
D E PA RTA M E N T O D E C I E N C I A S D E L A C O M P U TA C I Ó N E I N T E L I G E N C I A
A RT I F I C I A L

P R O G R A M A D E D O C T O R A D O E N T E C N O L O G Í A S D E L A I N F O R M A C I Ó N Y
L A C O M U N I C A C I Ó N

M E T O D O L O G Í A S D E D AT O S D E C A L I D A D (S M A RT D ATA) PA R A D E E P
L E A R N I N G : E L P R O B L E M A D E L R U I D O D E C L A S E Y A P L I C A C I O N E S E N

C O R A L E S Y C O V I D - 1 9

Memoria presentada por

anabel gómez ríos

D I R E C T O R E S

francisco herrera triguero

julián luengo martín

Editor: Universidad de Granada. Tesis Doctorales
Autor: Anabel Gómez Ríos
ISBN: 978-84-1117-464-0
URI: http://hdl.handle.net/10481/76794

http://hdl.handle.net/10481/76794

Esta tesis doctoral ha sido desarrollada con la financiación de una beca de Form-
ación de Profesorado Universitario concedida en 2016 a Anabel Gómez Ríos por
el Ministerio de Educación, Cultura y Deporte con código FPU16/04765, y por los
proyectos nacionales TIN2017-89517-P, concedido por el Ministerio de Economía y
Competitividad, y PID2020-119478GB-I00, concedido por el Ministerio de Ciencia.

iv

El conocimiento científico pertenece a la humanidad.

alexandra asánovna elbakián

A G R A D E C I M I E N T O S

El desarrollo de esta tesis doctoral y su posterior culminación en esta memoria no
hubiese sido posible sin el apoyo incondicional de mis directores de tesis, familiares
y amigos.

Me gustaría empezar agradeciendo a mis directores, Julián y Paco, por su guía en
este camino y por el tiempo, paciencia y dedicación que me han brindado durante
mi formación como investigadora. Sin su trabajo y ayuda, esta tesis no sería lo que es
hoy.

Quiero agradecer en especial a mi familia, sin cuyo apoyo y amor yo no habría
podido llegar hasta aquí. A mis padres, Juan y María, por darme la fuerza para seguir,
por alegrarse conmigo, incluso más que yo, con mis logros y buenos momentos y por
acompañarme, siempre, durante los malos momentos. También por enseñarme, desde
pequeña, la importancia de mis estudios, mi trabajo y mi tiempo. A mis hermanos,
Juan Pedro y Elena, por aguantarme, por alegrarme y animarme cuando me hacía
falta y, en definitiva, por hacerme saber que siempre puedo contar con vosotros.
A mi pareja, Jacinto, por ser un apoyo indispensable durante estos años. Eres la
persona que más me ha aguantado y ayudado a seguir. Estoy segura de que esto
no habría salido adelante sin todos vosotros, por lo que esta memoria es vuestra
también. Gracias por todo.

También me gustaría agradecer a todos los amigos y compañeros que me han
acompañado durante estos años. A mis amigos de la infancia y adolescencia, por
haber estado siempre ahí, aunque nos hayamos visto menos de lo que nos hubiera
gustado. También a los que hice en la universidad, por todas las risas, por todo lo que
hemos superado juntos y por aguantarme también en el proceso. Soy muy afortunada
por teneros conmigo.

Por último, quiero agradecer a Ana, sin cuya ayuda y guía esta memoria no habría
sido posible.

vii

A B S T R A C T

Currently, all the processes that are being executed in governments, companies
and research centres are generating data that will be processed to extract valuable
information. The process of extracting relevant information in data is known as
Knowledge Discovery in Databases. This process contains two important steps, which
are data cleaning and preprocessing, and data mining. The first one cleans the data
in terms of inconsistencies, possible missing values, noise (errors in the data), etc.
The second one uses the clean or smart data generated in the first step and applies
Machine Learning algorithms to extract patterns and information from the data.

Deep Learning, a branch of Machine Learning, is now being widely used due
to its good performance, especially when the data is composed of images, even
outperforming other Machine Learning algorithms. However, Deep Learning is
known to need great quantities of data to perform well, which is a drawback for the
application of Deep Learning algorithms in scenarios that lack a big volume of data.

In this thesis, we propose the use of different preprocessing and optimization
techniques to be able to use Deep Learning, and in particular, Convolutional Neural
Networks, when the image data sets that we have available are small (below 1500

images), because it is costly or hard to obtain more data. That way, we transform
the small data sets into smart data that can be used to train Convolutional Neural
Networks.

We focus on three main applications: the classification of coral species using
underwater images, the diagnosis of COVID-19 using X-ray images and the accurate
classification of small data sets using convolutional networks in the presence of label
noise, which occurs when a subset of the images are misclassified in the available
dataset.

In particular, we propose the following:

• For the classification of coral species based on underwater images, we en-
countered two main problems: the small size of the available data sets due to
the need for expert biologists to label them, and that they contain very close-up
patches of the corals that do not show the structure of the corals, which we
called textures. In this line, we first study the application of transfer learning
and data augmentation techniques to be able to train powerful Convolutional

ix

Neural Network architectures with these data sets. Transfer learning allows
us to start the training from a pre-trained state of the network because it has
been pre-trained using other, much bigger in size, data set. As a result of this,
we do not have to train the whole network and it is possible to classify the
small data sets by only training two layers at the end of the networks. Data
augmentation consists of applying transformations to the original images in
order to obtain new, slightly different, images. These transformations can be
rotations, zooms, changes in brightness or contrast, vertical or horizontal flips,
which help the network to be invariant to that transformations. These two
techniques have allowed us to obtain better results than previous proposals
in this task. Additionally, we have created a new coral data set, that we have
made public, containing images of the entire structures of the corals. With this
new data set, we have tackled the classification of coral species by using either
texture or structure images thanks to a new two-level classifier that we propose.

• For the diagnosis of COVID-19 based on chest X-rays we encountered one main
problem, that was that the available data sets that were being used for this
diagnosis were not suitable for this task for several reasons. The reasons include
that the protocol to label an image as positive for COVID-19 is not made clear,
that they contain mainly cases of severe COVID-19, which is easier to detect,
and that they contain images from different sources, making the networks
decide the diagnosis based on information that was outside of the lungs. As a
solution, in conjunction with a team of expert radiologists, we create and made
public a new data set without these problems that can be safely used for the
diagnosis of COVID-19. Then, using this data set, we propose a methodology
specially dedicated to the preprocessing and classification of this type of image,
which includes three steps. In the first step, we remove the information outside
of the lungs, forcing the networks to use the lungs to diagnose the disease.
Then, we transform each image using two specific generators that boost the
characteristics between having or not having the disease in the x-rays. Lastly,
we used the transformed images to train a new convolutional network to decide
if each original input image corresponds to a person that has the disease or not.

• For the accurate classification of small data sets using convolutional networks
in presence of label noise, we develop a specific algorithm designed to help
during the training process of the Convolutional Neural Network. Specifically,
it uses the predictions of the network and the probabilities associated with

x

those predictions, during the training process, to remove and relabel the data.
This process continuously cleans and polishes the data so that the network can
improve its training and therefore obtain better results than the ones obtained
without this algorithm. We test our approach using big data sets like CIFAR10

and CIFAR100 and compare it with other state-of-the-art proposals that only
use this kind of data sets, but we also prove the usefulness of our approach for
the previous coral data sets and COVID-19 data set, as label noise can be even
more harmful to smaller data sets.

The favourable results we have obtained in these three applications or tasks validate
the use of Convolutional Neural Networks when the problems we want to resolve
do not allow us to obtain bigger data sets. We have proven that even in these cases,
when using appropriate preprocessing techniques, Deep Learning outperforms the
results of other Machine Learning algorithms.

xi

R E S U M E N

Actualmente, todos los procesos que son ejecutados en gobiernos, empresas y centros
de investigacións están generando datos que serán procesados con el objetivo de
obtener información de valor. El proceso de extraer esta información relevante en
los datos es conocido como Knowledge Discovery in Databases. Este proceso contiene
dos pasos importantes, conocidos como limpieza y preprocesado de datos, y data
mining. El primero limpia los datos originales en términos de inconsistencias, posibles
valores perdidos, ruido (que son pequeños errores en los datos), etc. El segundo usa
este conjunto ya limpio generado en el primer paso y usa algoritmos de aprendizaje
automático para extraer patrones e información de estos datos.

El Deep Learning, una rama del aprendizaje automático, está siendo ampliamente
usado ahora debido al buen rendimiento que ha mostrado, especialmente cuando los
datos de entrada están compuestos por imágenes, superando los resultados obtenidos
por otros algoritmos de aprendizaje automático. Sin embargo, los algoritmos de
Deep Learning son conocidos por necesitar grandes cantidades de datos para obtener
buenos resultados, lo que supone un inconveniente para su aplicación en escenarios
que carecen de un gran volumen de datos.

En esta tesis, proponemos el uso de distintas técnicas de preprocesamiento y op-
timización que nos permitan el uso de algoritmos de Deep Learning y, en particular,
redes neuronales convolucionales, cuando los conjuntos de datos de los que dispone-
mos son pequeños (con un tamaño por debajo de las 1500 imágenes) debido a que es
costoso y difícil obtener más datos. De esta forma, transformamos estos conjuntos
pequeños en lo que se conoce como smart data, para que puedan ser usados para
entrenar redes neuronales convolucionales.

Nos centramos en tres aplicaciones principales: la clasificación de especies de coral
usando imágenes tomadas bajo agua, el diagnóstico de COVID-19 usando radiografías
y la clasificación precisa de pequeños conjuntos de datos cuando contienen ruido de
clase, lo que ocurre cuando un subconjunto de los mismos está mal clasificado como
otra clase.

En concreto, nuestras propuestas son:

• Para la clasificación de especies de coral basada en imágenes tomadas bajo agua,
nos encontramos con dos problemas principales: que los conjuntos de datos

xii

disponibles eran pequeños debido a la necesidad de que expertos biólogos
etiqueten las nuevas imágenes, y que éstos contienen parches de los corales
que están tomados muy de cerca, de forma que las imágenes no muestran la
estructura completa de los corales, a las que llamamos texturas. En esta línea,
primero estudiamos la aplicación de las técnicas transfer learning y data augmen-
tation para ser capaces de entrenar redes neuronales convolucionales con estos
conjuntos de datos. El transfer learning nos permite empezar el entrenamiento
de la red desde un estado de preentreamiento previo, debido a que la red ha
sido preentrenada en otro conjunto de datos mucho mayor. Gracias a esto, no es
necesario que entrenemos la red completa y es posible clasificar los conjuntos
de datos pequeños entrenando sólo las dos últimas capas de la red. El data
augmentation consiste en usar transformaciones sobre las imágenes originales
para obtener nuevas imágenes, ligeramente diferentes. Estas transformaciones
pueden ser rotaciones, ampliaciones, cambios en la luminosidad o el contraste,
volteos verticales u horizontales, que ayudan a la red a ser invariante frente a
estas transformaciones. Estas dos técnicas nos han permitido obtener mejores
resultados que otras propuestas en esta tarea. Adicionalmente, hemos creado
un nuevo conjunto de datos, que hemos hecho público, que contiene imágenes
de las estructuras completas de los corales. Con este nuevo conjunto, hemos
llevado a cabo la clasificación de especies de coral usando tanto imágenes de
textura como de estructura, gracias a un nuevo classificador de dos niveles que
hemos diseñado.

• Para el diagnóstico de COVID-19 basado en radiografías pectorales nos en-
contramos con un problema principal, que fue que los conjuntos de datos
que estaban disponibles y que estaban siendo usados para esta diagnosis no
eran adecuados para llevar a cabo esta tarea por varias razones. Estas razo-
nes incluyen que no se conoce el protocolo para etiquetar una imagen como
positiva por COVID-19, que estos conjuntos contienen en su mayoría casos
de COVID-19 muy severo, que es más fácil de detectar, y que contienen ra-
diografías de diferentes fuentes, haciendo que las redes decidan la diagnosis
basándose en información de las radiografías que estaba fuera de los pulmones.
Como solución, junto con un equipo de expertos radiólogos, creamos e hicimos
pública una nueva base de datos que no tiene estos problemas y que puede
ser usada para la diagnosis de COVID-19. Después, usando este conjunto de
datos, proponemos una metodología especialmente diseñada para el preproce-

xiii

samiento y clasificación de este tipo de imágenes, que incluye tres pasos. En el
primer paso, eliminamos la información de las rafiografías que está fuera de
los pulmones, forzando a las redes a usar la zona de los pulmones para realizar
el diagnóstico. Después, transformamos cada imagen usando dos generadores
específicos diseñados para potenciar las características de las radiografías que
hacen que se clasifiquen como positivas o negativas de COVID-19. Finalmente,
usamos las imágenes transformadas para entrenar una nueva red convolucional
que decide si cada imagen original de entrada corresponde a una persona que
tiene la enfermedad o no.

• Para la clasificación precisa de pequeños conjuntos de datos usando redes con-
volucionales cuando éstos presentan ruido de clase, desarrollamos un algoritmo
específico diseñado para ayudar durante el proceso de aprendizaje de la red
convolucional. Específicamente, usa las predicciones de la red y las probabilida-
des asociadas con esas predicciones, durante el proceso de aprendizaje, para
eliminar o reetiquetar las imágenes del conjunto de datos. Este proceso limpia y
perfecciona el conjunto de datos de forma continua de forma que la red pueda
mejorar su entrenamiento y por tanto obtener mejores resultados que aquellos
obtenidos sin este algoritmo. Probamos que este enfoque es válido usando
grandes conjuntos de datos como CIFAR10 y CIFAR100 y lo comparamos con
otras propuestas del estado del arte que sólo usan este tipo de bases de datos,
pero también probamos la utilidad de nuestra propuesta con los conjuntos de
datos previos de especies de coral y COVID-19, dado que el ruido de clase
puede ser aún más perjudicial en conjuntos de datos pequeños.

Los resultados favorables que hemos obtenido en estas tres aplicaciones avalan
el uso de redes neuronales convolucionales cuando los problemas que queremos
resolver no nos permiten obtener conjuntos de datos más grandes. Hemos probado
que incluso en estos casos, cuando usamos técnicas de preprocesamiento adecuadas,
el Deep Learning mejora los resultados obtenidos por otros algoritmos de aprendizaje
automático.

xiv

C O N T E N T S

I PhD Dissertation
1 Introduction 3

2 Preliminaries 11

2.1 Computer Vision . 11

2.2 Deep Learning . 12

2.2.1 Convolutional Neural Networks 13

2.2.2 Transfer learning . 17

2.2.3 Data augmentation . 18

2.3 Label noise problem . 20

2.3.1 The problem of label noise in the case of CNNs 22

3 Justification 23

4 Objectives 25

5 Methodology 27

6 Summary 29

6.1 Accurate classification of coral species based on underwater images . 29

6.2 Accurate diagnosis of COVID-19 based on chest X-ray images 31

6.3 Robust approach to train CNNs in presence of label noise 33

7 Discussion of results 35

7.1 Accurate classification of coral species based on underwater images . 35

7.2 Accurate diagnosis of COVID-19 based on chest X-ray images 36

7.3 Robust approach to train CNNs in presence of label noise 37

8 Conclusions and future work 39

8.1 Conclusions . 39

8.2 Future work . 40

Bibliography 41

II Publications
9 Towards Highly Accurate Coral Texture Images Classification Using Deep

Convolutional Neural Networks and Data Augmentation 51

xv

xvi contents

9.1 Introduction . 53

9.2 CNN Classification Models . 55

9.2.1 Inception v3 . 56

9.2.2 ResNet . 57

9.2.3 DenseNet . 57

9.2.4 CNN Optimization Techniques 58

9.3 Previous Advances on Automatic Coral Reef Classification 59

9.3.1 Challenges of Coral Classification 59

9.3.2 Coral Classification Based on Classical Methods 60

9.3.3 Coral Classification Based on CNNs Methods 62

9.4 Datasets . 63

9.5 Experimental Framework . 64

9.5.1 Software and Hardware . 68

9.5.2 Evaluation Metric . 68

9.5.3 Transfer Learning . 68

9.5.4 Data Augmentation . 69

9.5.5 Hyperparameters . 71

9.6 Classification of Coral Texture Images with CNNs 71

9.6.1 Classification of Coral Texture Images without Data Augmentation 71

9.6.2 Classification of Coral Texture Images with Data Augmentation 78

9.6.3 Analyzing the Misclassified Images 79

9.6.4 Generalizing Our Approach to Other Coral Texture Datasets . 82

9.7 Conclusions . 84

10 Coral species identification with texture or structure images using a two-
level classifier based on Convolutional Neural Networks 89

10.1 Introduction . 91

10.2 Convolutional Neural Networks (CNNs) and improvement techniques 93

10.3 Related work on coral classification . 95

10.3.1 Coral datasets . 95

10.3.2 Previous works . 97

10.4 StructureRSMAS: a new coral structure dataset 100

10.5 A two-level classifier for coral classification using a texture model and
a structure model . 102

10.6 Experimental Analysis . 103

10.6.1 Experimental framework . 104

10.6.2 Second level: texture model . 105

contents xvii

10.6.3 Second level: structure model . 106

10.6.4 First level: texture or structure binary model 108

10.6.5 Two-level classifier: identification of coral species based on
texture or structure images . 109

10.7 Conclusions . 110

11 COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-
19 Based on Chest X-Ray Images 117

11.1 Introduction . 119

11.2 Related works . 123

11.2.1 Datasets . 123

11.2.2 DL classification models . 125

11.2.3 DL classification models with explanation approaches 126

11.3 COVIDGR-1.0: Data acquisition, annotation and organization 126

11.4 COVID-SDNet methodology . 127

11.5 Experiments and Results . 132

11.5.1 Experimental setup . 132

11.5.2 Analysis of COVIDNet and COVID-CAPS 133

11.5.3 Results and Analysis of COVID prediction 135

11.5.4 Analysis per severity level . 136

11.5.5 Analysis of the impact of Normal-PCR+ 136

11.5.6 Analysis per severity level . 137

11.6 Inspection of model’s decision . 137

11.7 Conclusions . 140

12 A robust approach for deep neural networks in presence of label noise:
relabelling and filtering instances during training 145

12.1 Introduction . 146

12.2 Background . 149

12.2.1 Definition and types of label noise 149

12.2.2 Label noise with deep learning 150

12.3 RAFNI: Relabelling and filtering instances based on the predictions of
the backbone network . 152

12.3.1 Base concepts . 153

12.3.2 Formal definition . 155

12.3.3 A guide to the hyperparameters of RAFNI 156

12.4 Experimental framework . 161

12.4.1 Data sets . 161

xviii contents

12.4.2 Types and levels of label noise 163

12.4.3 Network and experimental configuration 164

12.5 Comparison with the baseline model . 166

12.5.1 RSMAS, EILAT, StructureRSMAS and COVIDGR1.0-SN 166

12.5.2 CIFAR . 169

12.6 Comparison with state-of-the-art models 170

12.7 Comparison with an approach that suppose the noise rate is known . 173

12.8 Analysing the effectiveness of the RAFNI mechanisms 174

12.9 Conclusions . 175

L I S T O F F I G U R E S

Figure 1.1 Example of a neuron in a deep neural network. 6

Figure 1.2 Example of a feedforward neural network. 6

Figure 2.1 Example of a convolution performed on a convolutional layer,
showing one of the 24 filters. 15

Figure 2.2 Example of transfer learning. 19

Figure 9.1 Base Inception v3 module. Figure from [SVI+16]. 56

Figure 9.2 ResNet building block. Figure from [HZR+16]. 57

Figure 9.3 Example of a dense block. Figure from [HLV+17]. 58

Figure 9.4 Selected patches from EILAT. Each column shows two ex-
amples per class. 65

Figure 9.5 Selected patches from RSMAS. Each column shows two ex-
amples per class. 66

Figure 9.6 The result of applying four data augmentation techniques to
(a) a original RSMAS image: (b) shift, (c) zoom, (d) rotation
and (e) flip. 70

Figure 9.7 Examples of (a) misclassified images in EILAT as Dead Coral
and (b) original Dead Coral images. 80

Figure 9.8 Examples that show the similarities between (a) Branches Type
III and (b) Branches Type II. The third image form (a) is miss-
clasified as Branches Type II. The first and second images from
(b) are missclassified as Branches Type III. 80

Figure 9.9 Examples that show the similarities between (a) APAL and
(b) ACER. The third and fourth images from (a) are miss-
classified as ACER. The first and second images from (b) are
missclassified as APAL. 81

Figure 9.10 Examples that show the similarities between (a) MCAV and (b)
MMEA. The second and third images in (a) are missclassified
as MMEA. 81

Figure 10.1 Difference between (a) coral texture and (b) coral structure. . 92

Figure 10.2 An example of a convolutional layer and a pooling layer in a
CNN. 94

xix

Figure 10.3 One texture image from each RSMAS class. 98

Figure 10.4 One structure image from each StructureRSMAS class. 101

Figure 10.5 The two-level classifier we have developed to classify any coral
image, either texture or structure. 103

Figure 10.6 Coral images misclassified by the texture or structure binary
classifier. 109

Figure 11.1 The stratification of radiological severity of COVID-19. Ex-
amples of how RALE index is calculated. 121

Figure 11.2 Flowchart of the proposed COVID-SDNet methodology. . . . 128

Figure 11.3 The segmentation-based cropping pre-processing applied to
the input X-ray image . 129

Figure 11.4 Class-inherent transformations applied to a negative sample.
a) Original negative sample; b) Negative transformation; c)
Positive transformation . 130

Figure 11.5 Heatmap showing the parts of the input image that triggered
the positive prediction (b) and counterfactual explanation (c) 138

Figure 11.6 Heatmap showing the parts of the input image that triggered
the positive prediction (b) and counterfactual explanation (c) 138

Figure 11.7 Heatmap showing the parts of the input image that triggered
the positive prediction (b) and counterfactual explanation (c) 138

Figure 11.8 Heatmap that explains the parts of the input image that
triggered the counterfactual explanation (b) and the negat-
ive actual prediction (c). 139

Figure 12.1 Difference between training the backbone network (a) without
and (b) with the RAFNI algorithm 153

Figure 12.2 Flowchart of the RAFNI algorithm 157

Figure 12.3 The two components obtained by the Gaussian Mixture Model
(GMM) over the loss values of the instances in the first three
epochs of the training using the EILAT data set at 40% of noise.159

Figure 12.4 Evolution of the overlap between the two components of the
GMM through the epochs of the training of different data sets
and noise rates. 160

Figure 12.5 Evolution of the difference between the means of the two
components of the GMM through the epochs of the training
of different data sets and noise rates. 160

xx

list of tables xxi

L I S T O F TA B L E S

Table 9.1 Characteristics of EILAT and RSMAS. The #imgs refers to the
number of images in the corresponding class. 67

Table 9.2 The accuracies obtained by Inception v3, ResNet-50, ResNet-
152, DenseNet-121, DenseNet-161 and the classical state-of-
the-art Shihavuddin model. The results of all the Convolu-
tional Neural Networks (CNNs) were obtained without data
augmentation. The best results are stressed in bold. 72

Table 9.3 The set of hyperparameters that provides the best performance
shown in Table 9.2 for each CNN model and the time it took
to complete the 5 cross-validation process. 72

Table 9.4 Comparison between the results obtained by Ani Brown Mary
and Dejey [AD18a] and our results for EILAT and RSMAS
datasets. 75

Table 9.5 The accuracies obtained by Inception v3, ResNet-50, ResNet-
152, DenseNet-121 and DenseNet-161 without data augmenta-
tion, using the set of hyperparameters in Table 10.4 and with
a cost-sensitive loss function. 76

Table 9.6 Execution times, in minutes, of the experiments from Table 9.5 76

Table 9.7 The accuracies obtained by Inception v3, ResNet-50, ResNet-
152, DenseNet-121 and DenseNet-161 without data augment-
ation, using the set of hyperparameters in Table 10.4 and
fine-tuning the networks with MLC-2008. 77

Table 9.8 Execution times, in minutes, of the experiments from Table
9.7. The first term in the sum is the time corresponding to
fine-tune the network with MLC-2008 and the second term is
the time corresponding to train the last two-fully connected
layers with EILAT and RSMAS. 77

Table 9.9 The accuracies and execution times in minutes obtained by the
best performing CNN on EILAT, ResNet-50, with different data
augmentation techniques using the set of hyperparameters
indicated in Table 10.4. The best result is stressed in bold. . . 78

xxii list of tables

Table 9.10 The accuracies and execution times in minutes obtained by the
best performing CNN on RSMAS, ResNet-152, with different
data augmentation techniques using the set of hyperpara-
meters indicated in Table 10.4. The best result is stressed in
bold. 78

Table 9.11 Comparison between the results obtained by Ani Brown Mary
and Dejey [AD18a] and our approach for EILAT2 and MLC
datasets. 84

Table 10.1 Description of the composition of Inception v3, ResNet and
DenseNet. BN stands for Batch Normalization. 96

Table 10.2 Results from previous works on RSMAS. The results of Shi-
havuddin et al. using a 5 fold cross validation can be found in
[GTL+19]. 100

Table 10.3 Characteristics of RSMAS and StructureRSMAS. #imgs refers
to the number of images in that class. 102

Table 10.4 The set of hyperparameters we have test in the three architec-
tures. 104

Table 10.5 Description of the evaluated data augmentation techniques. . 105

Table 10.6 Results obtained for RSMAS using ResNet-152 for each image
enhancement technique. The best accuracy is stressed in bold. 106

Table 10.7 Best results obtained for StructureRSMAS using Inception,
ResNet-50, ResNet-152, DenseNet-121 and DenseNet-161, and
the set of hyperparameters used to obtain them, without data
augmentation. The best accuracy is stressed in bold. 107

Table 10.8 Results obtained for StructureRSMAS using ResNet-50 for each
image enhancement technique. The best accuracy is stressed
in bold. 107

Table 10.9 Best results obtained for StructureRSMAS using ResNet-50

for each data augmentation technique. The best accuracy is
stressed in bold. 108

Table 10.10 Best results obtained for the texture or structure binary clas-
sifier using Inception, ResNet-50, ResNet-152, DenseNet-121

and DenseNet-161 and the set of hyperparameters used to
obtained them, without data augmentation. The best accuracy
is stressed in bold. 108

list of tables xxiii

Table 10.11 Best results obtained for the texture or structure binary classi-
fier using ResNet-152 and data augmentation techniques. The
best accuracy is stressed in bold. 109

Table 10.12 Results obtained using the two-level classifier over the test set
from RSMAS ∪ StructureRSMAS, RSMAS and StructureRSMAS.110

Table 11.1 A brief description of COVIDx dataset [CMD20] (only PA
views are counted). 124

Table 11.2 Summary of related works that analyze variations of COVIDx
with CNN. 125

Table 11.3 A brief summary of COVIDGR-1.0 dataset. All samples in
COVIDGR 1.0 are segmented CXR images considering only
PA view. 125

Table 11.4 COVIDNet and COVID-CAPS results on our dataset 133

Table 11.5 Results of COVID-19 prediction using Retrained COVIDNet-
CXR A, Retrained COVID-CAPS, ResNet-50 with and without
segmentation, FuCiTNet and COVID-SDNet. All four levels of
severity in the positive class are taken into account. 134

Table 11.6 Results of COVID-SDNet per severity level. 136

Table 11.7 Results of the baseline classification model with segmentation,
COVID-SDNet, retrained COVIDNet-CXR-A and retrained
COVID-CAPS. Only three levels of severity are considered,
Mild, Moderate and Severe. 137

Table 11.8 Results of COVID-SDNet by severity level without considering
Normal-PCR+. 137

Table 12.1 A summary of the data sets used in this study. 162

Table 12.2 Types and levels of label noise used for each data set 163

Table 12.3 Fixed hyperparameters we used in each data set. 165

Table 12.4 Values we used for each hyperparameter and data set for the
grid search. 166

Table 12.5 Best hyperparameter values for all data sets using ResNet50. . 167

Table 12.6 5x5fcv mean ± std accuracy obtained for the data sets RSMAS,
EILAT and StructureRSMAS using RAFNI with ResNet50 as
backbone network and the backbone network alone, ResNet50,
as baseline. The best results in each case are stressed in bold. 168

Table 12.7 5x5fcv mean ± std accuracy obtained for the data set COVIDGR1.0-
SN using RAFNI with ResNet50 as backbone network and the
backbone network alone, ResNet50, as baseline. The best
results in each case are stressed in bold. 168

Table 12.8 Mean ± std accuracy obtained using CIFAR10 and CIFAR100

with symmetric noise and using the baseline network (Res-
Net50) and RAFNI with that network as the backbone network.
The best results in each case are stressed in bold. 169

Table 12.9 Mean ± std accuracy obtained using CIFAR10 with asym-
metric noise and using the baseline network (ResNet50) and
RAFNI with that network as the backbone network. The best
results in each case are stressed in bold. 170

Table 12.10 Comparison between RAFNI and the two methods from Pat-
rini et al [PRK+17], using pre-activation ResNet32 for CIFAR10

and pre-activation ResNet44 for CIFAR100 in the three ap-
proaches. The best results are stressed in bold. 171

Table 12.11 Comparison between RAFNI and the D2L method [MWH+18],
using their original 8-layer CNN for CIFAR10 and pre-activation
ResNet44 for CIFAR100 in both approaches. The best results
are stressed in bold . 172

Table 12.12 Comparison between RAFNI and the BiTempered method
[AWA+19], using ResNet50 in both approaches. The best
results are stressed in bold . 172

Table 12.13 Comparison between RAFNI, using ResNet50, and the method
from Arazo et al [AOA+19], using pre-activation ResNet18.
The best results are stressed in bold 173

Table 12.14 Comparison between RAFNI and SELFIE [SKL19], using DenseNet-
25-12. The best results are stressed in bold 174

Table 12.15 Analysis of the instances that the RAFNI algorithm removed
and changed from one class to another during the training of
the EILAT data set. 176

Table 12.16 Analysis of the instances that the RAFNI algorithm removed
and changed from one class to another during the training of
the COVIDGR1.0-SN data set. 176

xxiv

Part I

P H D D I S S E RTAT I O N

1
I N T R O D U C T I O N

Nowadays, every little process carried out in every company, research centre or
government is generating data that is being recollected with the intention to process
it in order to extract valuable information. The information extracted from the data
is very important from the point of view of the companies, research centres and
governments. The amount of data generated and collected is too large to be analysed
by hand, so it is analysed using computers via a process called Knowledge Discovery
in Databases (KDD) [PF91; HPK11]

The KDD process is composed of different steps that allow the extraction of
valuable information or patterns in the data. They include the following:

• Problem specification: it includes an in-depth specification of the problem and
its objectives.

• Data selection and sampling: it is the process of extracting the relevant data to
the problem from the database or databases.

• Data cleaning and preprocessing: it consists of removing inconsistencies from
the data and then preprocessing it [GLH15] (which can include noise removal
[FV13], imputing missing values [LGH12], removing redundancies, etc.). This
step creates what is now known as smart data [GRL+16], and allows the data to
be used in the following step.

• Data mining: it consists of the application of Machine Learning (ML) algorithms.
ML is the family of algorithms that are responsible for extracting relevant
patterns given the curated data.

• Result interpretation: it is the process of interpreting the patterns extracted in
the previous step, usually using different visualizations.

Although the most recognisable step is data mining, so much so that it is even used
as a synonym for the entire KDD process [HPK11], the cleaning and preprocessing
step is essential and equally important. This step produces quality data (smart data),

3

4 introduction

which is necessary for the data mining step to produce quality results and relevant
relations in the data. Without cleaning and preprocessing the raw data, we could
obtain erroneous relationships and results.

Commonly, data mining algorithms are classified into three main categories, de-
pending on the available information of the target variable that we want to predict.
Let X = {x1, x2, . . . , xn} be the curated input data, where we have n instances (also
called examples), and y = {y1, y2, . . . , yn} the target variable for each of these in-
stances. Each one of the variables in the data set is also called a characteristic. Then,
the three main categories of data mining algorithms are the following:

• Supervised learning [CCD08], where the target variable y is known. The al-
gorithms in this type of learning infer relations and patterns between the known
data X and the target variable y, so they can be used to predict the target vari-
able of new, unseen data. There is a more detailed classification, depending on
the domain of the target variable:

– Classification, where the domain of y is discrete and we know all the pos-
sible classes or categories for each instance in the data: yi ∈ {1, 2, . . . , K},
∀i = 1, 2, . . . , n and K is the total number of classes in the problem. If
K = 2, it is usually called binary classification, and if K > 2, multi-class
classification. For example, if we want to predict if a patient has COVID-19

or not.

– Regression, where the target is continuous yi ∈ R, ∀i = 1, 2, . . . , n. An
example of regression is predicting the temperature of an industrial oven.

• Unsupervised learning [HTF09], where the target variable y is not known. The
algorithms in this type of learning find relations and patterns between instances
of the known data X. We can also differentiate two main categories inside
unsupervised learning (though there are more, like anomaly detection):

– Clustering, which identifies relations in the data based on a similarity
metric and creates groups of instances in a way that the similarity between
instances of the same group is higher than the similarity between instances
of different groups.

– Association rules, where the algorithms identify relations between the data
variables or attributes, generating a list of rules that describe the data.

introduction 5

• Semi-supervised learning [ZG09], where the target variable y is known only in
a subset of the data available during the training process, but not in the rest.
For example, a lot of medical applications work with semi-supervised learning,
because it is necessary to have experts to label the data set, which is hard and
costly to do for the entire data set.

This thesis focuses on supervised classification, where we have a classifier that is
trained using an ML algorithm. The original data set is divided into a training set,
used to train the classifier (where the classifier identifies patterns in the training
set and learns to classify them), and a test set, used to test the effectiveness and
generalisation ability of the classifier. The test set is not used during the training
process. To test this we used the accuracy metric, defined as the number of instances
of the test set correctly classified by the classifier over the total number of instances
of the test set. That way, the accuracy gives us the level of confidence of the classifier
when classifying new, unseen samples.

In the context of supervised classification, we focus on improving the accuracy of
different classifiers by combining the use of optimization techniques (such as transfer
learning, which we will see later) with the improvement of the data itself, in order to
obtain what is called smart data, by using different preprocessing techniques. In this
line, this thesis has three defined branches: the accurate classification of coral species
using coral underwater images, the accurate classification of the COVID-19 disease
using X-ray images and the accurate classification of image data sets under label noise.

Label or class noise [GLH15; FV13] refers to a specific problem in the input data
set where the labels of some of the instances are wrong, that is, the label yi of some
instances of the data set does not correspond to the original class of the instances.
The percentage of wrong labelled instances is called the noise rate, though this rate
is usually not known in real-world data sets. This noise causes the ML algorithms
to learn non-real patterns, and as a consequence, the algorithms do not have good
generalization ability and they perform worse on unseen data. Therefore, it is crucial
to use algorithms that can deal with label noise, either by preprocessing the training
data trying to remove or correct the noise or by creating robust algorithms that are
not affected by the label noise. In this context, we want to make a robust algorithm
that is able to deal with label noise when the input data are images.

The three branches in this thesis have in common that each instance or sample in the
data sets that we work with is an image. As a consequence, and since Deep Learning
(DL) has shown an increased performance when dealing with images, we do not use

6 introduction

Figure 1.1: Example of a neuron in a deep neural network.

Figure 1.2: Example of a feedforward neural network.

classical ML algorithms like support vector machines or random forest. Instead, we
choose to use DL, and, in particular, Convolutional Neural Networks (CNNs).

Deep Learning is a subclass of Machine Learning. The algorithms that belong to
the DL family have in common that they are able to use complex representations by
combining a lot of simpler representations and non-linear transformations [GBC16].
These algorithms have a specific structure called network, which is composed of
artificial neurons, mimicking the structure of human neurons. The artificial neurons
are nodes that are composed of three elements: 1) one or more inputs; 2) one output;
3) intrinsic weights. In Figure 1.1 we can see an example of a neuron inside a deep
neural network. We can see that each neuron outputs a function over the inputs

introduction 7

and its weights f (i1w1 + . . . inwn), where ij, j = 1, . . . n are the inputs, n is the total
number of inputs and wj are the weights. These neurons are then combined forming
layers that are stacked onto each other forming networks. Depending on the structure
of the network and the functions performed in them, we can have feedforward neural
networks, such as CNNs, or recurrent neural networks, such as the Long Short-Term
Memory (LSTM) networks. In Figure 1.2 we can see an example of a feedforward
network, where all the connections in a layer go to the following layers, not previous
layers nor to the same layer. It is also a fully connected network because all the
neurons in a layer are connected to all the neurons in the previous layer. In this thesis,
we focus on CNNs, which owe their name to the main operation they perform: the
convolution, which we will explain in the next chapter. These types of networks are
perfect to use with images as data input because they can deal with matrices, and, in
fact, the input of each layer of the network, not just the input, is multi-dimensional.

Traditionally, DL has been characterized as needing a big quantity of data to be
able to perform well. While this is true, there are techniques, such as transfer learning
and data augmentation, which we will see in-depth in the next chapter, that allow us
to use DL algorithms when we are dealing with small data sets. In some problems
and situations, it is fairly difficult to obtain a great number of images that are also of
high quality. By quality in an image we mean two main things: 1) quality in the sense
of how well the image looks: that it is not blurred, out of focus or too bright or dark
to see the main object in the image; 2) quality in the sense of how well is the data set
labelled, i.e. free of label noise.

When dealing with images as input data, the classical concept of machine learning
classification can be further divided into other three concepts:

• Classification of the entire image, where we assign a label to each complete
image. Usually, we want to classify the predominant object in the image.

• Detection, where we assign one or various layers to different parts of each
image. Here, we want to detect the smallest rectangle that contains an object
and classify the object in that region.

• Segmentation, where we want to divide the pixels of the image into regions
that correspond with different objects detected in the image.

In this thesis, we focus on the classification of the entire image, assigning a label to
each complete input image. In particular, we want to analyse how well DL performs
and which techniques we can use if the available data sets are small. In this sense,

8 introduction

the three data sets we used to classify coral species were all below 1500 images,
and the data set containing X-rays of COVID-19 patients and patients without this
disease was less than 1000 images. In both cases, it is difficult to obtain more images,
either because you need special equipment to take underwater images and the exact
locations to take them, as with the corals, or because you need special equipment to
take X-rays and a team of expert radiologists combined with RT-PCR tests to label the
new images. In addition, the time may be crucial, as happened with the COVID-19

diagnosis, so we could not wait until more images are added to the data set. To put
the size of these data sets into context, the ImageNet data set [DDS+09], which was
the widely used data set to train new CNN architectures due to the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [RDS+15] competition, had more than
1.2 million images only for the training set.

In that way, the three branches of this thesis are focused on how to combine these
small data sets with preprocessing techniques and methodologies for smart data in
order to obtain good accurate classifiers to classify coral species and to detect the
COVID-19 disease, even in the presence of label noise, when we can use the algorithm
we created to deal with this problem.

This thesis is structured in two parts: the PhD dissertation and the publications
associated with it.

