107*

using data augmentation methods (i.e. rotating, flipping, rescaling, translating,
etc.) and a batch size of 16 samples, constrained by the available memory of
the NVIDIA Titan V GPU utilized in this work, was used.

Table 7: Performance of Deep Classifiers for 5122 patch size.

Inception v3 VGG19 Xception DGP

AUC  0.9196 + 0.0302  0.9813 £ 0.0068  0.921 +0.026  0.9829 + 0.0092

The average metric values for the five-fold comparison of deep models are
reported in Tables 7 (5122 patch size) and 8 (10242 patch size). As it can be
observed from these tables, the morphological and textural information encoded
by our proposed hand-crafted descriptor compares well to the automatic features
directly learned by the CNNs from the data.

For 5122 patch size (see Table 7), the hand-driven learning by DGP outper-
forms Inception v3 and Xception models in terms of AUC values by 6.33% and
6.19%, respectively. Additionally, the proposed methodology performs similarly
to VGG19. The obtained AUC is 0.9829 which is slightly better than the one
obtained by the shallow GP (0.9807), this suggests that our hand-crafted fea-
tures are good enough to perform an excellent classification and they do not
require more than the use of a well grounded nonparametric single layer classi-
fier with no parameter tuning. Figure 6a shows the ROC curves corresponding
to these deep classifiers together with the single layer GP used in the previous
section for the 5122 case.

When the patch size is 10242, see Table 8, VGG 19 outperforms the rest of the
deep classifiers. Its corresponding AUC is 0.9985 which is slightly better than
the ones obtained by our DGP (0.9736) and GP (0.9855). Figure 6b shows the
ROC curves corresponding to these deep classifiers together with the one-layer
GP used in the previous section for the 1024% case. Note again our approach
does not seem to need more than a layer to obtain excellent results.

Regarding computational cost, the proposed methodology needs less time

Table 8: Performance of Deep Classifiers for 10242 patch size.

Inception v3 VGG19 Xception DGP

AUC  0.9204 +£0.0525 0.9985 £+ 0.0009 0.9674 + 0.0194  0.9736 + 0.0239
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Figure 6: ROC curve plot for all deep classifiers together with the best performing shallow
one: for (a) 5122 and (b) 10242 patch size.

Table 9: Analysis of the patch-wise (5122) computational cost for the deep models and shallow
GPs. Time measured for Deep GPs and GPs includes the feature extraction and classification
steps. Note that CNNs were trained and tested in a Titan V GPU while these tasks were
performed in the CPU for GPs and DGPs.

Time (sec.) VGG19 Inception v3 Xception Deep GPs GPs
Training 28742.71 24321.12 23441.33  14587.1362 + 4431.1845 = 19018.3207  14587.1362 + 550.2587 = 15137.3949
Inference 0.8522 0.7873 0.7177 1.5753 + 0.0357 = 1.611 1.5753 4 0.0003 = 1.581

than the deep learning-based approaches in the training stage (see Table 9).
It is important to remark that CNN models require specific hardware to be
trained in an affordable time interval while GPs and DGPs just need a CPU
to be trained. Due to this fact the inference phase in a CNN model requires
less time than the proposed hand-driven approach. The computational time
analysis was performed on an Intel i7@3.10 GHz of 16 GB of RAM with an
NVIDIA GeForce Titan V to train VGG19, Inception v3, and Xception CNNs.
Python 3.5 was the language used and the libraries GPflow and Keras were used
for GPs and DGPs and deep learning methods, respectively.

6.4. Whole Slide Image evaluation

Our ultimate goal is to provide pathologists with useful tools for WSI anal-
ysis. With this aim, we extend the patch-wise classification model to WSI
classification, trying to identify cancerous areas in unseen WSIs. Following the
approach in [8], we split each biopsy of the WSIs into overlapping patches.
For each pixel, we estimate the probability of being cancerous by bilinearly in-
terpolating the predicted probabilities of the four closest patches (in terms of
euclidean distance to the center of the patches). With this pixel-wise classifica-
tion, we obtain a probability map per each biopsy of a WSI (see Figure 8(b)).
To assess the generalization capability of our model we used the 19 WSIs in the
test set: 17 malignant and 2 benign. The magnification factor was, like during
training, 10x. The overlap between patches was 75%, for both, 5122 and 10242,
patch sizes. We compare GP and DGP 4+ GeoGranLBPV extracted in the OD
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Table 10: Sensitivity for 1, 2 and 3 false positives for 5122 and 10242 patch sizes.

Sensitivity 5122 10242
1 FP 2FP 3FP 1FP 2 FP 3 FP
GP 0.8387  0.9489 1 0.5606 0.9277 0.9804
DGP 0.8340  0.9492 1 0.4710  0.8993  0.9920

Inception v3  0.6985  0.9125 0.9519 0.4763 0.7981  0.9715
Xception 0.8081  0.9589 0.9984 0.5342 0.8115  0.9248
VGG19 0.8610 0.9972 1 0.5084 0.8089  0.9171

space to the models obtained by fine-tuning the three CNNs. All patch-wise
models were trained using the 60 images in the training set. For WSI based
evaluation, the free-response receiver operating characteristic (FROC) curve,
defined as sensitivity versus the average number of false-positives per image,
was used. After CAMELYONI16 challenge °, FROC is widely used for image
level cancer detection evaluation.

Table 10 shows, for both patch sizes, the sensitivity of each model for 1,
2 and 3 false cancerous regions. The results have been averaged over the 17
malignant testing WSIs: these WSIs contain both benign and malignant glands
in addition to different cancer grades. These images present a high inflammation
so it is a challenging task to detect well the benign glands. All models (CNN-
based together with GP and DGP) generalize worse for 10242 patch size. This
is probably due to the reduced sample size which may lead to overfitting during
training and poor generalization during testing. Notice, however, that for this
reason, the probabilistic and nonparametric nature of our GP and DGP models
leads to a better generalization capability for this size. For a 5122 patch size,
we see that VGG19 performs slightly better than GP and DGP while Xception
is a bit worse. Inception v3 generalizes poorly compared to the rest. Indeed,
VGG19, GP and DGP are the only methods that detect all cancer pixels with a
cost of 3 false positives areas for each pixel correctly classified. Figure 7 depicts
the FROC for all compared models (5122 and 10242 patch size) and clearly
shows that our approach is competitive to state-of-art CNN architectures.

In Figure 8, for 5122 patch size, we can compare the probability maps ob-
tained by the best performing model (GP) (Figure 8(a)), and the cancerous
regions annotated by the pathologist (Figure 8(b)). The probability maps are
represented as heat maps, where red and blue colors indicate the highest and
the lowest probabilities of being cancerous, respectively. The zoomed in regions
show that the highest probabilities (redish colors) obtained by our model are in
agreement with the cancerous areas marked by the experts while at the bound-
ary the probability decreases. Besides, the proposed model can discriminate
successfully whether a gland is benign or malignant in the same WSI giving
zero or low probability to benign glands. For a more complete study, in Figure

Shttps://camelyon16.grand-challenge.org/Home/
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Figure 7: FROC for CNN-based and GP and DGP models: (a) 5122 and (b) 10242 patch size.

9, we show the prediction of the proposed GP model in 3 regions of the two
benign samples in the test subset. Since the heat maps give to each image a
very low probability of being cancerous, this model does not suffer from false
positives in benign WSIs.

Regarding computational cost and model complexity, taking into account
the patch-wise average time (see Table 9) and the average number of patches
resulting from all the biopsies contained in the testing WSIs (see Section 2), we
can calculate the average time to predict a new WSI. Xception is the fastest
model in obtaining the probability map for a WSI, in particular, the expected
time ranges from 4.3 to 5.7 minutes depending on whether the WSI is com-
posed of three or four biopsies. The Xception fine-tuning process is performed
on 8,406,458 trainable parameters and the storage space of the model is 147.6
MB. Inception v3 model has 12,816,002 trainable parameters and the storage
space of the model is 186.2 MB. The inference time ranges from 4.7 to 6.24
minutes. VGGI19 takes around 5.1 to 6.8 minutes for WSIs with three and
four biopsies, respectively. The fine-tuning process is performed on 130,923,522
trainable parameters and the storage space of the model is 1.02 GB. The models
with the highest ability of generalization, i.e. models based on gaussian pro-
cesses, spend around 9.3 and 12.7 minutes to compute the resulting probability
map for a WSI composed of three and four biopsies, respectively. The number
of GP and DGP parameters is 2,672,008 and 339,644 (due to the use of a less
number of inducing points for DGP), respectively. The storage space is 20.88
MB for GP model and 10.10 MB for DGP model. As we have already indi-
cated, notice that DL-based methods are computed in a Titan V GPU while
our hand-driven learning approaches are run in a i7 core.

Analysing the obtained computational cost, the model complexity and the
performance of the models on new samples (see Table 10), we conclude that
the proposed approaches based on GPs reach an interesting trade-off between
these three capabilities. It is important to highlight that the task of diagnosing
biopsies is an offline process and spending six additional minutes (additional
DGP computational time in comparison to Inception v3 for a WSI with four
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(a)
Figure 8: GP model validation in slides with cancer: (a) Cancerous areas annotated by the

pathologists (ground truth); (b) Probability maps (heat maps) obtained by the proposed GP
model.
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Figure 9: GP model validation in slides with benign glands: Probability maps (heat maps)
obtained by the proposed GP model

biopsies) pays off due to the increased sensitivity. See in Table 10 the 24%
improvement for 1FP for 5122 patch size. In addition, the GP based models
are, with regard to number of parameters and space, four (GPs) and five (DGP)
times (DGPs) less expensive than the best CNN-based approach (VGG19).

6.5. Validation on an external data

To analyze and corroborate the robustness and generalization power of the
proposed methodology, we also evaluate all the models on an external database.
We have used the prostate cancer database proposed by Gertych et al. [15, 29].
This database includes 625 patches with different grades and combinations of
them. No spatial information of these patches in the WSI is provided. The
size of the patches at 20x magnification is 12012. Each patch has a mask with
annotation provided by pathologists (see Figure 10). This mask indicates the
class of each pixel: stroma, benign or malignant (distinguishing between grade
3,4, and 5).

The GP model was trained using the SICAPv1 database and tested on the
Gertych et al. [15, 29] database. Since we use for training 5122 patches at 10x
magnification, we downsampled the test patches to a 10x magnification and
cropped the central region of 5122 size. We labelled each patch of the test set
as benign if there are no malignant pixels in the image. Patches with more than
20% malignant pixels (this information is provided by the mask) are classified
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Figure 10: Patches from the external database [15, 29]. The colored masks indicate the
annotated classes by the pathologist in this database: white (stroma), yellow (benign), red
(grade 3), green (grade 4) and purple (grade 5).

Table 11: Performance of descriptors and classifiers in the OD space on the external database

AUC RF GP XgBoost DGP
LBP 0.8490  0.7529 0.7464  0.7833

LBPV 0.8415 0.6869 0.8593  0.6867
Gran 0.8572  0.8775 0.8851  0.8156

GeoGran 0.8828 0.9249 0.8636  0.8471
GranLBP 0.8629  0.8624 0.8643  0.6913
GranLBPV 0.8494  0.7998 0.8811  0.8850
GeoGranLBP  0.8757  0.8766 0.8754  0.8221
GeoGranLBPV  0.8872  0.7645 0.8365  0.8010

as malignant (for the binary classification approach proposed). This results in
593 patches of which 244 are benign and 349 are pathological.

The obtained results are reported in Tables 11 and 12 for the OD and RGB
spaces, respectively. The morphological features (Gran and GeoGran) outper-
form those based on texture (LBP and LBPV) in both RGB and OD spaces
independently of the chosen classifier. Furthermore, in almost all cases, the
OD space outperforms the RGB space. In this experiment combining texture
and morphological descriptors does not achieve better results except in a few
cases, for example, GeoGranLBPV + DGP in RGB space which obtains the
best result in this space. However, the proposed descriptor based on geodesic
granulometry GeoGran using GP as the classifier in the OD space outperforms
the rest with an AUC of 0.9249.

These results indicate the robustness and generalization capabilities of the
proposed morphological descriptor on different datasets. They also indicate that
texture based features perform worse. This may have been exacerbated by the
fact that white balancing was not performed on the second dataset since only
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Table 12: Performance of descriptors and classifiers in RGB space on the external database

AUC RF GP XgBoost  DGP
LBP 0.3444 0.3336  0.7051 0.2840
LBPV 0.6122 0.3116  0.7285 0.6597
Gran 0.7251 0.6473  0.7367  0.5928

GeoGran 0.8674 0.7130  0.8507 0.8026
GranLBP 0.5536 0.1214  0.7292 0.2728
GranLBPV 0.6346 0.3048  0.6622 0.8310
GeoGranLBP  0.8597 0.2756  0.8101 0.8158
GeoGranLBPV  0.8746 0.8097  0.8392  0.8902

Table 13: Performance of Deep Classifiers on the external database.

Inception v3  VGG19  Xception

AUC 0.8846 0.9714 0.8670

patches were provided. We also verified that the OD space is more informative
than the RGB one for most of the descriptors/classifiers used in the four studies
carried out in this work. Furthermore, the GP is the classifier which shows the
best performance.

Finally, for a complete comparison, the performance of deep neural networks
in this database is reported in Table 13. We can see that VGG19 obtains the
best results. Notice, however, that the size of this model exceeds the Gigabyte
in contrast to GP models which can be stored in much smaller disks (21 MB).
Notice also that VGG19 is a well established architecture while the best DGPs
is still work in progress. Regarding the other architectures (i.e. Inception v3
and Xception), our proposed descriptor GeoGran performs better using the
probabilistic classifier based on a single-layer GP on the OD space, improving
by a 4% and 6%, respectively. This demonstrates the competitive ability to
capture cancer patterns with respect to state-of-art CNNs, even in databases
that have never been seen by the classifier.