The rest of the Part I is structured as follows: Chapter 2 contains the background
concepts needed for this thesis. In Chapter 3 we justify the relevance of this thesis
and the associated publications. In Chapter 4 we give the objectives we wanted to
complete with this thesis. Chapter 5 describes the methodology we followed during
the development of this thesis. Then, in Chapter 6 and Chapter 7 we give a summary
of the results included in the thesis, along with the publications where they are
contained, and a discussion on that results, respectively. Finally, Chapter 8 presents
the main conclusions of this thesis and outlines the future work.

Then, Part II includes the four publications we developed for this thesis, organized
in three groups, reflecting the three branches of the thesis:

1. The accurate classification of coral species, containing the following publica-
tions:

a) Towards highly accurate coral texture images classification using deep
convolutional neural networks and data augmentation, in Chapter 9.

b) Coral species identification with texture or structure images using a two-
level classifier based on Convolutional Neural Networks, in Chapter 10.

introduction 9

2. The accurate detection of the COVID-19 disease, containing the following
publication: COVIDGR dataset and COVID-SDNet methodology for predicting
COVID-19 based on chest X-ray images, in Chapter 11.

3. The accurate classification of data sets in the presence of label noise, containing
the following publication: A robust approach for deep neural networks in
presence of label noise: relabelling and filtering instances during training, in
Chapter 12.

2
P R E L I M I N A R I E S

This chapter presents the background concepts used in this thesis: computer vision
in Section 2.1, DL and convolutional neural networks specifically in Section 2.2 and
the label noise problem in Section 2.3.

2.1 computer vision

Computer or artificial vision is a field that includes a wide range of methods to process
images so that a computer can extract information from them [Sze10; GCM21]. This
process includes the acquisition of the images, their processing and posterior analysis
and the applications using computers [GCM21]. This also includes the analysis of the
cameras used to take the images and their calibration, analysis of shading, texture
and colour in the images and the mathematical methods that are heavily used in all
the processes [FP11].

When artificial vision started in the 1970s, the focus was to detect and extract
edges from the images in order to make computers understand them. Since then,
a lot of different techniques were developed to extract features from the images to
be able to feed them to a computer, like skin colour detection, intensity and shade
variation detection, or long edge detection, among others. Usually, these features
were used to reconstruct 3D scenes or to perform some changes in the images, such
as image blending or deblurring images [Sze10]. In the 2000s the tasks of image
classification, object recognition in images and image segmentation began to increase
their popularity. These tasks obtained their maximum popularity in the 2010s with
the incursion of Deep Learning.

The applications of computer vision vary from robotics to control industrial pro-
cesses to autonomous vehicles or computer-human interactions. Two important
applications are in biology and medicine. In biology, computer vision has been used
to determine the quality of wood [ARV+17], to detect fires on forests [ZLZ+18], to
detect diseases in the plants [LTJ21] or to distinguish species, like flower species
[NZ08] or coral species [BEK+12]. In medicine, computer vision has been used to
help experts to detect different types of cancer, like breast cancer [GWL+18] or lung

11

12 preliminaries

cancer [ANB17], or to diagnose other diseases, like Alzheimer’s [FAA+17]. In this
thesis we focus on one application in biology: the classification of coral species, and
one application in medicine: the diagnosis of the COVID-19 disease.

2.2 deep learning

As we stated in the previous chapter, DL architectures are networks that are composed
of neurons. Each layer in the network performs a specific operation and thus, the
networks can be seen as the composition of the functions in each layer. The parameters
in each function are called weights and they are learned during the training of the
network. In each step or epoch of the training process, the weights are modified to
minimize the error or cost in each epoch. This error is the value, given the actual
weights of the network and the input with its true output value, of the objective
function (also called cost function or loss function). For regression, it is usual to
use the mean square error or the mean absolute error as objective functions. For
classification, it is usual to use the cross-entropy function.

Although the first DL architectures were defined in the late 1950s with the imple-
mentation of the perceptron, it was not possible to train them due to the computation
capability of the computers at that time. It was not until 1958, with the proposal of the
back-propagation algorithm [RDG+95], that it was possible to train networks with one
or two hidden layers. It then became widely used and it still is, today, the algorithm
used to train the deep neural networks. Briefly, the back-propagation algorithm
has two phases, a first forward phase and a second backwards phase. In the first
epoch of the training, the weights are randomly set. Then, in the following epochs,
the algorithm works as follows. In the forward phase, the output of the network is
calculated using the current weights. Along with the output, it calculates the error or
loss of that output evaluating the objective function. Then, in the backwards phase,
the algorithm calculates the partial derivatives of the objective function with respect
to the weights in each layer, from the end of the network to the start. These gradients
are then used in a gradient-based optimization algorithm, such as the Stochastic
Gradient Descent (SGD), so the error gets minimized and the weights are changed
accordingly, ready to start the next epoch of the training process.

However, more deep networks were not possible to train until the late 2000s, when
two main things happened: the computation capability of computers continued to

2.2 deep learning 13

grow and was already able to train deeper networks, and the size of the available
data sets grew.

There are several types of deep neural networks. Some of the most known and
used are feedforward networks, such as the multilayer perceptron, where there are no
connections between neurons in the same layer nor previous layers; recurrent neural
networks and Long Short-Term Memory (LSTM) networks in particular [YSH+19;
GBC16], which are used to process sequential data and where the neurons can be
connected with other neurons in the same layer or previous layers; autoencoders
citecharte2018practical, which are artificial neural networks with a symmetric en-
coder/decoder structure; and CNNs, which we are going to see more in-depth in the
next subsection, as they are the type of networks we have used in this thesis.

2.2.1 Convolutional Neural Networks

CNNs are a type of deep neural network where at least one of the layers is a
convolutional layer. A convolutional layer is a layer that performs the convolution
operation in its discrete form, which is defined, for a two-dimensional input and
kernel, as [GBC16]:

C(i, j) = ∑
m

∑
n

I(m, n)K(i − m, j − n) , (2.1)

where I is the input of the convolution, K is the kernel of the convolution (also called
filter) and C is the output of the convolution. The kernel contains the weights of
the convolution, which will be learned during the training process. The size of the
kernel is usually 1 × 1, 3 × 3, 5 × 5, 7 × 7 or 11 × 11, so it is smaller than the input.
The latest network releases that have been proposed tend to use smaller kernel sizes,
since concatenating convolutional layers with smaller kernel sizes serves the same
purpose as one convolutional layer with a bigger kernel size, but in less time and
computational cost. Since the convolution is commutative and the values of the kernel
are going to be learned during the training of the network, we can flip the kernel in
both directions and we can write:

C(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n) . (2.2)

Equation 2.2 is actually another operation called cross-correlation, but we have
seen that in this context, where the kernel is learned, they are equivalent. Since the

14 preliminaries

cross-correlation operation is simpler to implement, it is the one usually implemented
in deep learning libraries.

Let’s see an example using Equation 2.2. Suppose we have the following input and
kernel:

I =

5 9 1 3 0

6 8 2 4 1

1 7 3 5 5

4 6 6 9 2

0 3 1 0 1

, K =

2 −1 3

1 −2 0

4 1 −1

 . (2.3)

Then we simply have to move the kernel through the input iteratively, taking
neighbourhoods from the input of size 3 × 3, which is the size of the kernel, from
top to bottom and left to right, multiplying the elements in the same position and
summing the results, so the output will be:

C =

2 56 5

13 48 27

−2 33 7

 . (2.4)

Note that the output is smaller than the output. As bigger the kernel size, the
smaller the output. To prevent this from happening, the convolution has an associated
concept called padding, though it is not obligatory to use it. The padding consists
of momentarily adding columns and rows to the input matrix until the output has
the same size as the input. These newly added rows and columns could have zeros
(which is known as zero padding) or can mirror the original values of the original
matrix, for example.

There is another concept associated with the convolution, which is the stride. The
stride controls the overlapping between the neighbourhoods we take from the input
matrix when calculating the convolution. In the previous example, we used a stride
of 1 since we moved one row or column at a time to obtain the next neighbourhood.
However, a bigger stride could be used, causing the output matrix to be smaller in
size.

Now, the definition we gave in Equation 2.1 and Equation 2.2 uses two-dimensional
inputs and kernels, because it is easier to understand and describe in the example.

2.2 deep learning 15

30 x 30 x 96

*

CONVOLUTION 3 x 3 x 96,
24 filters

30 x 30 x 24

=

Figure 2.1: Example of a convolution performed on a convolutional layer, showing one of the
24 filters.

However, in an actual CNN, the convolutional layer performs a three-dimensional
convolution. If, for example, the input of the CNN is a colour image we already have
a three-dimensional input since we have the three channels R, G and B. But, moreover,
each convolutional layer performs not one but several convolutions with the same
input but different kernels, so the output of a convolutional layer (which will be at
some point the input of another convolutional layer), has three dimensions, the third
being the number of different kernels or filters we used in the previous convolutional
layer. An example of an actual convolution in a convolutional layer can be seen in
Figure 2.1.

Note that the third dimension of the kernels is not eligible and has to match the
third dimension of the input. The first two dimensions of the kernels and the number
of kernels in the convolutional layer are hyper-parameters of that layer and can be
changed. Each one of the 24 matrices of size 30 × 30 of the output is called a feature
map.

The non-linear function that characterize DL is usually introduced after each
convolutional layer in CNNs, by a layer that performs that non-linear function
element-wise. In CNNs the most used non-linear function is the Rectified Linear Unit
(ReLU) function, defined element-wise as it follows:

ReLU(x) = max(0, x) . (2.5)

16 preliminaries

For example, if we take the output of the above example and perform the ReLU
function, we obtain:

2 56 5

13 48 27

0 33 7

 . (2.6)

There are different non-linear functions, often variations of the ReLU function,
like the Leaky ReLU, defined as x if x > 0 and 0.01x otherwise, or the Exponential
Linear Unit (ELU), defined as x if x > 0 and a(ex − 1) otherwise, where a is a hyper-
parameter that can be tuned. However, the most used non-linear function is the ReLU
function.

Now, in a CNN we want to extract different characteristics through the depth of
the network. To do this, the input size of the layers needs to be lowered, which can
be done using a bigger stride in the convolutional layers, but it is more common
to use another layer called pooling layer, whose aim is to downsample its input by
using some mathematical operation that aggregates the inputs, like the average, the
maximum, etc, and a stride greater than 1. In this case, we again take neighbourhoods
of a predetermined size (which is a hyper-parameter of the layer) and perform the
chosen operation. For example, if we perform a max-pooling with size 2 × 2 and
stride 2 for the input I, we obtain the following output:

I =

2 56 5 0

13 48 27 7

0 33 7 23

14 19 5 2

, max pooling(I) =

(
56 27

33 23

)
. (2.7)

A CNN is then a concatenation of these layers. The way they are repeated and
concatenated with each other determines the architecture of the network. In the first
proposed architectures, such as LeNet-5 [LBD+89], the networks were a repetition
of a convolutional layer, the non-linear activation and a pooling layer, though the
networks only had a few layers. LeNet-5, for example, has five layers with weights. As
the hardware improved and the computers were able to train deeper networks, more
architectures were proposed, which started to stack convolutional layers on top of

2.2 deep learning 17

each other, using fewer pooling layers, such as VGGnet [SZ14], which was proposed
in 2014 with two variants: one with 16 layers with parameters and one with 19. Then
the ILSVRC competition motivated a proliferation of new CNN architectures, which
are deeper and more complex, like GoogLeNet [SLJ+15] (or its widely used newer
version Inception v3 [SVI+16]), ResNet [HZR+16] or DenseNet [HLV+17]. These
newer architectures are based on the repetition of a module (different in each case)
that is repeated through the network and depending on the number of repetitions a
different architecture is obtained. ResNet, one of the most used CNNs, has variants
with 18 layers, 50 layers and 152 layers, among others.

As the depth of the networks began to increase, it became necessary to use other
layers in order to be able to train them, such as normalization layers like batch
normalization, or to alleviate overfitting, like dropout. Batch normalization [IS15] is a
method of reparametrization that adaptively normalizes each feature map in its input
to have zero mean and a standard deviation of 1, and then scales and shifts the result
using two new parameters per feature map, allowing the network to learn the best
mean and standard deviation for each input. Dropout [SHK+14] is a technique used
in the training process that consists of cancelling out a percentage of the connections
between neurons so that not all of the weights are learned in all of the training epochs.
The connections that are cancelled in each epoch change and are selected randomly.
Then, during the test process, all connections are used.

Finally, in the context of classification, we need the output of the networks to return
a probability of each input image belonging to each class. To do this, the last layer
of the network needs to be a Fully Connected (FC) layer, which is a one-dimensional
layer where all its neurons are connected with all the neurons in the previous layer.
The FC layer needs to have as many neurons as classes are in the problem we want
to classify, and after that, it performs the softmax function, which is defined, from RK

to [0, 1]K, where K is the total number of classes, as:

softmax(z)j =
exp(zj)

∑K
k=1 exp(zk)

. (2.8)

Then, the class of the input image is the one with the highest probability.

2.2.2 Transfer learning

Transfer learning is an optimization technique that allows starting the training process
of a network from a pre-trained state, instead of starting with random weights on

18 preliminaries

all the layers of the network. This is critical when the data set we want to classify
is small. We need two data sets, one data set A used to pre-train the network, and
another data set B, which is the data set we want to classify. These two data sets are
usually related in some way and the data set A is commonly much bigger in size.
That way, we are transferring the knowledge obtained with data set A into data set B.

This technique is widely used because it speeds up the training process of data set
B, but it is even more important in case data set B is small, because it would not have
been enough to train the entire network from scratch.

Since the most used CNNs emerged thanks to the ILSVRC competition, they were
already trained in the ImageNet data set [DDS+09]. The ImageNet data set has two
main advantages: it is very big (1.2 million images) and contains 1000 common classes,
such as different species of dogs, types of cars, buildings, etc. Another advantage
is that the main deep learning libraries, like TensorFlow [MAP+15] and PyTorch
[PGM+19], provide the most used CNN architectures with and without the pre-
trained weights in ImageNet. That way, this step, which is long due to the size of
ImageNet, is already done and we can directly retrain the networks on our data set.

The pre-trained networks on ImageNet will have one last FC layer with 1000

neurons (the number of classes in ImageNet), which we will need to replace with, at
least, another FC layer but with as many neurons as classes are in the data set that
we want to classify.

Once the networks are pre-trained and we have changed their last layer, we can
choose to retrain the weights in all the layers of the network, some of them, or just
the newly added layers at the end. This practice is called fine-tuning. Figure 2.2 shows
an example of transfer learning where we are choosing to retrain some of the layers
of the original network.

2.2.3 Data augmentation

Data augmentation is a technique used during the training process of a neural
network, where the size of the training set is increased by performing several trans-
formations to the original instances.

In our context, where the instances of the training set are images, these transforma-
tions are the following:

• Rotations of the images.

• Changes in the brightness of the images.

2.2 deep learning 19

.

.

.

.

.

.

Layer 1

Layer 2

Layer 3

Layer n-1

Layer n

Output layer

Layer 1

Layer 2

Layer 3

Layer n-1

Layer n

Layer n+1

Output layer

Not
trainable
weights

Trainable
weights

Pre-trained
network

New
network

Figure 2.2: Example of transfer learning.

• Crops of the images.

• Flips, vertical and/or horizontal, of the images.

• Zooms of the images.

• Changes in the contrast of the images.

• Translations of the images.

These transformations are performed during the training process. TensorFlow,
which is the framework we used throughout this thesis, chooses to apply them or not
randomly for each image in every epoch of the training: for example, flipping or not
an image vertically. Additionally, if the transformation implies some hyper-parameter,
for example rotating an image, which implies a rotation degree, we can decide a
maximum degree d to rotate them and TensorFlow chooses randomly a degree in the
range [−d, d].

The use of these transformations has the advantage that they made the CNN
invariant to the transformation used, which is especially relevant if all the images in

20 preliminaries

the training set were taken under the same conditions because new unseen images
are probably not going to be taken under the same conditions. But is also especially
relevant if the original training set was small because it increases its size. However,
we need to be careful with the transformations that we use in each case, because they
can be harmful to the training, or make the images lose their meaning. For example,
if we are trying to classify hand-written digits, as with the MNIST data set [Den12],
we cannot flip the images, either vertically or horizontally, because they lose their
meaning. We also need to be careful with the values we give to each transformation.
In the above rotation example, if we use a too large maximum degree d, it can harm
the training. As a result, these transformations need to be carefully checked for each
problem, selecting which ones are suitable for the problem and then, which ones help
the learning of the network.

2.3 label noise problem

The problem of label or class noise occurs when there are instances in the available
training set that are misclassified. There is a very common problem, which can have
several causes: there were not enough experts to label the data set or maybe the data
set was labelled automatically, which is a practice in deep learning, in order to obtain
bigger data sets [XXY+15]. Sometimes, even if the data set is carefully labelled, we
can still have some misclassified images. Therefore, it is extremely important to deal
with these instances, because they can harm the training of the classifiers. In the
specific case of DL, it has been studied that class noise damages the training of the
networks [ZBH+21].

Several ways have been studied to deal with noise [GLH15]:

• Robust classifiers, which rely on the model to be less affected by the noise in
the data set. In DL, this is usually done by modifying the loss function so that
it can deal with the noisy samples [AWA+19; GKS17; ZS18], or by correcting its
values [PRK+17; MWH+18].

• Data polishing methods, which clean the data before feeding it to the classifier
by correcting the noisy samples [SKL19; PRK+17].

• Noise filters, which clean the data before feeding it to the classifier by removing
the noisy instances [SH19; DWF+18].

2.3 label noise problem 21

The creation of good robust classifiers, data polishing methods or noise filters is
critical for obtaining good results when classifying data sets that contain label noise.
Robust classifiers are the most difficult to create, and while they can perform quite
well if the noise rate is low, they could still be affected by higher noise rates [GLH15].
Data polishing methods can relabel instances, but they must detect very well the
noisy instances, because they can change the label of an instance that was clean,
increasing the noise in the dataset. In addition, it has to relabel the instances to their
original class, and not another one, leaving the noise rate intact. Finally, noise filters
cannot increase the noise in the data set, but they can reduce significantly the size
of the training set if the noise rate is high or if it does not detect the noisy instances
with precision, which aggravates the lack of data when dealing with small data sets.

There are various types of label noise that present different levels of difficulty when
dealing with them [FV13]:

• Noisy Completely At Random (NCAR): the occurrence of a noise sample does
not depend on the true class nor the sample itself. When the same percentage
of instances are mislabelled in all classes, which is a common assumption, it is
called symmetric noise.

• Noisy At Random (NAR): the occurrence of a noise sample depends on the true
class of the instance but not on the instance itself. For example, if we suppose
we have a problem with four classes: plane, bird, dog and house, we can assume
that it is more probable that the images with planes and birds are confused
with each other, than with the other classes. This type of noise is also called
asymmetric label noise. It is more realistic than NCAR, so it is usually more
complicated to deal with than NCAR.

• Noisy Not At Random (NNAR): the occurrence of a noise sample depends
on the true class of the instance and on the instance itself. For example, for
the COVID-19 problem, where we have a class P with the X-rays of patients
who had the disease, and N with the X-rays of patients who did not have the
disease, we can assume that is more probable that the patients in P who had a
mild illness are more probable to be misclassified as N than the ones who were
severely ill. This is the most realistic type of noise since it allows the instances
more similar to the instances of another class to be the noisy ones. As a result,
this type of noise is the most complex to deal with.

22 preliminaries

2.3.1 The problem of label noise in the case of CNNs

In the specific case of CNNs, most works focus on NCAR noise, usually called
uniform or symmetric in this context [PRK+17; HMW+18; MWH+18]. Some of them
also analyse the effect of NAR noise, called asymmetric noise in this context [JNC16;
WMC+19; NMN+19]. However, to the best of our knowledge, the NNAR noise has
not been tackled in this context.

There are several ways to tackle the noise problem when using CNNs. In general,
we can distinguish the following:

• Methods that change the loss function, either to make it robust to the noise
[WKH+19; PRK+17; HMW+18; MWH+18], or as a result of other changes in
the network [SBP+14; SC18].

• Methods that model the noise distribution, either by previously estimating the
noise matrix [PRK+17], by supposing it is known [SKL19] or by modifying the
network to add a layer that models it [SBP+14; JNC16].

• Methods that correct the noise [SKL19; AOA+19].

• Methods that filter the noise [SKL19; NNL+19].

Note that this categorization is not exclusive, as some works use more than one
approach.

We focused on creating an algorithm that filters and correct the noise during the
training process and we tested it using the three types of noise (NCAR, NAR and
NNAR) to see how well it will behave under different types of noise, especially the
ones that are more realistic.

3
J U S T I F I C AT I O N

This chapter presents the open problems that justify this memory thesis.
As we stated in previous chapters, this thesis has three branches. We have ap-

proached all of them from the point of view of data quality or smart data and the
need to use preprocessing techniques to be able to work with the data and obtain
valuable information from it.

From this perspective, we show in this chapter the justification associated with the
three lines of this thesis:

• The classification of coral species using CNNs. Most of the available coral data
sets are small and they have the characteristic that the images are patches,
that is, they are very close-up images that do not show the entire structure of
the corals, just texture details. The state-of-the-art model used to classify coral
species uses classic ML algorithms and these data sets. It is a very complex
framework composed of nine steps and where each step is composed of several
ML algorithms. The entire framework needs to be tuned to choose the best
algorithm in each step for each data set. We proposed the use of CNNs in
combination with transfer learning and data augmentation to simplify this
process in a way that can be extrapolated to other problems with small data
sets. In addition, we created a new data set that contains images of the entire
structure of the corals and proposed a two-step classifier to accurate classify
coral species based on texture or structure images. We made the new data set
public.

• The diagnosis of COVID-19 based on X-ray images. In 2020, the COVID-19

disease was declared a pandemic and the diagnosis of patients with the disease
was a number one priority. At that time, there were no rapid tests, and it
was important to develop triage systems that were able to detect COVID-19

cases faster than a Reverse Transcription Polymerase Chain Reaction (RT-PCR)
test. There was a data set of X-ray images that became very popular, but that
presented several problems. In conjunction with a team of expert radiologists,
we focused our work on three main lines. First, we analysed the available data

23

24 justification

set and concluded that it was not suitable for the correct detection of the disease.
Second, we developed and made public a curated data set of X-ray images that
were suitable to detect the disease. And third, we developed a methodology
which included several preprocessing steps in order to accurately diagnose if a
patient had COVID-19 or not based on a chest X-ray.

• The accurate classification of data sets, in particular small data sets, in the
presence of label noise when using CNNs. As we have seen in the previous
chapter, the presence of label noise is detrimental to the training of CNNs.
The vast majority of the available proposals in this line use big well-known
data sets such as MNIST or CIFAR10/100, injecting symmetric and sometimes
asymmetric noise. However, most times the proposals are specifically designed
for these benchmarks and they are not tested in more realistic data sets, let
alone small data sets. We proposed a robust approach for training CNNs that
can be used with any CNN and we tested it in small data sets (in particular
for the coral data sets and the COVID-19 data set) and in big data sets like
CIFAR10 and CIFAR100. We injected the three types of noise (NCAR, NAR and
NNAR) to test our approach under different scenarios.

4
O B J E C T I V E S

After addressing the open problems we wanted to tackle, in this chapter, we present
the main objectives of this thesis. As we did in the previous chapter, we divide the
objectives into the three branches of the thesis, which revolve around using different
preprocessing and optimization techniques for obtaining smart data to obtain accurate
classifiers. The realisation of this task involves an initial study of the problem, the
design and implementation of the novel solution to the problem and the posterior
evaluation of the proposed approach in conjunction with the comparison with the
current state-of-the-art. The specific objectives that we propose in this thesis are the
following:

1. To propose an accurate classifier for coral species based on CNNs using underwater
images, both texture images (close-up patches of the corals) and structure images (images
containing the entire corals). This includes the following objectives:

1.1. A study of the current state-of-the-art in coral classification based on
underwater images and the available data sets.

1.2. The creation of a new data set containing structure images, which was not
available.

1.3. The study of different CNN architectures in order to obtain the best
classifier for the texture problem and the structure problem.

1.4. The study of transfer learning and data augmentation in these small data
sets to improve the accuracy of the CNN classifiers.

1.5. The proposal of a two-level classifier, using CNNs, which allows the
classification of any coral image, either texture or structure.

2. To propose an accurate classifier to diagnose cases of the COVID-19 disease using chest
x-ray images of patients, which includes the following objectives:

2.1. A study of the available data sets and their suitability to solve this problem,
along with a study of the already published proposals for this task.

25

26 objectives

2.2. The creation of a new quality data set, working together with a team
of expert radiologists, which can be used to classify X-rays as positive
COVID-19 or negative COVID-19.

2.3. The development of a new methodology to preprocess and classify X-
ray images, which is composed of three steps. First, segmentation-based
cropping is carried out to obtain the relevant part of the X-rays, since they
contain information outside of the lungs. Then, we used a class-inherent
transformation network based on generative adversarial networks, called
FuCiTNet [RGT+20], to obtain two transformed images from each original
image, one using a generator trained over the positive images and the
other one using a generator trained over the negative images. Lastly, we
used the ResNet50 architecture to classify each original image using its
two transformations, also using transfer learning and data augmentation.

2.4 The comparison of our methodology with other proposals to resolve this
task.

3. To propose a robust approach for CNNs to train under label noise, especially when
classifying small data sets, which includes the following objectives:

3.1. The study of the proposals to help the training of CNNs under label noise
that are already available.

3.2. The creation of a novel approach to deal with the three types of label noise:
NCAR, NAR and NNAR.

3.3. To test our algorithm using small data sets, in particular, the coral data sets
and the COVID-19 data set, and big data sets like CIFAR10 and CIFAR100.
In addition, tos compare it with other state-of-the-art approaches.

5
M E T H O D O L O G Y

The methodology that we followed during the realisation of this thesis was an
adaptation of the scientific method applied to the objectives of the previous chapter.
Specifically, the methodology was the following:

1. Observation: an in-depth study of DL, and CNNs in particular, along with the
label noise problem and the existent approaches for training CNNs in presence
of label noise. In addition, studies of the state-of-the-art in the two applications
in which we used CNNs: classification of corals and diagnosis of COVID-19.

2. Hypothesis formulation: the design of new methodologies to train CNNs with
small data sets that contain label noise and methodologies to use CNNs in coral
classification and diagnosis of COVID-19.

3. Experimentation: retrieving performance results of the three designed methodo-
logies, measured in terms of the accuracy of the classifiers.

4. Contrasting the hypothesis: the comparison of the results we gathered from our
classifiers with other state-of-the-art proposals, in each of the three branches
of this thesis. These comparisons will serve to validate the effectiveness of our
models.

5. Hypothesis validation or refutation: after the analysis of the results obtained,
validation or refutation of the stated hypothesis. If rejected, the previous steps
should be repeated, creating a new hypothesis to be proved.

6. Scientific thesis: Once the hypothesis is validated, the conclusions are made and
the entire process is redacted into journal publications and this thesis.

27

6
S U M M A RY

This chapter summarizes the proposed approaches in this thesis. We divide the
chapter into three sections, each one containing one of the branches of the thesis.
In each section, we present a brief description of the problem, the solution we
gave to that problem and an outline of the experiments we carried out. Section 6.1
summarizes our approach for the classification of corals, Section 6.2 shows a brief
description of our proposed methodology for the diagnosis of the COVID-19 disease
and in Section 6.3 we summarize our proposal for the training of CNNs when the
training set presents label noise. The discussion over the results we obtained will be
presented in Chapter 7.

6.1 accurate classification of coral species based on underwater

images

The automatic classification of coral species is an important task, as it can help
experts to track endangered species in a faster way. Currently, there are Autonomous
Underwater Vehicles (AUVs) taking photos of corals, but they are not being processed
automatically because the classification of coral species entails several problems, such
as the fact that the taxonomy is constantly changing as new species are discovered,
that some coral species are very similar to each other, or the fact that some coral
species usually appear together and it is difficult to take photos of them individually.
In addition, underwater images present other kinds of problems, such as variations
in lighting or blurring due to the water column between the camera and the coral.

There have been other works addressing the automatic classification of corals based
on underwater images. Most of them use classical machine learning algorithms in
combination with feature extraction methods [BEK+12; PRJ+08; SGG+13], and some
of them use CNNs, but classical ones like VGGNet or LeNet [MBA+16a; MBA+16b;
Ela15].

We proposed the use of more powerful CNNs, in particular Inception v3 [SVI+16],
ResNet [HZR+16] and DenseNet [HLV+17] to classify two public small coral data sets:
EILAT and RSMAS [Shi17], which contain coral patches or textures. EILAT contains

29

30 summary

1123 coral patches distributed into eight classes and RSMAS contains 766 patches
distributed into fourteen classes.

The state-of-the-art in these two data sets was a complex framework created by
Shihavuddin et al [SGG+13], which uses classical machine learning models organized
into nine steps. Inside each step, one or various machine learning algorithms can
be used to first extract features from the images and then classify them. In addition
to having to select the algorithms for each data set, each algorithm needs to be
fine-tuned to each data set. Our proposal has fewer hyper-parameters to tune.

In addition, we created a new data set containing 409 structure images of various
sizes that contain the whole structure of the corals and are distributed into the same
fourteen classes as RSMAS. We named this data set StructureRSMAS.

This data set allowed us to classify coral species based either on their texture image
or their structure image. In order to do that, we proposed a two-level classifier, com-
posed of three classifiers. In the first level, we use a binary classifier that distinguishes
whether an input image is a texture image or a structure image. Then in the second
level, we have two classifiers, a texture classifier and a structure classifier. That way,
if in the first level the binary classifier decides that the input image is a texture,
the texture classifier is used in the second level. Equivalently, if the binary classifier
decides that the input image is a structure in the first level, in the second level the
structure classifier is used.

To compensate for the small sizes of the three coral data sets, we investigated
the use of transfer learning from ImageNet and data augmentation in all cases. In
particular, we only trained two newly added layers in each CNN, leaving the rest of
the weights of the networks with their values pre-trained on ImageNet untouched.
This speeded up the training process and allowed us to use such small data sets
since we just have to train the weights of the last two layers. We used five-fold
cross-validation and the accuracy metric to compare the results between the different
models and types of data augmentation.

We also investigated the use of an intermediate transfer learning from another
coral data set which contained more images, MLC-2008, fine-tuning all the weights
on the CNNs as a previous step to train the last two layers with RSMAS and EILAT.
Furthermore, as the data sets were not balanced, meaning that some classes had more
images than others, we also analysed the use of a cost-sensitive loss function in order
to improve the accuracy results.

In addition, we performed a comparison between our proposal to classify EILAT
and RSMAS and the state-of-the-art, the framework from Shihavuddin et al [SGG+13],

6.2 accurate diagnosis of covid-19 based on chest x-ray images 31

and we improved their results. The two journal publications associated with this part
are:

Gómez-Ríos, A., Tabik, S., Luengo, J., Shihavuddin, A. S. M., Krawczyk, B., &
Herrera, F. (2019). Towards highly accurate coral texture images classification
using deep convolutional neural networks and data augmentation. Expert Systems
with Applications, 118, 315-328.

Gómez-Ríos, A., Tabik, S., Luengo, J., Shihavuddin, A. S. M., & Herrera, F. (2019).
Coral species identification with texture or structure images using a two-level
classifier based on Convolutional Neural Networks. Knowledge-Based Systems,
184, 104891.

6.2 accurate diagnosis of covid-19 based on chest x-ray images

In 2020, the coronavirus disease (COVID-19) was declared a pandemic by the World
Health Organization (WHO). The diagnosis of the disease has been carried out using
RT-PCR tests, Computed Tomography (CT) scans or chest X-rays. In 2020, the rapid
tests were not available yet and the resources were limited, which made chest X-rays
the fastest method to detect the presence of the disease. Moreover, the equipment
used to obtain the X-rays is more lightweight than the one used for CT scans and
could be transported to small hospitals where it was not possible to do CT scans and
no RT-PCR tests were available.

Due to this, there were an increasing number of works using public chest X-ray
images and DL to detect the presence of COVID-19 [WW20; AHN+20; OTY+20;
KDR+20; NKP21]. However, most of these works used combinations of public chest
X-ray data sets. The most popular one is COVIDx [WW20], which combined the
COVID-19 image data collection [CMD20] with the RSNA pneumonia detection
challenge data set from Kaggle [RSNA19] with another public collection of COVID-19

images [Chu20]. These public data sets have several problems. The first one is that the
protocol followed for annotating an image as positive for COVID-19 is not made clear,
and since most works combine several sources of images, they are probably merging
different protocols. Furthermore, the images are very heterogeneous and they were
taken using different types of equipment, introducing other sources of information in
the X-rays besides the lungs. And more importantly, they use X-rays from children,
but they only appear in the positive class for COVID-19. In this line, the work of

32 summary

Maguolo and Nanni [MN20] shows that DL algorithms obtain the same accuracies
when using the complete X-rays and when the lungs are removed from them. Lastly,
and equally important, these data sets are biased towards severe COVID-19 cases,
which are the easiest to detect, leaving mild and moderate cases aside.

As a solution, we proposed a new data set, named COVIDGR1.0, built with the
collaboration of four expert radiologists from Hospital Universitario San Cecilio in
Granada, using the same detailed protocol for all chest X-rays, that were taken in
hospitals in Granada. Specifically, we assigned the label P (positive COVID-19) when
the X-ray is taken within under 24 hours of a positive RT-PCR test, and the ground
truth is the result of an RT-PCR test. In addition, all images were taken using the
same equipment and all positive COVID-19 images were assigned a severity by the
radiologists between Normal-PCR+ (asymptomatic, with a positive RT-PCR+ test),
Mild, Moderate and Severe, so we could track that every severity is being tackled. We
added the same number of negative (class N, no COVID-19) chest X-rays as we have
of positives (class P), to keep the data set balanced. We made this data set available
to the public.

Then, using our data set, we developed a methodology to classify it and diagnose
the disease, named COVID-SDNet. This methodology is composed of three separate
steps: 1) a segmentation-based cropping, 2) class-inherent transformations of the
cropped images and 3) inference based on the transformations obtained in step 2). In
the first step, we remove the parts of the X-ray that do not contain any part of the
lungs using the U-Net segmentation model [Min20]. After using this model, we crop
the X-rays to take the smallest rectangle that contains the segmentation, adding 2.5%
of the pixels around it. In the next step, we use the FuCiTNet model [RGT+20]. This
model is a Class-inherent Transformation Network based on Generative Adversarial
Networks (GANs) that learns two generators, one per class, GP and GN, which learns
the inherent-class transformations of the positive P class and the negative N class,
respectively, that is, they learn the characteristics that bring each input image to its
class. Then, we use these two generators two generate a P transformation and an N
transformation of each input image. In the last step, we use the two transformations
obtained for each input image to train a ResNet50 model and we design an inference
step to combine the outputs of the two transformations to obtain the output class of
the original X-ray.

Lastly, using our data set, we compared our methodology with two of the most
popular approaches, COVIDNet [WW20] and COVID-CAPS [AHN+20], obtaining
better results in terms of accuracy.

6.3 robust approach to train cnns in presence of label noise 33

The journal publication associated with this part is:

Tabik, S., Gómez-Ríos, A., Martín-Rodríguez, J. L., Sevillano-García, I., Rey-Area,
M., Charte, D., Guirado, E., Suárez, J. L., Luengo, J., Valero-González, M. A.,
García-Villanova, P., Olmedo-Sánchez, E. & Herrera, F (2020). COVIDGR dataset
and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray
images. IEEE journal of biomedical and health informatics, 24(12), 3595-3605.

6.3 robust approach to train cnns in presence of label noise

Label noise is a common problem when dealing with real-world data sets. DL and
CNNs in particular are affected by this problem [ZBH+21], which is why is important
to develop algorithms that help to train CNNs when the data set contains label noise.

The majority of proposals to help the training of CNNs under label noise are
specifically designed to classify benchmarks like MNIST or CIFAR10/100 [PRK+17;
AWA+19; GKS17; ZS18; MWH+18], and they are not tested for small real-world data
sets or under all types of label noise. Moreover, some of them suppose some kind of
information is known, such as the noise rate [SKL19].

We proposed an algorithm, called RAFNI (Relabelling And Filtering Noisy In-
stances), that does not suppose the noise rate is known and that we tested using
real-world small data sets, such as the three coral data sets in Section 6.1 and the
COVIDGR1.0 data set in Section 6.2.

The RAFNI algorithm can be used with any CNN as a backbone network, and it
uses the predictions and their probabilities to filter or relabel the instances during
the training process. RAFNI is based on the fact that during the first epochs of the
training of a CNN, the clean instances are learned, while the noisy instances tend to
have higher loss values. Then, the CNN starts to overfit the noisy instances. In fact,
we can approximate the loss value of the instances in each epoch with a Gaussian
Mixture Model (GMM).

RAFNI uses this knowledge and the GMM to implement two filtering mechanisms
and one relabelling mechanism. The first filter mechanism uses a threshold over
the loss values of the instances to remove from the training set the instances that
have a loss value over that threshold. This threshold is dynamic and changes during
the training process. The second filtering mechanism controls how many times an
instance has been relabelled and removes from the training set the ones that have
been removed too many times because they have a higher probability of being noisy.

34 summary

Finally, the relabelling mechanism uses a threshold over the probabilities with which
the backbone network predicts the labels of the instances, changing the label of an
instance to what the backbone network predicts when the prediction probability
exceeds this threshold. The threshold is also dynamic and changes during the training
process.

We tested RAFNI with the coral data sets, the COVIDGR1.0 data set (where we
removed the images with severity Normal-PCR+), CIFAR10 and CIFAR100. We used
the CIFAR data sets to compare our algorithm with some of the state-of-the-art
algorithms in this task.

The publication associated with this part is:

Gómez-Ríos, A., Luengo, J., & Herrera, F. (2022). A robust approach for deep
neural networks in presence of label noise: relabelling and filtering instances dur-
ing training. Submitted to IEEE Transactions on Neural Networks and Learning
Systems.

7
D I S C U S S I O N O F R E S U LT S

This chapter presents the discussions of the results we obtained in the publications
associated with this thesis. We organize the discussions with the same sections as the
previous chapter.

7.1 accurate classification of coral species based on underwater

images

Regarding the classification of coral species, we performed a study using Inception
v3, ResNet and DenseNet to search for the best classifier for the three data sets:
EILAT, RSMAS and StructureRSMAS. We added two FC layers to the end of these
networks, one with 512 neurons, followed by a ReLU function, and another one with
as many neurons as classes in each data set, followed by the softmax function. As
the data sets were small, we used transfer learning from ImageNet and trained only
the two added layers, freezing the rest of the networks. For EILAT and RSMAS, we
also tested an intermediate step, using another data set, bigger, called MLC-2008, to
fine-tune all the layers in the CNNs before training the two added layers with EILAT
and RSMAS. However, the transfer learning from ImageNet gave better results than
the transfer learning from MLC-2008. We believe that this is due to the classes in
MLC-2008, as four of its nine classes are not coral species.