7. Conclusions and future work

In this work, we have proposed a novel descriptor to characterize and dif-
ferentiate benign and pathological regions in histological prostate images. This
descriptor registers the granularity of the tissue elements without previous seg-
mentation.

We have shown that features should be extracted from OD H&E images,
where our OD geodesic granulometry descriptor reveals the importance of the
stroma identifying cancer. We have also shown that GP is the best perform-
ing classifier when only shallow classifiers are used. The best performing fea-
tures (GeoGranLBPV') and the best performing shallow classifier (GP) together
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with its multilayer version (DGP) have then been compared to state-of-art deep
learning strategies based on a variety of pre-trained CNNs. To analyze the gen-
eralization capability of the patch-wise trained model, we have carried out a
validation at WSI level. We have predicted the per pixel probability of being
cancerous and validate the obtained probability map. GPs and DGPs perform
similarly and, furthermore, they are also competitive to the tested deep clas-
sifiers identifying successfully cancer in WSIs. To assess the robustness and
generalization capabilities of the proposed descriptor, an external database has
been utilized. The obtained results corroborate the quality of the proposed de-
scriptor when combined with a GP based classifier. In summary, we have shown
that our OD extracted features do not require more than a single layer GP to
outperform the best performing shallow classifiers and to be competitive to deep
classifiers.

Additionally, we have created a public database (SICAPv1) that includes
original WSIs and labels annotated by expert pathologists.

As future work, the use of geodesic granulometries and multi-class DGP for
the automatic detection of Gleason grade in histopathological images will be
addressed. Moreover, new annotated images will be added to SICAPv1.
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Abstract

The volume of labeled data is often the primary determinant of success in developing ma-
chine learning algorithms. This has increased interest in methods for leveraging crowds
to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels.
The need to scale labeling is acute but particularly challenging in medical applications
like pathology, due to the expertise required to generate quality labels and the limited
availability of qualified experts. In this paper we investigate the application of Scalable
Variational Gaussian Processes for Crowdsourcing (SVGPCR) in digital pathology. We
compare SVGPCR with other crowdsourcing methods using a large multi-rater dataset
where pathologists, pathology residents, and medical students annotated tissue regions
breast cancer. Our study shows that SVGPCR is competitive with equivalent methods
trained using gold-standard pathologist generated labels, and that SVGPCR meets or
exceeds the performance of other crowdsourcing methods based on deep learning. We
also show how SVGPCR can effectively learn the class-conditional reliabilities of in-
dividual annotators and demonstrate that gaussian-process classifiers have comparable
performance to similar deep learning methods. These results suggest that SVGPCR
can meaningfully engage non-experts in pathology labeling tasks, and that the class-
conditional reliabilities estimated by SVGPCR may assist in matching annotators to
tasks where they perform well.
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1. Introduction

The amount of labeled data is one of the primary determinants of performance in
machine learning applications, and the requirements of today’s data-hungry algorithms
have increased interest in scaling data labeling processes. A crowdsourcing approach that
engages a broad set of individuals in labeling has been shown effective in tasks where
expertise is not required such as labeling images in general categories [1, 2, 3]. In ap-
plications requiring expertise, sourcing labels from crowds is more challenging. Medical
applications where labels are often assigned by expert diagnosticians with years of train-
ing are particularly difficult, but are arguably the applications where scaling is needed
most due to the lack of availability of these experts and the clinical demands on their
time [1, 4, 5]. Crowdsourcing in these scenarios can introduce significant tradeoffs be-
tween label volume and quality [4]. A more open process can generate more labels but
may sacrifice quality. Engaging with more focused groups such as medical students that
have some familiarity with the subject matter can improve quality and can enable some
degree of vetting of participants.

Crowdsourced labeled data suffer from high label noise due to the different varying
expertise degrees. One typical approach for obtaining reliable labeled data is the con-
sensus, i.e., majority voting. However, in medical imaging, fixing/aggregating the noisy
labels in a previous training step is not the best way. Instead, the best choice is to
keep each annotation and model the expertise degree of each annotator. For example,
weighting each annotation based on the annotator’s reliability achieves this purpose [6].
Raykar et al. introduced a crowdsourcing model for classification with multiple annota-
tors |7] based on logistic regression. This crowdsourcing framework jointly learns a latent
classifier and annotators’ reliability. This model was used for grading prostate cancer in
tissue microarrays [8], where five different pathologists annotated each image. They es-
timated iteratively the classifier’s coefficients and the annotators’ reliability, following
an Expectation-Maximization (EM) scheme. The logistic regression classifier overcame
the inter-observer grading variability levels, and showed a good agreement with the par-
ticipants. However, the flexibility of this model is limited, because it considers logistic
regression as the latent classifier. An analogous crowdsourcing framework has been also
used with more expressive classifiers such as deep neural networks [9, 10]. Gaussian
processes were also introduced for crowdsourcing with sound results across different do-
mains [11, 12, 13]. These models are Bayesian and non-parametric, making them suitable
to learn good models without the need for very large labeled datasets. Also, they provide
an accurate estimation of the uncertainty in the predictions [14].

In the dataset we will use in this paper, a group of medical students, pathology resi-
dents, and pathologists were organized to label tissue regions in digital pathology images
of breast cancer specimens [15]. The average medical student may have some basic un-
derstanding of histology from their medical school coursework, but they will not have
specific knowledge of histologic patterns in breast cancer [16]. The varied experience
of these participants was leveraged to optimize effort while preserving quality. Medical
students performed the majority of labeling tasks under the supervision of residents and
attending pathologists, and feedback was provided openly via a Slack communication
channel to avoid answering redundant questions. This significantly improved the quality
of work that was given final review by pathologists, minimizing their work and interven-
tions. While this process was effective, it worked because there was prior knowledge of
participant experience, and it still required significant involvement of pathologists. This
study set a high standard for quality for compatibility with learning algorithms that
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may not tolerate label noise well. A more tolerant algorithm would allow relaxation of
these standards, enabling engagement of a broader audience without prior knowledge of
their experience, and would require less oversight and review of their work. An ideal
learning algorithm would be able to estimate the strengths and weaknesses of an individ-
ual participant during labeling, and to assign them examples accordingly to maximize
efficiency [17].

In this paper we investigate how Scalable Gaussian Processes (SVGP) can learn from
noisy crowdsourced labels in digital pathology applications (Figure 1). We explore a
previously developed technique, SVGP for Crowdsourcing (SVGPCR), that learns how
to infer accurate labels by estimating class-conditional reliabilities for individual annota-
tors [18]. SVGPCR can learn these reliabilities from sparsely annotated datasets where
each sample is labeled by only a subset of the annotators. The probabilistic modeling
used by SVGPCR is described in detail in Methods.

We applied SVGPCR to a dataset where practicing pathologists, pathology resi-
dents, and medical students annotated breast cancer tissue regions. Our experiments
found that SVGPCR trained on the noisy labels from non-experts is competitive with
an equivalent SVGP trained using gold-standard expert labels. We also demonstrate
how the learned annotator reliabilities accurately capture the class-conditional perfor-
mance of individual annotators. We describe limitations of this approach and discuss
how these approaches could be used to improve data labeling in digital pathology appli-
cations in the future. The code is publicly available at https://github.com/wizmik12/
crowdsourcing-digital-pathology-GPs.

2. Methods

The data used in our experiments originate from an international study where pathol-
ogy experts and non-experts annotated breast cancer tissue regions in a crowdsourcing
process [15]. In this study a web-based platform was used to annotate breast can-
cer tissue regions by two senior/practicing pathologists (SP), and 20 non-pathologists
(NP) consisting of medical students and fresh graduates. A study coordinator selected
161 rectangular regions of interest (ROIs) from 151 whole-slide images of formalin-fixed
paraffin embedded sections from the TCGA Breast Cancer cohort. ROIs were selected
to capture representative patterns of tumor, stroma, and immune infiltrates, as well as
less common regions and structures including necrosis, blood vessels, and fat. Images
and ROIs were hosted on a Digital Slide Archive server where participants could access
them through a web-browser and use their mouse to annotate tissue regions in the ROIs
using the polyline tool.

ROIs were assigned to two categories to provide both adequate breadth for training
ML algorithms and to enable assessment of interobserver variability in annotation. Core
ROIs provide breadth, being present in all 151 slides, and were divided among the users
(approximately 6 per user) based on a difficulty score assigned by the study coordinator.
Participants first annotated their core ROIs and then solicited feedback from an SP who
applied corrections in multiple feedback cycles. This provided two versions of the core
ROLI: 1) Uncorrected core ROIs and 2) Corrected core ROIs. Ten additional Evaluation
ROIs were created in the slide set and assigned to all NP participants to assess inter-
observer variability. Annotation of evaluation ROIs was performed following completion
of core ROIs; evaluation ROI annotations were not corrected. The DICE coefficient for
segmentation annotations made by SPs was as follows: 0.87 (tumor), 0.81 (stroma), and
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Figure 1: Scalable variational Gaussian processes for crowdsourcing (SVGPCR) in digital
pathology. (A) This paper uses classification of predominant tissue patterns in breast cancer to inves-
tigate how SVGPCR can be used in crowdsourcing annotations for digital pathology. (B) The data used
in this paper originates from a study where participants delineated tissue regions to produce semantic
segmentation annotations in a set of curated Regions of Interest (ROI) (see Figure 2). SVGPCR enables
a sparse study where most ROIs are not annotated by all participants. (C) To leverage SVGPCR in
this application, we analyze patches from the annotated ROIs. Patches were selected where at least
50% of the pixels correspond to a single label. For each patch with a majority label Y we used VGG16
to extract a 512-dimensional feature vector X for SVGPCR training. (D) In SVGPCR, the observed
annotation Y depends on the true label Z and annotator reliability R. The scalable variational Gaussian
process (SVGP) classifier F is trained to predict the true label from the features X. X and U = F(X)
are used to improve the scalability of training (in GP terminology, they are called inducing locations and
inducing points respectively, see Details on the machine learning algorithm). (E) Given a test patch,
the SVGP classifier F' can be used to infer the true label Z, or combined with the reliability matrix of a
specific annotator to infer how that annotator would label the patch.
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Figure 2: Experimental design. Our experiments combine annotations generated by experts (SP) and
novice (NP) participants in a crowdsourcing study of breast cancer digital pathology images. (A) 161
regions of interest in 151 slides were selected for inclusion in the annotation study [15]. 10
ROIs were selected as the Evaluation ROIs (red) and annotated by all participants. The
remaining 151 ROIs were each assigned to individual annotators as Core ROIs (black). (B)
Participants used a web-based interface to annotate a number of tissue regions in each ROI including
tumor, stroma, immune infiltration, and others. Core ROIs annotated by NPs were reviewed and
corrected independently by either SPs, giving us paired uncorrected (black) and corrected gold standard
(gray-filled) annotations. Annotations on Evaluation ROIs did not undergo correction. (C) We formed
a number of training sets to assess various conditions. A “majority vote” (MV) training set smooths
the labels over the evaluation set ROIs for assessing non-crowdsourcing methods. These are combined
with the uncorrected core ROI annotations to increase data volume. A “crowdsource” (CR) dataset
combines the uncorrected core and evaluation ROIs for NPs to form a training dataset with noisy labels
for assessing crowdsourcing methods. A gold standard training dataset combines corrected ROIs from
NPs with evaluation ROIs from the SPs. The testing set used to assess performance was composed of
core ROIs from SPs and corrected core ROIs from NPs.
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0.52 (lymphocytic infiltration). Further details on the interobserver variability for both
SPs and NPs is discussed in detail in [15].

We performed a collection of experiments to assess the impact of training data quality
and the effectiveness of crowdsourcing approaches. We considered a multiclass problem
with three different classes: tumor, stroma, and immune infiltrates. We also compared
Gaussian processes (with features from pre-trained convolutional networks) with state-
of-the-art deep learning models like CrowdLayer [18, 10]. Data quality was examined by
formulating three training sets with varying label quality (see Figure 2): 1. Gold standard
training combines corrected core ROI annotations with SP annotations on evaluation
ROIs; 2. Majority vote training (MV) combines uncorrected NP core ROI annotations
with pixel-wise majority voting over NP evaluation ROI annotations; 3. Crowdsourcing
training (CR) combines all uncorrected NP core ROI annotations and all NP evaluation
ROI annotations. The gold standard training set represents a gold-standard where all
annotations are generated, corrected, or approved by SPs. The MV training set represents
a naive approach to improving data quality by averaging over noisy NP annotations. The
CR training set represents a true crowdsourcing experiment where NP annotations are
not corrected or revised by experts or smoothed through averaging.

First we measured the impact of training data quality on SVGP and VGG16 methods
that weigh all labels and annotators equally, comparing their performance with smoothed
label MV training and gold standard training. Next, we assessed the ability of crowd-
sourcing methods like AggNet [9], CrowdLayer (CL) [10], and SVGPCR [18|, which
learn annotator reliability using CR. training generated through crowdsourcing with non-
experts. The first two are recent methods based on deep learning. For Crowdlayer,
depending on the annotator modeling, we can distinguish three different models: CL-
MW, CL-VW, and CL-VWB. CL-VW incorporates a vector of per-class weights, an
additional bias is considered for CL-VWB and, the most complex, CL-MW computes
the whole confusion matrix of the annotators. SVGPCR is based on scalable Gaussian
Processes.

Finally, we assessed the ability of SVGPCR to infer predictions from a specific anno-
tator that reflect that annotator’s class-conditional reliabilities. For these experiments
we modified the CR training, reserving half of the evaluation ROIs for testing, and train-
ing the SVGPCR on the uncorrected NP core ROIs and the remaining evaluation ROIs.
SVGPCR inference was performed for each annotator and evaluation ROI in the testing
set and compared to the annotations of that annotator using the DICE coefficient. Dense
predictions were generated in these experiments using sliding windows with 95% overlap
to enable visual comparison.

Here we describe the formulation of a scalable SVGPCR, algorithm that can learn
from sparsely annotated datasets. Additional details are presented in the Supplementary
Information and in the SVGPCR paper [18]. The inputs for training an SVGPCR
model are the features X, that are derived from the images, and the crowdsourced labels
Y. SVGPCR simultaneously learns both a classification model and the class-conditional
reliabilities for each annotator. First, an underlying Gaussian Process (GP) model is
learned to classify previously unobserved samples. The GP is denoted by F in Figure 3
(U and X are the inducing points and the inducing point locations respectively, and they
are introduced for scalability). Second, the reliabilities of each annotator are modeled
using per-annotator confusion matrices that describes the reliabilities of each annotator
in labeling each class (R in Figure 3). Both F and R are connected by the variable
Z, which represents the unknown true labels of the training samples. This unknown



Chapter 4. Crowdsourcing in histopathological images 82

Figure 3: Probabilistic graphical model for SVGPCR. Dark variables refer to observed variables while
light variables refer to latent variables (to be estimated). The observed variables are the features X and
the annotations Y made by several annotators. The annotations depend on the true labels Z and the
reliability of the annotators, R. The true labels are modeled by latent variables F with a GP prior. Once
the training is finished, the latent classifier can predict the true label on unseen samples. For scalability,
X and U summarize data information lightening the computational cost (X is much smaller than X).

variable is integrated out and estimated during training jointly with the classifier F' and
reliabilities R.

This work addresses a K-class classification problem with crowdsourced labels. The
training set consists of N instances {(x,,y%): n=1,...,N; a € A,}, where x,, € R is
the feature vector of the n-th instance, and y? is the label provided by the a-th annotator
for the n-th instance. We represent labels as one-hot encoded vectors, i.e., the k-th class
is specified by a vector in which all elements are zeros except for a single one in the k-th
position. The matrix X = [x1,...,xy]T € RV*P contains the features of all the training
instances and the set of all the annotations is defined as Y = {y% :n=1,...,N,a € A,}
where A,, is the subset of annotators that labeled the n-th instance. Note that each
sample can be annotated by a different subset of annotators.

In this approach, each instance is assumed to have an (unknown) true label, z, €
{e1,...,ex}. The reliability of each annotator is modeled by a confusion matrix R* =
(T?j)léi,jﬁ k- Each row of this matrix represents the label provided by the a-th annotator,
and each column the true class. Notice that it is normalized, so each column adds up to
1, and the elements represent conditional probabilities. In other words, p(y* = e;|z =
ej) = ri;. Notice that the reliability matrix of a perfect annotator will be the identity.
Mathematically, this is given by

P(Ynlzn, RY) = [yn] TR 2. (1)

Assuming independence among annotators, we have

N
p(Y(Z.R) =[] ] p(v&lz..R*). (2)

n=1 aGAn

where Z ={z, :n=1,...,N} and R={R*:a=1,..., A} contain the true labels of
all instances and the reliability matrices of all annotators, respectively.
SVGPCR defines a prior (independent) Dirichlet distribution over R,

A K A

K
p(R) = [T [Ir@) = [T IIDir(xflas;,. ... a%k;), (3)

a=1j=1 a=1j=1

7
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where rf = (rij, .- ,r%{j)T is the j-th column of R®. The hyperparameters a = {a?j :
i,j=1,...,K, a=1,..., A} of the prior distribution allow for including assumptions on
the reliability of the annotator. When there is no prior knowledge about the annotators’
behavior, the most common choice is to use a non-informative uniform distribution, i.e.,
a% =1.

So far, we have seen how SVGPCR models the crowdsourced annotations given the
true labels. Now, we model the relationship between the true labels Z and the features
X by introducing a latent classifier based on stochastic variational Gaussian procesess
[19]. That is, K latent variables f,. = {fi(xn)}5; model the (unknown) true label
z, through a specific likelihood p(z,|f,.). The latent variables provide scores in R to
each sample and the likelihood maps them to the [0, 1] interval. We use the soft-max
likelihood which is defined by

efn,k

S e
To lighten the notation, we denoted the latent variables by fi(xy) = fn k. Assuming that

the class labels are independent given the latent variables, we factorize the likelihood
across the different samples:

(4)

p(zn = ek|fn,:) =

N
p(Z|F) = H p(zn‘fn,z)a (5)
n=1

where p(z,|f,.) is given by eq. (4). F gathers the latent variables in a N x K matrix
where f, 1 is placed in the n-th row and k-th column. Notice that the K latent variables
are in the columns, f, and the rows gather the value of each variable for the N instances
£

The latent variables {fk}le are modeled by independent GP priors. This imposes
that { f,,.x}2_, follow a multivariate Gaussian distribution (for a fixed k). We also assume
that this Gaussian distribution has 0 mean and the covariance matrix is given by a kernel
function. In this work, we use the Squared Exponential (SE) kernel, which is defined by
k(xi,x;) = o exp(—||x; —x;||?/(21%)) [20]. Therefore, the prior over the latent variables
F is given by

K K
p(F|©,X) = [ p(f|©,X) = [[ N(£x]0, Kxx), (6)
k=1 k=1

where © includes o and [ (i.e., the kernel hyperparameters), and the covariance matrix
is Kxx = K(X,X) = (k(xj,%;));;. Notice that the SE kernel is very expressive and
performs remarkably well in different scenarios [20]. In particular, it encodes desirable
properties in the covariance matrix, such as smoothness.

In summary, we have defined the following probabilistic model:

p(Y,Z,F,R|®) = p(Y|Z, R)p(R) p(Z|F) p(F|X, 0). (7)

CR modelling  likelihood GP prior

This model is not scalable because standard GPs involve the inversion of an N x N
dimensional matrix. To overcome this limitation and deal with large datasets the sparse
approximation is used [19]. This approximation introduces M < N inducing points.
These inducing points summarize the information of the observations and will lighten
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F1 score | Accuracy | Log loss | AUC
VGG-gold | 0.8088 0.8440 0.7073 0.9271
VGG-MV | 0.7975 0.8325 0.6635 0.9201
SVGP-gold | 0.8157 | 0.8582 0.3938 | 0.9373
SVGP-MV | 0.7919 0.8458 0.4261 0.9289
SVGPCR | 0.8147 0.8579 0.3983 0.9360

Table 1: Performance on the test set: F1 score, accuracy, log loss, and AUC values. Gold refers to expert
labels, MV to majority vote labels, SVGPCR to crowdsource labels.

F1 score | Accuracy | Log loss | AUC
AggNet [9] 0.7998 0.8433 0.6814 | 0.9287
CL-MW [10] | 0.8158 0.8570 0.4963 | 0.9317
CL-VW [10] 0.8072 0.8421 0.4911 0.9264
CL-VWB [10] | 0.8179 | 0.8554 0.5536 | 0.9301
SVGPCR [18] | 0.8147 0.8579 0.3983 | 0.9360

Table 2: Performance of crowdsourcing methods on the test set: F1 score, accuracy, log loss, and AUC
values. These methods use non-expert labels.

the computational cost. They are values of the GP function. Notice that the inducing
locations, where the GP is valued to compute the inducing points, may not be instances of
the training set. We denote by X = [X1,..., %7 € RM*P the inducing locations while
U corresponds to their value after the GP is applied. In other words, U is the evaluation
of the GP on X, just like F is on X. Importantly, the locations X are optimized during
training. Finally, the sparse probabilistic model is given by

p(Y,Z,F,U,R|®) = p(Y|Z,R)p(R) p(Z|F) p(F|U,©)p(U|O).

CR modelling

(8)

likelihood GP prior

Once the probabilistic model is defined, the posterior distribution p(Z,F, U, R|Y, ®)
must be computed. Since this cannot be achieved in closed-form (integrating out Z in
(8) is intractable), SVGPR resorts to variational inference. The mathematical details
for the variational inference step and for the predictive distribution are provided in the
supplementary material.

3. Results

Table 1 depicts the performance of the SVGP and VGG methods with the different
training sets. We found that training data quality impacts the performance of the SVGP
and VGG methods. Training on the gold standard data resulted in improvements in F1
score, AUC, and accuracy for both SVGP and VGG when compared with MV training.
For SVGP the gold standard training data improved the F1 score by 3.0% to 0.816.
Similar improvements were observed for AUC (0.9% increase to 0.973), and accuracy
(1.5% increase to 0.858). For VGG the gold standard training data improved the F1
score by 1.4% to 0.809. Similar improvements were observed for AUC (0.7% increase to
0.927), and accuracy (1.3% increase to 0.844). For log loss we observed an improvement
for SVGP (7.6% reduction to 0.3938) but for VGG the loss increased (6.5% increase to
0.7073). Comparing SVGP and VGG with gold standard training we observed a small
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DICE Tumor Stroma Immune Infiltrates | Overall
Ground truth 0.8529 0.7979 0.6905 0.8072
Participant’s behavior | 0.8132 +0.0342 | 0.7286 + 0.0392 | 0.4841 + 0.1310 0.7789 + 0.0237

Table 3: DICE values for participant’s behavior and ground-truth (i.e., expert annotation) predictions.
The results are computed per-class and globally. Furthermore, confidence intervals of 95% are computed
for the 20 participants.

performance benefit for SVGP with a slightly higher F1 score (0.8% increase), AUC
(1.0% increase), accuracy (1.7% increase), and lower loss (44% reduction) than VGG.

Table 2 depicts the performance of different crowdsourcing methods trained with the
CR training set. CrowdLayer and SVGPCR have similar performance, with SVPGCR
having a slight advantage in AUC, accuracy, and loss. CrowdLayer-VWB had a small
advantage in F1 score (0.4% increase to 0.818), where SVGPCR had an advantage over
the next best CrowdLayer method in AUC (0.4% higher than CL-MW), accuracy (0.1%
higher than CL-MW), and loss (18.9% lower than CL-MW). AggNet has the lowest
performance of crowdsourcing methods in all metrics except for accuracy. The best
performing crowdsourcing methods were competitive with SVGP and VGG with gold
standard training. SVGPCR trained on noisy CR labels is very similar to SVGP trained
with gold standard labels with both methods having similar F1 scores (0.815 versus
0.816), AUCs (0.936 versus 0.937), accuracies (0.858 for both), and losses (0.398 versus
0.393). These differences are small when compared to differences between SVGP with
MYV training and SVGP with gold standard training.

Figure 4 shows examples of inferred predictions for individual annotators. Visual
inspection of these predictions shows that SVGPCR can learn and reproduce the biases
of individual annotators. NP17 tends to call some stromal regions as tumor, and the
SVGPCR inferred predictions for NP17 also exhibit this tendency. NP19 is less sensitive
in annotating tumor, missing a large region that was annotated by the SP, and we see
this same lack of sensitivity in SVGPCR inference for NP19. NP21 is not sensitive in
detecting a group of inflammatory cells, and we also see that their SVGPCR inference
lacks sensitivity in detecting these cells as well. Quantitative analysis of agreement
between SVGPCR inferences for specific annotators and their uncorrected annotations
is presented in Table 3. The quantization is made by reconstructing the pixel-level
of annotators using the patches annotations. The similarity of the annotations and
the predictions is performed using the DICE coefficient. This coefficient measures the
similarity between them. The 95% confidence interval of the DICE scores averaged
over the 20 NPs is 0.7789 £ 0.0237. The average DICE score when comparing SVGPCR
inferred gold standard with the expert SP annotations lies outside this interval at 0.8072.

4. Discussion

Data is often the limiting factor in training and validating machine learning algo-
rithms for biomedical applications. When domain experts like pathologists are needed
to produce ground-truth labels, generating data at the scale required by algorithms like
convolutional networks is often difficult. This study seeks to address this problem by
examining how a probabilistic approach to integrating annotations from novices can
compete with algorithms trained using gold-standard data generated by experts. As
a statistical machine learning method, Gaussian processes provide a framework for esti-
mating the accuracy of annotators, including class-conditional accuracies, and to use this

10
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Figure 4: Visualizing annotator-specific inferences. We performed additional experiments to assess
the ability of SVGPCR to learn the biases of individuals. The color in the masks encode tumor (red),
stroma (green), lymphocytic infiltrates (blue) and other classes (black). (A) Two SVGPCR classifiers
were trained. The first training set combined the core ROIs and first 5 evaluation ROIs, and performed
inference on the second 5 evaluation ROIs. The evaluation ROIs were then swapped, and the training and
inference were repeated. For each ROI, the trained SVGP and reliability annotation matrices were used
to generate an annotator-specific inference. This inference was compared with the actual annotation
and the annotation from the SP to observe differences. The patch-based analysis resulted in some
quantization, so the quantized and original annotations are both presented. (B) This ROI contains a
band of stroma from the upper center to the lower right that separates two regions of tumor, and a region
of necrosis on the right. The inferred true labels correspond closely to the SP annotation. Participant
NP17 is more sensitive in annotating tumor, and their inferred annotation exhibits the same pattern.
(C) This ROI contains an island of tumor separated from regions of dense immune infiltrates by a wide
area of stroma. The inferred true labels correspond closely with the SP annotation. Participant NP19
is not very sensitive in labeling tumor by comparison, and the tumor in the annotator inference is also
absent. (D) This ROI contains tumor in the lower left and a small pocket of immune infiltrates in the
upper right. The immune infiltrates are present in both the SP annotation and the inferred true labels.
The immune infiltrates are absent from the annotation of participant NP21, and are mostly absent from
the inferred annotation.
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information in making inferences of ground truth. Our experiments show that SVGPCR
trained on noisy labels obtained from novices in digital pathology crowdsourcing studies
can compete with state of the art algorithms trained on gold standard labels.