We found that ResNet was the best CNN for the three data sets: ResNet50 for
EILAT and StructureRMSAS and ResNet152 for RSMAS. Then, using the best model
for each data set, we conducted a study on the use of different data augmentation
techniques: translation or shift, zoom, rotation, flipping and combinations of these
techniques. Though there was improvement using data augmentation, it was a slight
improvement: around 1% of accuracy. We argue that this happens because of the
nature of the images in these data sets: EILAT and RSMAS contain small images and
very close-up, so the transformations used needed to be small, causing them to have
little effect. In the case of StructureRSMAS, we argue that this can be explained by
the excessive small size of the data set.

35

36 discussion of results

Then, we performed a study using a cost-sensitive loss function to tackle the
imbalance ratios on EILAT and RSMAS. To do that, we multiplied the error of each
instance by a factor that depends on the proportion of the images in the instance
class with respect to the rest of the classes. That way, the loss function gives more
importance to classifying images in smaller classes. However, the results obtained
from using a cost-sensitive loss function were slightly worse than using the normal
loss function. We argue that this is because the imbalance ratios on EILAT and RSMAS
were relatively small: most of them are below four, and CNNs are tolerant to these
levels of imbalance [BMM18].

When we compared our models with the state-of-the-art for EILAT and RSMAS,
we found that we outperformed the other models, becoming state-of-the-art for these
data sets. For StructureRSMAS, we found that the two-level classifier performed
well: since the first level classifier obtained an accuracy of more than 99%, there was
no loss in the accuracy in the second level of the model. In fact, there was a slight
improvement when using the two-level classifier than when classifying RSMAS and
StructureRSMAS separately.

7.2 accurate diagnosis of covid-19 based on chest x-ray images

Regarding the diagnosis of COVID-19, we performed a study on the whole COVID-
SDNet methodology, testing at each step if it improved the final classification or not. In
this case, as we observed that we had variation in the results between two repetitions
of the same experiment, we performed five different five-fold cross-validations and
we compared the mean and standard deviation of all the results. We found out that
each step of the COVID-SDNet methodology actually helped the final classification of
the COVIDGR1.0 data set, obtaining the highest accuracy (and also the best balance
between specificity and precision) when using the three steps of the methodology. In
addition to being the best accuracy result, it was also the most stable result, as it had
the smallest standard deviation.

When compared with the other two approaches, COVIDNet and COVID-CAPS,
COVID-SDNet performed significantly better when using our curated data set. The
main problem of COVIDNet was that its precision in the negative class was 3.36%,
meaning that it classified almost everything as positive for COVID-19. COVID-CAPS
did not have this problem, but the overall accuracy was worse than the one obtained
by COVIDNet.

7.3 robust approach to train cnns in presence of label noise 37

We also conducted a study of the accuracy of COVID-SDNet per severity level,
and we obtained that the best accuracy was obtained by the most severe cases and it
decreased as the severity of the disease decreased. This is the expected result, since
the most severe cases showed more signs of the disease in the lungs, being easier to
classify as positives.

Then, we studied the behaviour of the methodology when removing the positive
images of Normal-PCR+ severity from the data set and the accuracy results improved
since these images, despite being positive by RT-PCR, did not show signs of the
disease in the lungs.

Finally, we performed an inspection of the model decisions using heatmaps and
showed why our methodology classifies an image as positive or negative in the image
itself, in order to understand the model. Our team of radiologists actually inspected
these images and found that the model looked at the right regions of the X-rays
to label an image as positive or negative, making our methodology a good triage
system.

7.3 robust approach to train cnns in presence of label noise

Regarding the training of CNNs in presence of label noise, we conducted several
experiments. First, we tested our algorithm, RAFNI, with ResNet50 as the backbone
network, against the backbone network alone. We used EILAT, RSMAS, Structur-
eRSMAS, COVIDGR1.0-SN, CIFAR10 and CIFAR100. Between all data sets, we tested
the three types of noise: NCAR, NAR and NNAR, and in each data set we tested
several noise rates (between 4 and 8 noise rates, depending on the data set and the
type of noise).

We found that RAFNI obtained better accuracies on all data sets at all noise rates,
even at 0% noise in the case of StructureRSMAS, COVIDGR1.0-SN, CIFAR10 and
CIFAR100. In general, the gain in accuracy that we obtained from using RAFNI
increased as the level of noise increased, which is very good as it means that our
algorithm performs well at low noise rates but also at higher noise rates.

Then, we used CIFAR10 and CIFAR100 to compare our algorithm with other state-
of-the-art models. First, we compare RAFNI with algorithms that did not suppose the
noise rate is known, using a Wilcoxon Rank-Sum test to compare them, and we found
that our algorithm performs better with significant differences. Then, we studied the
loss of our algorithm against a model that supposed the noise rate known, and we

38 discussion of results

obtained that, while the other algorithm was better, RAFNI performed quite well for
CIFAR10 and asymmetric noise, even obtaining better accuracy when the noise rate
is higher, which shows that RAFNI is a very good option when dealing with difficult
types of noise.

8
C O N C L U S I O N S A N D F U T U R E W O R K

8.1 conclusions

In this thesis, we have tackled several problems and applications under a common
objective: the study of the techniques and methodologies we can use over small
data sets, to turn them into we what we have called smart data sets, to be able to
successfully use CNN architectures to classify them.

In the first objective of this thesis, we focused on accurately classifying coral species
using underwater images. We studied two primary techniques, transfer learning and
data augmentation, which allowed us to train various CNN architectures with two
small data sets. Then, we analysed the introduction of a different type of coral image,
structure images, to further improve the classification of the coral species. The results
of the two studies that we performed showed the importance of the transfer learning
technique when dealing with such small data sets. The use of data augmentation,
although it improves the results, it has less effect than initially expected, probably
due to the characteristics of the images and the small sizes of the data sets.

For the second objective of this thesis, we proposed a methodology to pre-process
and classify chest X-ray images with the objective of diagnosing the COVID-19 disease.
We combined segmentation-based cropping to remove unnecessary information in
the images with a class-inherent transformation network to obtain two generated
transformed images from each input image and then used the transformations to
diagnose the disease. The results we obtained in this study together with the first
public quality data set support the need for such studies, especially in 2020.

Regarding the third and last objective, we proposed the RAFNI algorithm, which
helps during the training process of the CNNs when there is some type of label
noise in the training set. We have also made the code of the algorithm public, so it
is possible to use it. The results we obtained in this study show that this algorithm
is a good proposal that helps with any type of label noise and even can be used
when there is no label noise, as it does not damage the learning in this case. This
is important as the majority of times, we do not know if the data sets present label
noise, which type or the noise rate.

39

40 conclusions and future work

8.2 future work

We can divide the future work in the same three branches.
For the classification of coral species, we think that it would be interesting to test

the performance of some newer CNN architectures that have been developed since
we performed this study that, while achieving state-of-the-art results on ImageNet,
have fewer training weights and, as a result, are faster and easier to train with fewer
data, like the EfficientNet family [TL19].

For the diagnosis of the COVID-19 disease, we want to release new versions of the
data set that contain more images, fusing images from hospitals in other cities. The
fusion of clinical information along with the images is another very interesting line
of work. Finally, we also want to attempt the classification of the disease per severity,
as a multi-class problem.

Finally, for the proposal to deal with label noise when using CNNs, we think that
it would be interesting to further test the algorithm with real-world data sets that
already include some type and rate of label noise, instead of introducing it by hand.

B I B L I O G R A P H Y

[ARV+17] C. Affonso, A. L. D. Rossi, F. H. A. Vieira and A. C. P. de Leon Ferreira
de Carvalho, ‘Deep learning for biological image classification’, Expert
Systems with Applications, vol. 85, pp. 114–122, 2017.

[AHN+20] P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Plataniotis
and A. Mohammadi, ‘Covid-caps: A capsule network-based frame-
work for identification of covid-19 cases from x-ray images’, Pattern
Recognition Letters, vol. 138, pp. 638–643, 2020.

[ANB17] W. Alakwaa, M. Nassef and A. Badr, ‘Lung cancer detection and classi-
fication with 3d convolutional neural network (3d-cnn)’, Lung Cancer,
vol. 8, no. 8, p. 409, 2017.

[AWA+19] E. Amid, M. K. Warmuth, R. Anil and T. Koren, ‘Robust bi-tempered
logistic loss based on bregman divergences’, Advances in Neural Informa-
tion Processing Systems, vol. 32, 2019.

[AOA+19] E. Arazo, D. Ortego, P. Albert, N. O’Connor and K. McGuinness, ‘Un-
supervised label noise modeling and loss correction’, in International
conference on machine learning, PMLR, 2019, pp. 312–321.

[BEK+12] O. Beijbom, P. J. Edmunds, D. I. Kline, B. G. Mitchell and D. Kriegman,
‘Automated annotation of coral reef survey images’, in Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012,
pp. 1170–1177.

[BMM18] M. Buda, A. Maki and M. A. Mazurowski, ‘A systematic study of the
class imbalance problem in convolutional neural networks’, Neural
Networks, vol. 106, pp. 249–259, 2018.

[Chu20] A. Chung, ‘Figure 1 COVID-19 chest X-ray dataset initiative’, 2020.

[CMD20] J. P. Cohen, P. Morrison and L. Dao, ‘Covid-19 image data collection’,
arXiv preprint arXiv:2003.11597, 2020.

[CCD08] P. Cunningham, M. Cord and S. J. Delany, ‘Supervised learning’, in
Machine learning techniques for multimedia, Springer, 2008, pp. 21–49.

41

42 bibliography

[DDS+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A
large-scale hierarchical image database’, in Computer Vision and Pattern
Recognition (CVPR), 2009. IEEE Conference on, IEEE, 2009, pp. 248–255.

[Den12] L. Deng, ‘The mnist database of handwritten digit images for machine
learning research [best of the web]’, IEEE signal processing magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[DWF+18] Y. Ding, L. Wang, D. Fan and B. Gong, ‘A semi-supervised two-stage
approach to learning from noisy labels’, in 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV), IEEE, 2018, pp. 1215–1224.

[Ela15] M. Elawady, ‘Sparse coral classification using deep convolutional neural
networks’, arXiv preprint arXiv:1511.09067, 2015.

[FAA+17] A. Farooq, S. Anwar, M. Awais and S. Rehman, ‘A deep cnn based
multi-class classification of alzheimer’s disease using mri’, in 2017 IEEE
International Conference on Imaging systems and techniques (IST), IEEE,
2017, pp. 1–6.

[FP11] D. Forsyth and J. Ponce, Computer vision: A modern approach. Prentice
hall, 2011.

[FV13] B. Frénay and M. Verleysen, ‘Classification in the presence of label
noise: A survey’, IEEE transactions on neural networks and learning systems,
vol. 25, no. 5, pp. 845–869, 2013.

[GWL+18] F. Gao, T. Wu, J. Li, B. Zheng, L. Ruan, D. Shang and B. Patel, ‘Sd-cnn: A
shallow-deep cnn for improved breast cancer diagnosis’, Computerized
Medical Imaging and Graphics, vol. 70, pp. 53–62, 2018.

[GLH15] S. García, J. Luengo and F. Herrera, Data preprocessing in data mining.
Springer, 2015, vol. 72.

[GRL+16] S. García, S. Ramírez-Gallego, J. Luengo, J. M. Benítez and F. Herrera,
‘Big data preprocessing: Methods and prospects’, Big Data Analytics,
vol. 1, no. 1, pp. 1–22, 2016.

[GKS17] A. Ghosh, H. Kumar and P. Sastry, ‘Robust loss functions under label
noise for deep neural networks’, in Proceedings of the AAAI conference on
artificial intelligence, vol. 31, 2017.

[GCM21] R. G. González-Acuña, H. A. Chaparro-Romo and I. Melendez-Montoya,
Optics and Artificial Vision. IOP Publishing, 2021.

bibliography 43

[GBC16] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT press,
2016.

[HPK11] J. Han, J. Pei and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[HTF09] T. Hastie, R. Tibshirani and J. Friedman, ‘Unsupervised learning’, in
The elements of statistical learning, Springer, 2009, pp. 485–585.

[HZR+16] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image
recognition’, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[HMW+18] D. Hendrycks, M. Mazeika, D. Wilson and K. Gimpel, ‘Using trus-
ted data to train deep networks on labels corrupted by severe noise’,
Advances in neural information processing systems, vol. 31, 2018.

[HLV+17] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ‘Densely
connected convolutional networks’, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700–4708.

[IS15] S. Ioffe and C. Szegedy, ‘Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift’, in International
conference on machine learning, PMLR, 2015, pp. 448–456.

[JNC16] I. Jindal, M. Nokleby and X. Chen, ‘Learning deep networks from noisy
labels with dropout regularization’, in 2016 IEEE 16th International
Conference on Data Mining (ICDM), IEEE, 2016, pp. 967–972.

[KDR+20] M. Karim, T. Döhmen, D. Rebholz-Schuhmann, S. Decker, M. Cochez,
O. Beyan et al., ‘Deepcovidexplainer: Explainable covid-19 predictions
based on chest x-ray images’, arXiv preprint arXiv:2004.04582, 2020.

[LBD+89] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard and L. D. Jackel, ‘Backpropagation applied to handwritten zip
code recognition’, Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[LTJ21] J. Lu, L. Tan and H. Jiang, ‘Review on convolutional neural network
(cnn) applied to plant leaf disease classification’, Agriculture, vol. 11,
no. 8, p. 707, 2021.

44 bibliography

[LGH12] J. Luengo, S. García and F. Herrera, ‘On the choice of the best imputation
methods for missing values considering three groups of classification
methods’, Knowledge and information systems, vol. 32, no. 1, pp. 77–108,
2012.

[MWH+18] X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. Erfani, S. Xia, S. Wijewickrema
and J. Bailey, ‘Dimensionality-driven learning with noisy labels’, in
International Conference on Machine Learning, PMLR, 2018, pp. 3355–3364.

[MN20] G. Maguolo and L. Nanni, ‘A critic evaluation of methods for covid-19

automatic detection from x-ray images’, arXiv preprint arXiv:2004.12823,
2020.

[MBA+16a] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G.
Kendrick and R. Fisher, ‘Automatic annotation of coral reefs using deep
learning’, in OCEANS 2016 MTS/IEEE Monterey, IEEE, 2016, pp. 1–5.

[MBA+16b] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G.
Kendrick and R. Fisher, ‘Coral classification with hybrid feature repres-
entations’, in Image Processing (ICIP), 2016 IEEE International Conference
on, IEEE, 2016, pp. 519–523.

[MAP+15] Martín Abadi et al., TensorFlow: Large-scale machine learning on heterogen-
eous systems, Software available from tensorflow.org, 2015.

[Min20] E. Mineo, U-Net lung segmentation, Accesible en: https://www.kaggle.
com/eduardomineo/u-net-lung-segmentation-montgomery-shenzhen,
2020.

[NKP21] A. Narin, C. Kaya and Z. Pamuk, ‘Automatic detection of coronavirus
disease (covid-19) using x-ray images and deep convolutional neural
networks’, Pattern Analysis and Applications, vol. 24, no. 3, pp. 1207–1220,
2021.

[NMN+19] D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel
and T. Brox, ‘Self: Learning to filter noisy labels with self-ensembling’,
arXiv preprint arXiv:1910.01842, 2019.

[NNL+19] D. T. Nguyen, T.-P.-N. Ngo, Z. Lou, M. Klar, L. Beggel and T. Brox,
‘Robust learning under label noise with iterative noise-filtering’, arXiv
preprint arXiv:1906.00216, 2019.

bibliography 45

[NZ08] M.-E. Nilsback and A. Zisserman, ‘Automated flower classification over
a large number of classes’, in 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, IEEE, 2008, pp. 722–729.

[OTY+20] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim and U. R.
Acharya, ‘Automated detection of covid-19 cases using deep neural
networks with x-ray images’, Computers in biology and medicine, vol. 121,
p. 103 792, 2020.

[PGM+19] A. Paszke et al., ‘Pytorch: An imperative style, high-performance deep
learning library’, in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox
and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035.

[PRK+17] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock and L. Qu, ‘Making
deep neural networks robust to label noise: A loss correction approach’,
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 1944–1952.

[PF91] G. Piateski and W. Frawley, Knowledge Discovery in Databases. Cam-
bridge, MA, USA: MIT Press, 1991.

[PRJ+08] O. Pizarro, P. Rigby, M. Johnson-Roberson, S. B. Williams and J. Colquhoun,
‘Towards image-based marine habitat classification’, in OCEANS 2008,
IEEE, 2008, pp. 1–7.

[RSNA19] Radiological society of north america. RSNA pneumonia detection challenge,
2019.

[RGT+20] M. Rey-Area, E. Guirado, S. Tabik and J. Ruiz-Hidalgo, ‘Fucitnet: Im-
proving the generalization of deep learning networks by the fusion
of learned class-inherent transformations’, Information Fusion, vol. 63,
pp. 188–195, 2020.

[RDG+95] D. E. Rumelhart, R. Durbin, R. Golden and Y. Chauvin, ‘Backpropaga-
tion: The basic theory’, Backpropagation: Theory, architectures and applica-
tions, pp. 1–34, 1995.

[RDS+15] O. Russakovsky et al., ‘ImageNet Large Scale Visual Recognition Chal-
lenge’, International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

46 bibliography

[SGG+13] A. Shihavuddin, N. Gracias, R. Garcia, A. C. Gleason and B. Gintert,
‘Image-based coral reef classification and thematic mapping’, Remote
Sensing, vol. 5, no. 4, pp. 1809–1841, 2013.

[Shi17] A. Shihavuddin, Coral reef dataset, v2. Mendeley data https://data.

mendeley.com/datasets/86y667257h/2, Accessed on 12-02-2018, 2017.

[SZ14] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks for
large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.

[SC18] G. Song and W. Chai, ‘Collaborative learning for deep neural networks’,
Advances in neural information processing systems, vol. 31, 2018.

[SKL19] H. Song, M. Kim and J.-G. Lee, ‘Selfie: Refurbishing unclean samples
for robust deep learning’, in International Conference on Machine Learning,
PMLR, 2019, pp. 5907–5915.

[SH19] J. Speth and E. M. Hand, ‘Automated label noise identification for facial
attribute recognition.’, in CVPR Workshops, 2019, pp. 25–28.

[SHK+14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
‘Dropout: A simple way to prevent neural networks from overfitting’,
The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[SBP+14] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev and R. Fergus, ‘Training
convolutional networks with noisy labels’, arXiv preprint arXiv:1406.2080,
2014.

[SLJ+15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, ‘Going deeper with convolutions’, in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[SVI+16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, ‘Rethinking
the inception architecture for computer vision’, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[Sze10] R. Szeliski, Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.

[TL19] M. Tan and Q. Le, ‘Efficientnet: Rethinking model scaling for convolu-
tional neural networks’, in International conference on machine learning,
PMLR, 2019, pp. 6105–6114.

[WW20] L. Wang and A. Wong, ‘COVID-Net: A tailored deep convolutional
neural network design for detection of COVID-19 cases from chest
radiography images’, arXiv preprint arXiv:2003.09871, 2020.

[WKH+19] X. Wang, E. Kodirov, Y. Hua and N. M. Robertson, ‘Improving mae
against cce under label noise’, arXiv preprint arXiv:1903.12141, 2019.

[WMC+19] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi and J. Bailey, ‘Symmetric cross
entropy for robust learning with noisy labels’, in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 322–330.

[XXY+15] T. Xiao, T. Xia, Y. Yang, C. Huang and X. Wang, ‘Learning from massive
noisy labeled data for image classification’, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 2691–2699.

[YSH+19] Y. Yu, X. Si, C. Hu and J. Zhang, ‘A review of recurrent neural networks:
Lstm cells and network architectures’, Neural computation, vol. 31, no. 7,
pp. 1235–1270, 2019.

[ZBH+21] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, ‘Understanding
deep learning (still) requires rethinking generalization’, Communications
of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[ZLZ+18] Q.-x. Zhang, G.-h. Lin, Y.-m. Zhang, G. Xu and J.-j. Wang, ‘Wildland
forest fire smoke detection based on faster r-cnn using synthetic smoke
images’, Procedia engineering, vol. 211, pp. 441–446, 2018.

[ZS18] Z. Zhang and M. Sabuncu, ‘Generalized cross entropy loss for training
deep neural networks with noisy labels’, Advances in neural information
processing systems, vol. 31, 2018.

[ZG09] X. Zhu and A. B. Goldberg, ‘Introduction to semi-supervised learning’,
Synthesis lectures on artificial intelligence and machine learning, vol. 3, no. 1,
pp. 1–130, 2009.

47

Part II

P U B L I C AT I O N S

9
T O WA R D S H I G H LY A C C U R AT E C O R A L T E X T U R E I M A G E S
C L A S S I F I C AT I O N U S I N G D E E P C O N V O L U T I O N A L N E U R A L
N E T W O R K S A N D D ATA AU G M E N TAT I O N

Gómez-Ríos, A., Tabik, S., Luengo, J., Shihavuddin, A. S. M., Krawczyk, B., & Herrera,
F. (2019). Towards highly accurate coral texture images classification using deep con-
volutional neural networks and data augmentation. Expert Systems with Applications,
118, 315-328.
DOI: https://doi.org/10.1016/j.eswa.2018.10.010

• Status: Published

• Impact Factor (JCR 2019): 5.452

• Subject Category: Computer Science, Artificial Intelligence. Ranking 21/137

(Q1)

• Subject Category: Engineering, Electrical & Electronic. Ranking 32/266 (Q1)

• Subject Category: Operations Research & Management Science. Ranking 2/83

(Q1)

51

52 towards highly accurate coral texture images classification

T O WA R D S H I G H LY A C C U R AT E C O R A L T E X T U R E I M A G E S
C L A S S I F I C AT I O N U S I N G D E E P C O N V O L U T I O N A L N E U R A L
N E T W O R K S A N D D ATA AU G M E N TAT I O N

Anabel Gómez-Ríosa, Siham Tabika, Julián Luengoa, ASM Shihavuddinb, Bartosz
Krawczykc, Francisco Herreraa

a Andalusian Research Institute in Data Science and Computational Intelligence,
Dept. of Computer Science and AI, University of Granada, Granada, Spain
b Dept. of Applied Mathematics and Computer Science, Technical University of
Denmark (DTU), Kgs. Lyngby, Denmark
c Dept. of Computer Science, Virginia Commonwealth University, USA

abstract

The recognition of coral species based on underwater texture images poses a signific-
ant difficulty for machine learning algorithms, due to the three following challenges
embedded in the nature of this data: 1) datasets do not include information about the
global structure of the coral; 2) several species of coral have very similar characterist-
ics; and 3) defining the spatial borders between classes is difficult as many corals tend
to appear together in groups. For this reasons, the classification of coral species has
always required an aid from a domain expert. The objective of this paper is to develop
an accurate classification model for coral texture images. Current datasets contain
a large number of imbalanced classes, while the images are subject to inter-class
variation. We have focused on the current small datasets and analyzed 1) several
Convolutional Neural Network (CNN) architectures, 2) data augmentation techniques
and 3) transfer learning approaches. We have achieved the state-of-the art accuracies
using different variations of ResNet on the two small coral texture datasets, EILAT
and RSMAS.

Keywords: Coral Images Classification, Deep Learning, Convolutional Neural Networks,
Inception, ResNet, DenseNet.

9.1 introduction 53

9.1 introduction

Coral reefs are complex marine ecosystems typical to the warm and shallow seas of
the tropics. The reefs are created by the slow accumulation of hard calcium carbonate
skeletons that hard coral species leave behind when they die, waiting for another coral
to live in it and expand the reef. Coral reefs are one of the most valuable ecosystems
in the world as they are extremely biodiverse. They support up to two million species
and a quarter of all marine life on Earth [ESI17]. They are also very important from
the human point of view [FBS+14]. Coral species help to clean the water and remove
nitrogen and carbon, they are a source for medicine research and economic wealth
from fishing and tourism, they are also a natural barrier for coastal protection against
hurricanes and storms and, since many of them are thousands and even millions
years old, their study helps scientists to understand climatic events of the past.

The study of the distribution of coral reefs over time can provide important
clues about the impact of global warming and water pollution levels. According to
Endangered Species International [ESI17], we have already lost 19% coral reefs areas
since the 1950s and, according to the International Union for Conservation of Nature
(IUCN) Red List of Threatened Species [IUCN17], in 2017 there were 237 threatened
species in the evaluated 40% of the estimated total of species. This is due to the facts
that coral reefs do not tolerate temperature changes and a quarter of the carbon
dioxide emissions in the atmosphere is absorbed by the ocean, in addition to the
water pollution and other problems caused by humans. An extensive study on coral
reef extension loss and growth can be found in Pratchett et al. [PAH+15].

With recent advancements in image acquisition technologies and growing interest
in this topic among the scientific community, huge amount of data on coral reefs
is being collected. However, it is complicated to keep a record of all coral species
because there are thousands of them and the taxonomy is mutable. This is due to new
discoveries made by scientists or because they may change the order, family or genus
of existing species as they gather more knowledge about them. In addition, some
coral species have different sizes, shapes and colors, but other coral species seem to
be identical for a human observer. As a consequence, a successful coral classification
has always demanded an expert biologist. If we can automate the classification by
using the amount of coral images that is being collected, we can help scientists to
study more closely that amount of data, making an important step towards automatic
knowledge discovery process. In fact, automatizing the classification process of coral
images has been addressed in a few number of works. Most of them [BEK+12; PRJ+08;

54 towards highly accurate coral texture images classification

SGG+13; SD09] use machine learning models combined, in some cases, with image
enhancement techniques and feature extractors. Ani Brown Mary and Dharma [AD17]
and Ani Brown Mary and Dejey [AD18b; AD18a] proposed new feature extractors
based on Local Binary Pattern (LBP). Among these works, only Shihavuddin et al.
[SGG+13], Ani Brown Mary and Dharma [AD17] and Ani Brown Mary and Dejey
[AD18b; AD18a] use several datasets.

In recent years, Convolutional Neural Networks (CNNs) have shown outstanding
accuracies for image classification [KSH12; RDS+15], especially in the field of Com-
puter Vision. Currently, their applications branch out to a plethora of diverse fields,
where analysis of image data is required. In biology, CNNs have been evaluated
and compared with machine learning algorithms for wood classification [ARV+17].
In coral classification, the use of CNNs is challenging due to the variance between
images of the same class, the lightning variations due to the water column or the fact
that some coral species tend to appear together. Besides, CNNs need a large dataset
to achieve a good performance. In practice, two techniques are used to overcome this
limitation: transfer learning and data augmentation. There are some works that use
CNNs for coral classification [Ela15; MBA+16a; MBA+16b; AD18a], but they evaluate
popular CNNs, like VGGnet or LeNet and they only use one dataset to test their
models. Besides, they do not analyze EILAT or RSMAS, which are very interesting
datasets due to their small sizes, they are highly imbalanced and they include only
small parts of the corals texture, the images do not include any information on the
entire body of the corals.

We propose to use more capable CNNs to overcome the limitations of previously
applied deep learning models. We want to develop a much more accurate model
approaching the human expert, facing the specific problems of coral classification
using several datasets. In particular, we have considered three of the most promising
CNNs, Inception v3 [SVI+16], ResNet [HZR+16] and DenseNet [HLV+17]. Inception
is a newer version of GoogleNet [SLJ+15], which won the ImageNet Large Scale
Visual Recognition Competition (ISLVRC) [RDS+15] in 2014. ResNet won the same
competition in 2015 and DenseNet beat the results of ResNet in 2016. For the clas-
sification, we have considered two underwater coral datasets, RSMAS and EILAT.
To evaluate different ways of transfer learning, we have also used a larger domain
dataset, the MLC-2008 dataset [BEK+12], which includes more than 43,000 images
distributed into 9 classes, 5 coral classes and 4 non-coral classes. We will use MLC-
2008 for fine-tuning the networks weights as a previous step of RSMAS and EILAT

9.2 cnn classification models 55

classification. We have compared our results with the current most accurate model
[SGG+13].

The contributions of this work are the following:

• Study, explore and analyze the performance of the most promising CNNs in
the classification of small datasets of underwater coral texture images.

• Analyze the impact of transfer learning from ImageNet versus transfer learning
from a coral domain dataset, MLC-2008, on the classification of small coral
texture datasets.

• Analyze the impact of data augmentation on the performance of the coral
texture classification model.

• Compare our results with the state-of-the-art classical methods which require
high human supervision and intervention.

The rest of the paper is organized as follows. An overview of the three considered
CNNs is provided in Section 9.2. The challenges of coral classification and related
works are given in Section 10.3. A description of the coral datasets we have used is
provided in Section 10.4. A description of the experimental framework we have used
in all the experiments we have carried out in this paper is provided in Section 9.5.
The experiments and results are given in Section 12.5 and the final conclusions of
this study are given in Section 12.9.

9.2 cnn classification models

CNNs have achieved outstanding accuracies in a plethora of contemporary applica-
tions, automatizing its design [FCN+18]. In fact, since 2012 the prestigious ILSVRC
competition [RDS+15] has been won exclusively by CNN models. The CNN layers
capture increasingly complex features as the depth increases. In recent years, these
architectures have evolved by increasing first the depth of the networks, then the
width and finally using lower features obtained from the lower layers into higher
layers. This section provides an overview of the CNNs used in this work. We have
considered three influential CNNs, Inception v3 (Subsection 9.2.1), ResNet (Subsec-
tion 9.2.2), and one of the newest, DenseNet, (Subsection 9.2.3). Finally, we describe
the optimization techniques that we have used to overcome the small sizes of the
considered datasets (Subsection 9.2.4).

56 towards highly accurate coral texture images classification

Figure 9.1: Base Inception v3 module. Figure from [SVI+16].

9.2.1 Inception v3

GoogLeNet [SLJ+15] won the ILSVRC in 2014 and it is based on the repetition of a
module called inception. This module have six convolutions and one max-pooling.
Four of these convolutions use a 1×1 kernel, which is introduced to increase the width
and the depth of the network and to reduce the dimensionality when it is necessary.
In this sense, a 1 × 1 convolution is performed before the other two convolutions in
the module, a 3 × 3 and a 5 × 5 convolution. After all the computation, the output of
the module is calculated as the concatenation of the output of the convolutions. This
module is repeated 9 times and at the end it uses a dropout layer. In total, GoogLeNet
has 22 learnable layers.

Inception v3 can be considered as a modification of GoogLeNet. The base inception
module is changed by removing the 5 × 5 convolution and introducing instead two
3 × 3 convolutions, as we can see in Figure 9.1. The resulting network is made up
of 10 inception modules. Furthermore, the base module is modified as the network
goes deeper. Five modules are changed by replacing the n × n convolutions by a
1 × 7 followed by a 7 × 1 convolution in order to reduce the computational cost.
The last two modules replace the last two 3 × 3 convolutions by a 1 × 3 and a 3 × 1
convolutions each one, this time in parallel. Lastly, the first 7 × 7 convolution in
GoogLeNet is also changed by three 3 × 3 convolutions. In total, Inception v3 has 42

learnable layers.

9.2 cnn classification models 57

Figure 9.2: ResNet building block. Figure from [HZR+16].

9.2.2 ResNet

Increasing the network’s depth to obtain a better precision makes the network
more difficult to optimize since it may produce the vanishing or exploding gradients
problem. ResNet [HZR+16], which won the ILSVRC classification task in 2015, address
this issue by fitting a residual mapping instead of the original mapping, and by
adding several connections between layers. These new connections skip various
layers and perform an identity, which not adds any new parameters, or a simple
1 × 1 convolution. In particular, this network is also based on the reiterated use of a
module, called a building block. The depth of the network depends on the number
of the used building blocks. For 50 or more layers, the building block consists of
three convolutions, a 1 × 1 followed by a 3 × 3 followed by a 1 × 1 convolution, and
a connection joining the input of the first convolution to the output of the third
convolution, as we can see in Figure 9.2. For our problem, we have used the model
with 50 layers, ResNet-50, and with 152 layers, ResNet-152.

9.2.3 DenseNet

DenseNet is also based on the repetition of a block, called the dense block. Inspired
by the building block of ResNet, DenseNet connects the output of all the layers to the
input of all the following layers within the dense block [HLV+17]. The connections
between blocks, called transition layers, work as a compression factor in a sense
that the transition layer generates less feature maps than it receives. The difference
between connections in the dense block and connections in the building block of
ResNet is that in the dense block the outputs of previous layers are added to the
following layers before its computation is performed. A dense block is the repetition

58 towards highly accurate coral texture images classification

Figure 9.3: Example of a dense block. Figure from [HLV+17].

of a Batch Normalization, a ReLU, a 1 × 1 convolution, a Batch Normalization, a
ReLU and a 3 × 3 convolution a specific number of times. In Figure 9.3 we can see an
example of a DenseNet block. The transition layers are a 1 × 1 convolution followed
by an average pooling with kernel 2 × 2. Similarly to ResNet, the number of dense
blocks determines the number of layers in the network. In this work, we have analyze
DenseNet-121 and DenseNet-161, which include 121 and 161 layers respectively.

9.2.4 CNN Optimization Techniques

CNN-based models require a large set of training samples to achieve good generaliz-
ation capabilities. However, generating large datasets is either costly, time-consuming,
or sometimes simply impossible. In practice, two techniques are used to overcome this
limitation: transfer learning and data augmentation. Since the current coral datasets
are too small to train an effective CNN from scratch, we propose to use these two
approaches:

• Transfer learning: instead of starting the training from scratch by randomly
initializing the weights, we initialize the weights using a pre-trained network
on a different dataset, usually much larger in size. In this work, we have
considered using the knowledge learned from the massive common objects
dataset ImageNet [DDS+09] and from an expert domain dataset, MLC-2008

[BEK+12]. Since EILAT and RSMAS are too small to fine-tune all the weights of
the pre-trained networks, we have evaluated two alternatives. First, we have
used the pre-trained networks on ImageNet, we have added two fully connected
layers and we have trained these two fully connected layers and freeze all the

9.3 previous advances on automatic coral reef classification 59

previous layers to classify RSMAS and EILAT. Second, we have used the pre-
trained networks on ImageNet, fine-tuned all the weights with MLC-2008 and
then we have added the same two fully connected layers at the end and trained
them on RSMAS and EILAT, freezing all the previous layers.

• Data augmentation: consists of artificially increasing the volume of the training
set by applying several distortions to the original images, such as changing the
brightness, scaling or zooming, rotation, vertical or horizontal mirroring, etc.
The applied distortions should not alter the spatial pattern of target classes.
Usually the distortions are performed during the training time, which allows to
do it on the fly without saving the new images.

9.3 previous advances on automatic coral reef classification

In this section we explain the challenges of the underwater coral and coral reef
images classification and we give an overview on existing works for automating the
classification of coral reef habitat using underwater imagery. The reasons why the
classification of such images is difficult are provided in Subsection 9.3.1. Previous
works in coral classification can be divided into two groups, methods that combine
classical models (Subsection 9.3.2) and methods that use CNNs (Subsection 9.3.3).

9.3.1 Challenges of Coral Classification

The classification of underwater coral images is challenging for the following reasons:

• Partial occlusion of objects due to the three-dimensional structure of the seabed.
Depending on the water type, there can be significant variation in presence of
scattering effect, which increases additive noise on the image acquisition and
makes it difficult for any computer vision algorithm to perform as in a normal
environment.

• Lightning variations due to wave focusing and variable optical properties of the
water column. In the deep underwater scenario, it is common that there is no
natural light source other than the remote sensing device, which implies non
uniform illumination across the acquired images.

• Subjective annotation of the training samples by different analysts.

60 towards highly accurate coral texture images classification

• Variation in viewpoints, distances and image quality.

• Significant inner-class variability in the morphology of benthic organisms.

• Complex spatial borders between classes, as many coral species tend to appear
together.

• There are very few datasets of underwater coral reef images and in general they
contain patches of the texture of the corals, while at the same time they do not
include any information on the global structure of the coral.

9.3.2 Coral Classification Based on Classical Methods

Most of the existing approaches for classifying underwater coral images combine one
feature extractor with a classifier and show their performance only using a single
dataset, i.e., with specific size, resolution of the images, number of classes and color
information [BEK+12; PRJ+08; SD09]. The first paper in this subject was by Pizarro
et al. [PRJ+08]. The authors analyzed more marine habitat besides corals, so it is
more general. They used a SIFT descriptor and a bag of features approach, which
means that they chose from the training set the images that are more similar to each
test image. Beijbom et al. [BEK+12] introduced the Moorea Labelled Corals (MLC)
dataset, which has large images containing different coral species, and they used
Support Vector Machines along with filters and a texture descriptor. They obtained
an accuracy of 83.1% on this dataset using the images of 2008 and 2009 for training
and the images of 2010 for testing. Stokes and Deane [SD09] used a normalized color
space and a discrete cosine transform to extract texture features. Again, they only
used one dataset, provided by the National Oceanic and Atmospheric Administration
(NOAA) of the U.S. Department of Commerce Ocean Explorer.

[SGG+13] developed an unified classification algorithm for four different datasets
of different characteristics, in which we can find RSMAS and EILAT. The authors
combined multiple image enhancement techniques, feature extractors and classifiers,
among other techniques. In particular, the image enhancement step contain four
algorithms, one mandatory (Contract Limited Adaptive Histogram Specification
or CLAHS) and three optional (color correction, normalization and color channel
stretching). The feature extraction step contain one optional, used as color descriptor,
and three mandatory algorithms, used as texture descriptors. Then, the method has
a kernel mapping step with three mandatory algorithms, a dimension reduction

9.3 previous advances on automatic coral reef classification 61

step with two optional algorithms and a prior settings step with one algorithm.
Then it performs the classification using one of the following algorithms: multiclass
SVM, KNN, a neural network or probability density weighted mean distance. Lastly,
if the original image was a mosaic containing several patches, it uses a thematic
mapping using sliding window and morphological filtering. By configuring the
hyperparameters and the different combinations of these algorithms, the model can
be adapted to different datasets.

This method is considered to be the state-of-the-art for RSMAS and EILAT datasets.
In particular, in these two datasets the best combination of algorithms is the following:
in the image enhancement step it uses just CLASH. In the feature extraction step
it uses the opponent angle histogram, the hue channel histogram, the gray level
co-occurrence matrix, the Completed Local Binary Pattern (CLBP) and the Gabor
filter response. In the kernel mapping step it uses L1 normalization, chi-square kernel
and Hellinger kernel for CLBP and the color histogram. In the dimension reduction
step it uses principal component analysis and Fisher kernel. In the prior settings step
it uses class frequency to estimate prior probability. Finally, as classification algorithm
it uses KNN.

As it can be seen, this algorithm implies a lot of human supervision and inter-
vention, as a lot of algorithms had to be evaluated with several hyperparameters
and there were many possible combinations between them. Furthermore, when we
have the best combination we need to use a lot of algorithms every time we need to
classify a new image. In the particular case of EILAT and RSMAS, we need to use six
algorithms to obtain the classifier and every time we need to classify a new image we
need to use the first four algorithms, until we obtain the features of the image.

Ani Brown Mary and Dharma [AD17] developed an improved Local Binary Pattern
(LBP) called ILBP which obtained diagonal pattern features in the images. To test their
method, they used several datasets, including EILAT, EILAT2 (a subset of EILAT),
RSMAS and a subset of MLC-2012. They reported very good accuracies on these
datasets.