We used a unique data resource to compare Gaussian processes based methods with
other crowdsourcing approaches. The BRCA tissue region dataset contains over 20,000
tissue regions, including both novice and expert-corrected annotations, enabling com-
parison of crowdsourcing methods trained on novice annotations to methods trained on
gold-standard annotations. Our experiments demonstrated that data quality impacts the
performance of methods that are not based on crowdsourcing. SVGP and VGG models
trained using a “majority vote” training dataset that averaged novice annotations had
inferior performance compared to the same models trained using gold standard annota-
tions. Under the optimistic conditions of training with gold standard annotations, SVGP
and VGG had similar performance, with SVGP having a slight advantage in F1, AUC,
accuracy and a large improvement in loss on the testing data, showing that Gaussian
process models can compete with convolutional networks in this example.

The best crowdsourcing methods including SVGPCR and CrowdLayer variants trained
using novice annotations have performance comparable to methods trained using gold
standard annotations. This result suggests that in some circumstances, expert correction
of novice annotations may not be necessary for annotations used in training. Performance
differences for SVGPCR and CrowdLayer were small compared to differences between
methods trained with majority vote and gold standard data, suggesting that the anno-
tator and class conditional weighting applied by crowdsourcing methods is superior to
basic smoothing of novice data labels. SVGPCR performance in classifying tumor and
stroma was significantly higher than for immune infiltrates. This parallels the patterns
of interobserver variability observed during the crowdsourcing study. Tumor and stroma
are defined by sharp boundaries and in our annotation data we see significantly better
concordance among annotators for these tissue types. Immune infiltration is diffuse and
regions infiltrated by immune cells lack a sharp boundary, requiring annotators to judge
their density which is much more subjective. This translates to higher interobserver vari-
ability among annotators for immune infiltrates, and likely presents a greater challenge
for SVGPCR. Regions of immune infiltration are also less prevalent in our dataset than
regions of tumor and stroma.

We also showed how SVGPCR can reproduce the biases of specific annotators through
inference. This result suggests that SVGPCR could help assigning work to annotators on
the basis of their relative strengths and weaknesses as observed in their class-conditional
accuracies. By modeling class-conditional annotator accuracy, SVGPCR learns how to
weight the labels of each annotator during training to improve inference of gold standard
labels. We provide visual and quantitative evidence that show how annotator-specific
inferences produced by SVGPCR agrees with the withheld annotations on these test
images, and reflects the sensitivities of annotators to various classes.

While these results suggest that SVGPCR may help reduce the annotation burden in
digital pathology tasks, there are some important limitations in our study. Quantizing
segmentation annotations to the patch level was necessary to provide a neighborhood of
pixels for SVGPCR to learn from, however, this results in a loss of detail. While this
quantization was necessary to conduct our studies, SVGPCR may be more appropriate
for patch level problems like cell classification than for segmentation problems where fine
details need to be represented. While SVGPCR likely benefits from the presence of a
variety of annotators, some being more specific or more sensitive for different classes, it

12
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is not well understood when variability in annotations may pose a problem for learning.
Furthermore, while some common evaluations regions among annotators are likely nec-
essary for SVGPCR to learn the strengths and weaknesses of each annotator, it is not
well understood how the balance of evaluation and core ROIs impacts SVGPCR perfor-
mance. The core regions increase the breadth of the training set, and the annotation of
evaluation regions reduces this breadth given a fixed budget of annotator time. We also
plan to explore how the class-conditional accuracies learned by SVGPCR can improve
assignment data to participants in crowdsourcing experiments and can help participants
to understand their weaknesses and to improve them. This could be accomplished by
iterative training of an SVGPCR model during crowdsourcing studies. We are also in-
terested in exploring how the number of evaluation and core regions impacts SVGPCR
performance.
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5.2 Main contributions

e We propose a new probabilistic Multiple Instance Learning model based on Deep
Gaussian Processes which we name DGPMIL. We introduce for the first time DGPs
to the MIL problem and study their application to this problem.

e We study the behavior of the DGPMIL on a controlled experiment on MNIST.

e We apply DGPMIL combined with an attention-based CNN to Intracranial Hemor-
rhage Detection. This application studies the suitability of DGPs to ICH detection

with labels only at scan level. We compare our approach to other state-of-the-art
methods for this problem based on CNNs and shallow GPs.

91



Chapter 5. Multiple Instance Learning in CT scans 92

Deep Gaussian Processes for Multiple Instance Learning:
Application to CT Intracranial Hemorrhage Detection

Miguel Lépez-Pérez®*, Arne Schmidt?, Yunan WuP, Rafael Molina?, Aggelos K.
Katsaggelos®

¢ Department of Computer Science and Artificial Intelligence, University of Granada, 18010 Granada,
Spain.
¥ Department of Electrical Computer Engineering, Northwestern University, Evanston, IL, 60208 USA.

Abstract

Background and objective:

Intracranial hemorrhage (ICH) is a life-threatening emergency that can lead to brain
damage or death, with high rates of mortality and morbidity. The fast and accurate
detection of ICH is important for the patient to get an early and efficient treatment. To
improve this diagnostic process, the application of Deep Learning (DL) models on head
CT scans is an active area of research. Although promising results have been obtained,
many of the proposed models require slice-level annotations by radiologists, which are
costly and time-consuming.

Methods:

We formulate the ICH detection as a problem of Multiple Instance Learning (MIL) that
allows training with only scan-level annotations. We develop a new probabilistic method
based on Deep Gaussian Processes (DGP) that is able to train with this MIL setting
and accurately predict ICH at both slice- and scan-level. The proposed DGPMIL model
is able to capture complex feature relations by using multiple Gaussian Process (GP)
layers, as we show experimentally.

Results:

To highlight the advantages of DGPMIL in a general MIL setting, we first conduct sev-
eral controlled experiments on the MNIST dataset. We show that multiple GP layers
outperform one-layer GP models, especially for complex feature distributions. For ICH
detection experiments, we use two public brain CT datasets (RSNA and CQ500). We
first train a Convolutional Neural Network (CNN) with an attention mechanism to ex-
tract the image features, which are fed into our DGPMIL model to perform the final
predictions. The results show that DGPMIL model outperforms VGPMIL as well as the
attention-based CNN for MIL and other state-of-the-art methods for this problem. The
best performing DGPMIL model reaches an AUC-ROC of 0.957 (resp. 0.909) and an
AUC-PR of 0.961 (resp. 0.889) on the RSNA (resp. CQ500) dataset.
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Conclusion:

The competitive performance at slice- and scan-level shows that DGPMIL model pro-
vides an accurate diagnosis on slices without the need for slice-level annotations by
radiologists during training. As MIL is a common problem setting, our model can be
applied to a broader range of other tasks, especially in medical image classification,
where it can help the diagnostic process.

Keywords: Multiple Instance Learning, Deep Gaussian Processes, Intracranial
Hemorrhage Detection, Weakly Supervised Learning

1. Introduction

Intracranial hemorrhage is a severe life-threatening emergency with high rates of
mortality and permanent disability. It is initially caused by blood leaking inside the
cranium, where the rapidly increasing blood pressure of the brain leads to severe brain
damage or death [1]. It is reported that around 40000 to 67000 subjects suffer from ICH
per year in the United States [2] and 30% of them eventually die [3]. To avoid death or
remaining damages, early treatment is crucial. The study shows that, without timely
brain surgery, nearly half of the deaths occur in the first 24 hours and only 20% of the
surviving patients have the chance to completely recover at the end [2], indicating the
important role of a fast and accurate ICH diagnosis in improving the survival rates and
chances of recovery. Computed Tomography (CT) is a widely used non-invasive imaging
technique for the ICH diagnosis, that is accessible and cheap for patients and at the same
time, convenient and fast for radiologists. However, studies show that radiologists may
misdiagnose after long hours of CT scans readings [4, 5]. As Computer-aided diagnosis
(CAD) methods can help to reduce the workload of radiologists and provide an accurate
diagnosis, they are of high clinical importance.

With the rapid development of DL, several models have been proposed to detect
ICH. CNNs foster self-learning filters to focus on regions of interest without the need for
manual feature extractions. The simplest way is to apply DL models on a single slice
directly and predict the ICH at slice-level. For instance, Phong et al. [6] compared three
types of traditional CNN models and found that models with pre-trained weights on
non-medical images improved the ICH diagnosis. Cho et al. [7] developed a cascade DL
model based on CNNs and dual fully convolutional networks to improve the sensitivity
in identifying ICH. Although these models achieved good classification performances,
it is challenging to collect a large number of slice annotations because manual labeling
is time-consuming and requires expert knowledge. The ground truth at scan-level is,
however, relatively easy to obtain, as it can be generated directly from the clinical radi-
ologists’ report. Therefore, an emerging approach using only scan-level labels consists of
predicting ICH on full 3D scans. For instance, Titano et al. [8] utilized a 3D Resnet-50
CNN to predict ICH on brain scans and Jnawali et al. [9] ensembled three different 3D
CNNs to improve the detection rate of ICH. However, one major problem of 3D CNNs
lies in their highly expensive computation, leading to out-of-memory errors during the
training processes. In addition, 3D models are not able to indicate the specific slice that
contains the possible ICH inside a scan. This is however crucial to facilitate the ICH
localization.

Another approach that uses only scan-level labels is the MIL paradigm. MIL is a
weakly-supervised learning method that has been proposed to solve the problems when
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only bag labels are available [10]. It has been applied in many medical domains. Cam-
panella et al. [11] trained a MIL model to diagnose cancer in histopathological images
with slide labels by finding the highest probability per bag and then applying a recur-
rent neural network on the extracted features of each instance to predict the whole slide.
Recently, attention-based methods are gaining more and more popularity in the field of
medical images for the MIL setting. Similar to channel attention mechanisms that are
weighting each channel of a CNN layer with attention weights [12], the attention weights
in the case of MIL are assigned to the instances [13]. These instance attention weights
provide insight into the contribution of each instance to the bag predictions. Several ap-
proaches have extended this attention mechanism to different medical applications: Han
et al. [14] proposed an attention-based deep 3D MIL to diagnose COVID-19 from chest
CT, where the attention mechanism is able to find key instances to interpret the specific
infection areas of COVID-19. Qi et al. [15] developed another deep represented MIL
to classify COVID-19 from normal pneumonia, which was first pre-trained to generate
each instance feature and then generated predictions using the k-nearest neighbor. Sim-
ilarly, they found that the attention weights highlight infected lesions, providing strong
evidence for the diagnosis. Other approaches for the MIL problem are based on Gaus-
sian Processes (GPs). Gaussian Processes were first proposed as Variational Gaussian
Processes for MIL (VGPMIL) obtaining promising results in many different scenarios.
For instance, they performed well for the classification of histological images of Barrett’s
cancer [16]. Our previous work [17], VGPMIL combined GPs with an attention-based
CNN to address ICH diagnosis in the MIL setting. We proved that GPs outperformed
the attention mechanism of CNNs for the ICH problem and set a new state-of-the-art
for ICH diagnosis using only scan labels for training. To the best of our knowledge, this
was the first time that GPs have been applied to the ICH diagnosis problem.

Although Gaussian Processes have not been widely used for ICH yet, they have
achieved promising results on many other classification tasks [18], such as non-parametric
and probabilistic models, which are capable of dealing with uncertainty in modeling and
prediction [19]. Prior information can be included in the kernel function acting as a
regularizer. Thus, they are not prone to overfitting. The flexibility, expressiveness, and
robustness to overfitting of GPs make them suitable for a wide range of problems, espe-
cially, when only limited data is available. For this reason, they are promising for medical
applications. In spite of all the benefits previously mentioned, GPs suffer from an impor-
tant drawback. Commonly, they are used with stationary kernels. These kernels work
well in many scenarios but they are not able to capture complex patterns, e.g., a function
that is flat in one region and varies rapidly in another. Moreover, high parametrized
kernels, which represent richer functions using shallow GPs, are expensive to train so
approximate methods may be at risk of overfitting [20]. To overcome this limitation,
DGPs have been introduced [21]. They are hierarchical extensions of GPs enabling to
model more complex functions while retaining all the benefits of shallow GPs. DGPs
can learn a representation hierarchy non-parametrically with very few hyperparameters
[20]. DGPs have been used in medical imaging problems, such as histology, with sound
results [22] against GPs and DL methods. So far the existing DGP-approaches focused
on fully supervised training mostly for regression [21, 20], classification [21, 20, 22|, or
special cases like multi-view representation learning [23], a learning paradigm where
multiple data sources with different data formats are taken into account. To the best of
our knowledge, there is no existing DGP-model for the MIL setting with only bag labels
available.
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This work aims to extend our previous conference paper [17], which uses an attention-
based MIL combined with GPs for ICH detection. We overcome the limitation of the
originally applied shallow GP, which is only capable of modeling functions with limited
complexity. Therefore, instead of using GPs, we propose a novel MIL method based on
DGPs called DGPMIL. The new DGPMIL is more flexible than VGPMIL and improves
the performance of the classifier. In this work, we also use the attention-based CNN
proposed in [17] to extract the features, but this time, the hierarchical structure of DGPs
enables us to capture richer patterns. In addition, the inducing locations of DGPMIL
are optimized per layer in contrast to VGPMIL, the model used in [17], where they were
fixed after a k-means estimation. The main contributions are:

e We introduce DGPMIL, a novel probabilistic model based on DGPs for MIL clas-
sification. To the best of our knowledge, DGPs have never been proposed be-
fore for MIL in any domain. We outline the detailed theoretical derivation and
make the implementation of the model publicly available at https://github.
com/wizmik12/DGPMIL. It is based on GPytorch, a framework for GPs on top of
Pytorch, and can leverage GPU computation for fast inference.

e We study the behavior of this new MIL approach in a controlled experiment using
the MNIST database. This experiment shows how the greater expressiveness of
deep GPs achieves better results than shallow GPs in MIL.

e Finally, we apply the DGPMIL model combined with an attention CNN to ICH de-
tection with labels at the scan level. These experiments demonstrate the suitability
of this method to medical imaging. We report competitive or superior results to
current state-of-the-art methods. Remarkably, the precision obtained at detecting
ICH is notably better than previous approaches for this problem.

The rest of the paper is organized as follows. Section 2 describes the proposed
model. We explain the feature extraction process using an attention-based CNN and
also describe DGPMIL. Section 3 validates the method. We first create a synthetic MIL
problem of digit classification to show the behavior of DGPMIL and then we perform a
comprehensive validation for ICH detection on CT scans. Section 4 analyzes the main
findings of the reported results and section 5 concludes our work.

2. Methods

2.1. Problem formulation

Mathematically, we model the ICH detection as a MIL problem. We denote the
set of all CT slices as X = {x1,X2,..,xxy} and the true (unobserved) slice labels as
Y = {y1,y2,..,yn} with y; € {0,1}, where the class label 1 is assigned when the slice
or scan is ICH positive and otherwise 0 if no ICH is present, and N is the total number
of slices in a given bag. Note that N can vary depending on the bag. In the context of
MIL, these slices are called instances and a complete scan (consisting of multiple slices)
bags. The bags are non-overlapping, such that each index ¢ of an instance can be only
assigned to one bag b. We denote the instances of one bag as X, = {x;|i € bag b}
and corresponding instance labels as Y, = {y;|i € bag b}. In the MIL assumption, the
instance labels remain unobserved and only the bag label T} is known. When a CT scan
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Figure 1: The proposed architecture for the ICH detection with scan labels. In phase 1 the feature
extractor is trained using an attention module for bag level predictions (Att-CNN). In phase 2 the
weights of the feature extractor are frozen and DGPMIL is trained to predict slice and scan level labels.
We depict only a two-layer DGPMIL here although in the experiments we use a varying amount of layers
to find the optimal configuration.

is diagnosed as ICH positive, at least one slice must contain the pattern of hemorrhage
while a negative scan contains only negative slices, in other words,

Ty, = max{y;|i € bag b}. (1)

2.2. Owerview of the model

To solve the MIL problem just defined, our model is trained in two phases, described
in Figure 1. First, we train a convolutional neural network (CNN) that serves as a fea-
ture extractor in combination with an attention mechanism (Phase 1). The purpose of
this phase is to build a feature extractor that is able to obtain expressive features from
the slices. Although this phase 1 model (Att-CNN) is also able to predict ICH on CT
scan level we disregard the attention layer after the first phase because we can exper-
imentally prove that our DGPMIL model shows a stronger classification performance
using the obtained features (see 3.4). The second phase consists of the classification
using the extracted model features. In [17], the second phase was performed using VGP-
MIL. Notice that this shallow model could be too simple for the extracted features. In
this work, we propose for the first time Deep Gaussian Processes for Multiple Instance
Learning (DGPMIL). We describe the modeling and the inference with all derivations.
The emphasis of this work lies on the training of the DGPMIL model (in phase 2) that
provides the final slice and scan level predictions. We prove that DGPs take advantage
of the complex patterns of the extracted features.

In the following subsections, we will briefly explain how the feature extraction is
performed in our experiments.

2.8. Feature Extraction

This subsection provides a brief introduction to the attention mechanism with CNNs
to extract brain CT features at slice-level, as shown in Fig.1. Assume a CNN model
F..n is used to extract high dimensional features &; for each instance z;, such that
& = Fenn(xi),Vi = 1,2,.., N. Note that the same network is applied to each instance
and the weights are shared. F.,, consists of six convolutional layers, each followed by a
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max pooling layer. The convolutional layers aim to extract discriminative features from
each instance and the max pooling layers are used to reduce the feature dimensions.
Moreover, a flatten layer and a fully connected layer are followed by to control the size
of feature vectors & € RM*! fed to the attention layer and the DGPMIL model in Phase
2.

An attention layer L,y is applied after Fi,, to estimate an attention weight «;,
corresponding to each unique feature vector &;. The attention weights are used to cal-
culate a weighted sum of feature vectors for the final, bag-level classification.  Let
Ep = {&i]i € bag b} be the set of all feature vectors in a bag b and {«;|i € bag b} be the
attention weights for feature vectors =, such that Ly is defined as

Latt(Eb) = Z a;&;, (2)
1€b

where
e:cp{wT tanh(V'¢§;)}

a Z exp{w’ tanh(VE;)} 7

jeb

i

3)

w € RV and V e RE*M gre trainable parameters that accommodate different instance
numbers of a bag. The hyperparameter L is one dimension of weight matrices w and
V which defines the number of trainable parameters of the attention mechanism (and is
invariant to the bag size). We set L = 50 following the existing literature [13]. M equals
the dimension of the feature vectors, and we report the experiments for M = 8,32, and
128, see section 3.4.1. The sum of all o; in one bag is 1. The non-linearity tanh(-) aims
to preserve both positive and negative values during the gradient flow.

Next, the weighted sum of the feature vectors Lg(Zp) is fed to a classifier F., which
is made up of a fully connected layer with a sigmoid activation function, to predict the
scan labels, such that

p(Tb’Xb) = Fc(Latt(Eb)) = Fc(Latt(Fcnn(Xb)))- (4)

The feature extractor F,,, attention layers Ly and classifier F. are trained end-to-
end using the basic binary cross-entropy, C'E, until it converges. The loss L is defined
as:

L= CE(Ty,p(Ty| Xp)). (5)

b

This whole attention CNN process is denoted as Att-CNN. For more details about the
attention mechanism for MIL, we refer to [13]. Previous studies show that the labels at
the instance level can be inferred from the attention weights [13, 24]. The closer to 1, the
more important role that specific instance contributes to the bag prediction. Therefore,
in terms of this study, if a scan is predicted as normal, all slices will be considered
normal. If a scan is predicted as the ICH, the slices with min-max normalized attention
weights above 0.5 will be predicted as the ICH. By doing this, we are able to have
weakly predicted labels at slice-level to facilitate radiologists with their diagnosis and
localization. In the next section, we describe the DGPMIL model for the given problem.
In what follows, to be consistent with the GP literature, we replace = and &; by X3 and
x; as the extracted feature vectors serve as an input for the final DGP classification.
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2.4. Deep Gaussian Processes for Multiple Instance Learning (DGPMIL)

Here, we introduce the novel DGP model to solve the MIL problem for binary clas-
sification. We outline the basic theory of GPs and DGPS in the Appendix Appendix
A and refer the reader to [19, 25, 21] for further theoretical background. Note that in
contrast to previous DGP-based methods, our proposed model trains with only the bag
labels T}, while the instance labels y; are unknown, as described in subsection 2.1.. For
the observation model, we follow the approach used for Variational Gaussian Process
Multiple Instance Learning [16]. There, the authors parametrize the bag label likelihood
using o

HGb

H+1 (6)
where Gy := Tymax(yp) + (1 — Tp)(1 — max(yp)). In this equation, H is a positive
constant. Notice that this likelihood is a noisy version of the MIL assumption presented
in section 2.1 and it becomes exact when H approaches infinity. The constant H controls
the probability of the bag being positive considering that there is at least one positive
instance. Assuming independence across bags produces the factorization

p(TpYs) =

B HGb

p(T|Y) = H Hr1 (7)
b=1

where T refers to the variable which groups together all the bag labels.

We predict the instance label y by modeling a latent function FL using a DGP with
L layers.

Combining the Deep Gaussian Process model and the bag observation model we
obtain the full probabilistic model

p(Y, T, {F, U'},) = p(Tly) - p(y|F")
L
[[p(®' U F 1z Ut 2, (8)
=1

where the dependency on the observed features X and the hyperparameters © have been
omitted for simplicity.

2.5. DGPMIL inference

In this subsection, we describe the inference for our DGPMIL model. Additional
details are provided in Appendix B. Our goal is to approximate the intractable posterior
distribution p(Y, {F!, U’} ||T, ©) with an approximate distribution q(Y, {F!, U'}£ ).
Specifically, we perform doubly stochastic inference for DGPs [20]. We convert the
inference problem into an optimization one by maximizing the Evidence Lower Bound
(ELBO), defined by

p(Yv {Flv Ul}lL:1|T7 6)
Q(y, {Fl7Ul}lL:1)

ELBO(q) = / aly. {(FLUYE ) log dyd{F, U}, (9)

In this work, we use the mean-field approximation, i.e., q factorizes across as follows:

a(Z,{F", U'}y) = a(Y) x a({F'}, [{U'}2,, ©) x a({U'}i2y), (10)
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with the following parametric form for each factor:

N N
- H a(yn) = H gt (1 —qn) o, (11)
n=1 n=1
a({F'} 1\{Ul}zL 1,0) = p({FH= {U'Y,, 0), (12)
L
a({U'} ) Hq (U') = H./\/’(Ul\ml,sl). (13)

=1

The proposed posterior on the instance labels Y factorizes across the instances and we
denote by ¢, the probability of the n-th instance to belong to the positive class and by
dp—n all other instance probabilities in the same bag. The prior conditional F|U does
not introduce any new variational parameter. The proposed posterior distribution on
U'! factorizes across the layers and is given by a Gaussian distribution. In summary, the
variational parameters V to be estimated are {g,}_; and {m! S'}Z .

Finally, we obtain V, ©, and {Z'}£ | by maximizing the ELBO. The ELBO can be
written explicitly as

ELBO(V,0,{z"1}f ) =

P{U}) pUEHHE ) p(YIE4)p(T|Y)

Eqv)p(ie! Ul UL [log
q(Y)p({ } 1‘{ } ) ( }171) q({U}lL:1)p Fl L:1 l:1>q(Y)
= Eqy)pELiut)qur) [10gp(Y[E)] + Eqy) log p(T|Y)] — Eqy) log q(Y)]

p({U}L)

Notice that the term Eqy [log p(T|Y)] is not differentiable since it involves the max
function. This fact prevents us from optimizing the ELBO using gradient descent. To
overcome this limitation, we iteratively update first (Y) and then the DGP parameters.
Since we are using the mean-field approximation, following the approach of [16], we can
compute the optimal distribution of q(Y) with the other distributions fixed [26]. The
optimal update for q(y) is given by (see Appendix B.1),

4n 0 (Eq(f%) [fL] +log H - (2T + max qy_p — 2Th max qy_, — 1)) . (15)

Using the approximation E[max{y;}] ~ max{E[y;]} as in [16], the ELBO can be
approximated by (see Appendix B.2)

N

ELBO ~ Y uEq(szy [logp(yn = 11f1)] + (1 = gn)Eq(s2) [log p(yn = 0| £1)]
n=1
B
+log H Z (2T, max qp — max qp)
b=1
L
- Z qnlog qn + 1 - Qn) 10g 1 - Qn Z < ||p(Ul))
+ const. (16)
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Now, with ¢, fixed, we can optimize the ELBO in eq. (16) to obtain the optimal
distribution for q({Ul}lel), the kernel hyperparameters © and the inducing locations
{Zl}lL: , by using gradient descent (see Appendix B.3). Then, we can compute the
variational parameters ¢, with the update in eq. (15) where the other parameters are
fixed. As we commented before, this optimization is performed iteratively.

3. Experiments

This section provides an empirical validation of the proposed DGPMIL model. We
carry out two different experiments. First, we create a synthetic toy example based on
the popular MNIST dataset to show the behavior of DGPMIL against VGPMIL [16]
in a controlled environment. Then, we use the features extracted by the attention-
based CNN presented in section 2.3 with both VGPMIL and DGPMIL for clinical ICH
detection. We show the capacity of DGPMIL against the previous VGPMIL [17] and
other state-of-the art methods in this problem.

3.1. Toy example: MNIST

To see the behavior of the novel DGPMIL, we analyze a synthetic MIL problem using
the MNIST dataset. MNIST has 60,000 training samples and 10,000 test samples and
each instance is composed of a 784-dimensional feature vector. We want to compare
a shallow GP model with deep GP models to evaluate their capacity to handle high-
dimensional, complex feature distributions. Since it is a controlled experiment, we carry
out a comprehensive analysis to highlight its main properties. The availability of instance
labels allows us to assess the model at both instance and bag levels.

glsly3els]20[r B >012[2[7]7/ ¢4 ¢ 0i&
HOESCIFAF IR oli7lof2]n3/7]b/3]5]

(a) A positive bag (b) A negative bag

Figure 2: Examples of bags in the training set for the MNIST experiment.

In our MNIST synthetic problem, bags contain images of numbers between 0 and
9. The goal is to decide whether the bag contains at least one image of a one and, if
possible, to localize it (them) in the bag. Each positive bag contains 1 to 10 positive
(images of ones), and 10 to 30 negative (other numbers) instances. Negative bags contain
only negative, specifically 10 to 30 negative instances. In total, we obtain 1416 negative
and 1333 positive bags for training. Figure 2 shows two examples of bags in the training
set. The 10,000 samples of the test set are distributed in 229 negative and 231 positive
bags. We compare DGPMIL and VGPMIL models in our experiment. For the Deep
Gaussian Process model, we compare the performance with 2, 3, and 4 GP layers. The
dimension of the latent space of the hidden layers is set to 7 for every layer, 200 inducing
points are used for each model per layer. We compute the accuracy in the test set at
both instance and bag level. To assess the confidence of the methods, we also compute
the log loss over the test set.
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Table 1: Results in the MNIST of Multiple Instance Methods based on Gaussian Processes using the
first 30 principal components after using PCA. VGPMIL is the shallow Variational GP while DGPMIL
is the deep version with 2, 3, and 4 GP layers. We assess the classification performance both at the
instance and bag levels.