Ani Brown Mary and Dejey [AD18b] proposed another modification of the LBP
feature descriptor called Z with Tilted Z LBP which reduced the computational
complexity of LBP. The coral images were enhanced using Contrast Limited Ad-
aptative Histogram Equalization. They used several datasets, including one coral
video. Among others, they used EILAT, EILAT2, RSMAS and MLC-2012. The results
with this feature extractor were in general better, except for EILAT2, than the ones

62 towards highly accurate coral texture images classification

obtained in [AD17]. We will compare our results with the ones obtained in these two
works.

Shakoor and Boostani [SB18] developed an advanced LBP for the classification
of coral datasets. In particular, they proposed two mapping methods and a new
combination of LBP to extract the features. They tested their methods with several
datasets, between which we can find EILAT2, a subset of RSMAS with 8 classes
and a subset of MLC-2008 with 2055 images. However, the obtained accuracies were
considerably lower than the ones obtained by Shihavuddin et al. [SGG+13].

9.3.3 Coral Classification Based on CNNs Methods

The use of CNNs for coral classification allow us to use the images without the image
enhancements, although it is possible to use them, and without the feature extraction,
saving a lot of experiments to detect the best combination of algorithms and therefore,
saving time.

The first work that used CNNs for coral classification was by Elawady [Ela15].
The author first enhanced the input raw images via color correction and smooth-
ing filtering. Then, he trained a LeNet-5 [LBB+98] based model whose input layer
consisted of three basic channels of color image plus extra channels for texture and
shape descriptors consisting of the following components: zero component analysis
whitening, phase congruency, and Weber local descriptor. The model obtained around
55% accuracy on the two used datasets.

Mahmood et al. [MBA+16a] used VGGnet [SZ14] pretrained on ImageNet and the
dataset BENTHOZ-2015 [BFF+15] to fine-tune the network. This dataset contains more
than 400,000 images and associated sensor data collected by an autonomous vehicle
over Australia. The authors extracted several patches from each image centered in
different pixels and using different scales and they applied a color channel stretch to
the patches as a pre-processing technique. In this article, they proposed a mechanism
to automatically label unseen coral reef images to obtain the coral coverage in the
region where the images were collected (i.e., classifying new images as coral or
non-coral ones). A marine expert later verified the accuracy of this automatic method.
In the presented experimental study, authors conducted several experiments and
reported over 90% accuracy obtained in each of them.

Mahmood et al. [MBA+16b] used the MLC dataset to propose the usage of CNNs
along with hand-crafted features. Moreover, they introduced a mechanism to extract

9.4 datasets 63

such features. This proposal is based on the observation that CNNs cannot be trained
from scratch using the available coral datasets due to its small size. The features
extraction with CNNs was carried out with the network VGGnet pre-trained on
ImageNet. To classify both types of features, they used a two layer Perceptron. In
their experiments, they obtained better accuracies with this technique than just with
VGGnet or just the hand-crafted features, although the difference between VGGnet
and the combination of the features is small. In their best experiment, they obtained
an accuracy of 84.5% in MLC.

Beijbom et al. [BTK+16] proposed the use of fluorescence images along with usual
images to improve the classification. They created a dataset collecting common images
and fluorescence images in Eilat using a FluorIS system, which they had developed
previously. They reported a 22% reduction of classification error compared to use
only common images.

Ani Brown Mary and Dejey [AD18a] proposed a new feature descriptor called Octa-
angled Pattern for Triangular sub region (OPT) and its use along with a proposed
CNN called Pulse Coupled Convolutional Neural Network (PCCNN). The feature
descriptor used diagonal and center elements of the neighborhood of a pixel to obtain
the features and the images were not enhanced before this step. The PCCNN was
used to reduce the number of features generated by CNNs. To test their method, the
authors used several coral datasets, including EILAT, EILAT2, RSMAS and MLC-2012.
This method reported outstanding results for these datasets, so we will compare our
results with these ones.

These works use classical CNNs: VGGnet and LeNet, and they do not use EILAT or
RSMAS. Besides, sometimes the accuracies obtained are low [Ela15], the classification
is simple [MBA+16a], they use hand-made feature extraction along with CNNs
[MBA+16b; AD18a] or fluorescence images [BTK+16] are not available.

9.4 datasets

There exist eight open benchmarks for underwater coral classification. These include
five public color datasets: EILAT, RSMAS, MLC, EILAT2 (a subset of EILAT) and the
Red Sea Mosaic dataset. The remaining three are black and white datasets: UIUCtex,
CURET and KTH-TIPS. Some of them include non-coral classes such as fabric, wood
and brick. It is worth to mention that the Red Sea Mosaic dataset is actually one
single large image that contains a large number of different coral species.

64 towards highly accurate coral texture images classification

In this work, we have used the most recent and smallest RGB datasets that contain
the highest number of coral species, RSMAS and EILAT [Shi17]. These two datasets
are comprised of patches of coral images. These patches capture mainly the texture
of different parts of the coral and do not include any information of the global
structure of the entire coral. The usage of CNNs with texture images has already
been successfully carried out for granite tiles classification [FG17]. In this case, both
datasets are small with a large number of classes and also imbalanced. Some classes
have a high number of samples whereas other classes include very few samples,
which makes the classification more difficult. To evaluate the impact of transfer
learning from a related domain dataset, we have also used the MLC-2008 dataset
[BEK+12]. The main characteristics of these three datasets are as follows:

• EILAT contains 1123 image patches of size 64 × 64, taken from coral reefs near
Eilat in the Red sea. The image patches are pieces of larger images. The original
images were taken under equal conditions and with the same camera. See
examples of patches in Figure 9.4. The patches have been classified into eight
classes, but the used labels do not correspond to the coral species names. EILAT
is characterized by imbalanced distribution of examples among classes, as it
can be seen in Table 10.3.

• RSMAS contains 766 image patches of size 256×256. The images were collected
by divers from the Rosenstiel School of Marine and Atmospheric Sciences of
the University of Miami. These images were taken under different conditions
as they were taken with different cameras in different places. See examples
in Figure 10.3. The patches have been classified into 14 classes, whose labels
correspond to the names of the coral species in Latin, as it can be seen in Table
10.3.

• MLC-2008 contains 43832 image patches of size 312×312 distributed into 9

classes, 5 coral classes and 4 non-coral classes. The coral classes are not the
same as the classes used neither in RSMAS nor in EILAT.

9.5 experimental framework

In this section we describe the experimental framework we have used to analyze
and compare the considered models. First, we describe the software and hardware

9.5 experimental framework 65

(a) Sand (b) Urchin (c) BranchesI (d) Brain Coral

(e) Favid Coral (f) BranchesII (g) Dead Coral (h) BranchesIII

Figure 9.4: Selected patches from EILAT. Each column shows two examples per class.

66 towards highly accurate coral texture images classification

(a) ACER (b) APAL (c) CNAT (d) DANT (e) DSTR (f) GORG

(g) MALC (h) MCAV (i) MMEA (j) MONT (k) PALY (l) SPO

(m) SSID (n) TUNI

Figure 9.5: Selected patches from RSMAS. Each column shows two examples per class.

9.5 experimental framework 67

Table 9.1: Characteristics of EILAT and RSMAS. The #imgs refers to the number of images in
the corresponding class.

Dataset Classes #imgs

EILAT Sand. 87

Urchin. 78

Branches Type I. 29

Brain Coral. 160

Favid Coral. 200

Branches Type II. 216

Dead Coral. 296

Branches Type III. 11

RSMAS Acropora Cervicornis (ACER). 109

Acropora Palmata (APAL). 77

Colpophyllia Natans (CNAT). 57

Diadema Antillarum (DANT). 63

Diploria Strigosa (DSTR). 24

Gorgonians (GORG). 60

Millepora Alcicornis (MALC). 22

Montastraea Cavernosa (MCAV). 79

Meandrina Meandrites (MMEA). 54

Montipora spp. (MONT). 28

Palythoas Palythoa (PALY). 32

Sponge Fungus (SPO). 88

Siderastrea Siderea (SSID). 37

Tunicates (TUNI). 36

68 towards highly accurate coral texture images classification

we have used to evaluate the CNNs (Subsection 9.5.1) and the evaluation metric we
have used to compare the results (Subsection 9.5.2). Then, we describe how we have
performed transfer learning (Subsection 9.5.3) and the data augmentation techniques
we have used (Subsection 9.5.4). Finally, we give all the hyperparameters we have
evaluated in the CNN models (Subsection 9.5.5).

9.5.1 Software and Hardware

To evaluate Inception, ResNet and DenseNet, we have used Keras [Cho+15] as
front-end and Tensorflow [MAP+15] as back-end. For Inception we have used the
implementation available in Keras version 2.0.4 while for ResNet and DenseNet, we
have adapted the code available in GitHub by Yu [Yu17].

All the CNN models have been evaluated on a NVIDIA Titan Xp, with 12GB of
GDDR5X memory with 11.4 Gbps of frequency, and 3,840 cores with a frequency of
1.6 GHz.

9.5.2 Evaluation Metric

All the results provided in this paper have been obtained performing a 5 fold cross-
validation technique. To analyze and compare the performance of different CNN
architectures, configurations and optimizations, we have used the mean of the five
accuracies obtained in the five folds. The accuracy is calculated as follows:

Accuracy =
True Positives + True Negatives

N
,

where N is the total number of instances.

9.5.3 Transfer Learning

We have used transfer learning by initializing the considered CNNs with the pre-
trained weights of the networks on ImageNet. We have removed the last layer in
each network, which is the layer that classifies the images into ImageNet classes.
Afterwards, we have added to each model two fully connected layers, the first one
with 512 neurons followed by a ReLU activation layer and the second fully connected
layer with as many neurons as classes in the dataset followed by a softmax activation

9.5 experimental framework 69

layer. That is, the last fully connected layer in each model has 8 neurons when
classifying EILAT and 14 neurons when classifying RSMAS. As we are dealing with
very small datasets, we have frozen all the layers except the last two fully connected
layers, hence we only train the last two fully connected layers. We have used the
Stochastic Gradient Descent as optimizer with a learning rate of 0.001, a decay of
10−6 and a Nesterov momentum of 0.9.

The process is similar when we have used fine-tuning with MLC-2008. We have
used the pre-trained networks on ImageNet, we have removed the last layer in each
network and added a fully connected layer with 9 neurons since MLC-2008 has 9

classes. As MLC-2008 is a large dataset, we have fine-tuned all the weights in the
networks. When the training was completed, we have removed the layer with 9

neurons and added the same two fully connected layers as before: the first one with
512 neurons and ReLU activation and the second one with 8 neurons for EILAT and
14 neurons for RSMAS and softmax activation in both cases. Then we have frozen all
the previous layers and we have only trained the last two fully connected layers.

9.5.4 Data Augmentation

We have analyzed the impact of the following data augmentation techniques on the
performance of the learning process:

• Random shift (referred to later as shift) consists of randomly shifting the images
horizontally or vertically by a factor calculated as the fraction of the width or
length of the image. In this work we shift the images horizontally and vertically
in all the cases. Given a number x, the width and length of the image will be
shifted by a random factor selected in the interval [0, x].

• Random zoom (referred to later as zoom) consists of randomly zooming the
image by a certain range. Given a value x, each image will be resized in the
interval [1 − x, 1 + x].

• Random rotation (referred to later as rotation) consist of randomly rotating the
images by a certain angle. Given a value x, each image will be rotated by an
angle in [0, x].

• Random horizontal flip (referred to later as flip) consist of randomly flipping
the images horizontally.

70 towards highly accurate coral texture images classification

(a) Original (b) Shift (c) Zoom

(d) Rotation (e) Flìp

Figure 9.6: The result of applying four data augmentation techniques to (a) a original RSMAS
image: (b) shift, (c) zoom, (d) rotation and (e) flip.

9.6 classification of coral texture images with cnns 71

An illustration of these data augmentation techniques is shown in Figure 9.6. As it
can be seen, the distorted images maintain the original size and the pixels outside
the boundaries are filled with the values of the limit pixels. This effect can be clearly
seen in Figure 9.6b.

9.5.5 Hyperparameters

Lastly, we have evaluated the impact of different hyperparameters on the performance
of the analyzed networks, such as the number of layers, the number of epochs and the
batch size. Specifically, we have used 50 and 152 layers for ResNet and 121 and 161

layers for DenseNet, so we have evaluated five CNNs models: Inception, ResNet-50,
ResNet-152, DenseNet-121 and DenseNet-161. For each one of these CNNs, we have
performed a grid search over the following parameters: batch size = {32, 64, 128}
and number of epochs = {100, 300, 500, 700, 1000, 1300}. To maintain a reasonable
utilization of the GPU resources, we have considered the value 32 as the minimum
batch size.

9.6 classification of coral texture images with cnns

This section is organized in four parts. First, we analyze the results of our CNN-
based classifiers without data augmentation. We analyze here transfer learning from
ImageNet versus transfer learning from ImageNet and fine-tuning with MLC-2008.
We also analyze the impact of class balancing based on a cost-sensitive loss function.
Then, we compare our best results with the state-of-the-art models on EILAT and
RSMAS (Subsection 9.6.1). Second, we analyze the impact of data augmentation on
the two small coral texture datasets, EILAT and RSMAS, using the best approach
found in Subsection 9.6.1 (Subsection 9.6.2). Third, we provide a deeper analysis on
the missclassified EILAT and RSMAS images by their best models (Subsection ??).
Finally, we explore the use of the best approach found for EILAT and RSMAS in
other datasets (Subsection 9.6.4).

9.6.1 Classification of Coral Texture Images without Data Augmentation

In this subsection we have evaluated exhaustively Inception v3, ResNet and DenseNet
with different hyperparameters and we have compared the results obtained for these

72 towards highly accurate coral texture images classification

Table 9.2: The accuracies obtained by Inception v3, ResNet-50, ResNet-152, DenseNet-121,
DenseNet-161 and the classical state-of-the-art Shihavuddin model. The results
of all the Convolutional Neural Networks (CNNs) were obtained without data
augmentation. The best results are stressed in bold.

Shihavuddin’s

method
Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT 95.79 96.23 97.85 97.85 91.03 93.81

RSMAS 92.74 96.71 97.67 97.95 89.73 91.10

Table 9.3: The set of hyperparameters that provides the best performance shown in Table
9.2 for each CNN model and the time it took to complete the 5 cross-validation
process.

Shihavuddin’s

method
Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT
Batch Size — 32 64 64 32 32

Epochs — 700 500 300 300 700

Time (min) 23.35 7.36 3.34 4.32 4.66 8.88

RSMAS
Batch Size — 32 64 32 32 64

Epochs — 1300 1300 300 700 1000

Time (min) 81.90 9.07 5.08 3.71 5.22 5.27

9.6 classification of coral texture images with cnns 73

three CNNs with the state-of-the-art model by Shihavuddin et al. [SGG+13] on EILAT
and RSMAS. For Inception, we have analyzed the impact of different numbers of
iterations and batch sizes. For ResNet and DenseNet, we have evaluated different
combinations of number of epochs, batch sizes and network depths. We have also
analyzed the impact of fine-tuning all the weights in the networks using a related and
larger dataset, MLC-2008, and the impact of addressing the class imbalance problem
in EILAT and RSMAS.

Shihavuddin et al. [SGG+13] compare themselves with the methods used in pre-
vious works, including previous works on coral reef image classification [BEK+12;
PRJ+08; SD09] and state-of-the-art texture classification algorithms. They re-implemented
the methods to use the same datasets they used in their work. Among these works,
Shihavuddin et al. [SGG+13] reported the best results, so it is enough to compare our
results with the ones obtained in this work.

As the results provided by Shihavuddin et al. [SGG+13] were performed using a 10

fold cross validation, we have re-evaluated their model using a 5 fold cross validation
with the same folds we have used for all other models in order to compare them
under the same conditions. We have also used the best hyperparameters for each
dataset at each step of the method described in Subsection 9.3.2.

Since Shihavuddin’s work, there have been more works using EILAT and RSMAS
[AD17; AD18b; AD18a; SB18]. Among these, Shakoor and Boostani [SB18] obtained
worse accuracies RSMAS (they did not used EILAT) than Shihavuddin et al. [SGG+13].
The other three works reported very good results on these two datasets, and all three
used the same experimental framework to obtain their results. They used only one
held-out test set of 10%, 25% or 50% of the images in the datasets instead of using
a cross validation technique. The cross validation technique gives more stable and
reliable results than a held-out test, so we continue to use the 5 fold cross validation.
That way, we are testing with 20% of the images in each fold, so we compare our
results with their 10% and 25% held-out test. Among the three different performance
metrics that they used, we compare our results with recall since it is the closest one
to our performance measure. They also reported overall accuracy results but they did
not clarify the percentage of test used to obtain them.

Therefore, in the following sections we compare our results with the results of
Shihavuddin et al. [SGG+13], Ani Brown Mary and Dharma [AD17], Ani Brown Mary
and Dejey [AD18b] and Ani Brown Mary and Dejey [AD18a].

74 towards highly accurate coral texture images classification

9.6.1.1 Results Using Transfer Learning from ImageNet

The results of Shihavuddin’s method, Inception v3, ResNet with 50 and 152 layers and
DenseNet with 121 and 161 layers are shown in Table 9.2, while the corresponding
best configurations and execution times are shown in Table 10.4. Shihavuddin’s model
was executed on the CPU while the five CNNs were executed on the GPU. As it can
be seen from these tables, ResNet-152 outperforms Shihavuddin’s model and the rest
of the CNN models. Inception provides a better accuracy than Shihavuddin’s method
on RSMAS, but shows a worse accuracy on EILAT. DenseNet shows the worst results
on both datasets. In general, these results show that CNNs are able to become the
state-of-the-art in coral classification tasks. In RSMAS, the best model is ResNet-152,
with more than a 5% improvement with respect to Shihavuddin’s method. In EILAT,
ResNet-50 and ResNet-152 achieve exactly the same accuracy (this is not a cause of
rounding), and they outperform Shihavuddin’s method for more than 2%.

As we can see from Table 10.4, in general, the training process of the CNNs takes
similar execution times. In particular, smaller batch sizes and larger numbers of
epochs imply larger execution times. Besides, the training process of complex CNNs,
such as DenseNet-161, takes slightly more time than the rest of CNNs when using
the same hyperparameters.

In EILAT, Ani Brown Mary and Dharma [AD17] reported a recall of 96.4% using a
test of 10% of the images and 84.54% using a test of 25% of the images. Ani Brown
Mary and Dejey [AD18b] obtained a recall of 96.8% using a test of 10% and 87.1%
using 25% of the images. Lastly, Ani Brown Mary and Dejey [AD18a] obtained 99.57%
recall using a test of 10% and 87.49% using a test of 25%. In all cases, the results
obtained with a test of 25% are lower than our results for EILAT, obtained training
with 80% of the images and testing with the other 20% in each fold. On the other
hand, the results obtained using a test of 10% are higher than our results, as you
would expect since they are training with 90% of the images. However, it is interesting
that our results are much closer to the ones obtained using a 10% test than to the
ones obtained using a 25% test. Among the three works of Mary & Dejey, [AD18a]
obtained the best results for EILAT. With this work, we have a difference of 10.36%
with the 25% test and only 1.75% with the 10% test. The comparison can be seen in
Table 9.4.

In RSMAS, Ani Brown Mary and Dharma [AD17] achieved a recall of 98.87%
using a test of 10% of the images and 84.9% using a test of 25% of the images. Ani
Brown Mary and Dejey [AD18b] reported a recall of 98.1% using a 10% test and

9.6 classification of coral texture images with cnns 75

Table 9.4: Comparison between the results obtained by Ani Brown Mary and Dejey [AD18a]
and our results for EILAT and RSMAS datasets.

Dataset Mary & Dejey 10% test Mary & Dejey 25% test Our results (20% test)

EILAT 99.57 87.49 97.85

RSMAS 99.34 85.8 97.95

85.72% using a 25% test. Lastly, Ani Brown Mary and Dejey [AD18a] achieved 99.34%
recall using a 10% test and 85.8% using a 25% test. As it happened with EILAT, Ani
Brown Mary and Dejey [AD18a] obtained the best results among these three works
and again our results using a test of 20% of the images are much closer to the ones
obtained using a test of 10% than to the ones obtained using a test of 25%. With this
work, we have a difference of 12.15% with respect to the 25% test and only 1.39%
with respect to the 10% test. The comparison for RSMAS can also be seen in Table 9.4.

Obtained results allow us to conclude that only by training the last layers of a
CNN that is already pre-trained on ImageNet and without data augmentation, which
is the technique that usually takes more time, we can outperform a method that
takes long running times and need high human supervision as it is the case with
Shihavuddin’s method. In fact, Shihavuddin’s method is composed of six steps and
each step is composed of one or various algorithms. Then, in order to obtain the best
performance, it is needed to evaluate all the possible algorithm combinations through
all the steps and to optimize the hyperparameters of each algorithm. Furthermore,
this has to be done independently for each dataset we want to classify. In the case
of Mary & Dejey’s methods, the obtained differences between the results, combined
with the fact that cross validation results are more stable than held-out results as we
are using the mean over five experiments instead only one, allow us to conclude that
our approach generates more precise models.

9.6.1.2 Results Addressing the Class Imbalance Problem

As we saw in Table 10.3, both EILAT and RSMAS are imbalanced. We address
this problem by using a cost sensitive loss function as follows: We multiply the
error produced by the model with a factor that depends on the proportion of the
input image class with respect to the rest of classes. For example, if the network
missclassifies an image that belongs to a class which is twice smaller than the rest of
the classes, the error will be multiplied by a factor 2. In general, we assign a factor 1

76 towards highly accurate coral texture images classification

Table 9.5: The accuracies obtained by Inception v3, ResNet-50, ResNet-152, DenseNet-121

and DenseNet-161 without data augmentation, using the set of hyperparameters in
Table 10.4 and with a cost-sensitive loss function.

Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT 95.78 96.67 97.50 77.04 90.67

RSMAS 96.30 97.67 97.40 90.00 88.77

Table 9.6: Execution times, in minutes, of the experiments from Table 9.5

Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT 7.30 3.14 3.62 4.14 8.85

RSMAS 9.02 4.68 3.97 5.64 5.32

to the majority class and a factor nm
nc

to class c, where nm is the number of images in
the majority class and nc is the number of images in class c, for c = 1, . . . , k, where k
is the total number of classes.

The impact of using cost-sensitive loss function along with transfer learning from
ImageNet on the CNNs’ performance is provided in Table 9.5, and the corresponding
execution times are shown in Table 9.6. The obtained accuracies are in general slightly
lower than the accuracies without addressing the imbalance issue (see Table 9.2). In
particular, the best accuracy in each dataset is obtained without the cost sensitive
loss function. This can be probably explained by the fact that CNNs are tolerant to
such imbalance level: the majority of the factors are below 4, and there is only one
class that has a factor of 12.17. These ratios are not considered high when using
CNNs [BMM18]. If we compare the execution times in Tables 10.4 and 9.6, they are
extremely similar, as we are training with the same number of images during the
same number of epochs and using the same batch size in each case.

As a consequence, we choose not to address the imbalance problem in these
datasets and therefore we choose to use the regular loss function.

9.6.1.3 Results Using Transfer Learning from ImageNet and Fine-Tuning the Weights with
MLC-2008

Since EILAT and RSMAS are too small to fine-tune all the weights in the networks, we
have used MLC-2008, which has 43,832 images, to fine-tune the network weights. That

9.6 classification of coral texture images with cnns 77

Table 9.7: The accuracies obtained by Inception v3, ResNet-50, ResNet-152, DenseNet-121

and DenseNet-161 without data augmentation, using the set of hyperparameters in
Table 10.4 and fine-tuning the networks with MLC-2008.

Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT 93.63 95.87 95.25 95.07 94.98

RSMAS 89.59 95.34 94.66 94.79 94.52

Table 9.8: Execution times, in minutes, of the experiments from Table 9.7. The first term in the
sum is the time corresponding to fine-tune the network with MLC-2008 and the
second term is the time corresponding to train the last two-fully connected layers
with EILAT and RSMAS.

Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT 1110.34 + 8.51 915.74 + 4.25 2737.65 + 6.77 1505.07 + 6.81 3264.03 + 12.99

RSMAS 1110.34 + 9.91 915.74 + 6.05 2737.65 + 7.10 1505.07 + 8.88 3264.03 + 8.88

is, we have used the networks already pre-trained on ImageNet, then we have fine-
tuned their weights with MLC-2008 and finally we have added two fully connected
layers which are the ones that we have fine-tuned on RSMAS and EILAT.

In this experiment, we have trained all the networks using 100 epochs. We have
used a batch size of 32 for Inception, ResNet-50 and DenseNet-121, and a batch size
of 16 for ResNet-152 and DenseNet-161. To fit the largest CNN into the memory of
the GPU, ResNet-152 and DenseNet-161, we have used a batch size of 16.

The obtained accuracies in this experiment are shown in Table 9.7 and the cor-
responding execution times are shown in Table 9.8. There are two important things
to note from these results. First, the best result for each dataset is lower than the
best result obtained without fine-tuning the networks with MLC-2008, see Table 9.2.
Second, the only network that has improved with fine-tuning from MLC-2008 is
DenseNet. This can be explained by the fact that the large volume of connections
in DenseNet makes the network much more adapted to ImageNet than the rest of
CNNs. This makes DenseNet less competitive when fine-tuned on EILAT and RSMAS
than the other evaluated CNNs. Besides, as shown in Table 9.8, the time needed to
fine-tune all the layers of DenseNet on MLC-2008 increased drastically in comparison
with the rest of CNNs.

78 towards highly accurate coral texture images classification

Table 9.9: The accuracies and execution times in minutes obtained by the best performing
CNN on EILAT, ResNet-50, with different data augmentation techniques using the
set of hyperparameters indicated in Table 10.4. The best result is stressed in bold.

without data

augmentation
shift = 0.2 zoom = 0.2 rotation = 2 flip

shift = 0.2,

zoom = 0.2

Accuracy 97.85 98.03 97.85 97.40 97.53 97.85

Time (min) 3.34 91.70 90.25 90.10 72.23 88.76

Table 9.10: The accuracies and execution times in minutes obtained by the best performing
CNN on RSMAS, ResNet-152, with different data augmentation techniques using
the set of hyperparameters indicated in Table 10.4. The best result is stressed in
bold.

without data

augmentation
shift = 0.2 zoom = 0.4 rotation = 2 flip

shift = 0.2,

zoom = 0.4

Accuracy 97.95 98.36 98.63 97.40 97.578 98.08

Time (min) 3.71 57.02 56.20 57.50 49.21 56.13

To sum up, the best result on EILAT and RSMAS without considering data augment-
ation have been obtained by ResNet-50 and ResNet-152, respectively, and without
using a cost-sensitive loss function or fine-tuning with MLC-2008.

9.6.2 Classification of Coral Texture Images with Data Augmentation

In this subsection we have analyzed the effect of the data augmentation techniques
listed in Section 9.5 on the classification of texture images. To keep our analysis brief
and concise, we have evaluated the data augmentation techniques only on the best
performing models. In EILAT, ResNet-50 and ResNet-152 are the best models and
provide the same accuracy, so we have chosen ResNet-50 as it is simpler and has less
parameters. In RSMAS, the best model is ResNet-152. In both cases, we have used
the regular loss function without fine-tuning with MLC-2008.

Recall that if we note rotation = 2, it means that we are applying a random
rotation to the images by an angle in the interval [0, 2]. This notation is equivalent for
all the other techniques.

9.6 classification of coral texture images with cnns 79

Tables 9.9 and 9.10 show respectively the results of ResNet-50 and ResNet-152

on EILAT and RSMAS using data augmentation together with the parameters that
provide the best performance. The number of steps is the number of times that we
generate a batch of new images by data augmentation at each epoch. As the number
of steps increases, the accuracy improves but also the time needed to complete
each experiment increases. In this case, we have used 300 steps. We have evaluated
different parameters for each data augmentation technique and several combinations
between them. In Tables 9.9 and 9.10 we show the ones that obtained better accuracies.
The difference in accuracy between using the best data augmentation technique and
without using data augmentation is quite small, less than 1% in both datasets.
However, the execution times are more than 15 times higher.

This slight improvement using data augmentation can be explained by the nature
of used images. Since the original images are small and close-up, the applied modific-
ations do not have much effect on the learning of the models as they need to be small:
the shift implies to loose part of the images, and they are already very small; and
the zoom implies to loose quality of the images, and they are already blurry because
they are underwater images. On the other hand, the images are so close-up that the
rotation and the flipping do not introduce significant variations among them. Besides,
the performance of the base models is already good without any data augmentation.
Therefore, we can conclude that the use of data augmentation techniques in texture
coral images does not significantly improve the learning model.

9.6.3 Analyzing the Misclassified Images

In this subsection we have analyzed the misclassified images in each partition of the
5 fold cross validation in both datasets, EILAT and RSMAS.

In EILAT, ResNet-50 produced 22 misclassified images in all of the test folds. 14 of
this misclassified images have been classified as Dead Coral. Dead Coral is the class
with the highest number of images as all the dead corals (no matter what species) are
in this class. This implies that this class shares some features with all the other classes,
as we can see in Figure 9.7. Similarly, there are four Dead Coral images classified
as other classes. In total, 18 of 22 images are misclassified due to this class. The
remaining three images are from the class Branches Type II misclassified as Branches
Type III or vice versa. As we can observe in Figure 9.8, some images in these two
classes are very similar and therefore it is very difficult to distinguish between them.

80 towards highly accurate coral texture images classification

(a) Examples of five images misclassified as Dead Coral

(b) Dead Coral images

Figure 9.7: Examples of (a) misclassified images in EILAT as Dead Coral and (b) original
Dead Coral images.

(a) Branches Type III images

(b) Branches Type II images

Figure 9.8: Examples that show the similarities between (a) Branches Type III and (b) Branches
Type II. The third image form (a) is missclasified as Branches Type II. The first
and second images from (b) are missclassified as Branches Type III.

9.6 classification of coral texture images with cnns 81

(a) APAL

(b) ACER

Figure 9.9: Examples that show the similarities between (a) APAL and (b) ACER. The third
and fourth images from (a) are missclassified as ACER. The first and second
images from (b) are missclassified as APAL.

(a) MCAV

(b) MMEA

Figure 9.10: Examples that show the similarities between (a) MCAV and (b) MMEA. The
second and third images in (a) are missclassified as MMEA.

82 towards highly accurate coral texture images classification

In RSMAS, ResNet-152 produced only 10 misclassified images in all of the test
folds. In general, the model tends to misclassify APAL as ACER and vice versa. The
model always misclassified MCAV as MMEA. We can see the similarities between
these classes in Figures 9.9 and 9.10. The rest of the misclassified images are blurry
images.

From these misclassified images, we can conclude that in the case of EILAT it
would be needed an expert to distinguish between the images in the class Dead
Coral and the rest of the classes, as the images are very similar. For the images in
Branches Type II and Type III a good solution might be for an expert to reclassify
the images into more specific classes, like the coral species, which we have seen with
RSMAS that is a good option. In the case of RSMAS, the misclassified images are
again between classes that looks very similar between them, so we would need an
expert to distinguish between them. In this case, as the images are so close-up, maybe
it would be a good solution to make use of images from the same species that contain
the whole coral body.

9.6.4 Generalizing Our Approach to Other Coral Texture Datasets

In order to see the generalization of our approach to other coral texture datasets, we
have classified EILAT2, a subset of EILAT with 303 images of size 128×128 organized
in five classes, and a randomly obtained subset of MLC-2008 with 36,500 images.
We have chosen 36,500 images in order to make a fair comparison with the results
reported in [AD17; AD18b; AD18a], since we cannot obtain the same dataset it was
used in these works. In both cases, we have compared with all the works that used
these two datasets. To do this, we have used the best CNN model for EILAT and
RSMAS, respectively. We have used ResNet50 with the best hyperparameters for
EILAT to classify EILAT2 and ResNet152 with the best hyperparameters for RSMAS
to classify MLC-2008. In both cases we have used transfer learning from ImageNet
and we have only trained the newly added two fully connected layers. For EILAT2

we have chosen the same network as EILAT since they are very similar datasets. For
MLC-2008 we have chosen the same network as RSMAS guided by the number of
classes in both datasets.

For EILAT2, we obtain an accuracy of 98.97% using a 5 fold cross validation.
Shihavuddin et al. [SGG+13] reported an accuracy of 93.1%; Shakoor and Boostani
[SB18] obtained an accuracy of 90.35%; Ani Brown Mary and Dharma [AD17] obtained

9.6 classification of coral texture images with cnns 83

a recall of 99.1 using a test of 10% of the images and 87.43% using a test of 25%
of the images; Ani Brown Mary and Dejey [AD18b] obtained a 97.12% recall using
a 10% test and 87.4% using a 25% test; and Ani Brown Mary and Dejey [AD18a]
achieved a recall of 99.12% with a 10% and a 88.69% using a 25% test. As we can see,
our results outperformed the ones obtained by Shihavuddin et al. [SGG+13] and by
Shakoor and Boostani [SB18]. For the other three works, our results outperformed
the ones obtained with a test of 25% of the images but not the ones obtained using a
test of 10%, as it occurred with EILAT and RSMAS. However, similarly to EILAT and
RSMAS, our results are much closer to the ones obtained with a 10% test than the
ones obtained with a 25% test. If we compare with the best results, the ones obtained
by Ani Brown Mary and Dejey [AD18a], we have a difference of 10.28% with the
results using a 25% test and a difference of 0.15% with the results using a 10% test.
The small difference with the results using a 10% and the fact that our results were
obtained with a 5 fold cross validation, which obtains more reliable and stable results,
allow us to conclude that our approach is better for EILAT2. The comparison with
this work is shown in Table 9.11.

For MLC, we have compared with all the works that used a version of this dataset.
With a subset of 36,500 images of MLC-2008 we have obtained an accuracy of 76.66%.
Beijbom et al. [BEK+12] obtained an accuracy of 74.3% using two thirds of MLC-
2008 to train and the other third to test, an accuracy of 67.3% using MLC-2008 to
train and MLC-2009 to test and an accuracy of 83.1% using MLC-2008 and MLC-
2009 to train and MLC-2010 to test. Mahmood et al. [MBA+16b] used the same
experimental framework and obtained accuracies of 77.9%, 70.1% and 84.5% in the
three experiments, respectively. Shihavuddin et al. [SGG+13] used a subset of 18,879

images of MLC-2008 and obtained an accuracy of 85.5%. Shakoor and Boostani
[SB18] used the same subset as in [SGG+13] and obtained an accuracy of 63.21%.
Ani Brown Mary and Dharma [AD17] obtained a recall of 90.4% using a 10% test
and 80.45% using a 25% test, Ani Brown Mary and Dejey [AD18b] reported recalls of
91.27% and 84.94%, respectively, and Ani Brown Mary and Dejey [AD18a] achieved
recalls of 93.61% and 83.22%, respectively, using a subset of 36,500 images of the
completed MLC. With this method, we outperformed some experiments in [BEK+12]
and [MBA+16b], but in general our result is worse than the rest of the methods. The
comparison with the best method [AD18a] is also in Table 9.11.

This is because the classification of EILAT2 and MLC20008 are very different cases
from our approach point of view. We have shown that training only two added fully
connected layers to a ResNet CNN model perform very well for small coral texture

84 towards highly accurate coral texture images classification

Table 9.11: Comparison between the results obtained by Ani Brown Mary and Dejey [AD18a]
and our approach for EILAT2 and MLC datasets.

Dataset Mary & Dejey 10% test Mary & Dejey 25% test Our results (20% test)

EILAT2 99.12 88.69 98.97

MLC 93.61 83.22 76.66

datasets, as it is the case of EILAT, RSMAS and EILAT2. The results obtained for
EILAT2 are similar to the ones obtained for EILAT and RSMAS, showing that our
approach outperforms Mary & Dejey’s approach on EILAT2. However, if the dataset
is large enough to fine-tune the whole network, as it is the case with MLC-2008, the
performance should improve doing so compared to training only two layers. To prove
this we have fine-tuned the whole ResNet152 network with our subset of MLC-2008

and we have obtained an accuracy of 83.45%. As we can see, this result is closer to
the rest of the works that used MLC and it is better than our result training only the
last two layers of the network.

9.7 conclusions

The classification of underwater coral images is challenging due to the large number
of different coral species, the great variance among images of the same coral species,
the lightning variations due to the water column, or the fact that several species tend
to appear together, leading to an increasing overlapping among different classes. Few
works have tackle this problem, but the only one that classifies EILAT and RSMAS
is a really complex method which makes use of several algorithms and takes a lot
of human intervention and time. We have addressed these problems by using some
of the most powerful CNNs, namely Inception v3, ResNet and DenseNet. We have
carried out a study of the foundations of this three CNNs, their parameter set-up,
and the possibility of using fine-tuning from a related domain dataset and data
augmentation techniques to aid their learning process. We have also studied the
possibility of tackling the imbalance problem in the loss function. We have been
able to outperform the state-of-the-art approach, proving that CNNs are an excellent
technique for automatic classification of underwater coral images.

We have shown that CNNs based models achieved the state-of-the-art accuracies
on the coral datasets RSMAS and EILAT, surpassing classical methods that require a

9.7 conclusions 85

high human intervention, and without using data augmentation. In particular, ResNet
have been the best CNN in RSMAS and EILAT.

We have shown that when the imbalance ratios are not too high, there is no
improvement in the use of a cost-sensitive loss function. In addition, we have shown
that if the datasets are small, a simpler network, like ResNet-50, performs better than
a more complex network, like DenseNet-121 or DenseNet-161 even when using a
previous fine-tuning with a larger related domain dataset.

When considering the impact of data augmentation, we have shown that from these
two datasets, which contain very close-up images taken under similar conditions and
have a lot of inner-class variance, there is a little benefit obtained from using such
techniques.

This work enables new advanced challenges like classifying not just texture coral
images, but structure coral images too. In particular, the problem of classifying any
coral image using a single classifier, either texture or structure, will be addressed.

acknowledgments

This work was partially supported by the Spanish Ministry of Science and Technology
under the project TIN2017-89517-P and by the Andalusian Government under the
project P11-TIC-7765. Siham Tabik was supported by the Ramón y Cajal Programme
(RYC-2015-18136) and Anabel Gómez-Ríos was supported by the FPU Programme
998758-2016 and by a scholarship of initiation to research granted by the University
of Granada. The NVIDIA Titan Xp used for this research was donated by the NVIDIA
Corporation.

references

[ARV+17] C. Affonso, A. L. D. Rossi, F. H. A. Vieira and A. C. P. de Leon Ferreira
de Carvalho, ‘Deep learning for biological image classification’, Expert
Systems with Applications, vol. 85, pp. 114–122, 2017.

[AD18a] N. Ani Brown Mary and D. Dejey, ‘Coral reef image/video classification
employing novel octa-angled pattern for triangular sub region and
pulse coupled convolutional neural network (pccnn)’, Multimedia Tools
and Applications, Jun. 2018.