Instance level Bag level

Accuracy Log Loss Accuracy Log Loss
VGPMIL 0.9767 0.6006 0.8496 0.4016
DGPMIL2  0.9896 0.2672 0.9586 0.2859
DGPMIL3 0.9913 0.2638 0.9760 0.2531
DGPMIL4 0.9909 0.2602 0.9760 0.2517

3.1.1. Dimensionality reduction with PCA

Shallow methods are not good at dealing with high-dimensional complex data. This
is one of the main reasons for the advent of hierarchical methods. For a fair comparison,
we first reduce the dimensionality of data with Principal Component Analysis (PCA)
and keep the first 30 principal components for each digit image. In the next experiment,
we apply VGPMIL and DGPMIL to the raw MNIST. By doing this, we can analyze and
discern the relevance of deep methods in both low and high-dimensional contexts.

Table 1 shows the comparison between VGPMIL and DGPMIL for this experiment.
VGPMIL achieves a good instance classification with a value of 0.9767 in accuracy but
lower for bag classification with 0.8496. In contrast, DGPMIL shows a good performance
for both, instance and bag classification. For example, DGPMIL3 obtains 0.9913 at the
instance level and 0.9760 at the bag level. In general, DGPMIL outperforms VGPMIL
at the bag level. Regarding the log loss, VGPMIL performs poorly at the instance level
which indicates that the high uncertainty lowers the overall bag classification. Although
we reduced the complexity of this problem by the PCA preprocessing, we observe that
the deeper GP models achieve significantly better performance on the bag level.

3.1.2. Raw MNIST data

Table 2 shows the comparison between VGPMIL and DGPMIL on the raw MNIST
data. Due to the high-dimensionality of this dataset and the simplicity of the classifier,
VGPMIL performs poorly. This table shows that it predicts always the positive class at
the instance and bag level. That is the reason why it reaches a value of 0.11 in accuracy
for instance evaluation, while reaches a value of 0.49 in accuracy for bag evaluation.
In contrast, deep models are able to process this high-dimensional data and provide
accurate predictions. We can see that the best instance classifier is the deepest model
DGPMIL4 with an accuracy of 0.9932 and log loss of 0.2533, followed by DGPMIL3,
which achieves the best result at bag level with an 0.9717 accuracy and of 0.2519 log
loss.

3.2. CT scan

So far, we have seen the behavior of DGPMIL in a controlled experiment. It shows
a satisfying performance against its shallow version, i.e., VGPMIL. Now, we study the
performance of an attention-based CNN combined with GP-based methods in a real-
world problem. We tackle the problem of detecting ICH on brain CTs in a MIL setting.
We analyze the advantages produced by using a DGP classifier on the top of the CNN
instead of a shallow GP, which was presented in [17]. We consider a full scan as a bag

10
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Table 2: Results in the MNIST of Multiple Instance Methods based on Gaussian Processes using the
784-dimensional feature vector. VGPMIL is the shallow Variational GP while DGPMIL is the deep
version with 2, 3, and 4 GP layers. We assess the classification performance both at the instance and
bag level.

Instance level Bag level

Accuracy Log Loss Accuracy Log Loss
VGPMIL 0.1135 0.6931 0.4978 0.6931
DGPMIL2  0.9857 0.2729 0.9304 0.3113
DGPMIL3  0.9930 0.2655 0.9717  0.2519
DGPMIL4  0.9932 0.2533 0.9652 0.2598

and each slice in a scan as an instance. Generally, different scans contain a different
number of slices. So in this case, the number of instances in bags varies.

3.2.1. Data Preprocessing

The used dataset was published by the Radiological Society of North America (RSNA)
1'in 2019. This study includes a total of 39750 slices acquired from 1150 patients, which
are further split into 1000 subjects for training and validation, and the rest 150 subjects
for testing. Specifically, the training dataset includes 589 normal scans (i.e., negative
cases) and 411 scans with ICH (i.e., positive cases) and the testing dataset includes 78
normal scans and 72 ICH scans. The number of slices in each scan ranges from 24 to 57
in size of 512 x 512. At slice-level, the training dataset includes 29520 negative slices
and 4976 positive slices and the testing dataset includes 806 positive slices and 4448
negative slices.

The CQ500 dataset provided by various centers in New Delhi, India [27] is used as an
external test set in this study to show the generalization of our proposed model trained
on RSNA. It includes the ground truth only at scan-level, including 285 normal scans
and 205 ICH scans. The number of slices in each scan varies from 16 to 128.

In both datasets, in order to mimic the way radiologists often adjust different window
centers (C) and widths (W) when diagnosing a brain scan, each slice is passed through
three window settings to enhance the different display of the brain [W:80, C:40], blood
[W:200, C:80] and soft tissue [W:380, C:40]. The windowing images from each slice
are stacked together as three image channels and the intensities are normalized to [0,1]
before being fed into the CNNs.

3.3. Implementation details

The model is first trained with an attention CNN with the ground truth at scan-level
where the estimated attention weights will indicate the probability of that slice being
positive. Then, the features at slice level can be extracted from the fully connected
layers. Finally, these extracted features are fed into VGPMIL and DGPMIL.

The attention CNN is trained from scratch (without pre-trained weights) and the
whole training procedure costs an average of 4.5 hours. The number of training epochs
is 100 and the batch size is 16 per step. The Adam optimizer [28] is used with an initial
learning rate of 5 x 1074, The experiment is run five times independently and both the

"https://www kaggle.com/c/rsna-intracranial-hemorrhage-detection/)
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training and testing processes are performed on a single GPU (Nvidia GeForce RTX
2070 Super) using Tensorflow 2.0 and Python 3.7.

In this experiment, we compare the performance of GP-based methods and deep
neural networks. We use the shallow VGPMIL and three different values of depth for
DGPs: 2-layer (DGPMIL2), 3-layer (DGPMIL3) and 4-layer (DGPMIL4) models. The
training of DGP models is performed with Adam optimizer, 512 mini-batch size and 30
epochs. Furthermore, the dimension of the latent space has been set to 3 for hidden
layers. After several tries, we see empirically that a small latent space benefit and
accelerate convergence. The learning rate is set to 0.001. While for VGPMIL we use the
published implementation in NumPy of [16], DGPMIL is implemented using GPyTorch
1.3.1 , which is a software for GPs based on PyTorch. The used version of PyTorch is
1.7.1.

3.4. Results

In this section, we report the results for ICH detection. First, we study the impact
of the hyperparameters to the model’s performance. Then, we test the model in the
RSNA and the external CQ500 databases. Finally, we compare the performance of the
DGPMIL to other state-of-the-art classifiers in ICH.

To measure the performance of the different variants of DGPMIL and compare to
other state-of-the-art methods, we mainly use three important metrics: F1 score, Area
Under the Curve of the receiver operating characteristic (ROC-AUC) and the precision-
recall (PR-AUC) curve. The F1 score measures the performance based on precision and
recall and is a common machine learning metric that is also suitable for class-imbalanced
scenarios. The ROC plots the true positive rate against the false positive rate for different
confidence thresholds of the model. Here, a good model can obtain a high true positive
rate while maintaining a low false positive rate. The precision-recall curve plots precision
against recall for different confidence thresholds. All three metrics have a range between
0 and 1 and the higher the value, the better.

3.4.1. Ablation Studies

This subsection studies the characteristics of the DGPMIL model and its hyperpa-
rameters. We conducted an ablation study. Specifically, we report the impact of the
number of feature dimensions, the number of DGPMIL layers, the number of inducing
points, and the dimensionality of the latent space on GPs’ performance.

We start by analyzing the effect of different feature space dimensions M of the
vectors &; that enter the DGPMIL model and the number of GP layers, i.e., the depth
of the proposed model. We compare the shallow VGPMIL to the DGPMIL models
with 2, 3, and 4 layers for 8, 32, and 128-dimensional input features. We measured the
performance at the scan (bag) level. During these experiments, we fixed the number of
inducing points to 200 and the latent space dimensions to 3. See below for an analysis
of these hyperparameters.

Figure 3 shows the results for the RSNA dataset, while Figure 4 shows the results for
the CQ500 dataset. Both figures report F1 score, AUC-ROC, and AUC-PR metrics. As
we can observe in all figures, the shallow VGPMIL model could not achieve satisfying
results for higher feature dimensions. We measured some significant performance drops,
e.g., the AUC-ROC for the CQ500 dataset (Figure 4b) drops by 5% for 32 feature di-
mensions and 10% for 128 feature dimensions. The DGPMIL models show more robust
performance in all three metrics, and even with 128-dimensional feature vectors, they
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achieve satisfying results. Within the different DGPMIL models, higher feature dimen-
sions seem to harm the DGPMIL2 model the most, as the performance drops are larger
than for the DGPMIL3 and DGPMIL4 models for all AUC metrics (Figures 3b, 3c, 4b,
4c). Regarding the F1 score, we can even see improved performance when using more
feature dimensions. The DGPMIL3 and DGPMIL4 models both show a better F1 score
when using 128 dimensions in comparison to 8 on both datasets (see Figures 3a and
4a). Overall we observed that DPGMIL can learn useful models from feature vectors of
higher dimensions while the shallow VGPMIL can not. In section 4, we further discuss
this interesting relationship between feature dimensions and GP layers.

In the final experiments, we stick to DGPMIL2 with 8 feature dimensions because this
setting still achieves the best results on both datasets in terms of AUC-ROC and AUC-
PR.
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Figure 3: RSNA dataset: F1 score, AUC-ROC and AUC-PR for GP and DGP models using different
input feature dimensions.
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Figure 4: CQ500 dataset: F1 score, AUC-ROC and AUC-PR for GP and DGP models using different
input feature dimensions.

Next, we studied the effect of varying the number of inducing points while leaving
the feature dimensions fixed at 8 and latent space dimensions at 3. As reported in Table
C.1, we observed a robust performance across different numbers of inducing points. 200
inducing points show the best F1 scores for both datasets and the best AUC ROC for the
RSNA dataset, we use this setting for the following experiments. Further increasing the
number of inducing points did not provide any significant improvement and led to higher
computational costs. Similarly, we conducted experiments to prove that the relatively
small number of GP’s latent space dimensions of D = 3 is enough. Table C.2 shows that
the performance of the model with 3 and 10 latent dimensions is comparable, while 50
dimensions lead to a model that can not converge anymore.

In summary, we observed that the DGPMIL model is not very sensitive to the an-
alyzed hyperparameters. In these experiments we made an interesting observation: for
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Figure 5: RSNA dataset with 8-dimensional features: F1 score and AUC values with 0.95 confidence
interval.

higher-dimensional feature vectors, more GP layers should be used because the shallow
VGPMIL model is not able to obtain good results. This finding is further discussed
in section 5. For the final results, we used 8 dimensional feature vectors, 200 inducing
points, and 3 dimensions in the GP latent space. For the number of GP layers, all model
variants are included in the experiments under the names DGPMIL2, DGPMIL3, and
DGPMILA.

3.4.2. Results for the RSNA dataset

Table 3 shows the results of testing with the RSNA dataset for 8-dimensional features.
For this test set, although models are trained with only the scan labels, we have both
slice and scan labels to evaluate the model performance. We reported the performances
of the Attention-CNN model, VGPMIL, and DGPMIL with a different number of layers.
Mean-aggregation of the feature vectors was previously analyzed for this problem [17]
and can be considered a simple baseline with a bag-level ROC-AUC of 0.768. Regarding
our analyzed models, the CNN model obtains the worst results and coupling the feature
vectors to GPs improves the performance considerably. For most of the metrics at slice
and scan levels, we see that DGPMIL2 shows the best performance.

Figure 5 shows F1 score and AUC values with 0.95 confidence interval. We can see
that VGPMIL has a high variance for the F1 score and AUC-PR at the bag label while
DGPMIL obtains good results with tight confidence intervals. This shows that DGPMIL
is more robust. Furthermore, the non-overlapping intervals of DGPMIL against its
competitors at the AUC-PR show visually the statistically significant improvement of
DGPMIL thanks to the better precision.

Some examples of DGPMIL predictions for the RSNA dataset can be found in Figure
6. Furthermore, we include some misclassified slices in Figure 7. Fig. 7a and b are
false negatives with prediction probabilities of 0.23 and 0.16. We found that they are
both the only positive slice in their own scans, so the model is more difficult to detect
those small and mild types of hemorrhage. Fig. 7c is a false positive slice predicted
from an ICH scan with probability of 0.60. It is adjacent to a positive slice, so it might
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be predicted as positive because some bleeding can still be found in this slice. Fig. 7d
is a false positive slice predicted from a normal scan with probability of 0.59. In this
case, although the probability is low and close to 0.5, a false positive slice will lead to an
overall positive scan prediction. Therefore, in order to handle all these challenges, for
future work we propose to not treat the instances independently but focus more on the
correlations among the instances, i.e., the sequence of the slices in a scan.

ICH scan (a Positive bag) ICH scan (a Negative bag)

Figure 6: Examples of two bags with DGPMIL predictions at bag-level and at instance-level. Left: an
ICH scan with a bag prediction of 0.834; Right: a normal scan with a bag prediction of 0.217. Probability
p > 0.5 denotes an ICH prediction is positive and p < 0.5 denotes a negative ICH prediction. The model
is trained at bag-level but it is able to provide individual instance label correctly as the p values indicate.

Figure 7: Examples of False Negatives (FN) and False Positives (FP) with DGPMIL predictions at the
instance level.(a,b) False Negatives; (c) a False Positive from a positive bag; (d) a False Positive from a
negative bag. Probability p > 0.5 denotes an ICH prediction is positive and p <0.5 denotes a negative
ICH prediction.

3.4.8. Results for the external database CQ500

Table 4 shows the results of our trained model (on RSNA) tested with the CQ500
dataset for 8-dimensional features. For this test set, we only have scan labels. DGPMIL2
outperforms all other models in all metrics. Especially in the Cohen’s Kappa value and
AUC-PR we can see huge improvements in comparison to the CNN and VGPMIL model.
Figure 8 shows F1 score and AUC values with 0.95 confidence interval. We can see that
VGPMIL has a large variance both for the F1 score and AUC-PR metrics. Again,
DGPMIL, specially DGPMIL2 and DGPMIL3, obtains a tight confidence interval even
when generalizing to an external database. The non-overlapping confidence intervals
show the statistical superiority of the proposed DGPMIL in AUC-PR.
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Table 3: Mean results testing with the RSNA dataset for 8-dimensional features in five different runs at
both slice and scan level. VGPMIL is the shallow Variational GP while DGPMIL is the deep version
with 2, 3, and 4 GP layers. The CNN stands for the attention-based CNN.

Slice level metrics VGPMIL DGPMIL2 DGPMIL3 DGPMIL4 CNN
Accuracy 0.938+0.003 0.929+0.003 0.927+0.005 0.9284+0.002  0.923+0.005
F1 score 0.766+0.013 0.781+0.007 0.776+0.01 0.78040.006  0.773£0.008
Cohen’s kappa 0.731£0.015 0.739+0.009 0.732£0.013 0.7374£0.007  0.727+0.011
Scan level metrics VGPMIL DGPMIL2 DGPMIL3 DGPMIL4 CNN
Accuracy 0.780+0.089 0.825+0.006 0.805+0.014 0.8094+0.018  0.781+£0.023
F1 score 0.814+0.059 0.839+0.006 0.824+0.013 0.8274+0.012  0.811+£0.017
Cohen’s kappa 0.567+0.172 0.654+0.011 0.614+0.029 0.62240.035  0.569+0.045
AUC-ROC 0.964+0.006 0.957+0.011 0.9530+£0.011  0.951+0.012 0.95140.011
AUC-PR 0.846+0.043 0.961+0.011 0.956+0.016 0.9554+0.014 0.841+£0.013
F1 scores for CQ500 dataset AUC scores for CQ500 dataset
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Figure 8: CQ500 dataset with 8-dimensional features: F1 score and AUC values with 0.95 confidence
interval.

8.4.4. State-of-the-art comparison

The performance of DGPMIL is compared with those state-of-the-art studies, as
shown in Table 5. It shows that our model outperforms other models trained at scan-
level with an AUC-ROC of 0.957, including basic MIL [24], 3D CNNs [9, 8, 29], and
3D autoencoder [30]. In addition, it is comparable to VGPMIL [17] with an AUC-ROC
of 0.964. Note, that in this case, different scan-level approaches for ICH detection are
compared that are using different datasets. Therefore we add a comparison of different
models for the CQ500 dataset, where all models are tested on the same set. At the same
time, this dataset serves as an external test set (as described above) because the model is
trained on the RSNA dataset. DGPMIL achieves an AUC-ROC of 0.909, which performs
better than the methods that are trained at the same scan-level with an AUC-ROC of
0.906 [17] and 0.83 [31]. Furthermore, the performance of DGPMIL is comparable to
those trained at slice-level [27, 32], where the AUC-ROC scores ranged from 0.94-0.96.
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Table 4: Mean results testing with the CQ500 dataset for 8-dimensional features in five different runs at
scan level. VGPMIL is the shallow Variational GP while DGPMIL is the deep version with 2, 3, and 4

GP layers. The CNN stands for the attention-based CNN.

Scan level metrics VGPMIL DGPMIL2 DGPMIL3 DGPMIL4 CNN

Accuracy 0.639+0.106  0.717+£0.035 0.713£0.023 0.701£0.041  0.655+0.043
F1 score 0.693+0.058 0.735+0.022 0.733£0.015 0.7284+0.024 0.700+0.023
Cohen’s kappa 0.335£0.171  0.461+0.059 0.455+0.039  0.436+0.068 0.359+0.069
AUC-ROC 0.906£0.010  0.909+0.005 0.906+0.005 0.904+0.015 0.906+0.010
AUC-PR 0.761£0.033 0.889+0.011 0.886+0.011  0.874+0.029 0.765+0.012

Table 5: Comparison of different approaches for binary ICH detection. Our results are reported as the
mean of 5 independent runs.

ICH detection at scan-level with different dataset

Source Dataset size  Labeling type Method ROC AUC
Saab et al. [24] 4340 scans Scan MIL 0.91
Jnawali et al. [9] 40357 scans Scan 3D CNNs 0.87
Titano et al. [§] 37236 scans Scan 3D CNNs 0.88
Sato et al. [30] 126 scans Scan 3D Autoencoder 0.87
Arbabshirani et al. [29] 45583 scans Scan 3D CNNs 0.85
VGPMIL (Wu et al. [17]) 1150 scans Scan MIL 0.964
DGPMIL2 1150 scans Scan MIL 0.957
Evaluation on CQ500
Source Dataset size  Labeling type Method ROC AUC
Chilamkurthy et al. [27] Slice 2D CNNs 0.94
Nguyen et al. [32] 490 Slice 2D CNN + LSTM 0.96
Monteiro et al. [31] scans Scan voxel-based CNN 0.83
VGPMIL (Wu et al. [17]) Scan MIL 0.906
DGPMIL2 Scan MIL 0.909

4. Discussion

In MIL problems, having a good instance classifier does not necessarily lead to a good
bag classification. For the MIL setting, one misclassification of one instance leads to the
wrong classification of a full bag. For this reason, well-calibrated models are desirable
in MIL. The introduction of DGPMIL overcomes this problem and reaches much better
classification performance at the bag level. Furthermore, it still retains a good instance
performance, making it suitable for classifying new unseen or unlabeled instances.
DGPMIL achieves State-of-the-art results and generalizes better. Table 5
compares the ICH prediction results with other methods at scan-level. DGPMIL out-
performs other methods based on AUC-ROC score except for VGPMIL [17], but DGP-
MIL performs significantly better than [17] in AUC-PR score and F1 score as previously
discussed. Furthermore, we include an external database (CQ500) to check the gener-
alization capability of our proposed models. In this real-world scenario, we are more
interested in training a model on a dataset from a center and using it to predict cor-
rectly on the dataset from another center. The external evaluations on CQ500 dataset
show that DGPMIL outperforms other models in Table 4, which proves the good gen-
eralization of our model. We further compare the performance of DGPMIL on CQ500
with those state-of-the-art studies in Table 5. It shows that DGPMIL outperforms other
methods train with the same labeling type on the scan [17, 31] and it is comparable
to other studies that training with precise slice labels [27, 32]. It is remarkable that
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DGPMIL2 performs well across all different feature spaces. In addition, by selecting
the number of layers, we can adjust the model to extract features with different dimen-
sions. Since DGPMIL achieves good predictions at scan level, it is the most suitable for
diagnosis on unseen scans from different centers.

DGPMIL is able to achieve good results with complex high-dimensional
data. We have seen in the MNIST experiment (Section 3.1) as well as in the ablation
studies of the hemorrhage classification problem (Subsection 3.4.1) that the DGPMIL
model can handle complex, high-dimensional feature distributions while the shallow
VGPMIL model shows significant performance drops. This can be explained by the
better ability to approximate complex functions due to multiple stacked GP layers. It
enables the model to transform the feature distribution in the latent space, as depicted
in the explanatory example of Figure A.12, and leads to higher expressiveness. This
property makes the DGPMIL especially interesting for other problems with a fixed, high
number of feature dimensions where the DGPMIL model can be expected to outperform
shallow models like VGPMIL by even a larger margin than in our final results with
8-dimensional features.

DGPMIL outperforms VGPMIL in a synthetic example. The first exper-
iment is compared DGPMIL and VGPMIL models on a synthetic example using the
MNIST dataset. Regarding the instance classification, the overall performance of DGP-
MIL is only slightly better than VGPMIL when PCA is implemented. This indicates that
for a problem with low-dimensional extracted features, both shallow and deep models
perform well when classifying instances. However, this is not the case for bag classifica-
tions where DGPMIL outperforms VGPMIL and it corroborates the premise of a good
instance classification is not enough. The proposed DGPMIL overcomes this limitation
and is more suitable for MIL problems than the previous VGPMIL. As shown in Table 2,
without a previous feature extraction on MNIST dataset, VGPMIL is not able to learn
a good model.

Coupling an attention-based CNN with GPs produces better results. Al-
though CNNs are widely applied in different areas of medical images, using only a stan-
dard CNN in MIL problems is not good enough because many details in bags are hidden.
For the ICH detection task, we show that the CNN predictions can be substantially im-
proved by further utilizing the extracted features with GP models (i.e., both VGPMIL
and DGPMIL), leading to better instance and bag classification results. As shown in
Fig. 6, with the features extracted by an attention-based CNN, DGPMIL is able to train
images at scan-level and accurately predict images at slice-level. This fact encourages
the use of GP models for ICH detection without radiologists’ manual annotations on
each slice. Since probabilistic models quantify better the uncertainty and are therefore
even more adequate for this medical diagnosis scenario than deterministic model such
as standard CNNs.

DGPMIL retains a good precision. The F1 score achieved by DGPMIL is better
than that obtained by the CNN and VGPMIL. Considering the AUC of the ROC and PR
curves, we observe that although VGPMIL and the CNN show good AUC-ROC results,
their AUC-PR results are worse, meaning that the precision scores of these models are
poor compared with DGPMIL. In other words, both VGPMIL and the CNN produce
many false positives, which overload the doctors with a lot of false ICH detections.
DGPMIL is capable of detecting suspicious cases with a high precision, as shown in
Table 3, that the AUC-PR of DGPMIL2 for RSNA dataset reaches that of 0.961.

DGPMIL performs much better at the bag level. This fact has been already
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reflected in the synthetic example of MNIST and has been further confirmed on a real-
world CT scan experiment. Although sometimes VGPMIL achieves a good classification
on CT slices, DGPMIL outperforms VGPMIL at scan level. In terms of MIL problem,
misclassifying only one instance in a negative bag will ruin the classification of the
full bag. This is the reason why both VGPMIL and the CNN misclassify many negative
bags with false positives because they cannot handle the uncertainty quantification while
DGPMIL achieves the best precision and as a consequence reaches a better diagnosis at
the bag level.

Advantages and drawbacks of DGPMIL: Our approach is an attractive al-
ternative to attention CNNs for MIL that achieves good performance by integrating
a probabilistic model, Gaussian Processes. In addition, compared to other weakly su-
pervised learning methods [8, 9], DGPMIL is easy to train as it does not have many
hyperparameters or model parameters and can be used even with limited computing
power. This work exploits its formulation to achieve a satisfying performance compared
to previous methods for ICH detection, as shown in Table 5, at both scan-level and
slice-level. Furthermore, the AUC-PR results are remarkable in comparison to other
models in Table 3 and Table 4. This metric indicates that it is not prone to have many
false positives, which is important for medical applications to not distract from the re-
ally severe cases. Furthermore, it is robust to overfitting and generalizes better than
other methods on external testing dataset [31, 17]. However, as DGPMIL can not deal
with images directly, it relies on a first step based on a CNN for feature extraction. Al-
though this adds on extra training and parameter tuning procedures, it shows that our
method can generalize well to other MIL problems [33] by just exchanging the feature
extractors. Future work will focus on building an end-to-end training CNNs and GPMIL
model. Another drawback of DGPMIL is that it does not take the order of the instances
into account. Instances are trained independently in a bag, but the correlations existing
in nearby instances may boost the performance of the model. Future work will try to
implement some sequential models [32] into DGPMIL to extract the features among the
order of instances.

5. Conclusions

In this work, we propose a novel model, DGPMIL, for MIL classification based on
DGPs. DGPs are a hierarchical extension of the widely used GPs. Furthermore, we
use DGPMIL for ICH detection on CT scans combined with the features extracted by
an attention-based CNN using only scan labels. To the best of our knowledge, this is
the first time DGPs have been proposed for the MIL problem and specifically for ICH
detection.

The experiments show that DGPMIL can obtain good results with high-dimensional
data by extracting more complex patterns in contrast to the shallow VGPMIL. For in-
stance, DGPMIL outperforms VGPMIL in a synthetic MIL problem of classifying digits
using the MNIST database. When using data with dimensionality reduction, VGPMIL
performs slightly worse at the instance level compared to deep versions. However, when
raw MNIST is used, VGPMIL can not learn a good model. Furthermore, DGPMIL per-
forms notably better at the bag level, which is the final objective of the MIL problem.

We empirically validate the model in a real-world application. We detect ICH on
CT scans using only scan labels. The experiment results demonstrate that combining
a CNN with a GP leads to an improvement in the results. DGPMIL achieves the
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best performance compared to VGPMIL, the attention CNN and other state-of-the-art
methods. Furthermore, it achieves a great precision value in contrast to VGPMIL and
the attention CNN.

Additionally, we use a different database for assessing the generalization capability of
the methods. This evaluation proves that DGPMIL generalizes better when predicting
at scan level. All of these facts make DGPMIL with an attention-based CNN suitable
for ICH diagnosis. Also, it can potentially be applied to many other medical-imaging
problems.
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Appendix A. Revisiting Gaussian Processes

This appendix provides a brief introduction to GPs for binary classification. Let us

assume a dataset D = {(xp, yn)})—; composed of N instances with y, € {0,1}.
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Figure A.9: Example of different sampled functions from a 1-dimensional GP with an SE kernel. Y-axis
represents the value of the sampled function and X-axis the input feature of the GP. We use different
values of the lengthscale hyperparameter to show how it affects the resulting functions. Shorter values
of the lengthscale [ produce wriggly curves while larger values produce flat functions.