86 towards highly accurate coral texture images classification

[AD18b] N. Ani Brown Mary and D. Dejey, ‘Classification of coral reef submarine
images and videos using a novel z with tilted z local binary pattern
(z+tzlbp)’, Wireless Personal Communications, vol. 98, no. 3, pp. 2427–
2459, Feb. 2018.

[AD17] N. Ani Brown Mary and D. Dharma, ‘Coral reef image classification
employing improved ldp for feature extraction’, Journal of Visual Com-
munication and Image Representation, vol. 49, pp. 225–242, 2017.

[BEK+12] O. Beijbom, P. J. Edmunds, D. I. Kline, B. G. Mitchell and D. Kriegman,
‘Automated annotation of coral reef survey images’, in Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012,
pp. 1170–1177.

[BTK+16] O. Beijbom, T. Treibitz, D. I. Kline, G. Eyal, A. Khen, B. Neal, Y. Loya,
B. G. Mitchell and D. Kriegman, ‘Improving automated annotation of
benthic survey images using wide-band fluorescence’, Scientific reports,
vol. 6, p. 23 166, 2016.

[BFF+15] M. Bewley, A. Friedman, R. Ferrari, N. Hill, R. Hovey, N. Barrett, E. M.
Marzinelli, O. Pizarro, W. Figueira, L. Meyer et al., ‘Australian sea-floor
survey data, with images and expert annotations’, Scientific data, vol. 2,
p. 150 057, 2015.

[BMM18] M. Buda, A. Maki and M. A. Mazurowski, ‘A systematic study of the
class imbalance problem in convolutional neural networks’, Neural
Networks, vol. 106, pp. 249–259, 2018.

[Cho+15] F. Chollet et al., Keras, https://github.com/keras-team/keras, 2015.

[DDS+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A
large-scale hierarchical image database’, in Computer Vision and Pattern
Recognition (CVPR), 2009. IEEE Conference on, IEEE, 2009, pp. 248–255.

[Ela15] M. Elawady, ‘Sparse coral classification using deep convolutional neural
networks’, arXiv preprint arXiv:1511.09067, 2015.

[ESI17] Endangered species international, http://www.endangeredspeciesinternational.
org/, Accessed on 13-02-2018, 2017.

[FBS+14] F. Ferrario, M. W. Beck, C. D. Storlazzi, F. Micheli, C. C. Shepard and L.
Airoldi, ‘The effectiveness of coral reefs for coastal hazard risk reduction
and adaptation’, Nature communications, vol. 5, p. 3794, 2014.

9.7 conclusions 87

[FG17] A. Ferreira and G. Giraldi, ‘Convolutional neural network approaches
to granite tiles classification’, Expert Systems with Applications, vol. 84,
pp. 1–11, 2017.

[FCN+18] M. D. Ferreira, D. C. Corrêa, L. G. Nonato and R. F. de Mello, ‘Design-
ing architectures of convolutional neural networks to solve practical
problems’, Expert Systems with Applications, vol. 94, pp. 205–217, 2018.

[HZR+16] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image
recognition’, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[HLV+17] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ‘Densely
connected convolutional networks’, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700–4708.

[IUCN17] Iucn red list table of number of threatened species by major groups of organisms,
http://cmsdocs.s3.amazonaws.com/summarystats/2017-3_Summary_

Stats_Page_Documents/2017_3_RL_Stats_Table_1.pdf, Accessed on
13-02-2018, 2017.

[KSH12] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification
with deep convolutional neural networks’, in Advances in neural inform-
ation processing systems, 2012, pp. 1097–1105.

[LBB+98] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning
applied to document recognition’, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[MBA+16a] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G.
Kendrick and R. Fisher, ‘Automatic annotation of coral reefs using deep
learning’, in OCEANS 2016 MTS/IEEE Monterey, IEEE, 2016, pp. 1–5.

[MBA+16b] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G.
Kendrick and R. Fisher, ‘Coral classification with hybrid feature repres-
entations’, in Image Processing (ICIP), 2016 IEEE International Conference
on, IEEE, 2016, pp. 519–523.

[MAP+15] Martín Abadi et al., TensorFlow: Large-scale machine learning on heterogen-
eous systems, Software available from tensorflow.org, 2015.

88 towards highly accurate coral texture images classification

[PRJ+08] O. Pizarro, P. Rigby, M. Johnson-Roberson, S. B. Williams and J. Colquhoun,
‘Towards image-based marine habitat classification’, in OCEANS 2008,
IEEE, 2008, pp. 1–7.

[PAH+15] M. S. Pratchett, K. D. Anderson, M. O. Hoogenboom, E. Widman, A. H.
Baird, J. M. Pandolfi, P. J. Edmunds and J. M. Lough, ‘Spatial, temporal
and taxonomic variation in coral growth—implications for the structure
and function of coral reef ecosystems’, Oceanography and Marine Biology:
An Annual Review, vol. 53, pp. 215–295, 2015.

[RDS+15] O. Russakovsky et al., ‘ImageNet Large Scale Visual Recognition Chal-
lenge’, International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[SB18] M. H. Shakoor and R. Boostani, ‘A novel advanced local binary pattern
for image-based coral reef classification’, Multimedia Tools and Applica-
tions, vol. 77, no. 2, pp. 2561–2591, 2018.

[SGG+13] A. Shihavuddin, N. Gracias, R. Garcia, A. C. Gleason and B. Gintert,
‘Image-based coral reef classification and thematic mapping’, Remote
Sensing, vol. 5, no. 4, pp. 1809–1841, 2013.

[Shi17] A. Shihavuddin, Coral reef dataset, v2. Mendeley data https://data.

mendeley.com/datasets/86y667257h/2, Accessed on 12-02-2018, 2017.

[SZ14] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks for
large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.

[SD09] M. D. Stokes and G. B. Deane, ‘Automated processing of coral reef
benthic images’, Limnol. Oceanogr.: Methods, vol. 7, no. 157, pp. 157–168,
2009.

[SLJ+15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, ‘Going deeper with convolutions’, in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[SVI+16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, ‘Rethinking
the inception architecture for computer vision’, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[Yu17] F. Yu, Resnet and densenet cnns in keras, https://github.com/flyyufelix/
cnn_finetune, 2017.

10
C O R A L S P E C I E S I D E N T I F I C AT I O N W I T H T E X T U R E O R
S T R U C T U R E I M A G E S U S I N G A T W O - L E V E L C L A S S I F I E R B A S E D
O N C O N V O L U T I O N A L N E U R A L N E T W O R K S

Gómez-Ríos, A., Tabik, S., Luengo, J., Shihavuddin, A. S. M., & Herrera, F. (2019).
Coral species identification with texture or structure images using a two-level classifier
based on Convolutional Neural Networks. Knowledge-Based Systems, 184, 104891.
DOI: https://doi.org/10.1016/j.knosys.2019.104891

• Status: Published

• Impact Factor (JCR 2019): 5.921

• Subject Category: Computer Science, Artificial Intelligence. Ranking 15/137

(Q1)

89

90 coral species identification with texture or structure images

C O R A L S P E C I E S I D E N T I F I C AT I O N W I T H T E X T U R E O R S T R U C -
T U R E I M A G E S U S I N G A T W O - L E V E L C L A S S I F I E R B A S E D O N
C O N V O L U T I O N A L N E U R A L N E T W O R K S

Anabel Gómez-Ríosa, Siham Tabika, Julián Luengoa, ASM Shihavuddinb, Francisco
Herreraa

a Andalusian Research Institute in Data Science and Computational Intelligence,
Dept. of Computer Science and Artificial Intelligence, University of Granada,
Granada, Spain
b Dept. of Applied Mathematics and Computer Science, Technical University of
Denmark (DTU), Kgs. Lyngby, Denmark

abstract

Corals are crucial animals as they support a large part of marine life. The automatic
classification of corals species based on underwater images is important as it can
help experts to track and detect threatened and vulnerable coral species. However,
this classification is complicated due to the nature of coral underwater images and
the fact that current underwater coral datasets are unrealistic as they contain only
texture images, while the images taken by autonomous underwater vehicles show the
complete coral structure. The objective of this paper is two-fold. The first is to build a
dataset that is representative of the problem of classifying underwater coral images,
the StructureRSMAS dataset. The second is to build a classifier capable of resolving
the real problem of classifying corals, based either on texture or structure images. We
have achieved this by using a two-level classifier composed of three ResNet models.
The first level recognizes whether the input image is a texture or a structure image.
Then, the second level identifies the coral species. To do this, we have used a known
texture dataset, RSMAS, and StructureRSMAS.

Keywords: Coral Images Classification, Structure Coral Images, Deep Learning,
Convolutional Neural Networks, Inception, ResNet, DenseNet.

10.1 introduction 91

10.1 introduction

Coral reefs are extremely valuable ecosystems for marine life and humans. A recent
evaluation of 40% of the total number of coral species has shown that more than
200 species are threatened [IUCNb]. This is a direct consequence of air and water
pollution and the changes in ocean temperatures due to climate change [SP16].

The automatic classification of corals based on images is a hard task. There are
thousands of coral species and their taxonomy is continuously updated as more
information is obtained. In addition, some coral species look really similar externally
whereas their differences are based on internal characteristics. This makes difficult to
keep a constant record of all the species, even more their extension rates. Nowadays,
thousands of images of coral reefs and other benthic habitats are being captured
regularly by Autonomous Underwater Vehicles (AUVs). However, analysing that huge
amount of data and acquiring useful information out of it is still a bottleneck, as many
hours of experts manual work are involved in such tasks. Having a rigorous accurate
automatic coral classifier can potentially help in analysing the large amount of data,
thereby progressing in the understanding of coral reefs. Nevertheless, the available
coral datasets contain, in general, texture images, as opposed to the structure images
obtained by AUVs. This is a consequence of using classical machine learning models,
since they need to extract textures as a previous feature extraction step. Texture
images show only a small part of the coral and do not include any information of the
whole structure of the coral body, while structure images contain the whole coral or a
large part of it. Figure 10.1 shows an example of (a) a coral texture or local information
and (b) a coral structure or global information. The available public coral datasets,
such as EILAT (which contains images taken near Eilat) RSMAS (Rosenstiel School of
Marine and Atmospheric Sciences)or MLC (Moorea Labelled Corals), among others,
only contain texture images. As far as we know, there is no publicly available datasets
containing coral structure images.

Making the coral classification automatic has been tackled in previous works, using
either normal machine learning models combined with feature extraction methods
[BEK+12; PRJ+08; SGG+13; SD09] or Convolutional Neural Networks (CNNs) [Ela15;
MBA+16a; MBA+16b; GTL+19]. Recently, CNNs are providing outstanding perform-
ance in pattern recognition in many fields, particularly in Computer Vision [KSH12;
BBA16; LYJ+17]. A clear example is the ImageNet Large Scale Visual Recognition
Challenge(ILSVRC) competition [RDS+15], whose top ten models have been CNNs
since 2012. A key to its success is that they are capable to extract simple and complex

92 coral species identification with texture or structure images

(a) Texture (b) Structre

Figure 10.1: Difference between (a) coral texture and (b) coral structure.

features as the network goes deeper [SLJ+15; SVI+16]. In fact, since the last few
years, they are capable to use the simple features in the deeper layers by adding
some connections that skip layers [HZR+16; HLV+17]. Furthermore, they are able
to overcome the limitation of large datasets requirements in the training phase by
increasing the size of the training set artificially (data augmentation) or by starting the
training using the weights from the pre-trained network on another dataset (transfer
learning).

However, none of the previous works address the problem of classifying coral
texture and structure images together, so it is still an unsolved issue. Most CNN
works analyse classical architectures such as LeNet [LBB+98] and VGGnet [SZ14]. In
[GTL+19], the authors analysed more recent CNNs, like Inception [SVI+16], ResNet
[HZR+16] and DenseNet [HLV+17] on two texture datasets, RSMAS and EILAT. They
achieved the state-of-the-art accuracies in both datasets. In general, CNNs outperform
classical feature extraction in the classification of coral texture images.

In this work, we aim at identifying coral species based on their texture or structure
images. To the best of our knowledge, this is the first work classifying corals based
on texture and structure images. We propose to use recent CNNs to classify any
coral image, either texture or structure. We want to provide a classifier that could
be used with pictures provided by AUVs, irrespective of the portion of coral that
is contained in each image. In order to achieve this, we have used a known texture
dataset, RSMAS [Shi17], and a new structure dataset, more realistic, that we have
built in this work, called StructureRSMAS. This dataset is available through the
following link: http://sci2s.ugr.es/CNN-coral-image-classification. We have
taken advantage of the costly experimentation that it has been done in [GTL+19] to
choose the best model and configuration for RSMAS. For StructureRSMAS, we have

10.2 convolutional neural networks (cnns) and improvement techniques 93

evaluated Inception, ResNet and DenseNet, and we have chosen the best model and
its best configuration. We have also tested the influence of some image enhancement
techniques on both datasets, RSMAS and StructureRSMAS, in order to improve the
images before using the CNN models.Finally, we have built a two-level classifier,
whose first level is to decide whether the input coral image is a texture or a structure
and whose second level is to identify the coral species. Similar strategies have also
been used in other works [XWB+18].To obtain the model in the first level, we have
also evaluated the three CNN architectures mentioned before. To the best of our
knowledge, this work is the first identifying coral species based on its local or global
information.

The rest of the paper is organized as follows. In Section 10.2, we give an overview
on CNNs and the three architectures we have used. In Section 10.3, a summary on
previous works for classifying underwater coral images is given. In Section 10.4,
we present the structure dataset we have created. In Section 12.3, we describe our
proposal to classify coral images, either texture or structure and in Section 12.5 we
explain the experiments we have carried out to obtain such a classifier. Finally, in
Section 10.7 we state the conclusions of this work.

10.2 convolutional neural networks (cnns) and improvement tech-
niques

CNNs are a widely used type of artificial neural network. They constitute the state-
of-the-art in object recognition in images. Using CNNs we do not have to extract the
features from the images with a previous algorithm. This is possible thanks to its
principal operation: the convolution, which is defined, for a point (i, j), as [GBC16]:

∑
m

∑
n

I(i − m, j − n)K(m, n) , (10.1)

where I is the input of the convolution and K is the kernel of the convolution with
size m × n. Each convolutional layer has different numbers of kernels. As we can see
in Figure 10.2, the input of the convolutional layer is convoluted with each kernel,
resulting in an output feature map per kernel. The values of these kernels, called
weights, are learned by the CNN autonomously during the training process. At the
end of the training, these values are the selected features of the images.

To increase the non-linearity of the models, every convolutional layer is followed
by a non-linear operation, typically the Rectified Linear Unit (ReLU) operation.

94 coral species identification with texture or structure images

Figure 10.2: An example of a convolutional layer and a pooling layer in a CNN.

To increase the abstraction level of the extracted features, it is usual to reduce the
size of the feature maps from the convolutional layer using a pooling layer, which takes
a neighbourhood of size m × n and performs an operation to it. There are several
variants, depending on the operation used: maximum pooling, minimum pooling,
average pooling, etc. The size is reduced, as we can see in Figure 10.2, by using a
stride between one group of pixels and the next one. Among other things, pooling
allows the network to extract simple features at the beginning and complex features
as the network goes deeper.This is why the first improvement to obtain better results
with CNNs was to make the networks deeper. However, it has the problem that the
deeper the network, the harder it is to train it. On the other hand, it is usual that, at
the same level, the network has various convolutional layers, increasing the width
of the network and extracting different features. This is clearly seen in Inception v3

architecture [SVI+16].
In the last years, some architectures, like ResNet [HZR+16] and DenseNet [HLV+17],

have explored other ways to improve the performance of the networks. In particular,
they added connections that skip layers, making the network to use the simple
features extracted at the beginning in deeper layers. This has been proved to work
well: ResNet won the ILSVRC competition [RDS+15] in 2015 and DenseNet beat its
results in 2016.

In order to obtain good results from a CNN, it is necessary to train it with large
datasets. However, there are two improvement techniques that help to overcome this
constraint: transfer learning and data augmentation.

10.3 related work on coral classification 95

By using transfer learning we can start the training of the network from the pre-
trained weights in another problem, although it is recommended that this other
problem is somehow related with the problem that we want to resolve. Then, we
can choose between retraining only the last layer of the network, which classifies the
images into our classes, or to retrain all the weights in the network (or some of them),
which is also called fine-tuning.

Data augmentation allow us to artificially increase the size of the training set, so
we have more images to train the network. The increase in the training set is done
by applying several distortions to the original images, like zooming them, flipping
them horizontally or vertically, rotating them, shifting them, etc. They can be applied
alone or combined, and in most of them we can choose how much distortion we
want to apply: rotate an image 15 degrees, zoom 25% of the image, etc. Depending
on the original images, we need to be careful with the data augmentation techniques
we apply as the images may lose their meaning: for example, flipping the images in
hand-writing digit classification.

In this work, we will use Inception v3, ResNet and DenseNet. These three architec-
tures are based on the repetition of a block, different in each case. The composition
of these networks is shown in Table 10.1. As it is seen in the table, Inception v3 has
a fixed number of layers. That is because it has a fixed number of blocks, although
the base inception module is only used at the beginning of the network and it has
several modifications as the network goes deeper. On the other hand, the number of
layers in ResNet and DenseNet is a hyperparameter and it depends on the number
of times their blocks are repeated. There are two more hyperparameters in the three
architectures: the number of epochs and the batch size we used to train them.

10.3 related work on coral classification

In this section we first present the available coral datasets that have been used in the
literature. Second, we present the previous works on the classification of coral images
and the results obtained for RSMAS, the texture dataset we have used.

10.3.1 Coral datasets

The current available eight open datasets are KTH-TIPS (Textures under varying
Illumination, Pose and Scale), CURET (Columbia-Utrecht Reflectance and Texture),

96 coral species identification with texture or structure images

Table 10.1: Description of the composition of Inception v3, ResNet and DenseNet. BN stands
for Batch Normalization.

Architecture Name of the
block

Composition of the block Same block
along the net-
work?

Number of layers
of the network

Inception v3 Base incep-
tion module

Three 1×1 convolutions, four
3×3 convolutions and one
pooling. Some of these opera-
tions are made in parallel, so
it has a concatenation filter
at the end. All the convolu-
tions are followed by BN and
a ReLU.

No 42

ResNet Building
block

Three consecutive operations:
1×1 conv., 3×3 conv., and
1×1 conv. It has an additional
connection between the input
of the first 1×1 conv. and
the output of the second 1×1

conv that performs a 1×1

conv. or an identity. All the
convolutions are followed by
BN and a ReLU.

Yes It depends on the
number of times
the block is re-
peated.

DenseNet Dense block A repetition of the sequence:
BN, ReLU, 1×1 conv., BN,
ReLU and 3×3 conv. The out-
put of all the layers inside the
block is connected with the in-
put of all the following layers
in the block.

Yes It depends on the
number of times
the block is re-
peated and the
repetitions inside
each block.

10.3 related work on coral classification 97

UIUCtex (University of Illinois at Urbana-Champaign texture dataset), MLC (Moorea
Labelled Corals), EILAT, EILAT2, RSMAS (Rosenstiel School of Marine and Atmo-
spheric Sciences)and the Red Sea Mosaic. Only MLC, EILAT, EILAT2, RSMAS and
the Red Sea Mosaic contain RGB images. From these, RSMAS and EILAT are the ones
with more number of classes, 14 and 8, respectively, and the most recent. EILAT2 is
a subset of EILAT, MLC only contains five coral classes and the Red Sea Mosaic is
actually a large image containing different coral species.

The images in all these datasets share some characteristics inherent to underwater
images: the water movement cause lightning variations between images taken at the
same time; the water causes the images to be blurry; and it is very common that
animals, like fish, cover part of the corals when the images are being taken. On the
other hand, the images share some characteristics inherent to coral images, like the
occurrence of various coral species in the same image or the subjective classification
of the images by different experts.

Both RSMAS and EILAT are texture datasets, but we choose RSMAS as our texture
dataset because the labelling is the scientific Latin name of the coral species, which
allow us to obtain structure images from these species and to create StructureRSMAS,
a coral structure dataset that contains images from the same species that RSMAS.
RMSAS contains 766 images that are patches that contain specific and small parts
of the corals, not the entire structure of them. They are close-up images, so they are
sometimes blurry and small: each one of them have 256 × 256 pixels in size. Some
images from RSMAS can be seen in Figure 10.3.

10.3.2 Previous works

Before recent advances in deep learning, most previous approaches on the automatic
coral reef classification with underwater images combined classical machine learning
models with feature extraction algorithms [MSS05; SD09; BEK+12; SGG+13]. They
used, in general, an algorithm to extract color features and another one to extract
texture features. Then, they used them to train a classical machine learning model,
like Support Vector Machines in [BEK+12] or a three layer neural network in [MSS05].
Most of them used a single dataset, usually small and containing several non-coral
classes, except for [SGG+13], where the authors designed an algorithm that could
be used with different datasets. They divided their algorithm into steps and at each

98 coral species identification with texture or structure images

(a) ACER (b) APAL (c) CNAT (d) DANT (e) DSTR

(f) GORG (g) MALC (h) MCAV (i) MMEA (j) MONT

(k) PALY (l) SPO (m) SSID (n) TUNI

Figure 10.3: One texture image from each RSMAS class.

10.3 related work on coral classification 99

step several sub-algorithms could be chosen in accordance with the dataset that was
going to be classified.

The authors in [AD17; AD18b; AD18a] proposed three different modifications of
the local binary pattern feature descriptor, and they used the extracted features to
train machine learning models in order to classify several datasets.

In 2015, the author in [Ela15] used CNNs for the first time to resolve this task. He
used a LeNet-5 model, but he still combined it with feature extraction algorithms.
Since then, most works classifying coral images have used CNNs, as they provide
better results and do not need a previous step of feature extraction. The authors in
[MBA+16a] and [MBA+16b] used a VGGnet model and in [MBA+16b] the authors
also combined the features extracted by the CNN model with hand-crafted features,
although the improvement from such custom features was small. In [MBA+16a] they
used the Benthoz15 dataset and in [MBA+16b] they used the MLC dataset.

In [GTL+19], the authors proposed the use of more powerful CNNs to classify
EILAT and RSMAS [Shi17], and they found that ResNet was the best CNN architecture
in both datasets, improving the state-of-the-art results obtained by [SGG+13; AD17;
AD18b] and [AD18a], which were all the works that used EILAT and RSMAS.

The works that used RSMAS and the results they obtained can be seen in Table 10.2.
The highest result is a recall of 99.34%, obtained by [AD18a], but using a held out
test of 10%. The authors in [GTL+19] obtained an accuracy of 98.63% using a five
fold cross validation technique, which means that they were using tests sets of 20%
of the dataset in each partition. Then, they took the mean of the test accuracy on the
five partitions. As a consequence, this result is more stable. Because of this, the best
model for RSMAS, and the one we choose to use in this work, is the one obtained in
[GTL+19].

An extensive review on the classification of coral images using deep learning can
be found in [MBA+17]. However, most of these works used texture datasets whose
images show close-up and very specific patches of the corals, not the whole structure
of them. The present work is different from all the previously cited works in that it
develops an automatic model capable of identifying the species of a coral based on
an input image of either texture or structure.

100 coral species identification with texture or structure images

Table 10.2: Results from previous works on RSMAS. The results of Shihavuddin et al. using a
5 fold cross validation can be found in [GTL+19].

Authors Ref. Metric Result Test method

Brown Mary et al. [AD17] Recall 98.87% 10% held out test

Brown Mary et al. [AD17] Recall 84.9% 25% held out test

Brown Mary et al. [AD18b] Recall 98.1% 10% held out test

Brown Mary et al. [AD18b] Recall 85.72% 25% held out test

Brown Mary et al. [AD18a] Recall 99.34% 10% held out test

Brown Mary et al. [AD18a] Recall 85.8% 25% held out test

Shihavuddin et al. [SGG+13] Accuracy 92.74% 5 fold cross validation

Gómez-Ríos et al. [GTL+19] Accuracy 98.63% 5 fold cross validation

10.4 structurersmas : a new coral structure dataset

In this section we present the new coral dataset of coral structure images we have
built: StructureRSMAS. We have considered the same coral species, nomenclature
and number of classes as in RSMAS. We have downloaded the images from offi-
cial scientific websites, e.g., the Encyclopedia of Life [EOL], the IUCN Red List of
Threatened Species [IUCNa] or the coralpedia of the University of Warwick [CUW].
Few images were available per class.

We have built StructureRSMAS because typical coral pictures often capture the
whole coral body and structure and do not focus only on the texture of its parts. An
ideal classifier should be able to recognize the coral based either on its texture or
structure and with images taken under different conditions, cameras, etc. To develop
such a model we need images that show both texture and structure of the coral
species.

StructureRSMAS contains 409 coral images of variable size but larger than the
ones in RSMAS. Some examples can be seen in Figure 10.4. The dataset, along with
a list of the sources of the images, is available through the following link: http:
//sci2s.ugr.es/CNN-coral-image-classification. In Figure 10.3 and Figure 10.4
we can see the difference between texture and structure images from the same coral
species.

The images in RSMAS and StructureRSMAS were taken with different cameras
and under different conditions. They are both imbalanced, as we show in Table 10.3,

10.4 structurersmas : a new coral structure dataset 101

(a) ACER (b) APAL (c) CNAT (d) DANT

(e) DSTR (f) GORG (g) MALC (h) MCAV

(i) MMEA (j) MONT (k) PALY (l) SPO

(m) SSID (n) TUNI

Figure 10.4: One structure image from each StructureRSMAS class.

102 coral species identification with texture or structure images

Table 10.3: Characteristics of RSMAS and StructureRSMAS. #imgs refers to the number of
images in that class.

Classes #imgs in
RSMAS

#imgs in Structur-
eRSMAS

Acropora Cervicornis (ACER). 109 44

Acropora Palmata (APAL). 77 41

Colpophyllia Natans (CNAT). 57 34

Diadema Antillarum (DANT). 63 20

Diploria Strigosa (DSTR). 24 16

Gorgonians (GORG). 60 18

Millepora Alcicornis (MALC). 22 33

Montastraea Cavernosa (MCAV). 79 38

Meandrina Meandrites (MMEA). 54 30

Montipora spp. (MONT). 28 21

Palythoas Palythoa (PALY). 32 32

Sponge Fungus (SPO). 88 23

Siderastrea Siderea (SSID). 37 36

Tunicates (TUNI). 36 23

since there are classes that contain more images than others, like ACER in RSMAS,
which has 109 images, while MALC has 22 images. The differences are smaller in
StructureRSMAS. The largest difference in this dataset is between ACER, with 44

images, and DSTR, with 16 images.

10.5 a two-level classifier for coral classification using a texture

model and a structure model

We propose the use of a two-level classifier to address the automatic classification
of corals based on either texture or structure images. This classifier is composed of
three models, one used in the first level and the other two used in the second level.
As we show in Figure 10.5, the first level is to determine if the image is a texture or
a structure. Therefore, the model used in this level is a binary classier trained over
the images of RSMAS (texture images) and the images of StructureRSMAS (structure
images) as two separated classes. In the second level, we decide which coral species

10.6 experimental analysis 103

Figure 10.5: The two-level classifier we have developed to classify any coral image, either
texture or structure.

the image belongs to using a texture model, trained over RSMAS, or a structure
model, trained over StructureRSMAS, depending on the output obtained in the first
level. To build our two-level model, at the first level we have developed a binary
texture or structure classification model. At the second level, we have considered
the most accurate texture model from the literature and developed a new structure
classification model using StructureRSMAS.

In particular, for the texture dataset, RSMAS, we have used the state-of-the-art
model proposed in [GTL+19], a ResNet-152 model that used transfer learning from
ImageNet and data augmentation techniques.

For the structure dataset, StructureRSMAS, and the texture or structure binary
classifier, we have evaluated different CNN architectures and configurations, as we
will see in the following section.

In both datasets, we have evaluated the improvement of some image enhancement
techniques before the application of the data augmentation techniques.

10.6 experimental analysis

In this section we describe the process we have used to build the two-level classifier.
First, we describe the experimental framework we have used in all the experiments.

104 coral species identification with texture or structure images

Table 10.4: The set of hyperparameters we have test in the three architectures.

Number of layers Number of epochs Batch size

Inception v3 42

100, 300, 500,

700, 1000, 1300

32, 64,

128

ResNet 50, 152

DenseNet 121, 161

Second, we evaluate different image enhancement techniques in the RSMAS data-
set.Third, we analyse and compare different CNN architectures for StructureRSMAS
and choose the best of them. We also evaluate the image enhancement and data aug-
mentation techniques in this dataset, and choose the best configuration for it.Fourth,
we evaluate and compare the same CNN architectures, and data augmentation tech-
niquesto classify an image into texture or structure using the image enhancement
techniques for both datasets that we found the best for them. Finally, we analyse and
evaluate the performance of the proposed two-level classifier.

10.6.1 Experimental framework

The results shown in this section are obtained using a 5 fold cross validation technique.
The known accuracy metric has been used to compare the performance of the CNNs
and the data augmentation techniques.

For the implementation of Inception, ResNet and DenseNet, we have used Keras
[Cho+15] with Tensorflow [MAP+15] as backend. For Inception, we have used the
model already available in Keras 2.0.4, and we have adapted the code by Yu Felix in
GitHub [Yu17] for ResNet and DenseNet.

To search for the best model for StructureRSMAS and for the decision between
texture and structure, we have evaluated the hyperparameters that we show in
Table 10.4 in a grid search.

Since RSMAS and StructureRSMAS are very small to train the CNNs from scratch,
as we can see in Table 10.3, we have used transfer learning from ImageNet [DDS+09].
That way, we have all the networks with its weights pre-trained on ImageNet. Then,
we have removed the last Fully Connected (FC) layer with 1000 neurons, which
classifies the inputs into ImageNet classes, and we have added two FC layers, the
first with 512 neurons and a ReLU activation and the second with as many neurons
as classes in the dataset we are classifying (14 for StructureRSMAS and 2 for the

10.6 experimental analysis 105

Table 10.5: Description of the evaluated data augmentation techniques.

Data augmenta-
tion technique

Parameter Description

Shift A float
number x

To shift vertically and horizontally the im-
ages by a random fraction of the width or
length, respectively, in [0, x].

Zoom A float
number x

To zoom the images so their width and
length are a random number in [1− x, 1+ x].

Rotation An integer
number x

To rotate the images by a random degree in
[0, x].

Flip True/False If true, randomly choose if the image is hori-
zontally flipped or not.

classifier between RSMAS and StructureRSMAS) and a softmax activation. Lastly, we
have only trained the two FC layers we have added.

Once we have chosen the best CNN model and its best parameters, we test the
following image enhancement techniques: contrast and brightness enhancement
(referred to later as CBE) [PAA+87; XTJ+18], saliency detection [ZMH16; SDB+14]
and deblurring [TXL+18; TGS+18]. Then, we choose the best combination of them
for each dataset and with it, we evaluate data augmentation techniques.We have
evaluated the performance of data augmentation by carrying out experiments with
and without the use of data augmentation techniques. The description of the data
augmentation techniques we have used is in Table 10.5.

10.6.2 Second level: texture model

In this section we evaluate the image enhancement techniques in the RSMAS dataset.
We use the best model and hyperparameters found in [GTL+19] for this dataset:
a ResNet152 model with batch size 32 and 300 epochs for the training process.
The results can be seen in Table 10.6, where CBE refers to contrast and brightness
enhancement. As we can observe in this table, none of the image enhancement
techniques helps to improve the accuracy of the model in RSMAS, though the

106 coral species identification with texture or structure images

Table 10.6: Results obtained for RSMAS using ResNet-152 for each image enhancement
technique. The best accuracy is stressed in bold.

Without en-
hancement

CBE Deblur Saliency Deblur + CBE Deblur + CBE
+ Saliency

Accuracy 96.710 96.575 96.438 79.726 95.342 72.740

differences, if we exclude the saliency method, are similar. We argue that this is
happening because the images in this dataset are already preprocessed. In the case of
the saliency method, we think this is normal as we are loosing all the information in
the background of the images.

As a result, we are not using any image enhancement techniques in this dataset
and thus we are using the best data augmentation technique reported in [GTL+19], a
random zoom of 0.4, which give us an accuracy of 98.356%.

10.6.3 Second level: structure model

To automatically classify any coral image from AUVs, it is necessary to classify
images of entire corals. At this level, we focus on the problem of classifying structure
images before solving the classification of texture and structure images together.
These images are generally larger than the images in RSMAS. To simplify the number
of experiments, we first have chosen the best model to classify the complete images
in StructureRSMAS, among several CNNs models, without using data augmentation.
After that, we have chosen the best model to evaluate the image enhancement methods
and we have chosen the best of them. Once we have the best model and the best
image enhancement method, we evaluate the data augmentation techniques.

The results without data augmentation and without image enhancement, and
the hyperparameters we have used to obtain those results, are shown in Table 10.7.
Similarly to RSMAS, ResNet is the best classifier. Particularly, ResNet-50 achieves the
highest accuracy, although Inception also obtains a competitive accuracy. DenseNet
is the only CNN that does not show a good performance in this problem. As stated
in [GTL+19], this is probably due to the large number of connections in DenseNet,
which makes it more adapted to ImageNet than the rest of the architectures. As a
consequence, it is more difficult to classify a new dataset just by training the last two
layers of the network.

10.6 experimental analysis 107

Table 10.7: Best results obtained for StructureRSMAS using Inception, ResNet-50, ResNet-152,
DenseNet-121 and DenseNet-161, and the set of hyperparameters used to obtain
them, without data augmentation. The best accuracy is stressed in bold.

Inception ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

Accuracy 81.316 83.158 83.158 54.737 55.526

Best batch size 32 32 32 64 32

Best number of epochs 700 300 1300 700 700

Table 10.8: Results obtained for StructureRSMAS using ResNet-50 for each image enhance-
ment technique. The best accuracy is stressed in bold.

Without en-
hancement

CBE Deblur Saliency Deblur + CBE Deblur + CBE
+ Saliency

Accuracy 82.368 83.684 85.000 52.632 83.158 51.358

We observe that the accuracy obtained for StructureRSMAS is lower than the one
obtained for RSMAS. This can be explained by the fact that StructureRSMAS contains
fewer examples than RSMAS, and the images that belong to the same class have very
different characteristics e.g., resolution, angle of view or distance from which the
images are captured. Despite all of this, we achieve a good accuracy, 83.158%.

Next, we have used the ResNet-50 model with its best parameters to test the image
enhancement methods in this dataset. The results we have obtained are showed in
Table 10.8, and we can see that for this dataset it is better to first preprocess the
images by using contrast and brightness enhancement and deblurring. The highest
accuracy with image enhancement, 2.6% higher than without applying any image
enhancement, was obtained by applying the deblurring method alone. While applying
the contrast and brightness enhancement improved the accuracy by only 1.3%. As
a result, we have preprocessed the images in StructureRSMAS with the deblurring
method.

Finally, we have evaluated different data augmentation techniques with the ResNet-
50 classifier, and, for the sake of brevity, the best results can be seen in Table 10.9. They
show that there is no improvement from using data augmentation in this dataset.We
argue that this can be due to the very small size of the dataset, which also affects
even when using data augmentation, as there are few images from which to obtain
new images.

108 coral species identification with texture or structure images

Table 10.9: Best results obtained for StructureRSMAS using ResNet-50 for each data augment-
ation technique. The best accuracy is stressed in bold.

shift = 0.4 flip zoom = 0.4 rotation = 6 flip + rotation = 8

Accuracy 84.211 85.000 83.421 84.737 83.684

Table 10.10: Best results obtained for the texture or structure binary classifier using Incep-
tion, ResNet-50, ResNet-152, DenseNet-121 and DenseNet-161 and the set of
hyperparameters used to obtained them, without data augmentation. The best
accuracy is stressed in bold.

Inception ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

Accuracy 95.495 99.640 99.730 98.920 99.009

Best batch size 64 32 64 32 64

Best number of epochs 300 700 1000 1000 1300

10.6.4 First level: texture or structure binary model

In this section we develop a classifier to distinguish whether an image is a texture
or a structure. To do this, we have joined in one dataset all the images in RSMAS in
one class and all the images in StructureRSMAS, preprocessed with the deblurring
method, in another class. We have followed the same scheme: first, we have chosen
the best model without data augmentation, and then we have evaluated several data
augmentation techniques using the best model.

The results without data augmentation, along with the best hyperparameters,
can be found in Table 10.10. We can see that all the models provide good results
distinguishing textures and structures. This is actually the expected output as the
images in both classes are very dissimilar. In this case the best model is ResNet-152,
achieving an accuracy of 99.730%.

We have evaluated ResNet-152 using different data augmentation techniques. The
ones that have given the best results can be seen in Table 10.11. The improvement is
small as we already had a very good result. Even so, we have obtained an accuracy
of 99.820%. This means that the model is only wrong in two images that can be seen
in Figure 10.6. The first one (a) is a structure image classified as a texture image, and
the second one (b) is a texture classified as a structure.

10.6 experimental analysis 109

Table 10.11: Best results obtained for the texture or structure binary classifier using ResNet-
152 and data augmentation techniques. The best accuracy is stressed in bold.

shift = 0.4 zoom = 0.3 rotation = 4 flip

Accuracy 99.640 99.820 99.460 99.550

(a) MMEA (b) MCAV

Figure 10.6: Coral images misclassified by the texture or structure binary classifier.

The high classification accuracy obtained by this binary classifier opens up the
possibility of using it as a first level model to decide whether the image is a texture
or a structure without losing accuracy in the second level.

10.6.5 Two-level classifier: identification of coral species based on texture or structure images

At this point, we already have the three models needed to build the two-level
classifier for the classification of coral species based on either texture images or
structure images. The first level of the classifier is to use the model that distinguishes
between textures and structures, which we built in the previous section, to classify
the input image in a texture image or a structure image. The second level of the
two-level classifier is to classify the image into one of the coral species. To do this, the
image is given to the RSMAS classifier or the StructureRSMAS classifier depending
on the output of the first level.

We have evaluated the two-level classifier individually on structure images, on
texture images and on structure images and texture images. The results can be seen in
Table 10.12. It is important to note that, in each partition of the 5 fold cross validation,
we are testing the two-level classifier with the same images that we used to test
the StructureRSMAS model, the RSMAS model and the texture or structure binary

110 coral species identification with texture or structure images

Table 10.12: Results obtained using the two-level classifier over the test set from RSMAS ∪
StructureRSMAS, RSMAS and StructureRSMAS.

RSMAS ∪ StructureRSMAS RSMAS StructureRSMAS

Accuracy 93.874 98.356 85.263

classifier. That is, to test the two-level classifier we are not using images that were
used to train any of its components.

Thanks to the high accuracy of the classifier in the first level, the accuracies obtained
by the two-level classifier when we evaluate it only with texture images and only
with structure images are very similar to the ones obtained by the RSMAS classifier
and the StructureRSMAS classifier, respectively. This means that we classify textures
and structures separately without decreasing the classification accuracy obtained by
the texture classifier alone and the structure classifier alone. In fact, the accuracy for
StructureRSMAS is now slightly better, which means that the RSMAS classifier in the
second level is classifying correctly the image that are misclassified in the first level
as a texture.

When we test the two-level classifier with texture and structure images, the accuracy
is 93.874%, which is higher than the weighted arithmetic mean, taking into account
the number of images in each dataset, between the obtained accuracy using the
RSMAS model and the obtained accuracy using the StructureRSMAS model, which is
93.707%. Therefore, we have built a robust classifier that obtains a very good accuracy
classifying any type of coral image.

10.7 conclusions

The problem of classifying together structure and texture underwater coral images
is a complicated task for three reasons: 1) the underwater images involve lightning
problems and camera focusing problems due to the water, along with partial occlusion
of marine animals; 2) different coral species look very similar and some species coexist
together; and 3) there are not available coral structure datasets, and coral texture and
structure images are very different from each other, no matter that they belong to the
same class.

We have resolved this last problem by creating a coral structure dataset called
StructureRSMAS, and we have tackled the classification of any coral image by using

10.7 conclusions 111

CNNs. Particularly, we have used one of the newest and most powerful CNNs,
ResNet, which have been the one that have obtained better accuracies in the texture
dataset, RSMAS, and the structure dataset, StructureRSMAS. We have also used
image enhancement methods in the two datasets, data augmentation techniques
and transfer learning from ImageNet to improve our results.We have resolved this
classification building a two-level classifier composed of three models: the best
model known model for RSMAS, the best model we have developed in this work for
StructureRSMAS and a model to distinguish between a texture image and a structure
image, also developed in this work.

We have observed that data augmentation does not bring much benefit when
classifying structure images alone, and we argue that this happens because Structur-
eRSMAS is small.

The two-level classifier we have developed in this work first identifies if the
input image is a texture or a structure and then uses one of two specialized CNNs,
depending on whether the image is a texture or a structure. It is able to correctly
classify 93.874%of the images in RSMAS ∪ StructureRSMAS.

acknowledgments

This work was partially supported by the Spanish Ministry of Science and Technology
under the project TIN2017-89517-P. Siham Tabik was supported by the Ramón y Cajal
Program (RYC-2015-18136). Anabel Gómez-Ríos was supported by the FPU Program
998758-2016. The NVIDIA Titan Xp used for this research was donated by the NVIDIA
Corporation.

references

[AD18a] N. Ani Brown Mary and D. Dejey, ‘Coral reef image/video classification
employing novel octa-angled pattern for triangular sub region and
pulse coupled convolutional neural network (pccnn)’, Multimedia Tools
and Applications, Jun. 2018.

[AD18b] N. Ani Brown Mary and D. Dejey, ‘Classification of coral reef submarine
images and videos using a novel z with tilted z local binary pattern’,
Wireless Personal Communications, vol. 98, no. 3, pp. 2427–2459, Feb. 2018.

112 coral species identification with texture or structure images

[AD17] N. Ani Brown Mary and D. Dharma, ‘Coral reef image classification
employing improved ldp for feature extraction’, Journal of Visual Com-
munication and Image Representation, vol. 49, pp. 225–242, 2017.

[BBA16] E. Basaeed, H. Bhaskar and M. Al-Mualla, ‘Supervised remote sensing
image segmentation using boosted convolutional neural networks’,
Knowledge-Based Systems, vol. 99, pp. 19–27, 2016.

[BEK+12] O. Beijbom, P. J. Edmunds, D. I. Kline, B. G. Mitchell and D. Kriegman,
‘Automated annotation of coral reef survey images’, in Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012,
pp. 1170–1177.

[Cho+15] F. Chollet et al., Keras, Accessed on 23-01-2019, 2015.

[CUW] Coralpedia of the univerisity of warwick, http://coralpedia.bio.warwick.
ac.uk/en, Accessed on 23-01-2019.

[DDS+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A
large-scale hierarchical image database’, in Computer Vision and Pattern
Recognition (CVPR), 2009. IEEE Conference on, IEEE, 2009, pp. 248–255.

[Ela15] M. Elawady, ‘Sparse coral classification using deep convolutional neural
networks’, arXiv preprint arXiv:1511.09067, 2015.

[EOL] Encyclopedia of life, http://eol.org/, Accessed on 23-01-2019.

[GTL+19] A. Gómez-Ríos, S. Tabik, J. Luengo, A. Shihavuddin, B. Krawczyk and
F. Herrera, ‘Towards highly accurate coral texture images classification
using deep convolutional neural networks and data augmentation’,
Expert Systems with Applications, vol. 118, pp. 315–328, 2019.

[GBC16] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[HZR+16] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image
recognition’, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2016.

[HLV+17] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ‘Densely
connected convolutional networks’, in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017, pp. 2261–2269.

[IUCNa] Iucn red list of threatened species, http://www.iucnredlist.org/, Ac-
cessed on 23-01-2019.

10.7 conclusions 113

[IUCNb] Iucn red list table of number of threatened species by major groups of organisms,
Available from: http://cmsdocs.s3.amazonaws.com/summarystats/
2017-3_Summary_Stats_Page_Documents/2017_3_RL_Stats_Table_1.

pdf, Accessed on 22-01-2019.

[KSH12] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification
with deep convolutional neural networks’, in Advances in Neural Inform-
ation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou and
K. Q. Weinberger, Eds., Curran Associates, Inc., 2012, pp. 1097–1105.

[LBB+98] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning
applied to document recognition’, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[LYJ+17] G. Liu, Z. Yin, Y. Jia and Y. Xie, ‘Passenger flow estimation based on con-
volutional neural network in public transportation system’, Knowledge-
Based Systems, vol. 123, pp. 102–115, 2017.

[MBA+16a] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G.
Kendrick and R. Fisher, ‘Automatic annotation of coral reefs using deep
learning’, in OCEANS 2016 MTS/IEEE Monterey, IEEE, 2016, pp. 1–5.

[MBA+16b] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G.
Kendrick and R. Fisher, ‘Coral classification with hybrid feature repres-
entations’, in Image Processing (ICIP), 2016 IEEE International Conference
on, IEEE, 2016, pp. 519–523.

[MBA+17] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey,
G. Kendrick and R. B. Fisher, ‘Chapter 21 - deep learning for coral
classification’, in Handbook of Neural Computation, P. Samui, S. Sekhar
and V. E. Balas, Eds., Academic Press, 2017, pp. 383–401.

[MSS05] M. S. A. C. Marcos, M. N. Soriano and C. A. Saloma, ‘Classification
of coral reef images from underwater video using neural networks’,
Optics express, vol. 13, no. 22, pp. 8766–8771, 2005.

[MAP+15] Martín Abadi et al., TensorFlow: Large-scale machine learning on heterogen-
eous systems, 2015.

[PRJ+08] O. Pizarro, P. Rigby, M. Johnson-Roberson, S. B. Williams and J. Colquhoun,
‘Towards image-based marine habitat classification’, in OCEANS 2008,
IEEE, 2008, pp. 1–7.

114 coral species identification with texture or structure images

[PAA+87] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz,
T. Greer, B. ter Haar Romeny, J. B. Zimmerman and K. Zuiderveld,
‘Adaptive histogram equalization and its variations’, Computer vision,
graphics, and image processing, vol. 39, no. 3, pp. 355–368, 1987.

[RDS+15] O. Russakovsky et al., ‘ImageNet Large Scale Visual Recognition Chal-
lenge’, International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[SP16] J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics: from
air pollution to climate change. John Wiley & Sons, 2016.

[SGG+13] A. Shihavuddin, N. Gracias, R. Garcia, A. C. Gleason and B. Gintert,
‘Image-based coral reef classification and thematic mapping’, Remote
Sensing, vol. 5, no. 4, pp. 1809–1841, 2013.

[Shi17] A. Shihavuddin, Coral reef dataset, v2. Mendeley data https://data.

mendeley.com/datasets/86y667257h/2, Accessed on 12-02-2018, 2017.

[SZ14] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks for
large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.

[SDB+14] J. T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, ‘Striving
for simplicity: The all convolutional net’, arXiv preprint arXiv:1412.6806,
2014.

[SD09] M. D. Stokes and G. B. Deane, ‘Automated processing of coral reef
benthic images’, Limnol. Oceanogr.: Methods, vol. 7, no. 157, pp. 157–168,
2009.

[SLJ+15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, ‘Going deeper with convolutions’, in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[SVI+16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, ‘Rethinking
the inception architecture for computer vision’, in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun. 2016.

[TXL+18] H. Tang, B. Xiao, W. Li and G. Wang, ‘Pixel convolutional neural
network for multi-focus image fusion’, Information Sciences, vol. 433,
pp. 125–141, 2018.

10.7 conclusions 115

[TGS+18] X. Tao, H. Gao, X. Shen, J. Wang and J. Jia, ‘Scale-recurrent network
for deep image deblurring’, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8174–8182.

[XTJ+18] B. Xiao, H. Tang, Y. Jiang, W. Li and G. Wang, ‘Brightness and contrast
controllable image enhancement based on histogram specification’,
Neurocomputing, vol. 275, pp. 2798–2809, 2018.

[XWB+18] B. Xiao, K. Wang, X. Bi, W. Li and J. Han, ‘2d-lbp: An enhanced local
binary feature for texture image classification’, IEEE Transactions on
Circuits and Systems for Video Technology, 2018.

[Yu17] F. Yu, Resnet and densenet cnns in keras, https://github.com/flyyufelix/
cnn_finetune, Accessed on 23-01-2019, 2017.

[ZMH16] D. Zhang, D. Meng and J. Han, ‘Co-saliency detection via a self-paced
multiple-instance learning framework’, IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 5, pp. 865–878, 2016.

11
C O V I D G R D ATA S E T A N D C O V I D - S D N E T M E T H O D O L O G Y F O R
P R E D I C T I N G C O V I D - 1 9 B A S E D O N C H E S T X - R AY I M A G E S

Tabik, S., Gómez-Ríos, A., Martín-Rodríguez, J. L., Sevillano-García, I., Rey-Area,
M., Charte, D., Guirado, E., Suárez, J. L., Luengo, J., Valero-González, M. A., García-
Villanova, P., Olmedo-Sánchez, E. & Herrera, F. (2020). COVIDGR dataset and COVID-
SDNet methodology for predicting COVID-19 based on chest X-ray images. IEEE
journal of biomedical and health informatics, 24(12), 3595-3605.
DOI: https://doi.org/10.1109/JBHI.2020.3037127

• Status: Published

• Impact Factor (JCR 2020): 5.772

• Subject Category: Computer Science, Information Systems. Ranking 28/161

(Q1)

• Subject Category: Computer Science, Interdisciplinary Applications. Ranking
17/111 (Q1)

• Subject Category: Mathematical And Computational Biology. Ranking 5/58

(Q1)

• Subject Category: Medical Informatics. Ranking 4/30 (Q1)

117

118 covidgr dataset and covid-sdnet methodology

C O V I D G R D ATA S E T A N D C O V I D - S D N E T M E T H O D O L O G Y F O R
P R E D I C T I N G C O V I D - 1 9 B A S E D O N C H E S T X - R AY I M A G E S

Siham Tabika, Anabel Gómez-Ríosa, José Luis Martín-Rodríguezb, Iván
Sevillano-Garcíaa, Manuel Rey-Areac, David Chartea, Emilio Guiradod, Juan Luis

Suáreza, Julián Luengoa, María Ángeles García-Villanovab, Paloma García-Villanovab,
Eulalia Olmedo-Sánchezb, Francisco Herreraa

a Andalusian Research Institute in Data Science and Computational Intelligence,
Dept. of Computer Science and Artificial Intelligence, University of Granada,
Granada, Spain
b Hospital Universitario Clínico San Cecilio de Granada, Spain
c atlanTTic Research Center for Telecommunication Technologies, University of Vigo,
Galicia, Spain
d Multidisciplinary Institute for Environment Studies “Ramón Margalef”, University
of Alicante, Spain

abstract

Currently, Coronavirus disease (COVID-19), one of the most infectious diseases in the
21st century, is diagnosed using RT-PCR testing, CT scans and/or Chest X-Ray (CXR)
images. CT (Computed Tomography) scanners and RT-PCR testing are not available
in most medical centers and hence in many cases CXR images become the most
time/cost effective tool for assisting clinicians in making decisions. Deep learning
neural networks have a great potential for building COVID-19 triage systems and
detecting COVID-19 patients, especially patients with low severity. Unfortunately,
current databases do not allow building such systems as they are highly hetero-
geneous and biased towards severe cases. This paper is three-fold: (i) we demystify
the high sensitivities achieved by most recent COVID-19 classification models, (ii)
under a close collaboration with Hospital Universitario Clínico San Cecilio, Granada,
Spain, we built COVIDGR-1.0, a homogeneous and balanced database that includes
all levels of severity, from normal with Positive RT-PCR, Mild, Moderate to Severe.
COVIDGR-1.0 contains 426 positive and 426 negative PA (PosteroAnterior) CXR
views and (iii) we propose COVID Smart Data based Network (COVID-SDNet) meth-
odology for improving the generalization capacity of COVID-classification models.

11.1 introduction 119

Our approach reaches good and stable results with an accuracy of 97.72% ± 0.95%,
86.90% ± 3.20%, 61.80% ± 5.49% in severe, moderate and mild COVID-19 severity
levels. Our approach could help in the early detection of COVID-19. COVIDGR-1.0
along with the severity level labels are available to the scientific community through
this link https://dasci.es/es/transferencia/open-data/covidgr/.

Keywords: COVID-19, Smart Data, Convolutional Neural Networks

11.1 introduction

In the last months, the world has been witnessing how COVID-19 pandemic is
increasingly infecting a large mass of people very fast everywhere in the world. The
trends are not clear yet but some research confirm that this problem may persist until
2024 [KTG+20]. Besides, prevalence studies conducted in several countries reveal that
a tiny proportion of the population have developed antibodies after exposure to the
virus, e.g., 5% in Spain 1. This means that frequently a large number of patients will
need to be assessed in small time intervals by few number of clinicians and with very
few resources.

In general, COVID-19 diagnosis is carried out using at least one of these three tests.

• Computed Tomography (CT) scans-based assessment: it consists in analyzing
3D radiographic images from different angles. The needed equipment for this
assessment is not available in most hospitals and it takes more than 15 minutes
per patient in addition to the time required for CT decontamination 2.

• Reverse Transcription Polymerase Chain Reaction (RT-PCR) test: it detects the
viral RNA from sputum or nasopharyngeal swab [WLF+20]. It requires specific
material and equipment, which are not easily accessible and it takes at least 12

hours, which is not desirable as positive COVID-19 patients should be identified
and tracked as soon as possible. Some studies found that RT-PCR results from
several tests at different points from the same patients were variable during the
course of the illness producing a high false-negative rate [LYL+20]. The authors

1 https://english.elpais.com/society/2020-05-14/antibody-study-shows-just-5-of-spaniards-have-
contracted-the-coronavirus.html

2 //www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-
Radiography-and-CT-for-Suspected-COVID19-Infection

120 covidgr dataset and covid-sdnet methodology

suggested that RT-PCR test should be combined with other clinical tests such
as CT.

• Chest X-Ray (CXR): The required equipment for this assessment are less cum-
bersome and can be lightweight and transportable. In general, this type of
resources is more available than the required for RT-PCR and CT-scan tests. In
addition, CXR test takes about 15 seconds per patient [WLF+20], which makes
CXR one of the most time/cost effective assessment tools.

Few recent studies provide estimates on expert radiologists sensitivity in the
diagnosis of COVID-19 based on CT scans, RT-PCR and CXR. A study on a set of
51 patients with chest CT and RT-PCR essay performed within 3 days, reported
a sensitivity in CT of 98% compared with RT-PCR sensitivity of 71% [FZX+20]. A
different study on 64 patients (26 men, mean age 56 ± 19 years) reported a sensitivity
of 69% for CXR compared with 91% for initial RT-PCR [WLF+20]. According to an
analysis of 636 ambulatory patients [WER+20], most patients presenting to urgent
care centers with confirmed coronavirus disease 2019 have normal or mildly abnormal
findings on CXR. Only 58.3% of these patients are correctly diagnosed by the expert
eye.

In a recent study [WLF+20], authors proposed simplifying the quantification of
the level of severity by adapting a previously defined Radiographic Assessment of
Lung Edema (RALE) score [WZK+18] to COVID-19. This new score is calculated by
assigning a value between 0-4 to each lung depending on the extent of visual features
such as, consolidation and ground glass opacities, in the four parts of each lung as
depicted in Fig. 11.1. Based on this score, experts can identify the level of severity
of the infection among four severity stages, Normal 0, Mild 1-2, Moderate 3-5 and
Severe 6-8. In practice, a patient classified by expert radiologist as Normal can have
positive RT-PCR. We refer to these cases as Normal-PCR+. Expert annotation adopted
in this work is based in this score.

Automated image analysis via Deep learning (DL) models have a great potential
to optimize the role of CXR images for a fast diagnosis of COVID-19. A robust and
accurate DL model could serve as a triage method and as a support for medical
decision making. An increasing number of recent works claim achieving impressive
sensitivities > 95%, far higher than expert radiologists. These high sensitivities are
due to the bias in the most used COVID-19 dataset, COVID-19 Image Data Collection
[CMD20]. This dataset includes a very small number of COVID-19 positive cases,
coming from highly heterogeneous sources (at least 15 countries) and most cases

11.1 introduction 121

Figure 11.1: The stratification of radiological severity of COVID-19. Examples of how RALE
index is calculated.

122 covidgr dataset and covid-sdnet methodology

are severe patients, an issue that drastically reduces its clinical value. To populate
Non-COVID and Healthy classes, AI researchers are using CXR images from diverse
pulmonary disease repositories. The obtained models will have no clinical value as
well since they will be unable to detect patients with low and moderate severity,
which are the target of a clinical triage system. In view of this situation, there is still
a huge need for higher quality datasets built under the same clinical protocol and
under a close collaboration with expert radiologists.

Multiple studies have proven that higher quality data ensures higher quality
models. The concept of Smart Data refers to the process of converting raw data into
higher quality data with higher concentration of useful information [LGR+20]. Smart
data includes all pre-processing methods that improve value and veracity of data.
Examples of these methods include noise elimination, data-augmentation [TPH+17]
and data transformation [RGT+20] among other techniques.

In this work, we designed a high clinical quality dataset, named COVIDGR-1.0
that includes four levels of severity, Normal-PCR+, Mild, Moderate and Severe.
We identified these four severity levels from a recent COVID-19 radiological study
[WLF+20]. We also propose COVID Smart Data based Network (COVID-SDNet)
methodology. It combines segmentation, data-augmentation and data transformations
together with an appropriate Convolutional Neural Network (CNN) for inference.

The contributions of this paper can be summarized as follows:

• We analyze reliability, potential and limitations of the most used COVID-19

CXR datasets and models.

• From a data perspective, we provide the first public dataset, called COVIDGR-
1.0, that quantifies COVID-19 in terms of severity levels, normal, mild, moderate
and severe, with the aim of building triage systems with high clinical value.

• From a pre-processing perspective, we combined several methods. To elimin-
ate irrelevant information from the input CXR images, we used a new pre-
processing method called segmentation-based cropping. To increase discrimina-
tion capacity of the classification model, we used a class-inherent transformation
method inspired by GANs.

• From a post-processing perspective, we proposed a new inference process
that fuses the predictions of the four transformed classes obtained by the
class-inherent transformation method to calculate the final prediction.

11.2 related works 123

• From a global perspective, we designed a novel methodology, named COVID-
SDNet, with a high generalization capacity for COVID-19 classification based
on CXR images. COVID-SDNet combines segmentation, data-transformation,
data-augmentation, and a suitable CNN model together with an inference
approach to get the final prediction.

Experiments demonstrate that our approach reaches good and stable results especially
in moderate and severe levels, with 97.72% ± 0.95% and 86.90% ± 3.20% respectively.
Lower accuracies were obtained in mild and normal-PCR+ severity levels with
61.80% ± 5.49% and 28.42% ± 2.58%, respectively.

This paper is organized as follows: A review of the most used datasets and COVID-
19 classification approaches is provided in Section 11.2. Section 11.3 describes how
COVIDGR-1.0 is built and organized. Our approach is presented in Section 11.4.
Experiments, comparisons and results are provided in Section 11.5. The inspection of
the model’s decision using heatmaps is provided in Section 11.6 and the conclusions
are pointed out in Section 12.9.

11.2 related works

The last months have known an increasing number of works exploring the potential
of deep learning models for automating COVID-19 diagnosis based on CXR images.
The results are promising but still too much work needs to be done at the level of data
and models design. Given the potential bias in this type of problems, several studies
include explication methods to their models. This section analyzes the advantages
and limitations of current datasets an models for building automatic COVID-19

diagnosis systems with and without decision explication.

11.2.1 Datasets

There does not exist yet a high quality collection of CXR images for building COVID-
19 diagnosis systems of high clinical value. Currently, the main source for COVID-
19 class is COVID-19 Image Data Collection [CMD20]. It contains 76 positive and
26 negative PA views. These images were obtained from highly heterogeneous
equipment from all around the world. Another example of COVID-19 dataset is
Figure-1-COVID-19 Chest X-ray Dataset Initiative [Chu20]. To build Non-COVID

124 covidgr dataset and covid-sdnet methodology

Table 11.1: A brief description of COVIDx dataset [CMD20] (only PA views are counted).

Version Normal(healthy) Pneumonia COVID-19

1.0 1,583 4,273 (Bacterial+viral) 76

2.0 8,066 8,614 190

classes, most studies are using CXR from one or multiple public pulmonary disease
data-sets. Examples of these repositories are:

• RSNA Pneumonia CXR challenge dataset on Kaggle [RSNA19].

• ChestX-ray8 dataset [WPL+17].

• MIMIC-CXR dataset [JPG+19].

• PadChest dataset [BPS+20].

For instance, COVIDx 1.0 [WW20a] was built by combining three public datasets:
(i) COVID-19 Image Data Collection [CMD20], (ii) Figure-1-COVID- 19 Chest X-ray
Dataset Initiative [Chu20] and (iii) RSNA Pneumonia Detection Challenge dataset
[RSNA19]. COVIDx 2.0 was built by re-organizing COVIDx 1.0 into three classes,
Normal (healthy), Pneumonia and COVID-19, using 201 CXR images for COVID
class, including PA(PosteroAnterior) and AP(AnteroPosterior) views (see Table 11.1).
Notice that for a correct learning front view (PA) and back view (AP) cannot be
mixed in the same class.

Although the value of these datasets is unquestionable as they are being useful
for carrying out first studies and reformulations, they do not guarantee useful triage
systems for the next reasons. It is not clear what annotation protocol has been followed
for constructing the positive class in COVID-19 Image Data Collection. The included
data is highly heterogeneous and hence DL-models can rely on other aspects than
COVID visual features to differentiate between the involved classes. This dataset does
not provide a representative spectrum of COVID-19 severity levels, most positive
cases are of severe patients [KEG+20]. In addition, an interesting critical analysis of
these datasets has shown that CNN models obtain similar results with and without
eliminating most of the lungs in the input X-Ray images [MN20], which confirms
again that there is a huge need of COVID-19 datasets with high clinical value.

11.2 related works 125

Table 11.2: Summary of related works that analyze variations of COVIDx with CNN.
Ref. Classes Datasets Model Partition Sens. Acc.

[WW20a] Normal, Pneumonia,
COVID

COVIDx 1.0 COVIDNet 98% - 2% 87.1% 92.6%

[AHN+20] Normal, COVID COVIDx 1.0 COVID-CAPS 98% - 2% 90% 95.7%

[OTY+20]
No-Findings,
COVID

[CMD20] + [WPL+17] DarkCovidNet
5-FCV 90.65% 98.08%

No-Findings, Pneu-
monia, COVID

5-FCV 97.9% 87.02%

[KDR+20] Normal, Pneumonia,
COVID

COVIDx 2.0 + [RSNA19] VGG-19 +
DenseNet-161

70% - 30% 93% 96.77%

[GT20] Normal, Bacterial,
Viral, COVID

[CMD20] + [RSNA19] Bayesian Res-
Net50V2

80% - 20% 85.71% 89.82%

[AM20] Normal, Pneumonia,
COVID

[CMD20] + [RSNA19] + other sources MobileNet 10-FCV 98.66% 96.78%

Table 11.3: A brief summary of COVIDGR-1.0 dataset. All samples in COVIDGR 1.0 are
segmented CXR images considering only PA view.

Dataset Class #images women men #img. per severity level

COVIDGR-1.0 Negative 426 239 187

COVID-19 426 190 236 Normal-PCR+: 76

Mild: 100

Moderate: 171

Severe: 79

Our claim is that the design of a high quality dataset must be done under a close
collaboration between expert radiologists and AI experts. The annotations must follow
the same protocol and representative numbers of all levels of severity, especially Mild
and Moderate levels, must be included.

11.2.2 DL classification models

Existing related works are not directly comparable as they consider different combin-
ations of public data-sets and different experimental setup. A brief summary of these
works is provided in Table 11.2.

126 covidgr dataset and covid-sdnet methodology

The most related studies to ours as they proposed different models to the typical
ones are [WW20a] and [AHN+20]. In [WW20a], the authors designed a deep network,
called COVIDNet. They affirmed that COVIDNet reaches an overall accuracy of
92.6%, with 97.0% sensitivity in Normal class, 90.0% in Non-COVID-19 and 87.1%
in COVID-19. The authors of a smaller network, called COVID-CAPS [AHN+20],
also claim that their model achieved an accuracy of 98.7%, sensitivity of 90%, and
specificity of 95.8%. These results look too impressive when compared to expert
radiologist sensitivity, 69%. This can be explained by the fact that the used dataset is
biased to severe COVID cases [KEG+20]. In addition, the performed experiments in
both cited works are not statistically reliable as they were evaluated on one single
partition. The stability of these models, in terms of standard deviation, has not been
reported.

11.2.3 DL classification models with explanation approaches

Several interesting explanations were proposed to help inspect the predictions of DL-
models ([GT20; KDR+20]) although all their classification models were trained and
validated on variations of COVIDx. The authors in [KDR+20] first use an ensemble
of two CNN networks to predict the class of the input image, as Normal, Pneumonia
or COVID. Then highlight class-discriminating regions in the input CXR image
using gradient-guided class activation maps (Grad-CAM++) and layer-wise relevance
propagation (LRP). In [GT20], the authors proposed explaining the decision of the
classification model to radiologists using different saliency map types together with
uncertainty estimations (i.e., how certain is the model in the prediction).

11.3 covidgr-1 .0 : data acquisition, annotation and organization

Instead of starting with an extremely large and noisy dataset, one can build a small
and smart dataset then augment it in a way it increases the performance of the model.
This approach has proven effective in multiple studies. This is particularly true in the
medical field, where access to data is heavily protected due to privacy concerns and
costly expert annotation.

Under a close collaboration with four highly trained radiologists from Hospital
Universitario Clínico San Cecilio, Granada, Spain, we first established a protocol
on how CXR images are selected and annotated to be included in the dataset. A

11.4 covid-sdnet methodology 127

CXR image is annotated as COVID-19 positive if both RT-PCR test and expert
radiologist confirm that decision within less than 24 hours. CXR with positive PCR
that were annotated by expert radiologists as Normal are labeled as Normal-PCR+.
The involved radiologists annotated the level of severity of positive cases based on
RALE score as: Normal-PCR+, Mild, Moderate and Severe.

COVIDGR-1.0 is organized into two classes, positive and negative. It contains 852

images distributed into 426 positive and 426 negative cases, more details are provided
in Table 11.3. All the images were obtained from the same equipment and under the
same X-ray regime. Only PosteriorAnterior (PA) view is considered. COVIDGR-1.0
along with the severity level labels are available to the scientific community through
this link: https://dasci.es/es/transferencia/open-data/covidgr/.

11.4 covid-sdnet methodology

In this section, we describe COVID-SDNet methodology in detail, covering pre-
processing to produce smart data, including segmentation and data transformation
for increasing discrimination between positive and negative classes, combined with a
deep CNN for classification.

One of the pieces of COVID-SDNet is the CNN-based classifier. We have selected
Resnet-50 initialized with ImageNet weights for a transfer learning approach. To
adapt this CNN to our problem, we have removed the last layer of the net and added
a 512 neurons layer with ReLU activation and a two or four neurons layer (according
to the considered number of classes) with softmax activation.

Let X be the set of n images and K the total number of classes. Each image xi ∈ X
has a true label yi with i = 1, 2, . . . , n. The softmax function computes the probability
that an image belongs to class k with k = 1, . . . , K. Let w = (w1, . . . , wK) be the output
of the last fully connected layer before the softmax activation is applied. Then, this
function is defined as: softmax : RK → [0, 1]K,

softmax(w)j =
exp(wj)

∑K
k=1 exp(wk)

.

Let ŷi be the class prediction of the network for the image xi, then ŷi = argmax(softmax(w)),
where w is the output vector of the last layer before softmax is applied for the input
xi.

All the layers of the network were fine-tuned. We used a batch size of 16 and SGD
as optimizer.

128 covidgr dataset and covid-sdnet methodology

Figure 11.2: Flowchart of the proposed COVID-SDNet methodology.

11.4 covid-sdnet methodology 129

(a) Input image (b) The smallest rectangle
that delimits the left and
right segmented lungs is
calculated

(c) 2.5% of pixels are added
to the left, right, up and
down sides of the rect-
angle then the final rect-
angle is cropped

Figure 11.3: The segmentation-based cropping pre-processing applied to the input X-ray
image

The main stages of COVID-SDNet are three, two associated to pre-processing for
producing quality data (smart data stages) and the learning and inference process. A
flowchart of COVID-SDNet is depicted in Fig. 11.2.

1. Segmentation-based cropping: Unnecessary information elimination

Different CXR equipment brands include different extra information about the
patient in the sides and contour of CXR images. The position and size of the
patient may also imply the inclusion of more parts of the body, e.g., arms, neck,
stomach. As this information may alter the learning of the classification model,
first, we segment the lungs using the U-Net segmentation model provided in
([Min20]), pre-trained on Tuberculosis Chest X-ray Image datasets [JCA+14]
and RSNA Pneumonia CXR challenge dataset [RSNA19]. Then, we calculate
the smallest rectangle that delimits the left and right segmented-lungs. Finally,
to avoid eliminating useful information, we add 2.5% of pixels to the left, right,
up and down sides of the rectangle. The resulting rectangle is cropped. An
illustration with example of this pre-processing is shown in Fig. 11.3.

2. Class-inherent transformations Network

130 covidgr dataset and covid-sdnet methodology

(a) Original Negative (b) Negative transf. (c) Positive transf.

Figure 11.4: Class-inherent transformations applied to a negative sample. a) Original negative
sample; b) Negative transformation; c) Positive transformation

To increase the discrimination capacity of the classification model, we used
FuCiTNet [RGT+20], a Class-inherent transformations (CiT) Network inspired
by GANs (Generative Adversarial Networks). This transformation method is
actually an array of two generators GP and GN, where P refers to the positive
class and N refers to the negative class. GP learns the inherent-class transforma-
tions of the positive class P and GN learns the inherent-class transformations of
the negative class N. In other words, GP learns the transformations that bring
an input image from its own k domain, with k ∈ {P, N}, to the P class domain.
Similarly, GN learns the transformations that bring the input image from its k
space, with k ∈ {P, N}, to the N class space. The classification loss is introduced
in the generators to drive the learning of each specific k-class transformations.
That is, each generator is optimized based on the following loss function:

Lgenk = lMSE + 0.006 · lPerceptual + λ · lCE(y == k) (11.1)

Where lMSE is a pixel-wise Mean Square Error, lPerceptual is a perception Mean
Square Error and lCE is the classifier loss. The weighted factor λ indicates how
much the generator must change its outcome to suit the classifier. More details
about these transformation networks can be found in [RGT+20].

The architecture of the generators consists of 5 identical residual blocks. Each
block has two convolutional layers with 3 × 3 kernels and 64 feature maps
followed by batch-normalization layers and Parametric ReLU as activation
function. The last residual block is followed by a final convolutional layer which

11.4 covid-sdnet methodology 131

reduces the output image channels to 3 to match the input’s dimensions. The
classifier is a ResNet-18 which consists of an initial convolutional layer with
7 × 7 kernels and 64 feature maps followed by a 3 × 3 max pool layer. Then,
4 blocks of two convolutional layers with 3 × 3 kernels with 64, 128, 256 and
512 feature maps respectively followed by a 7 × 7 average pooling and one
fully connected layer which outputs a vector of N elements. ReLU is used as
activation function.

Once the generators learn the corresponding transformations, the dataset is
processed using GP and GN. Two pair of images (x+i , x−i) will be obtained from
each input image xi, i = 1, . . . , n, where x+i and x−i are respectively the positively
and negatively transformed images of xi. Note that, once the entire dataset is
processed, we have four classes (P+, P−, N+, N−) instead the original P and N
classes. Let yi be the class of xi, yi ∈ {P, N}. If yi = P, GP and GN will produce
the positive transformation x+i with y+i = P+ and the negative transformation
x−i with y−i = P−, respectively. If yi = N, GP and GN will produce the positive
transformation x+i with y+i = N+ and the negative transformation x−i with
y−i = N−, respectively. Fig. 11.4 illustrates with example the transformations
applied by GN and GP. Notice that these transformations are not meant to be
interpretable by the human eye but rather help the classification model better
distinguish between the different classes.

3. Learning and inference based on the fusion of CNN twins

The CNN classification model described above in this section (Resnet-50) is
trained to predict the new four classes: P+, P−, N+, N−. The output of the
network (after softmax is applied) for each transformed image associated to
the original one is a vector θ = (θP+, θP−, θN+, θN−), where θj is the prob-
ability of the transformed image to belong to class j ∈ {P+, P−, N+, N−}.
Herein, we propose an inference process to fuse the output of the two trans-
formed images x+i and x−i to predict the label of the original image xi. In
this way, for each pair (x+i , x−i), the prediction of the original image ŷi will

be either P or N. Let ŷ+i = argmax θ = argmax (θP+, θP−, θN+, θN−) and

ŷ−i = argmax ψ = argmax (ψP+, ψP−, ψN+, ψN−) be the ResNet-50 predictions
for x+i and x−i respectively. Then:

a) If ŷ+i = N+ and ŷ−i = N−, then ŷi = N.

132 covidgr dataset and covid-sdnet methodology

b) If ŷ+i = P+ and ŷ−i = P−, then ŷi = P.

c) If none of the above applies, then

ŷi =

{
N if max(θNj, ψNj) > max(θPj, ψPj), j ∈ {+,−}
P otherwise .

Experimentally, we used a batch size of 16 and SGD as optimizer.

11.5 experiments and results

In this section we (1) provide all the information about the used experimental setup,
(2) evaluate two state-of-the-art COVID classification models and FuCiTNet alone
[RGT+20] on our dataset then, analyze (3) the impact of data pre-processing and (4)
Normal-PCR+ severity level on our approach.

11.5.1 Experimental setup

Due to the high variations between different executions, we performed 5 different 5

fold cross validations in all the experiments. Each experiment uses 80% of COVIDGR-
1.0 for training and the remaining 20% for testing. To choose when to stop the training
process, we used a random 10% of each training set for validation. In each experiment,
a proper set of data-augmentation techniques is carefully selected. All results, in
terms of sensitivity, specificity, precision, F1 and accuracy, are presented using the
average values and the standard deviation of the 25 executions. The used metrics are
calculated as follows:

recall(positive class) = sensitivity =
TP

actual positives

recall(negative class) = specificity =
TN

actual negatives

precision(positive class) =
TP

predicted positives

11.5 experiments and results 133

Table 11.4: COVIDNet and COVID-CAPS results on our dataset

Class Negative Positive (COVID-19)
Accuracy

Metric Specificity Precision Sensitivity Precision

COVIDNet-CXR A [WW20a] 0.23 16.00 99.29 33.54 49.76

Retrained COVIDNet-CXR A 88.82±0.90 3.36±6.15 46.82±17.59 81.65±6.02 67.82±6.11

COVID-CAPS [AHN+20] 26.30 45.81 69.01 48.36 47.66

Retrained COVID-CAPS 65.74±9.93 65.62±3.98 64.93±9.71 66.07±4.49 65.34±3.26

precision(negative class) =
TN

predicted negatives

accuracy =
TP+TN

total predictions

F1 = 2 · precision · recall
precision + recall

TP and TN refers respectively to the number of true positives and true negatives.

11.5.2 Analysis of COVIDNet and COVID-CAPS

We compare our approach with the two most related approaches to ours, COVIDNet
[WW20a] and COVID-CAPS [AHN+20].

• COVIDNet: Currently, the authors of this network provide three versions,
namely A, B and C, available at [WW20b]. A has the largest number of trainable
parameters, followed by B and C. We performed two evaluations of each
network in such a way that the results will be comparable to ours.

– First, we tested COVIDNet-A, COVIDNet-B and COVIDNet-C, pre-trained
on COVIDx, directly on our dataset by considering only two classes: Nor-
mal (negative), and COVID-19 (positive). The whole dataset (426 positive
images and 426 negative images) is evaluated. We report in Table 11.4
recall and precision results for Normal and COVID-19 classes.

134 covidgr dataset and covid-sdnet methodology

Table 11.5: Results of COVID-19 prediction using Retrained COVIDNet-CXR A, Retrained
COVID-CAPS, ResNet-50 with and without segmentation, FuCiTNet and COVID-
SDNet. All four levels of severity in the positive class are taken into account.

Class N P
Accuracy

Metric Specificity Precision F1 Sensitivity Precision F1

COVIDNet-CXR 88.82±0.90 3.36±6.15 73.31±3.79 46.82±17.59 81.65±6.02 56.94±15.05 67.82±6.11

COVID-CAPS 65.74±9.93 65.62±3.98 65.15±5.02 64.93±9.71 66.07±4.49 64.87±4.92 65.34±3.26

Without seg. 79.87±8.91 71.91±3.12 75.40±4.91 68.63±6.08 78.75±6.31 72.689±3.45 74.25±3.61

With seg. 78.41±7.09 73.36±4.66 75.46±2.97 70.80±8.26 77.17±4.79 73.40±4.01 74.60±2.93

FuCiTNet 80.79±6.98 72.00±4.48 75.84±3.18 67.90±8.58 78.48±4.99 72.35±4.76 74.35±3.34

COVID-SDNet 79.76±6.19 74.74±3.89 76.94±2.82 72.59±6.77 78.67±4.70 75.71±3.35 76.18±2.70

– Second, we retrained COVIDNet on our dataset. It is important to note that
as only a checkpoint of each model is available, we could not remove the
last layer of these networks, which has three neurons. We used 5 different
5 fold cross validations. In order to be able to retrain COVIDNet models,
we had to add a third Pneumonia class into our dataset. We randomly
selected 426 images from the Pneumonia class in COVIDx dataset. We
used the same hyper-parameters as the ones indicated in their training
script, that is, 10 epochs, a batch size of 8 and a learning rate of 0.0002.
We changed covid_weight to 1 and covid_percent to 0.33 since we had the
same number of images in all the classes. Similarly, we report in Table 11.4
recall and precision of our two classes, Normal and COVID-19, and omit
recall and precision of Pneumonia class. The accuracy reported in the same
table only takes into account the images from our two classes. As with our
models, we report here the mean and standard deviation of all metrics.

Although we analyzed all three A, B and C variations of COVIDNet, for
simplicity we only report the results of the best one.