A Gaussian process prior assumes a multivariate normal distribution in the latent
variable f = (fi,..., fn)T given X. This prior distribution is defined by a mean function
u(x) and a kernel (covariance function) k(x,x’). The mean function is usually set to
0, without losing generality. The kernel encodes the prior belief about the data. In
this paper we use the Squared Exponential (SE) kernel. It is a common choice in
Gaussian Processes due to its flexibility and expressiveness. Also, it encodes smoothness
in the latent function, which is a desirable property in many different scenarios. The

[I<i =

SE kernel is defined as ksg(x;,%;) = Cexp (_ 5Tz
are estimated through the learning task. Figure A.9 shows samples of a GP prior with
a SE kernel with different values of [. We can see that the level of smoothness relies on
the value of [. Large values of [ produce flat functions while small values produce less
smooth functions. It is worthy noticing that these functions do not have varying levels
of smoothness across the data points. This is one of the motivation to use DGPs, e.g.,
functions with flat areas and abrupt jumps.

Once we have modelled the latent function f using a GP prior, we have to define the
observation model. Our likelihood for binary classification is the Bernoulli distribution,
i.e., p(yi|fi) = Ber(y;;0(f;)). Here, o is the sigmoid and f; = f(x;) refers to the value
of the latent variable f at the point x;. The joint density of y and f becomes,

), where the parameters C' and [

N
p(y,f) = }:[1 P(Yn fn) Gp\(fl : (A.1)
_ P prior

likelihood
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Figure A.10: Example of a Sparse Gaussian Process on a 1-dimensional regression problem. We draw the
latent function that generates the noisy observed data, the mean of the estimated GP, the uncertainty
and also the estimated inducing locations. The GP has more uncertainty where there are less inducing
points.

where we assume independence across the instance labels given the latent variables.
The goal becomes the estimation of the model parameters, in this case C and [, and the
calculation of p(fly).

One main drawback of Gaussian Processes is their scalability. They have compu-
tational cost O(N?3) because their use involves the inversion of an N x N matrix. To
overcome this limitation, sparse GPs have been proposed [34]. The idea behind them
is to define M < N inducing points u,, which are GP realizations at inducing loca-
tions z,,. We can see this as f(z) = u. The inducing points encode the information of
the observations in a few points. Their locations {z,,}}_, are estimated while learn-
ing. This approach lightens the computational cost to O(nM 2). However, the posterior
distribution is intractable and approximate inference must be used. The Scalable Vari-
ational Gaussian Process (SVGP) inference is the state of the art for sparse GPs [18].
Furthermore, it allows to train in mini-batches. The joint density in this case is given
by

N
p(y,f,u) = [ pWal fn) p(f[0; Z)p(u; 2), (A-2)
n=1

__,_/ sparse GP prior
likelihood
the semicolon notation indicates which are the inputs of each function. The goal here is
to calculate p(u, f|y) and estimate the model parameters.

Figure A.10 shows a Sparse Gaussian Process for a 1-dimensional regression prob-
lem. We see that the GP mean approaches the latent function that generates the noisy
observed data. The latent function is inside the confidence interval, and the uncertainty
is larger in areas with less inducing points. Also notice, that the optimal location for
the inducing points is where the function has more variations. Figure A.11 shows a GP
for binary classification in a 1-dimensional toy problem. In (a), we draw samples for the
posterior distribution of p(f|y). We can notice that all the samples have the same level
of smoothness. Then, in (b) we show the probabilities estimated for the positive class
after the sigmoid function.
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Figure A.11: 1-dimensional binary classification problem with the input dimension on the x-axis and
output dimension on the y-axis. The blue points represent the noisy observed data. In (a) we draw
the distribution of the latent function p(f:): the gray line is the mean and the gray shadow the 0.95
confidence interval on the predictions. The classifier has more uncertainty in the region where there are
no observations. In (b) we squash the latent function to the [0,1] interval, the black line is p(y. = 1).

Appendiz A.1. Revisiting Deep Gaussian Processes

A DGP is a hierarchical model which consists of several stacked SVGPs, i.e., the
output of a SVGP is the input for the next SVGP [21]. We define {F!}~ | latent variables
where each F! follows a GP prior with input locations given by F'~1. We consider
F° = X. We denote leL,d as the latent variable value for the n-th instance in the
dimension d (being 1 < d < D!) for the layer . Notice that in this problem D = 1.
The vector f! contains all the dimensions for the n-th instance in the I-th later. The
likelihood of the unobserved instance labels is defined by a Bernoulli distribution,

1-yn
p(ynlf) = o () (L=o(f) " (A.3)
Assuming independence across the instance labels given the latent variables, we obtain,
N
p(Y[£5) = ] punl£1). (A4)
n=1

Because of the computational cost, we have to introduce again the so called sparsity.
We have M'~1 inducing locations Z!~! at each layer | with inducing values U’ for each
dimension. So we can write the joint density function,

N
p(Y, {Fl7 Ul}lel) = H p(yn‘frf)
n=1
likelihood
L
x [[p(®' U FY 20 p(Ulh 2. (A.5)
=1

DGP prior

The Doubly Stochastic Variational Inference is the state of the art for DGPs [20].
Furthermore, it allows to perform approximate inference and to train in mini-batches.
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Figure A.12: Samples at every layer of a three-layer DGP trained on a binary toy example. The first two
layers are latent spaces where the features are projected onto. The third layer is the output for the final
classification. The y-axis represents the values of the latent function before it goes through the sigmoid
function. Positive values will be classified as in the positive class and negative values as in the negative
one.

Figure A.12 shows samples of the DGP latent function. We show samples from the
first and second layer, which are the middle latent representation features before the
final classification is done. Then, the third (final) layer is the one that makes the final
classification. We can see that the first layer produces smooth functions similar to the
ones of the shallow GP. When we apply a GP to these features we can obtain more
complex patterns as shown in the second layer. The flat regions are smooth while the
jumps in the decision boundaries are abrupter. Although it is a very simple problem,
we actually can see the greater expressiveness of DGPs against shallow GPs. This fact
encourages their use for complex tasks, as it is in the ICH detection problem.

Appendix B. Detailed DGPMIL inference

This appendix contains all the details for inference in DGPMIL. We follow the doubly
stochastic inference to estimate the variational parameters corresponding to the DGP
[20]. Together with Y}, = {y;|i € bag b}, as defined in section 2.1, we introduce Y;_,, =
{yily:; € bag b and i # n}.

Appendiz B.1. Update of q(y)
The optimal q(y,,) distribution fixing the other distributions is given by

log q(yn) = Eq(y, ) 1og p(Tb|ys)] + Eq(rz) [log p(ynlfir)] + const
=log H - Eqy, ) [Go] + Eq(szy [log p(yn|fF)] + const. (B.1)
Now we rewrite the max function as
max Yy, =y, + max Yy_,, — Yy max Yp_,, (B.2)
and substituting in eq. (B.1) (using also the Jakkola bound [26]) arises

10g A(yn) = YnBy(sry [f1]
+ yn log H(2Ty — 2Ty Eqcy, ) max{Yy_,}]
+ Eq(y,_,,) [max{Yy_}] — 1) + const. (B.3)
We use the following approximation as in [16],
E[max{y;}] ~ max{E[y;]}, (B.4)
to finally obtain the optimal update for q(y),

qn O (Eq(f#) [f,ﬂ +log H - (2T, + max qp_p, — 2Tp max qp_y, — 1)) . (B.5)
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Appendiz B.2. ELBO derivation
Using eq. (B.4), the ELBO(V,©, {Z!"1}L ) is finally approximated by

HC
ELBO = ZE a(fE) [logp(ynlf |+ Z ZE a(ym) {log T 1]
n=1 b=1 neb
L
q(U")
;Eq(yn logq yn IZ;EQ |:10g (U )

~ an atr2) 108 p(n = 1FE)] + (1= qn)Eq(sry [log p(yn = 0| £1)]

B
+log H Z (2T, max qp — max qp)
b=1
- Z dn1og gn + (1 — gy) log(1 — g5) ZKL ( Hp(UZ)>
+ const. (B.6)

Appendiz B.3. Deep Gaussian Process estimation

We can compute analytically the posterior for {Fl}lL: 1 by marginalizing the inducing
variables from each layer:

L L
a(FY ey =o' m!, 8L F 2 =V (F =) (B.7)
I=1 I=1

where [fi], = [t zi-1(£571) and [ﬁ)l]ij = Zsl7zl,1(ff—1’f;_1), The explicit expression
for the mean vector fi' and the covariance matrix 3! can be found in [20, Egs. (7-8)].
We are able to compute the i-th marginal at each layer because it only depends on the
corresponding i-th input of the previous layer. This allows to sample from the last layer
fiL by recursively sampling from all the previous layers f'il — f'f — = fiL. This can
be easily performed by means of univariate Gaussians. We first sample a aé ~ N(0,1)
and then for [ =1,..., L:

le = ,U/ml7zlfl(fz~lil) + Sé . \/Zsz’zzf1(fl~l*1, fl-l*l). (B.8)

Since we can sample from the posterior distribution in the last layer, the expectation
Eqs)[log p(yn| fE)] in the ELBO (see eq. (B.6)) can be approximated with a Monte Carlo
sample generated with eq. (B.8). Similarly, we can compute the expectation Eq sz il
in the update of the q(Y), see eq. (B.5). For scalability, we can use mini-batches in the
optimization since the ELBO factorizes across data points.

Once the model is trained and the ELBO optimized, we can make a prediction for
new test point X,. For this, we sample S times from the posterior using eq. (B.8). In
this case, we use the test location as initial input. This yields a set {fZ~!(s)}5_; with
S samples. Then, the density over fF is given by the Gaussian mixture (recall that all
the terms in eq. (B.7) are Gaussian):

a(fy) SZq felmt SH 7 (s), 287, (B.9)
s=1
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Appendix C. Additional results

Here, we report additional tables with results. These tables are commented in the
main text but we included them here for better readability.

Table C.1: Mean results for 5 different runs of DGPMIL2 with 8-dimensional input features. The results
are for both RSNA and CQ500 datasets. We study the metrics for a varying number of inducing points

M.

M F1 score AUC-ROC AUC-PR
10 0.82940.018 0.953£0.012 0.954+0.014

RSNA 50 0.834+0.016 0.954+0.01  0.9640.008
200 0.83940.006 0.957+0.011 0.961+0.011
500 0.83540.006 0.956+0.012 0.962+0.009
10  0.714£0.02  0.899+0.01 0.853+0.026

CQ 500 50  0.734+0.024 0.9114+0.012 0.887+£0.024
200 0.7354+0.022 0.909+0.005 0.889+0.011
500 0.7314+0.026 0.9134+0.01  0.893+0.009

Table C.2: Mean results for 5 different runs of DGPMIL2 with 8-dimensional input features. The results
are for both RSNA and CQ500 datasets. We study the metrics for a varying number of dimensions D

in the latent space.

D F1 score AUC-ROC AUC-PR
RSNA 3 0.8394+0.006 0.957£0.011 0.961+0.011
10  0.837£0.008 0.957+0.09 0.964+0.006
o0 0 0.5+0 0.4840
CQ 500 3 0.7354+0.022 0.909+0.005 0.889+0.011
10 0.733£0.022 0.914+0.013 0.90240.0279
90 0 0.5£0 0.418+0
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we have shown that GPs and DGPs can outperform DL methods for dif-
ferent labeling paradigms (i.e., supervised and weakly supervised learning) and domains
(i.e., volcanology and medicine). In these databases, the suitability of GP methods is

remarkable. The main findings of this thesis are as follows:

e Regarding seismic classification, GPs, and DGPs outperformed DL methods per-
forming much better at detecting rare classes. Also, GPs and DGPs estimated

uncertainty better giving more accurate probabilities to the predictions.

e Regarding prostate cancer detection, we showed that features extracted from the
Optical Density space encoded more relevant information. Also, morphological and
texture features achieved state-of-the-art results when classifying them with a GP
or DGP. We showed that GPs and DGPs outperformed every other shallow clas-
sifier, and also, they were competitive with DL methods. Finally, we empirically
proved that GPs and DGPs are more efficient than DL methods.

e Regarding crowdsourcing classification in cancer, a GP trained with deep features
extracted from a pretrained deep neural network performed better than DL meth-
ods. GPs for crowdsourcing automatically modeled the noisy labels and the ex-
pertise of each annotator. This model, trained with noisy labels, was competitive
with the one trained with expert annotations in breast cancer classification. We
observed that crowdsourcing is a feasible solution to the lack of labeled data, since

massively cancer images can be annotated engaging medical students.

e Regarding MIL in ICH detection, the proposed DGPMIL achieved better results
than DL and shallow GPs. We showed the need for hierarchical models based on
GPs to learn complex functions in real applications. This model performed better
both at scan and slice levels, and its precision was remarkably better. It was able

to identify better the false positives being a more robust classifier for medicine use.
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These results open a new door for efficient labeling and the possibility of training

more powerful models.

6.2 Future work

This thesis also opens new interesting research problems to be addressed in the future.

We list the main ones here:

e Crowdsourcing in volcanology. The lack of labeled databases can be tackled with
crowdsourced labels. We will explore how to replicate this process when seismic
signals are reported from different stations and annotated by several participants

with varying expertise.

e Improving the performance of GP for histopathology classification. Since GPs can
not deal with feature extraction, training the CNN and the GP in an end-to-end

manner might lead to better results.

e Improving the efficiency in labeling. A new problem to be addressed is the sce-
nario where non-pathologists provide coarse-grained labels. It will combine both

crowdsourcing and multiple instance learning.

e Improving the interpretability of predictions in crowdsourcing. Pixel-wise pre-
dictions are more insightful than global ones. We will study how to segment

histopathological images from crowdsourcing tasks.
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