• COVID-CAPS: This is a capsule network-based model proposed in [AHN+20].
Its architecture is notably smaller than COVIDNet, which implies a dramatic-
ally lower number of trainable parameters. Since the authors also provide a
checkpoint with weights trained in the COVIDx dataset, we were able to follow
a similar procedure than with COVIDNet:

11.5 experiments and results 135

– First, we tested the pretrained weights using COVIDx on COVIDGR-1.0
dataset. COVID-CAPS is designed to predict two classes, so we reused
the same architecture with the new dataset and compute the evaluation
metrics shown in Table 11.4.

– Second, COVID-CAPS architecture was retrained over the COVIDGR-1.0
dataset. This process finetunes the weights to improve class separation.
The retraining process is performed using the same setup and hyper-
parameters reported by the authors. Adam optimizer is used across 100

epochs with a batch size of 16. Class weights were omitted as with COV-
IDNet, since this dataset contains balanced classes in training as well as in
test. Evaluation metrics are computed for five sets of 5-fold cross-validation
test subsets and summarized in Table 11.4.

The results from Table 11.4 show that COVIDNet and COVID-CAPS trained on
COVIDx overestimate COVID-19 class in our dataset, i.e., most images are classified
as positive, resulting in very high sensitivities but at the cost of low positive predictive
value. However, when COVIDNet and COVID-CAPS are re-trained on COVIDGR-1.0
they achieve slightly better overall accuracy and a higher balance between sensitivity
and specificity, although they seem to acquire a bias favoring the negative class. In
general, none of these models perform adequately for the detection of the disease
from CXR images in our dataset.

11.5.3 Results and Analysis of COVID prediction

The results of the baseline COVID classification model considering all the levels of
severity, with and without segmentation, FuCiTNet [RGT+20], and COVID-SDNet
are shown in Table 11.5.

In general, COVID-SDNet achieves better and more stable results than the rest
of approaches. In particular, COVID-SDNet achieved the highest balance between
specificity and sensitivity with 76.94 ± 2.82 F1 in the negative class and 75.71 ± 3.35
F1 in the positive class. Most importantly, COVID-SDNet achieved the best sensitivity
72.59 ± 6.77 and accuracy with 76.18 ± 2.70. FuCiTNet provides in general good but
lower and less stable results than COVID-SDNet. When comparing the results of
the baseline classification model with and without segmentation, we can observe
that the use of segmentation improves substantially the sensitivity, which is the

136 covidgr dataset and covid-sdnet methodology

Table 11.6: Results of COVID-SDNet per severity level.

S (Severity level) accuracy (S)(%)

Normal-PCR+ 28.42 ± 2.58

Mild 61.80 ± 5.49

Moderate 86.90 ± 3.20

Severe 97.72 ± 0.95

most important criteria for a triage system. This can be explained by the fact that
segmentation allows the model to focus on most important parts of the CXR image.

11.5.4 Analysis per severity level

To determine which levels are the hardest to distinguish by the best approach, we have
analyzed the accuracy per severity level (S), with accuracy(S) = Correct predictions(S)

Total number(S) ,
where S ∈ {Normal-PCR+, Mild, Moderate, Severe}. The results are shown in Table
11.6.

As it can be seen from these results, COVID-SDNet correctly distinguish Moderate
and Severe levels with an accuracy of 86.90% and 97.72%, respectively. This is due to
the fact that Moderate and Severe CRX images contain more important visual features
than Mild and Normal-PCR+ which ease the classification task. Normal-PCR+ and
Mild cases are much more difficult to identify as they contain few or none visual
features. These results are coherent with the clinical studies provided in [WER+20]
and [WLF+20] which report that expert sensitivity is very low in Normal-PCR+ and
Mild infection levels. Recall that the expert eye does not see any visual signs in
Normal-PCR+ although the PCR is positive. Those cases are actually considered as
asymptomatic patients.

11.5.5 Analysis of the impact of Normal-PCR+

To analyze the impact of Normal-PCR+ class on COVID-19 classification, we trained
and evaluated the baseline model, FuciTNet, COVID-SDNet classification stage,
COVIDNet-CXR-A and COVID-CAPS, on COVIDGR-1.0 by eliminating Normal-
PCR+. The results are summarized in Table 11.7.

11.6 inspection of model’s decision 137

Table 11.7: Results of the baseline classification model with segmentation, COVID-SDNet,
retrained COVIDNet-CXR-A and retrained COVID-CAPS. Only three levels of
severity are considered, Mild, Moderate and Severe.

Class N P
Accuracy

Metric Specificity Precision F1 Sensitivity Precision F1

COVIDNet-CXR 83.42± 15.39 69.73± 10.34 74.45± 8.86 61.82± 22.44 79.50± 11.47 65.64± 15.90 72.62± 7.6

COVID-CAPS 65.09± 10.51 71.72± 5.57 67.52±5.29 73.31±9.74 68.40±5.13 70.20±4.31 69.20±3.61

With seg. 80.57±8.72 78.68±6.57 78.97±3.20 76.80±10.15 80.70±5.56 78.01±4.29 78.69±3.00

FuCiTNet 82.63±6.61 79.94±4.28 81.05±3.44 78.91±5.88 82.43±5.43 80.37±3.16 80.77±3.15

COVID-SDNet 85.20±5.38 78.88±3.89 81.75±2.74 76.80±6.30 84.23±4.59 80.07±0.04 81.00±2.87

Table 11.8: Results of COVID-SDNet by severity level without considering Normal-PCR+.

S (Severity level) accuracy (S)(%)

Mild 46.00 ± 7.10

Moderate 85.38 ± 1.85

Severe 97.22 ± 1.86

Overall, all the approaches systematically provide better results when eliminating
Normal-PCR+ from the training and test processes, including COVIDNet-CXR-A and
COVID-CAPS. In particular, COVID-SDNet still represents the best and most stable
approach.

11.5.6 Analysis per severity level

A further analysis of the accuracy at the level of each severity degree (see Table 11.8)
demonstrates that eliminating Normal-PCR+ decreases the accuracy in Mild and
Moderate severity levels by 15.8% and 1.52% respectively.

These results show that although Normal-PCR+ is the hardest level to predict, its
presence improves the accuracy of lower severity levels, especially Mild level.

11.6 inspection of model’s decision

Automatic DL diagnosis systems alone are not mature yet to replace expert radi-
ologists. To help clinician making decisions, these tools must be interpretable so

138 covidgr dataset and covid-sdnet methodology

(a) Original Positive (Mild) (b) why positive (c) why negative

Figure 11.5: Heatmap showing the parts of the input image that triggered the positive predic-
tion (b) and counterfactual explanation (c)

(a) Original Positive (Moder-
ate)

(b) why positive (c) why negative

Figure 11.6: Heatmap showing the parts of the input image that triggered the positive predic-
tion (b) and counterfactual explanation (c)

(a) Original Positive (Severe) (b) why positive (c) why negative

Figure 11.7: Heatmap showing the parts of the input image that triggered the positive predic-
tion (b) and counterfactual explanation (c)

11.6 inspection of model’s decision 139

(a) Original Negative (b) why positive (c) why negative

Figure 11.8: Heatmap that explains the parts of the input image that triggered the counterfac-
tual explanation (b) and the negative actual prediction (c).

that clinicians can decide whether to trust the model or not [ADD+20]. We inspect
what led our model make a decision by showing the regions of the input image that
triggered that decision along with its counterfactual explanation by showing the parts
that explain the opposite class. We adapted Grad-CAM method [SCD+17] to explain
the decision of the negative and positive class.

Fig. 11.5, 11.6 and 11.7 show (a) the original CXR image, (b) visual explanation
by means of a heat-map that highlights the regions/pixels which led the model to
output the actual prediction and (c) its counterfactual explanation using a heat-map
that highlights the regions/pixels which had the highest impact on predicting the
opposite class. Higher intensity in the heat-map indicates higher importance of the
corresponding pixel in the decision. The larger higher intensity areas in the heat-map
determine the final class. However, Fig. 11.8(b) represents first the counterfactual
explanation and Fig. 11.8(c) represents the explanation of the actual decision.

As expected, negative and positive interpretations are complementary, i.e, areas
which triggered the correct decision are opposite, in most cases, to the areas that
triggered the decision towards negative. In CXR images with different severity levels,
the heat-maps correctly point out opaque regions due to different levels of infiltrates,
consolidations and also to osteoarthritis.

In particular, in Fig. 11.5(b), the red areas in the right lung points out a region with
infiltrates and also osteoarthritis in the spine region. Fig. 11.6 (b) correctly shows
moderate infiltrates in the right lower and lower-middle lung fields in addition to a

140 covidgr dataset and covid-sdnet methodology

dilation of ascending aorta and aortic arch (red color in the center). Fig. 11.5(c) shows
normal upper-middle fields of both lungs (less important on the left due to aortic
dilation). Fig. 11.7(b) indicates an important bilateral pulmonary involvement with
consolidations.

As it can be observed in Fig. 11.8(c), the explanation of the negative class correctly
highlights a symmetric bilateral pattern that occupies a larger lung volume espe-
cially in regions with high density. In fact, a very similar pattern is shown in the
counterfactual explanation of the positive class in Fig. 11.5(c), 11.6(c) and 11.7(c).

11.7 conclusions

This paper introduced a dataset, named COVIDGR-1.0, with high clinical value.
COVIDGR-1.0 includes the four main COVID severity levels identified by a recent
radiological study [WLF+20]. We proposed a methodology, called COVID-SDNet, that
combines segmentation, data-augmentation and data transformation. The obtained
results show the high generalization capacity of COVID-SDNet, specially on severe
and moderate levels as they include important visual features. The existence of few
or none visual features in Mild and Normal-PCR+ reduces the opportunities for
improvement.

As main conclusions, we must highlight that COVID-SDNet can be used in a
triage system to detect especially moderate and severe patients. Finally, we must
also mention that more robust and accurate triage system can be built by fusing our
approach with other approaches such as the one proposed in [CDR+20].

As future work, we are working on enriching COVIDGR-1.0 with more CXR images
coming from different hospitals. We are planning to explore the use of additional
clinical information along with CXR images to improve the prediction performance.

acknowlegments

This work was supported by the project DeepSCOP-Ayudas Fundación BBVA a Equi-
pos de Investigación Científica en Big Data 2018, COVID19_RX-Ayudas Fundación
BBVA a Equipos de Investigación Científica SARS-CoV-2 y COVID-19 2020, and
the Spanish Ministry of Science and Technology under the project TIN2017-89517-P.
S. Tabik was supported by the Ramon y Cajal Programme (RYC-2015-18136). A.
Gómez-Ríos was supported by the FPU Programme FPU16/04765. D. Charte was

11.7 conclusions 141

supported by the FPU Programme FPU17/04069. J. Suárez was supported by the FPU
Programme FPU18/05989. E.G was supported by the European Research Council
(ERC Grant agreement 647038 [BIODESERT])

ethics

This project is approved by the Provincial Research Ethics Committee of Granada.

references

[AHN+20] P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Plataniotis
and A. Mohammadi, ‘Covid-caps: A capsule network-based frame-
work for identification of covid-19 cases from x-ray images’, Pattern
Recognition Letters, vol. 138, pp. 638–643, 2020.

[AM20] I. Apostolopoulos and T. Mpesiana, ‘Covid-19: Automatic detection
from x-ray images utilizing transfer learning with convolutional neural
networks’, Physical and Engineering Sciences in Medicine, p. 1, 2020.

[ADD+20] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A.
Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins et al., ‘Explain-
able artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai’, Information fusion, vol. 58, pp. 82–
115, 2020.

[BPS+20] A. Bustos, A. Pertusa, J.-M. Salinas and M. de la Iglesia-Vayá, ‘Padchest:
A large chest x-ray image dataset with multi-label annotated reports’,
Medical image analysis, vol. 66, p. 101 797, 2020.

[Chu20] A. Chung, ‘Figure 1 COVID-19 chest X-ray dataset initiative’, 2020.

[CDR+20] J. P. Cohen, L. Dao, K. Roth, P. Morrison, Y. Bengio, A. F. Abbasi, B.
Shen, H. K. Mahsa, M. Ghassemi, H. Li et al., ‘Predicting covid-19

pneumonia severity on chest x-ray with deep learning’, Cureus, vol. 12,
no. 7, 2020.

[CMD20] J. P. Cohen, P. Morrison and L. Dao, ‘Covid-19 image data collection’,
arXiv preprint arXiv:2003.11597, 2020.

142 covidgr dataset and covid-sdnet methodology

[FZX+20] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang and W. Ji, ‘Sensitivity
of chest ct for covid-19: Comparison to rt-pcr’, Radiology, vol. 296, no. 2,
E115–E117, 2020.

[GT20] B. Ghoshal and A. Tucker, ‘Estimating uncertainty and interpretability
in deep learning for coronavirus (COVID-19) detection’, arXiv preprint
arXiv:2003.10769, 2020.

[JCA+14] S. Jaeger, S. Candemir, S. Antani, Y.-X. J. Wáng, P.-X. Lu and G. Thoma,
‘Two public chest x-ray datasets for computer-aided screening of pul-
monary diseases’, Quantitative imaging in medicine and surgery, vol. 4,
no. 6, p. 475, 2014.

[JPG+19] A. E. Johnson, T. J. Pollard, N. R. Greenbaum, M. P. Lungren, C.-y. Deng,
Y. Peng, Z. Lu, R. G. Mark, S. J. Berkowitz and S. Horng, ‘Mimic-cxr-jpg,
a large publicly available database of labeled chest radiographs’, arXiv
preprint arXiv:1901.07042, 2019.

[KDR+20] M. Karim, T. Döhmen, D. Rebholz-Schuhmann, S. Decker, M. Cochez,
O. Beyan et al., ‘Deepcovidexplainer: Explainable covid-19 predictions
based on chest x-ray images’, arXiv preprint arXiv:2004.04582, 2020.

[KTG+20] S. M. Kissler, C. Tedijanto, E. Goldstein, Y. H. Grad and M. Lipsitch,
‘Projecting the transmission dynamics of sars-cov-2 through the post-
pandemic period’, Science, vol. 368, no. 6493, pp. 860–868, 2020.

[KEG+20] S. Kundu, H. Elhalawani, J. W. Gichoya and C. E. Kahn Jr, How might ai
and chest imaging help unravel covid-19’s mysteries?, 2020.

[LYL+20] Y. Li, L. Yao, J. Li, L. Chen, Y. Song, Z. Cai and C. Yang, ‘Stability
issues of rt-pcr testing of sars-cov-2 for hospitalized patients clinically
diagnosed with covid-19’, Journal of medical virology, vol. 92, no. 7,
pp. 903–908, 2020.

[LGR+20] J. Luengo, D. García-Gil, S. Ramírez-Gallego, S. García and F. Herrera,
‘Big data preprocessing’, Cham: Springer, 2020.

[MN20] G. Maguolo and L. Nanni, ‘A critic evaluation of methods for covid-19

automatic detection from x-ray images’, arXiv preprint arXiv:2004.12823,
2020.

11.7 conclusions 143

[Min20] E. Mineo, U-Net lung segmentation, Available at: https://www.kaggle.
com/eduardomineo/u-net-lung-segmentation-montgomery-shenzhen,
2020.

[OTY+20] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim and U. R.
Acharya, ‘Automated detection of covid-19 cases using deep neural
networks with x-ray images’, Computers in biology and medicine, vol. 121,
p. 103 792, 2020.

[RSNA19] Radiological society of north america. RSNA pneumonia detection challenge,
https://www.kaggle.com/c/rsnapneumonia-detection-challenge/

data, 2019.

[RGT+20] M. Rey-Area, E. Guirado, S. Tabik and J. Ruiz-Hidalgo, ‘Fucitnet: Im-
proving the generalization of deep learning networks by the fusion
of learned class-inherent transformations’, Information Fusion, vol. 63,
pp. 188–195, 2020.

[SCD+17] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D.
Batra, ‘Grad-cam: Visual explanations from deep networks via gradient-
based localization’, in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 618–626.

[TPH+17] S. Tabik, D. Peralta, A. Herrera-Poyatos and F. Herrera, ‘A snapshot of
image pre-processing for convolutional neural networks: Case study of
mnist’, 2017.

[WW20a] L. Wang and A. Wong, ‘COVID-Net: A tailored deep convolutional
neural network design for detection of COVID-19 cases from chest
radiography images’, arXiv preprint arXiv:2003.09871, 2020.

[WW20b] L. Wang and A. Wong, COVIDNet, Available at: https://github.com/
lindawangg/COVID-Net, 2020.

[WPL+17] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri and R. M. Summers, ‘Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases’,
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 2097–2106.

144 covidgr dataset and covid-sdnet methodology

[WZK+18] M. A. Warren, Z. Zhao, T. Koyama, J. A. Bastarache, C. M. Shaver,
M. W. Semler, T. W. Rice, M. A. Matthay, C. S. Calfee and L. B. Ware,
‘Severity scoring of lung oedema on the chest radiograph is associated
with clinical outcomes in ards’, Thorax, vol. 73, no. 9, pp. 840–846, 2018.

[WER+20] M. B. Weinstock, A. Echenique, J. Russell, A. Leib, J. Miller, D. Cohen,
S. Waite, A. Frye and F. Illuzzi, ‘Chest x-ray findings in 636 ambulatory
patients with covid-19 presenting to an urgent care center: A normal
chest x-ray is no guarantee’, J Urgent Care Med, vol. 14, no. 7, pp. 13–18,
2020.

[WLF+20] H. Y. F. Wong, H. Y. S. Lam, A. H.-T. Fong, S. T. Leung, T. W.-Y. Chin,
C. S. Y. Lo, M. M.-S. Lui, J. C. Y. Lee, K. W.-H. Chiu, T. W.-H. Chung
et al., ‘Frequency and distribution of chest radiographic findings in
patients positive for covid-19’, Radiology, vol. 296, no. 2, E72–E78, 2020.

12
A R O B U S T A P P R O A C H F O R D E E P N E U R A L N E T W O R K S I N
P R E S E N C E O F L A B E L N O I S E : R E L A B E L L I N G A N D F I LT E R I N G
I N S TA N C E S D U R I N G T R A I N I N G

Gómez-Ríos, A., Luengo, J. & Herrera, F. (2022). A robust approach for deep neural
networks in presence of label noise: relabelling and filtering instances during training.

• Status: Submitted to IEEE Transactions on Neural Networks and Learning
Systems

145

146 a robust approach for dnns in presence of label noise

A R O B U S T A P P R O A C H F O R D E E P N E U R A L N E T W O R K S I N P R E S -
E N C E O F L A B E L N O I S E : R E L A B E L L I N G A N D F I LT E R I N G I N -
S TA N C E S D U R I N G T R A I N I N G

Anabel Gómez-Ríosa, Julián Luengoa, Francisco Herreraa

a Andalusian Research Institute in Data Science and Computational Intelligence,
Dept. of Computer Science and Artificial Intelligence, University of Granada,
Granada, Spain

abstract

Deep learning has outperformed other machine learning algorithms in a variety
of tasks, and as a result, it is widely used. However, like other machine learning
algorithms, deep learning, and convolutional neural networks (CNNs) in particular,
perform worse when the data sets present label noise. Therefore, it is important to
develop algorithms that help the training of deep networks and their generalization
to noise-free test sets. In this paper, we propose a robust training strategy against
label noise, called RAFNI, that can be used with any CNN. This algorithm filters and
relabels instances of the training set based on the predictions and their probabilities
made by the backbone neural network during the training process. That way, this
algorithm improves the generalization ability of the CNN on its own. RAFNI consists
of three mechanisms: two mechanisms that filter instances and one mechanism that
relabels instances. In addition, it does not suppose that the noise rate is known nor
does it need to be estimated. We evaluated our algorithm using different data sets of
several sizes and characteristics. We also compared it with state-of-the-art models
using the CIFAR10 and CIFAR100 benchmarks under different types and rates of
label noise and found that RAFNI achieves better results in most cases.

Keywords: Deep learning, label noise, convolutional neural network, robust learning

12.1 introduction

Over the last few years, deep learning and Convolutional Neural Networks (CNNs)
in particular have become progressively popular as they have been used in a variety
of applications, especially in computer vision, and outperform other models [KSH12;

12.1 introduction 147

GTL+19b; OTH18]. Generally speaking, the networks that have been used in these
types of applications have become deeper and deeper over the years, due to their
high performance.

A common problem when dealing with real-world data sets in the context of
supervised classification is label noise. The term ‘label noise’ refers to when some
instances in the data set have erroneous labels, thus misleading the training of
machine learning algorithms [SKP+20]. This type of noise can be present in the data
set because it was labelled automatically using text labels from the Internet, or because
not enough experts were available to label an entire data set. In either case, the rate
of label noise can vary and can increase to large values [XXY+15; LHZ+18]. As a
result, label noise has been extensively studied when using classical machine learning
algorithms [FV14]. The two most used and studied types of label noise are symmetric
and asymmetric noise. In symmetric noise, also called uniform noise, the labels are
corrupted randomly and equally in all classes, independently of their true class. In
asymmetric noise, the corruptions are dependent on the true class of the instances,
but not on the instances themselves. This implies that the corruptions in the labels can
be made so that the instances in one specific class are labelled as another specific class.
Subsequently, asymmetric noise is more realistic than symmetric noise. In [FV14], the
authors made a taxonomy of label noise in classification, where symmetric noise is
called Noisy Completely at Random (NCAR) and asymmetric noise is called Noisy at
Random (NAR). There is another type of noise, called Noisy Not at Random (NNAR),
which is the most realistic, where the corruptions are dependent on the true class of
the instances and the instances themselves.

The use of increasingly deeper networks implies the need for larger data sets to
adequately train them. This fact has caused researchers to investigate ways to over-
come the lack of data. One possible solution is to create larger data sets by labelling
them automatically instead of relying on experts, which is usually the only labelling
solution for very large data sets [XXY+15; LWL+17; SKL19]. Another solution is to
use techniques such as transfer learning and data augmentation. Transfer learning
allows the network to start from a pre-trained state: instead of starting the training
from scratch for every problem, the network is already pre-trained on another data
set, usually larger and related to the new one in some way. As a consequence, transfer
learning speeds up the training process. On the other hand, data augmentation
artificially increases the size of the training data by introducing transformations of
the original images, such as rotations, changes in lightning, cropping, flipping, etc.

148 a robust approach for dnns in presence of label noise

But, if the original training set presents label noise, the use of data augmentation can
aggravate it, thus becoming another source of label noise.

In the specific case of deep learning, label noise has been proven to harm gener-
alization when training deep neural networks [ZBH+21], and thus there has been
an increasing amount of studies trying to improve the behaviour of deep neural
networks as much as possible in presence of label noise [PRK+17; SKL19; SKP+20;
MWH+18; JZL+18]. Label noise appears mostly in real-world data sets, where the
noise rate is not known. However, to test the performance of the proposed models,
we need a controlled environment where the noise is artificially introduced in some
noise-free data sets using different noise rates. Two of the most used data sets for this
are CIFAR10 and CIFAR100 [WLM+18; SC18; JNC16; PRK+17]. Though it is necessary
to test the proposals in large data sets like CIFAR or MNIST, it is also important to
analyse them in other scenarios, like with small data sets. Small data sets are also
common in real-world problems where it is not possible to collect more data. The
majority of the current proposals lack this scenario.

To make the training of deep neural networks robust to all types of label noise, the
analysis of incorrect classified instances for filtering and relabelling is the usual way
to proceed. In this paper, we consider this hypothesis to deal with this problem, we
consider our algorithm can identify and handle the noisy instances.

We propose an algorithm that, during the training process, relabels or filters the
instances that it considers noisy using the predictions made by the backbone network.
The backbone network is the deep neural network chosen to classify the data set (for
instance, ResNet50), which will be trained using backpropagation as usual. Thus, we
called the algorithm the Relabelling And Filtering Noisy Instances (RAFNI) algorithm.
We have made the algorithm publicly available. As opposed to some of the previous
proposals for this task, we do not suppose that the noise rate is known nor do we
estimate it. Instead, the RAFNI algorithm uses the noisy training set and progressively
cleans it during the training process by using the loss value of each instance and the
probability of each instance belonging to each class. These values are given by the
backbone network at each epoch of the training process. The algorithm is composed
of two filtering mechanisms to remove noisy instances from the training set, and one
relabelling mechanism that is used to change the class of some instances to their
original (clean) class.

We evaluated our proposal with a variety of data sets, including small and large
data sets, and under different types of label noise. We also use CIFAR10 and CIFAR100

12.2 background 149

as benchmarks to compare our proposal with other state-of-the-art models, since
these data sets are two of the most used in other studies.

The rest of the paper is organized as follows. In Section 12.2, we give a background
on works that propose strategies to help neural networks learn with label noise,
with special mention to the ones we compare our algorithm to. In Section 12.3, we
provide a detailed description of the RAFNI algorithm and its hyperparameters.
Section 12.4 details the experimental framework, including the data sets, the types
and levels of noise and the network configurations we used. The complete results
obtained for all data sets and the comparison with the state-of-the-art models are
shown in Section 12.5 and Section 12.6, respectively. We also compared our algorithm
with an algorithm that supposes the noise rate is known and we show the results
in Section 12.7. Then, in Section 12.8, we analyse the effectiveness of the RAFNI
algorithm on two of the data sets used in this study. Finally, we give some final
conclusions in Section 12.9.

12.2 background

In this section, we provide some background in the context of label noise and the
types of noise we use in this study (Subsection 12.2.1). Then, we present an overview
of the most popular approaches made in the context of deep learning to overcome the
problem of label noise and provide a description of the proposals we have selected to
compare with RAFNI (Subsection 12.2.2).

12.2.1 Definition and types of label noise

In the context of supervised classification, we have a set X = {x1, . . . , xn} of n training
instances and their corresponding labels y = (y1, . . . , yn), where yi ∈ {1, 2, . . . , K},
i = 1, . . . , n and K is the total number of classes. Label noise presents when some
instances in X have erroneous labels. That is, an instance xi ∈ X with a true label yi
actually appears in the training set with another label ỹi, yi ̸= ỹi, i ∈ {1, . . . , n}. The
percentage of instances that present label noise is called the noise rate or noise level.

Depending on whether the label noise appears dependent or independent of the
class of the instances and the instances themselves, we can distinguish between the
following types of noise:

150 a robust approach for dnns in presence of label noise

• Symmetric noise (also called uniform noise or NCAR). The noise is independent
of the original true class of the instances and the attributes of the instances.
Thus, the labels of a percentage of the instances of the training set are randomly
changed to another class following a uniform distribution, where all the classes
have the same probability of being the noisy label. This implies that the percent-
age of noisy instances is the same in all classes. There are two options for this
type of noise: the noisy label is chosen from the set of all of the classes (thus
existing the possibility of not changing the label), or the noisy label is chosen
from the set of all classes except the original one. We chose the second option.

• Asymmetric noise (also called NAR). The noise is dependent on the original
true class of the instances and independent of the attributes of the instances.
Therefore, the probability of each class to be the noisy label is different and
depends on the original true class, but all the instances in the same class have
the same probability of being noisy. This implies that the percentage of noisy
instances in each class can be different.

• NNAR. The noise is dependent on the original true class of the instances and
on the attributes of the instances. Hence, the probability of each class to be the
noisy label can be different, depends on the original class, and the instances in
each class have different probabilities to be noisy as it depends on the instances
themselves.

As it happens in classical machine learning, the types of noise that we used can be
treated (either by filtering or relabelling) without a prior estimation of the probability
distribution.

12.2.2 Label noise with deep learning

During the last few years, there has been an increment in the number of proposals to
help deep neural networks, and CNNs in particular, to learn in the presence of label
noise in supervised classification. Most works fall into one or more of the following
approaches:

• Proposals that modify the loss function in some way, either to make the loss
function robust to label noise [AWA+19; GKS17; ZS18], or to correct its values,
so the noisy labels do not negatively impact the learning [PRK+17; YW19;
MWH+18; SKL19; AOA+19].

12.2 background 151

• Proposals that create a specific deep network architecture [XXY+15] or modify
an existing one by adding a noise adaptation layer at the end of the desired
architecture to model the noise [SBP+15; JNC16].

• Proposals that try to correct the noisy instances [PRK+17; SKL19].

Some proposals suppose that a subset of clean samples is available [XXY+15], and
others assume that the noise rate is known [PRK+17; SKL19], which is not usual when
dealing with real-world noisy datasets, though in [PRK+17] the authors propose a
mechanism to approximate the noise rate. A more in-depth survey of all the work that
has been done to learn deep neural networks in presence of label noise can be found
in [SKP+20]. However, it is important to note that the majority of these proposals
are highly focused on classifying the available benchmarks (such as CIFAR10/100

or TinyImagenet), and they use specific networks designed for CIFAR (ResNet32 or
ResNet44) along with specific learning schedules. As a result, they are sometimes not
generalizable to real-world problems.

We have selected a subset of five of these proposals to compare with our algorithm:
one that uses a robust loss function, three that propose loss correction approaches,
and one that proposes a hybrid approach between loss correction and sample selec-
tion. We choose them because they have official public implementations either on
TensorFlow/Keras or PyTorch. In the following, we describe these five proposals.

1. Robust loss function approach that uses a generalization of the softmax layer
and the categorical cross-entropy loss [AWA+19]. Here, the authors propose
to make the loss function robust against label noise by modifying the loss
function and the last softmax activation of the deep neural network with two
temperatures, creating non-convex loss functions. These two temperatures can
be tuned for each data set. This proposal has the advantage that using the code
provided by the authors, it can easily be used with any combination of a deep
network, data set and optimization technique, including transfer learning.

2. Loss correction approaches [PRK+17]. The authors propose two approaches
to correct the loss values of the noisy instances, for which it is necessary to
know the noise matrix of the data set, called backward correction and forward
correction. They provide a mechanism to estimate the noise matrix, and when
used, the approaches are called estimated backward correction and estimated
forward correction. The first one uses the noise matrix to correct the loss values,

152 a robust approach for dnns in presence of label noise

so they are more similar to the loss values of the clean instances. The second
explicitly uses the noise matrix to correct the predictions of the model.

3. Loss correction approach using the dimensionality of the training set [MWH+18].
The authors explain that, when dealing with noisy labels, the learning can be
separated into two phases. In the first phase, which occurs in the first epochs of
the training, the network learns the underlying distribution of the data. Then,
in the second phase, the network learns to overfit the noisy instances. They use
a measure called Local Intrinsic Dimensionality (LID) to detect the moment the
training enters the second phase and use the LID to modify the loss function to
reduce the effect of the noisy instances.

4. Loss correction approach [AOA+19], which is based on the static hard bootstrap-
ping loss proposed in [RLA+14] combined with a data augmentation technique
called mixup proposed in [ZCD+17]. They use a beta mixture model to fit the
loss values of the instances so they can distinguish between clean and noisy
instances and use the loss correction approach on the noisy ones.

5. Loss and label correction approach [SKL19]. The authors propose a hybrid
approach between sample selection and loss correction that tries to relabel noisy
instances when possible and not use them when not. For the noisy instances,
they rely on the network: if it returns the same label with a high probability
in the first epochs of the training, it is possible to correct that instance and the
algorithm changes its label to the one the network predicts. In contrast, if the
network changes the prediction of an instance inconsistently, they stop using
that instance. They assume that the noise rate in the data set is known, and they
do not provide a way to estimate it. This approach can be used iteratively so
that the training set is iteratively cleaned in several training processes.

12.3 rafni : relabelling and filtering instances based on the predic-
tions of the backbone network

In this section, we describe our proposal. First, in Subsection 12.3.1, we give an overall
description of the algorithm and explain its basics. Then, in Subsection 12.3.2, we
present a formal definition of the algorithm. Finally, in Subsection 12.3.3 we give a
guide on how to tune the hyperparameters of the algorithm.

12.3 rafni : relabelling and filtering instances 153

Training set X

Backbone network + added layers
Obtain loss values
Obtain predictions

m = m+ 1

Training set X

Backbone network + added layers

Obtain loss values
Obtain predictions

Obtain changes in
training set X′

Update training
set X = X′

m = m+ 1

Forward pass of backpropagation

Backward pass of backpropagation

Forward pass of backpropagation

Use RAFNI

Backward pass of backpropagation

(a) The standard training process of the backbone network for an epoch m

Training set X

Backbone network + added layers
Obtain loss values
Obtain predictions

m = m+ 1

Training set X

Backbone network + added layers

Obtain loss values
Obtain predictions

Obtain changes in
training set X′

Update training
set X = X′

m = m+ 1

Forward pass of backpropagation

Backward pass of backpropagation

Forward pass of backpropagation

Use RAFNI

Backward pass of backpropagation

(b) The training process of the backbone network using RAFNI for an epoch
m

Figure 12.1: Difference between training the backbone network (a) without and (b) with the
RAFNI algorithm

12.3.1 Base concepts

We propose the RAFNI algorithm, which filters and relabels instances based on the
predictions and their probabilities made by the backbone neural network during
the training process. In Figure 12.1, we show the difference between training the
backbone network with and without the RAFNI algorithm and the moment it is
applied. The backbone network used is independent of the algorithm, and it can
change or be modified, for example, including transfer learning.

Generally speaking, we propose two mechanisms to filter an instance and one
mechanism to relabel an instance, with some restrictions. These mechanisms are the
following:

• First filtering mechanism. This mechanism only uses the loss value of the
instances. The foundation is that the noisy instances tend to have higher loss
values than the rest of them. As a result, this mechanism filters out instances
that have a loss value above a certain threshold. This threshold is dynamic and
will change during training.

154 a robust approach for dnns in presence of label noise

• Second filtering mechanism. This mechanism depends on how many times an
instance has been relabelled. Here we suppose that if the algorithm relabels
an instance too many times is because the backbone network is unsure about
its class and it is better to remove that instance. Thus, this mechanism filters
an instance if it has been relabelled more than a certain number of times. In
addition, we establish a period of a certain number of epochs after an instance
has been relabelled during which the algorithm cannot filter nor relabel it again.

• Relabelling mechanism. This mechanism takes into account the probability
predictions of the backbone network. We suppose that if the backbone network
predicts another class with a high probability as the training progresses, it is
probable that the instance is noisy and its class is indeed the one predicted by
the backbone network. As a consequence, the relabelling mechanism changes
the class of an instance if the backbone network predicts another class with a
probability that is above a certain threshold. This threshold is also dynamic and
will change during training.

These mechanisms have restrictions related to the moment they are applied. Since
we are using the backbone network to relabel and filter instances, we need to wait
until the network is sufficiently trained for the predictions to be reliable. This can
be measured using the loss values of the instances. Intuitively, we want to start the
algorithm (and thus the three mechanisms) when the backbone network has learned
to classify the clean instances but it has not learned to overfit the noisy ones yet.
Here, similarly to [AOA+19], we approximated the loss values of the instances in
each epoch of the training process by a mixture model with two components, but
in our case, we use a Gaussian mixture model. To do that, we used the expectation
minimization algorithm and used the two components to detect the moment where
the RAFNI algorithm needs to start.

A mixture model is a model that can represent different subpopulations inside
a population. These subpopulations or components follow a distribution that in a
Gaussian mixture model is supposed to be a Gaussian distribution. That way, if we
have a Gaussian mixture model with two components, we are approximating two
subpopulations, each one with a Gaussian distribution, so we obtain two means and
two variances. In our case, we have two components, one for the clean instances, with
mean µclean and standard deviation σclean, and one for the noisy instances, with mean
µnoisy and standard deviation σnoisy.

12.3 rafni : relabelling and filtering instances 155

We detect the moment we need to start the RAFNI algorithm by calculating the
overlap between the two Gaussians obtained by the mixture model over the loss
values of the instances in all training epochs. At first, the two Gaussians will start
separating from one another, while the network learns to classify the clean and easy
examples. Then, at some point, they will start to get closer, as the network starts
to overfit the noisy examples. Therefore, we start the algorithm when the overlap
between the Gaussians is below a fixed value or when this overlap starts to increase.
We have tested different values for this hyperparameter with different data sets and
levels of noise and we found that 0.15 is a good value that can remain fixed across all
data sets and noise rates.

12.3.2 Formal definition

Let X = {x1, x2, . . . , xn} be the set of n training instances and y = (y1, y2, . . . , yn) their
corresponding labels, where yi ∈ {1, 2, . . . , K}, i = 1, . . . , n, and K is the total number
of classes. Let m be an epoch of the training process, m = 1, . . . , M, where M is the
total number of epochs, and lm = (lm1, lm2, . . . , lmn) the losses of the training instances
in epoch m, m = 1, . . . , M. Finally, let pmi = (pmi1, pmi2, . . . , pmiK) be the probabilities
predicted by the backbone neural network for each instance xi ∈ X in epoch m, and
ŷmi ∈ {1, 2, . . . , K} the prediction of the backbone network for the instance xi in epoch
m, where m = 1, . . . , M, i = 1, . . . , n. Then, we define the following:

1. A threshold, named loss_threshold, so that if lmi > loss_threshold, then xi

is removed from the training set for the following epochs m + 1, . . . , M, where
i = 1, . . . , n.

2. A number, record_length, denoting the length of the record of each instance,
so that the algorithm saves the last record_length predictions made by the
neural network in the last record_length epochs of the training. Then, if
the predictions of an instance xi change record_length−1 times in the last
record_length epochs, the instance xi is removed from the training set for the
following epochs m + 1, . . . , M, where i = 1, . . . , n.

3. A threshold, prob_threshold, so that if maxk(pmi) > prob_threshold and
yi ̸= ŷmi, then yi = ŷmi in the following epochs m + 1, . . . , M, where i = 1, . . . , n.
If this happens, the algorithm clears the record of the instance xi.

156 a robust approach for dnns in presence of label noise

4. A number, not_change_epochs, so that if the label of an instance has been
changed, the algorithm cannot change it again nor remove that instance from
the training set until not_change_epochs epochs have passed.

In Figure 12.2, we show the flowchart of the RAFNI algorithm, detailing how and
when each mechanism is applied to each instance xi during a specific epoch m of the
training process.

The numbers record_length and not_change_epochs are hyperparameters of the
algorithm that can be setted by the user. The two thresholds, loss_threshold and
prob_threshold, are parameters that dynamically change every epoch m using the
losses of the instances and their probabilities in the previous epoch, lm−1. Specifically,
the loss_threshold is calculated for every epoch as the quantile of order x1 (x1 is
an hyperparameter of the algorithm called quantile_loss, that can be setted by
the user) of the losses in the previous epoch lm−1. Similarly, the prob_threshold

is calculated for every epoch as the quantile of order x2 (also a hyperparameter,
called quantile_prob) of the probabilities returned by the backbone network for the
misclassified instances. That way, the loss_threshold usually descends as the epoch
increases and the training instances are being filtered and their classes relabelled. Due
to that, we need to stop updating the loss_threshold parameter at some point to not
filter too many instances. Similarly, we also need to stop updating the prob_threshold

parameter so it does not change the class of too many instances. To do this, we use
again the two Gaussians obtained by the Gaussian mixture model and stop the
update of both thresholds when the means of the Gaussians are sufficiently close.
We tested different values and we obtained that 0.3 is a good value that works for
different data sets and levels of noise. That way, we stop updating the thresholds if
µnoisy − µclean < 0.3.

This algorithm can be used with any CNN as a backbone network. The code of the
algorithm is available at https://github.com/ari-dasci/S-RAFNI.

12.3.3 A guide to the hyperparameters of RAFNI

RAFNI has a list of hyperparameters that can be fine-tuned by the user. Here we
specify which hyperparameters are most important to be tuned if a validation set is
available, which ones are less important and which ones do not need to be tuned. We
also give a guide on how to tune them.

12.3 rafni : relabelling and filtering instances 157

Forward pass of backpropagation in epoch m

xi: instance of the training set in epoch m
yi: xi label

Obtain xi loss value: lmi

Obtain xi prediction probability: max
k

pmi

Obtain xi prediction: ŷmi

start rafni is true

yi ̸= ŷmi and
xi can change class and

max
k

pmi > prob threshold

Change xi label for epochs
m+ 1, . . . ,M : yi = ŷmi,

Clear xi record,
Establish that xi cannot

change class nor be removed
in not change epochs epochs

Has xi changed more than
record length−1 times in

the last record length epochs?

Remove xi from the training
set for epochs m+ 1, . . . ,M

lmi >loss threshold and
xi can be removed

Remove xi from the training
set for epochs m+ 1, . . . ,M

Update prob threshold

and loss threshold

Continue with backward
pass of backpropagation

no

yes

yes

no

yes

no

yes

no

Figure 12.2: Flowchart of the RAFNI algorithm

The complete list of hyperparameters of RAFNI is the following: the overlapping
threshold between the noisy Gaussian and the clean Gaussian we use to start the
algorithm, the difference between the means of the two Gaussians we use to stop

158 a robust approach for dnns in presence of label noise

the update of the loss_threshold and the prob_threshold, the quantile_loss, the
quantile_prob, the record_length and the not_change_epochs. The loss_threshold
and the prob_threshold are not really hyperparemeters as they cannot be tuned, they
change dinamically in each epoch based on the quantile_loss and quantile_prob

hyperparameters, respectively.
We also have the hyperparameters inherent to training a deep neural network: the

total number of epochs of the training, the batch size and whether to use fine-tune or
not in the backbone CNN: if we do not use fine-tuning, the layers of the backbone
neural network are not retrained and only the new added layers are trained, and
if we use fine-tuning, all the layers are trained. Whether to use fine-tuning or not
depends on the backbone network used (how deep it is) and if the data set we want
to classify has enough images to retrain the whole network or not. The number of
epochs of the training depends on if we are fine-tuning the backbone network and
the size of the data set. The batch size depends on the size of the data set, it will
increase as the size of the data set increases, usually.

If we focus on the specific hyperparameters of RAFNI, there are two of them that
we recommend not changing: the overlapping threshold between the Gaussians we
use to start the algorithm and the difference between the means of the Gaussians
that we use to stop the updates of loss_threshold and prob_threshold. We tested
different values for these parameters across all the data sets and levels of noise we
used and we found that 0.15 is a good value for the overlapping threshold and 0.3 a
good value for the difference between the means of the Gaussians. To show why we
chose these values we can see Figures 12.3, 12.4 and 12.5. In Figure 12.3 we show the
two components (the two Gaussians) obtained by the Gaussian Mixture Model (GMM)
over the losses of the instances in the first epochs of the training of EILAT with 40% of
symmetric noise. At first, as the learning progresses, the network starts to differentiate
between the clean and the noisy instances, and thus the two components start to
separate from themselves. Then, the network starts to overfit the noisy instances
and the two components start to come together again. To stop this overfitting, we
start the RAFNI algorithm when the overlap between the two components is less
than 0.15 or when the overlap in an epoch is greater than in the previous epoch. In
Figure 12.4 we can see how this overlap changes through the epochs of the training
and in which specific epoch we are starting the RAFNI algorithm. Finally, to stop
the updating of the loss_threshold and the prob_threshold we use the distance
between the means of the two components: if they are close, it means that there are
not enough noisy instances, so the two components are very close. In Figure 12.5 we

12.3 rafni : relabelling and filtering instances 159

(a) Epoch 0 (b) Epoch 1 (c) Epoch 2

Figure 12.3: The two components obtained by the Gaussian Mixture Model (GMM) over the
loss values of the instances in the first three epochs of the training using the
EILAT data set at 40% of noise.

can see the evolution of the difference between the means of the two Gaussians and
the specific epoch where we stop the updating of the thresholds.

Regarding the rest of the hyperparameters of RAFNI, we recommend to tune them
if possible, though we found that tunning the quantile_loss and quantile_prob is
more important than tunning the record_length and not_change_epochs hyperpara-
meters. The quantile_loss depends on how hard is the data set to classify: the more
difficult it is, the less we can rely on the predictions of the backbone network and it is
more convenient to use higher values so that the algorithm is more conservative, that
is, so it does not remove nor change the class of too many instances. Something sim-
ilar happens with the values of the hyperparameters quantile_prob, record_length
and not_change_epochs, though in these cases is also related to the size of the data
set: the harder it is to classify and fewer images have, higher values we should give
to these hyperparameters. In the case of record_length and not_change_epochs, we
should also take into account the total number of epochs of the training: if this
number is small, these two hyperparameters should also be small and they should
not exceed the total number of epochs in any case).

The ranges in which each hyperparameter can take values are the following.
For the quantile_loss and the quantile_prob hyperparameters, given they are
quantiles, their maximum value is 1 and their minimum is 0. However, we found
that they perform best if they vary in the range [0.6, 0.99]. The minimum value for
record_length is 2, so it can track at least one change in the class of the instances,
and its maximum is the total number of epochs in the training; the higher this value

160 a robust approach for dnns in presence of label noise

(a) EILAT at 40% noise (b) StructureRSMAS at 10% noise (c) RSMAS at 30% noise

Figure 12.4: Evolution of the overlap between the two components of the GMM through the
epochs of the training of different data sets and noise rates.

(a) EILAT at 70% noise (b) StructureRSMAS at 10% noise (c) RSMAS at 30% noise

Figure 12.5: Evolution of the difference between the means of the two components of the
GMM through the epochs of the training of different data sets and noise rates.

12.4 experimental framework 161

is, the fewer instances the algorithm will remove because their class has changed.
Finally, the minimum value for not_change_epochs is 1 and the maximum is the total
number of epochs in the training.

12.4 experimental framework

In this section, we describe the experimental framework we used to carry out the
experiments. In Subsection 12.4.1, we describe the data sets we used. In Subsec-
tion 12.4.2, we detail the types of noise we used in each data set along with the noise
levels we used in each one of them. Finally, in Subsection 12.4.3, we provide the
specific configuration, backbone neural network and software we used for all the
experiments.

12.4.1 Data sets

We describe the data sets we used to analyse RAFNI under different types and levels
of label noise. We used six data sets, each one with a different number of classes,
images per class and a total number of images: RSMAS, StructureRSMAS, EILAT,
COVIDGR1.0-SN, CIFAR10 and CIFAR100. There is a summary of the statistics of
these data sets in Table 12.1.

RSMAS, StructureRSMAS and EILAT are small coral data sets. RSMAS and EILAT
[Shi; GTL+19b] are texture data sets, containing coral patches, meaning that they are
close-up patches extracted from larger images, and StructureRSMAS [GTL+19a] is
a structure data set, containing images of entire corals. The patches in EILAT have
a size of 64×64 and come from images taken under similar underwater conditions,
and the ones in RSMAS have a size of 256×256 and come from images taken under
different conditions. StructureRSMAS is a data set collected from the Internet and
therefore contains images of different sizes taken under different conditions.

COVIDGR1.0-SN is a modification of COVIDGR1.0 [TGM+20]. COVIDGR1.0 con-
tains chest x-rays of patients divided into two classes: positive for COVID-19, and
negative for COVID-19, using the RT-PCR as ground truth. All the images in the data
set were taken using the same protocol and similar x-ray machines. The authors made
available the data set along with a list containing the degree of severity of the positive
x-rays: Normal-PCR+, Mild, Moderate and Severe. The x-rays with Normal-PCR+
severity are x-rays from patients that tested positive in the RT-PCR test but where

162 a robust approach for dnns in presence of label noise

Table 12.1: A summary of the data sets used in this study.

Data set # classes # images # images per class

RSMAS 14 766

1: 109, 2: 77, 3: 57, 4: 63,

5: 24, 6: 60, 7: 22, 8: 79,

9: 54, 10: 28, 11: 32,

12: 88, 13: 37, 14: 36

StructureRSMAS 14 409

1: 44, 2: 41, 3: 34, 4: 20,

5: 16, 6: 18, 7: 33, 8: 38,

9: 30, 10: 21, 11: 32,

12: 23, 13: 36, 14: 23

EILAT 8 1123

1: 87, 2: 78, 3: 29,

4: 160, 5: 200, 6: 216,

7: 296, 8: 11.

COVIDGR1.0-SN 2 700 350

CIFAR10 10 60000 6000

CIFAR100 100 60000 600

12.4 experimental framework 163

Table 12.2: Types and levels of label noise used for each data set

Data set Type of label noise Levels of noise

RSMAS
Symmetric

0%, 20%, 30%, 40%,

50%, 60% and 70%
StructureRSMAS

EILAT

COVIDGR1.0-SN NNAR 0%, 20%, 30%, 40% and 50%

CIFAR10 Asymmetric 0%, 20%, 30% and 40%

CIFAR10

Symmetric 0%, 20%, 40% and 60%
CIFAR100

expert radiologists could not find signs of the disease in the x-ray. The modification
that we use, COVIDGR1.0-SN, is the same data set as COVIDGR1.0 but we removed
the 76 positive images with Normal-PCR+ severity. To maintain the two classes
balanced, as happens in the original data set, we also removed 76 randomly chosen
negative images.

Finally, CIFAR10 and CIFAR100 [KH+09] are the 60k tiny images of size 32×32

images proposed by Alex Krizhevsky. Concerning the other data sets used in this
study, CIFAR10 and CIFAR100 are much larger in size. Both of them have a predefined
test hold-out of 10.000 images, meaning they both have a training set of 50.000 images.
Both datasets contain classes of common objects, such as ’Airplane’ and ’Ship’ in
CIFAR10 or ’Bed’ and ’Lion’ in CIFAR100.

12.4.2 Types and levels of label noise

We state the types of noise we used for each data set and which rates we used for
each one of them. In Table 12.2 we show a brief description. In summary, we used
symmetric noise, asymmetric noise and NNAR noise. Symmetric noise is the most
used type of noise and since it is not necessary to have external information to use it,
we use this type of noise in all data sets except for COVIDGR1.0-SN. But, to also use
more realistic and challenging types of noise, we used asymmetric and NNAR noise
when possible. This is the case for CIFAR10 and COVIDGR1.0-SN.

For CIFAR10, we used the asymmetric noise introduced in [PRK+17], which has
been a standard when evaluating deep learning in the presence of asymmetric label

164 a robust approach for dnns in presence of label noise

noise. This noise is introduced between classes that are alike, simulating real label
noise that could have occurred naturally. In particular, we introduced asymmetric
noise between the following classes: TRUCK → AUTOMOBILE, BIRD → AIRPLANE,
DEER → HORSE, CAT ↔ DOG, as defined in [PRK+17]. Note that since we are
introducing an x% of noise in five of the ten classes, we are introducing an x

2 % of
noise in the total dataset.

For COVIDGR1.0-SN, we have the additional information on the severity degree in
the images of the positive class, so we used them to introduce NNAR noise, where
we change the labels of a percentage x of the instances of the data set subject to
some condition over the instances. COVIDGR1.0-SN has two classes: P (COVID-19

positive) and N (COVID-19 negative), and the instances from P have associated a
severity (Mild, Moderate and Severe). In this scenario, is more realistic that a positive
image with mild severity has been misclassified as negative than a positive image
with moderate or severe severity. Equivalently, is more realistic that a positive image
with moderate severity has been misclassified as negative than a positive image with
severe severity. As a consequence, we define the probability of the instances in the
groups N (to change class to P), Mild (to change class to N), Moderate (to change
class to N) and Severe (to change class to N) as it follows: 0.5 for N, 0.3 for Mild,
0.2 for Moderate and 0 for Severe. That way, we are changing the same amount of
instances from P to N and vice versa, but when we change the class from P to N, it is
more probable to change a mild positive image than a moderate positive image. In
addition, we are making sure that no positive image with severe severity has changed
from class P to N.

12.4.3 Network and experimental configuration

Here, we provide the specific configuration we used in the experiments we carried
out.

As the backbone neural network we used ResNet50 [HZR+16], though the imple-
mentation of RAFNI is independent of the backbone network and can be changed
easily. We used ResNet50 pre-trained using ImageNet, removing the last layer of
the network and adding two fully connected layers, the first one with 512 neurons
and ReLU activation and the second one with as many neurons as classes the data
set had and softmax activation. Once we removed the last layer of ResNet50, its
output had 2048 neurons. We chose 512 neurons for the first fully connected layer

12.4 experimental framework 165

Table 12.3: Fixed hyperparameters we used in each data set.

Data set Optimizer Batch size
Total number

of epochs
Fine-tune

RSMAS SGD 16 40 No

StructureRSMAS SGD 16 40 No

EILAT SGD 16 40 No

COVIDGR1.0-SN SGD 16 40 No

CIFAR10 SGD 128 10 Yes

CIFAR100 SGD 128 15 Yes

we added as an intermediate number between 2048 and the number of classes in
the data sets. The fixed hyperparameters we used in each data set can be seen in
Table 12.3. We used the Stochastic Gradient Descent (SGD) with a learning rate of
1 × 10−3, a decay of 1 × 10−6 and a Nesterov momentum of 0.9. We did not optimize
these hyperparameters.

For the experimentation, we used TensorFlow 2.4 and an Nvidia Tesla V100. The
values we gave to each hyperparameter can be seen in Table 12.4. Using those values,
we performed an exhaustive grid search to find the best configuration in each case.
Since the CIFAR data sets and the rest of the data sets we used had different sizes,
the experimental framework we used for them was different. For the smaller data
sets RSMAS, EILAT, StructureRSMAS and COVIDGR1.0-SN, we used five-fold cross-
validation for the experiments in the grid search, while for CIFAR10 and CIFAR100

we used a 20% hold-out using only the original train set. Then, to ensure a more stable
final result, we did the following. For the smaller data sets, we repeated the five-fold
cross-validation with the best hyperparameter configuration five times (noted 5x5fcv)
and we report the mean and standard deviation of the 5x5fcv. This scheme of using
mean and standard deviation is one of the most used in the literature. For the CIFAR
data sets, we used the best hyperparameter configuration (found using only the
training set) in the predefined test hold-out, we repeated that experiment five times
and we report the mean and standard deviation.

We used the accuracy measure, widely used for supervised classification. The
accuracy is defined as the number of instances well classified in the test set divided
by the total number of instances in the test set.

166 a robust approach for dnns in presence of label noise

Table 12.4: Values we used for each hyperparameter and data set for the grid search.

Data set Hyperparameter Values

RSMAS, EILAT,

StructureRSMAS

and

COVIDGR1.0-SN

quantile_loss {0.9, 0.92, 0.94, 0.96, 0.98, 0.99}

quantile_prob {0.9, 0.93, 0.95, 0.97, 0.99}

record_length {5, 8}

not_change_epochs {4, 7}

CIFAR10

quantile_loss {0.95, 0.97, 0.99}

quantile_prob {0.75, 0.8, 0.85, 0.9}

record_length {2, 4}

not_change_epochs {1, 2}

CIFAR100

quantile_loss {0.95, 0.97, 0.99}

quantile_prob {0.75, 0.78, 0.82, 0.85}

record_length {2, 4}

not_change_epochs {1, 2}

To make the comparison with the baseline model (that is, the backbone network
alone, without filtering or relabelling instances), we used the same scheme as we used
with RAFNI: we repeated five times the five-fold cross-validation (or the hold-out for
the CIFAR data sets) and we report mean and standard deviation.

The best values for the hyperparameters in each case can be found in Table 12.5.

12.5 comparison with the baseline model

In this section, we present the results we obtained for each data set using our proposal,
and we compare it with the backbone network alone as the baseline.

12.5.1 RSMAS, EILAT, StructureRSMAS and COVIDGR1.0-SN

We present the results obtained with the smaller data sets: RSMAS, EILAT, Structur-
eRSMAS and COVIDGR1.0-SN.

12.5 comparison with the baseline model 167

Table 12.5: Best hyperparameter values for all data sets using ResNet50.
Data set Noise rate quantile_loss quantile_prob record_length not_change_epochs

RSMAS

0% 0.99 0.95 5 7

10% 0.96 0.93 5 7

20% 0.92 0.95 8 4

30% 0.92 0.9 5 7

40% 0.9 0.95 5 7

50% 0.9 0.93 5 7

60% 0.9 0.9 8 4

70% 0.9 0.93 5 4

StructureRSMAS

0% 0.99 0.9 8 4

10% 0.96 0.95 8 7

20% 0.94 0.95 5 4

30% 0.92 0.95 5 4

40% 0.92 0.95 5 4

50% 0.92 0.95 8 4

60% 0.9 0.95 5 4

70% 0.9 0.9 5 7

EILAT

0% 0.99 0.99 8 4

10% 0.98 0.97 5 7

20% 0.94 0.9 8 7

30% 0.94 0.95 8 4

40% 0.92 0.97 8 7

50% 0.9 0.93 8 4

60% 0.9 0.95 5 4

70% 0.9 0.9 5 4

COVIDGR1.0-SN

0% 0.96 0.99 8 7

10% 0.99 0.9 5 7

20% 0.94 0.97 5 4

30% 0.96 0.97 5 4

40% 0.92 0.93 5 7

50% 0.9 0.95 5 7

CIFAR10,
symmetric noise

0% 0.99 0.75 4 1

20% 0.95 0.75 2 1

40% 0.97 0.75 2 2

60% 0.99 0.8 2 2

CIFAR10,
asymmetric noise

0% 0.99 0.75 4 1

20% 0.95 0.8 2 2

30% 0.95 0.85 2 2

40% 0.95 0.85 2 1

CIFAR100,
symmetric noise

0% 0.95 0.85 4 2

20% 0.95 0.78 4 1

40% 0.99 0.75 2 1

60% 0.99 0.75 2 1

168 a robust approach for dnns in presence of label noise

Table 12.6: 5x5fcv mean ± std accuracy obtained for the data sets RSMAS, EILAT and
StructureRSMAS using RAFNI with ResNet50 as backbone network and the
backbone network alone, ResNet50, as baseline. The best results in each case are
stressed in bold.

Data set Algorithm 0% 10% 20% 30% 40% 50% 60% 70%

RSMAS
Baseline 97.78 ± 0.94 93.50 ± 1.60 88.04 ± 3.42 82.59 ± 2.85 74.10 ± 3.73 63.91 ± 3.72 52.54 ± 4.15 38.83 ± 5.64

RAFNI 97.70 ± 1.39 96.76 ± 1.49 95.51 ± 2.16 92.09 ± 1.68 88.95 ± 2.48 79.13 ± 3.89 67.04 ± 4.42 53.73 ± 4.68

EILAT
Baseline 97.53 ± 1.51 94.65 ± 2.09 89.67 ± 1.81 84.10 ± 2.40 75.96 ± 4.44 65.44 ± 4.24 53.30 ± 4.11 37.46 ± 5.18

RAFNI 97.41 ± 1.64 96.37 ± 1.57 95.80 ± 1.94 95.34 ± 2.04 93.60 ± 2.10 90.76 ± 2.77 86.72 ± 3.34 76.67 ± 5.57

StructureRSMAS
Baseline 81.73 ± 4.42 80.23 ± 4.06 74.37 ± 5.00 70.87 ± 5.39 62.59 ± 5.05 51.60 ± 7.01 40.90 ± 6.16 32.98 ± 4.06

RAFNI 82.05 ± 3.78 81.17 ± 3.63 77.40 ± 4.99 74.09 ± 5.35 68.43 ± 5.24 54.92 ± 6.22 46.57 ± 8.93 35.90 ± 6.04

Table 12.7: 5x5fcv mean ± std accuracy obtained for the data set COVIDGR1.0-SN using
RAFNI with ResNet50 as backbone network and the backbone network alone,
ResNet50, as baseline. The best results in each case are stressed in bold.

Noise Baseline RAFNI

0% 77.06 ± 3.47 78.20 ± 2.80

10% 73.46 ± 2.38 76.31 ± 2.44

20% 72.71 ± 4.74 75.91 ± 2.92

30% 68.14 ± 4.00 75.06 ± 3.94

40% 62.49 ± 2.87 72.77 ± 4.68

50% 55.34 ± 4.33 64.46 ± 5.68

In Table 12.6, we can observe the results with symmetric noise for the data sets
RSMAS, EILAT and StructureRSMAS using RAFNI with ResNet50 as the backbone
network, and the comparison with the backbone network alone as the baseline. The
results are similar in all data sets as the noise increases, especially for RSMAS and
EILAT. At 0% of noise, the difference between the use of the RAFNI algorithm and
the baseline is minimal. Then, as noise increases, this difference starts to increase. At
10% of noise, RAFNI obtains 3.26% more than the baseline for RSMAS and 1.72% for
EILAT. At 40% of noise, this difference is 14.85% for RSMAS and 17.64% for EILAT.
At 70% of noise, the gain of using RAFNI is 14.9% for RSMAS and 39.21% for EILAT.
For StructureRSMAS, these differences are lower: for example, at 40%, the gain of
using RAFNI is 5.84%. However, RAFNI is still consistently better than the baseline
at all levels of noise.

12.5 comparison with the baseline model 169

Table 12.8: Mean ± std accuracy obtained using CIFAR10 and CIFAR100 with symmetric
noise and using the baseline network (ResNet50) and RAFNI with that network
as the backbone network. The best results in each case are stressed in bold.

Data set CIFAR10 CIFAR100

Noise 0% 20% 40% 60% 0% 20% 40% 60%

Baseline 95.31 ± 0.03 85.36 ± 0.41 67.94 ± 0.50 44.87 ± 0.34 81.18 ± 0.26 70.57 ± 0.25 55.88 ± 0.45 37.64 ± 0.47

RAFNI 95.48 ± 0.09 92.86 ± 0.32 89.84 ± 0.66 79.48 ± 1.23 80.68 ± 0.14 77.93 ± 0.11 73.01 ± 0.16 67.08 ± 0.45

The results obtained for COVIDGR1.0-SN with pseudo-symmetric noise are shown
in Table 12.7. Here we only used levels of noise up until 50% because this data set has
only two classes. This data set has the advantage that it is a real-world data set, and it
is more difficult to train (at 0% noise level) than the other data sets: ResNet50 obtains
an accuracy of 77.06% at 0% noise. In addition, the noise we introduced in this data
set is more realistic, so we can see how well the RAFNI algorithm behaves in a more
real-life scenario. We can see that, at all noise levels, including 0%, the results are
better using RAFNI than using the baseline, with gains that generally increase as the
noise level raises. At 10% noise, RAFNI obtains 2.85% more than the baseline. This
gain is 6.92% at 30% noise and 9.12% at 50% noise.

12.5.2 CIFAR

We show the results we have obtained using CIFAR10 and CIFAR100 with symmetric
noise and CIFAR10 with asymmetric noise.

In Table 12.8 we can see the results for CIFAR10 and CIFAR100 using symmetric
noise. RAFNI achieves better results in both data sets at all levels of noise except
for CIFAR100 at 0% of noise, where the baseline is slightly better. Similarly to what
happened with the small datasets, the accuracy gain of using RAFNI increases as the
noise level increases. For CIFAR10 we have a gain of 7.5% at 20% of noise and a gain
of 34.61% at 60% of noise. For CIFAR100 these gains are 7.36% and 29.44% at 20%
and 60% of noise, respectively.

In Table 12.9 we show the results for CIFAR10 using asymmetric noise. In this
scenario, RAFNI also achieves better results than the baseline at all levels of noise.
The accuracy gain of using RAFNI increases when the noise increases, being 4.69% at
20% of noise, 8.69% at 40% of noise and 10.41% at 60% of noise.

170 a robust approach for dnns in presence of label noise

Table 12.9: Mean ± std accuracy obtained using CIFAR10 with asymmetric noise and using
the baseline network (ResNet50) and RAFNI with that network as the backbone
network. The best results in each case are stressed in bold.

Noise 0% 20% 30% 40%

Baseline 95.31 ± 0.03 89.27 ± 0.43 84.27 ± 0.30 78.10 ± 0.52

RAFNI 95.48 ± 0.09 93.96 ± 0.15 92.96 ± 0.13 88.51 ± 0.54

12.6 comparison with state-of-the-art models

In this section, we compare our proposal, RAFNI, with some state-of-the-art mod-
els that do not used external information (like the noise rate): the loss correction
approaches proposed in [PRK+17], the robust function proposed in [AWA+19], the
proposal in [MWH+18], and the one in [AOA+19], which we described in Section 12.2.

The two proposed methods in [PRK+17] suppose that the noise rate is known, but
the authors incorporated a mechanism to estimate it in the usual case that it is not
known, so we used both of their approaches using this estimation (called estimated
forward and estimated backwards).

To make the comparison we used CIFAR10, with symmetric and asymmetric noise,
and CIFAR100 with symmetric noise, which are the benchmarks that most of the
papers used in the literature.

To make a fair comparison, we used the same experimental frameworks as the
other papers whenever possible, that is, we changed our framework to use the same
backbone neural network, the same number of training epochs, optimizer, the same
learning rate scheduler, data augmentation, etc., as the model we are comparing our
algorithm to. In each case, we used the best hyperparameters reported in each paper
for each scenario, except for the number of epochs. Due to time restrictions, if the
original number of epochs used by the authors exceeds 120 for CIFAR10 and 150

for CIFAR100, we changed them to use 120 epochs for CIFAR10 and 150 epochs for
CIFAR100 (accordingly, we also train RAFNI for the same number of epochs in each
case). The authors in [AWA+19] only used CIFAR100 under symmetric noise, so we
only had the best values for the two temperatures for this case. For the other two
scenarios (CIFAR10 with symmetric noise and with asymmetric noise), we evaluated
different values in the range the authors gave for each hyperparameter and selected
the best ones for each scenario and level of noise using the same validation set we

12.6 comparison with state-of-the-art models 171

Table 12.10: Comparison between RAFNI and the two methods from Patrini et al [PRK+17],
using pre-activation ResNet32 for CIFAR10 and pre-activation ResNet44 for
CIFAR100 in the three approaches. The best results are stressed in bold.

CIFAR10 CIFAR100

Symmetric noise Asymmetric noise Symmetric noise

20% 40% 60% 20% 30% 40% 20% 40% 60%

Est. Forward 88.46 ± 0.22 84.54 ± 0.40 79.32 ± 0.23 89.89 ± 0.15 89.32 ± 0.28 87.09 ± 1.55 62.11 ± 2.57 48.72 ± 0.84 33.41 ± 0.87

Est. Backwards 84.40 ± 0.22 79.12 ± 0.45 64.00 ± 1.67 86.33 ± 0.55 81.71 ± 3.06 72.10 ± 5.66 60.24 ± 3.36 – –

RAFNI 87.58 ± 0.19 84.38± 0.56 79.34 ± 0.51 88.79 ± 0.19 87.33 ± 0.25 87.30 ± 1.12 61.49 ± 1.57 55.20 ± 1.18 45.31 ± 0.96

used to search for the best hyperparameters for RAFNI. For this proposal, we use
ResNet50 in all scenarios, since their method can be used with any CNN.

The authors in [AOA+19] used an original implementation of pre-activation Res-
Net18 in PyTorch. Unfortunately, we were not able to replicate that network with our
algorithm. As a result, we compared our results using RAFNI with our experimental
scheme (ResNet50 with fine-tuning, 10 and 15 epochs for CIFAR10 and CIFAR100

respectively) with their model using their experimental scheme (ResNet18, 300 epochs
in both cases, data augmentation and learning rate scheduler). In their paper, they
also compared their method with other proposals in the literature using different
backbone networks.

Finally, we used the same data sets as with our algorithm where it was possible
(for the proposals made by [AWA+19] and [MWH+18]), and the given ones in the
rest, making sure that the noise injection was the same as it was in our data sets. We
argue that, since the noise level is the same, it is introduced randomly in all the cases,
and the test sets are also the same as they are predefined, we can safely compare the
algorithms.

We also performed a Wilcoxon Rank-Sum test to check if the differences in the
results were significant in each case. Since we repeated each experiment five times, we
used all five accuracies for each data set and level of noise to perform the Wilcoxon
test, instead of using the mean.

In Table 12.10 we show the accuracy obtained with the two approaches proposed
in [PRK+17] and our algorithm using the same backbone network and experimental
scheme as the one used in [PRK+17]. In the comparison with the estimated backward
algorithm, we can see that RAFNI performs better in both data sets at all levels and
types of noise. It is interesting that when classifying CIFAR100 with a noise rate
of 40% and more, the estimated backward algorithm does not finish the training.

172 a robust approach for dnns in presence of label noise

Table 12.11: Comparison between RAFNI and the D2L method [MWH+18], using their ori-
ginal 8-layer CNN for CIFAR10 and pre-activation ResNet44 for CIFAR100 in
both approaches. The best results are stressed in bold

CIFAR10 CIFAR100

Symmetric noise Asymmetric noise Symmetric noise

20% 40% 60% 20% 30% 40% 20% 40% 60%

D2L 86.43 ± 0.15 84.08 ± 0.30 78.32 ± 0.48 86.75 ± 0.14 85.27 ± 0.27 82.51 ± 0.34 59.18 ± 0.30 28.77 ± 8.52 4.34 ± 1.90

RAFNI 87.91 ± 0.19 83.01 ± 0.81 76.37 ± 0.15 89.04 ± 0.13 88.49 ± 0.19 86.57 ± 0.17 61.49 ± 1.57 55.20 ± 1.18 45.31 ± 0.96

Table 12.12: Comparison between RAFNI and the BiTempered method [AWA+19], using
ResNet50 in both approaches. The best results are stressed in bold

CIFAR10 CIFAR100

Symmetric noise Asymmetric noise Symmetric noise

20% 40% 60% 20% 30% 40% 20% 40% 60%

BiTempered 89.33 ± 0.22 76.14 ± 1.12 54.14 ± 1.37 88.82 ± 0.73 84.09 ± 0.63 78.07 ± 0.54 76.51 ± 0.22 71.31 ± 0.32 64.47 ± 0.43

RAFNI 92.86 ± 0.32 89.84 ± 0.66 79.48 ± 1.23 93.96 ± 0.15 92.96 ± 0.13 88.51 ± 0.54 77.93 ± 0.11 73.01 ± 0.16 67.08 ± 0.45

Here, the Wilcoxon-Rank-Sum test obtains that there are significant differences with
p-value 9.5 × 10−7.

When comparing RAFNI with the estimated forward algorithm, we can see that
there is less difference between them, especially in CIFAR10, where the differences are
usually less than 1% using both types of noise, on average. However, when classifying
CIFAR100, RAFNI outperforms the estimated forward algorithm when the noise rate
is 40% or more. In particular, RAFNI obtains a gain in accuracy of 6.48% at 40% noise
and 11.9% at 60% noise. Using the Wilcoxon Rank-Sum test, we can say that RAFNI
performs better with significant differences (p-value 3.6 × 10−5.

The results we obtained for the D2L algorithm [MWH+18] and our algorithm
using the same experimental scheme can be seen in Table 12.11. We can see that for
CIFAR10 with symmetric noise there is not much difference between the accuracies
obtained by D2L and RAFNI, with D2L being slightly better at 60% noise with a
difference of 1.95% on average. But when introducing asymmetric noise, RAFNI
obtained better results at all noise rates, with a difference in the accuracy of 4.06% on
average at 40% noise. The biggest difference between these two methods, however,
can be seen when classifying CIFAR100, where RAFNI outperforms D2L, especially
as noise increases, with a difference of 26.43% at 40% noise and 40.97% at 60% noise.
The Wilcoxon Rank-Sum test obtains significant differences with p-value 1.31 × 10−5.

12.7 comparison with an approach that suppose the noise rate is known 173

Table 12.13: Comparison between RAFNI, using ResNet50, and the method from Arazo et al
[AOA+19], using pre-activation ResNet18. The best results are stressed in bold

CIFAR10 CIFAR100

Symmetric noise Asymmetric noise Symmetric noise

20% 40% 60% 20% 30% 40% 20% 40% 60%

Arazo et al [AOA+19] 93.54 ± 0.30 92.45 ± 0.18 89.34 ± 0.20 87.60 ± 3.15 80.68 ± 6.46 64.49 ± 27.52 69.29 ± 0.16 63.72 ± 0.19 54.83 ± 0.45

RAFNI 92.86 ± 0.32 89.84 ± 0.66 79.48 ± 1.23 93.96 ± 0.15 92.96 ± 0.13 88.51 ± 0.54 77.93 ± 0.11 73.01 ± 0.16 67.08 ± 0.45

The accuracies we obtained using the BiTempered method and RAFNI, both of
them using ResNet50 as the backbone network, can be seen in Table 12.12. Here,
RAFNI obtains, on average, better results in both data sets at all noise rates and
noise types. The Wilcoxon Rank-Sum obtains significant differences with p-value
1.77 × 10−8. The biggest differences occur for CIFAR10 with symmetric noise, where
RAFNI outperforms Bi-Tempered by 13.7% at 40% noise and by 25.34% at 60% noise.

Finally, the accuracies we obtained with the algorithm proposed by Arazo et al
in [AOA+19] and RAFNI, both of them using their original experimental schemes,
can be seen in Table 12.13. This is the case where we can see the most discrepancies
depending on the data set that is being classified but also depending on the type of
noise. For CIFAR10 with symmetric noise, which is easier to classify than CIFAR100,
the algorithm from Arazo et al is better than RAFNI, obtaining 9.86% more at 60%
noise, on average, though the difference at 20% is considerably lower. However, if we
introduce asymmetric noise on CIFAR10, which is a more complicated and realistic
type of noise, RAFNI obtains better results. The differences increase as the noise
rate increases, being 24.02% at 40% noise. Now, for CIFAR100 with symmetric noise,
RAFNI again outperforms the algorithm proposed by Arazo et al, and the differences
in accuracy are present even at low percentages of noise, similar to what happened for
CIFAR10 with asymmetric noise: RAFNI obtains 8.64% more accuracy, on average, at
20% noise, 9.29% at 40% noise and 12.25% at 60% noise. When we used the Wilcoxon
Rank-Sum test on all results, we obtained that RAFNI obtained significant differences
with p-value 1.15 × 10−7.

12.7 comparison with an approach that suppose the noise rate is

known

In this section, we compare our algorithm, which assumes no known external in-
formation, with the SELFIE algorithm, which assumes the noise rate of the data set

174 a robust approach for dnns in presence of label noise

Table 12.14: Comparison between RAFNI and SELFIE [SKL19], using DenseNet-25-12. The
best results are stressed in bold

CIFAR10 CIFAR100

Symmetric noise Asymmetric noise Symmetric noise

20% 40% 60% 20% 30% 40% 20% 40% 60%

SELFIE 88.04 ± 0.21 85.26 ± 0.30 77.29 ± 0.45 87.90 ± 0.33 84.01 ± 0.24 66.57 ± 0.68 63.48 ± 0.67 60.00 ± 0.40 52.62 ± 0.49

RAFNI 84.00 ± 0.23 78.62 ± 0.84 68.27 ± 0.31 84.48 ± 0.70 82.51 ± 0.65 78.19 ± 1.83 56.08 ± 0.33 48.00 ± 0.83 31.91 ± 1.38

is known. It is important to note that, in real scenarios, knowing the noise rate of
the data set is not usual. We want to estimate the advantage of using this unusual
information in specific models, so that we can quantify the potential loss of not
having that kind of knowledge available. Thus, RAFNI is expected to perform worse
than SELFIE since RAFNI does not assume extra information, but we want to see in
which cases it is competitive.

To make this comparison, we used RAFNI with the same experimental scheme that
SELFIE: DenseNet-25-12 as the backbone network, with no data augmentation and
the same learning rate scheduler. We train both algorithms for 120 and 150 epochs for
CIFAR10 and CIFAR100, respectively, due to time restrictions. For SELFIE, we had
to implement the matrix of asymmetric noise as given in [PRK+17], to use the same
injection of noise in the data sets used in both algorithms.

The results we obtained for both algorithms are shown in Table 12.14. As expected,
SELFIE obtained better results for both data sets and types of noise. Nonetheless, for
the CIFAR10 data set RAFNI performs well, obtaining similar results at low noise
rates. This also happened when using asymmetric noise, which is interesting since
this type of noise is more realistic and difficult to deal with than symmetric noise. In
fact, RAFNI outperforms SELFIE at 40% noise by more than 11%.

However, in general, if the information about the noise rate is known, it is better
to use an algorithm that uses that information. We did not suppose this type of
information was known in our algorithm as we wanted to make it applicable in all
cases.

12.8 analysing the effectiveness of the rafni mechanisms

In this section, we analyse how well RAFNI removes and relabels instances using
two data sets as samples: EILAT and COVIDGR1.0-SN. In particular, we take a look
at a) how many instances were removed, and from those, we check how many of

12.9 conclusions 175

them were noisy; and b) how many instances were relabelled, and from those, we
check how many of them were noisy and how many were correctly classified by the
algorithm to their original class.

For both data sets, we analysed how well RAFNI behaves at every level of noise
tested in Section 12.5. We used one five-fold cross-validation repeated five times for
both data sets, so the results we give here are the total results, that is, for the total
number of removals, for example, we sum all the removals in the five training sets.
The results for EILAT can be seen in Table 12.15 and the results for COVIDGR1.0-SN
can be seen in Table 12.16. In both tables we show 1) the percentage of good removals,
that is, instances that were noisy and RAFNI removed from the training set; 2) the
total number of instances that RAFNI removed during training; 3) the percentage of
good changes, that is, instances that were noisy and RAFNI changed to their original
clean class; 4) the total number of instances that RAFNI changed from one class to
another during training. Since EILAT has more than two classes, in its case we also
show the percentage of noisy changes, that is, instances that were noisy and RAFNI
changed to another class, but not their original class.

In both cases, we can see that RAFNI does a good job both removing and changing
instances to their original class. In the case of the COVIDGR1.0-SN data set, the
percentage of good changes is lower than with EILAT, but this is to be expected since
the type of noise introduced in the COVIDGR1.0-SN data set is more difficult and
realistic than the symmetric noise introduced in EILAT. Even in that case, RAFNI
removes instances that were noisy with an accuracy above 92% at all levels of noise
for COVIDGR1.0-SN. On the other hand, RAFNI changes instances to their original
class with precision above 95% for EILAT, except at 70% of noise, when it descends
to 81.81%. This shows that RAFNI is capable to detect the noisy instances and either
remove them or change them to their original class with a high precision, which
improves the learning, as we have seen in Section 12.5. The total number of removals
and changes tends to increase as the noise level increases in both data sets, as would
be expected since the number of noisy instances is increasing, so this is another sign
that the algorithm is behaving well.

12.9 conclusions

In this paper, we proposed an algorithm, called RAFNI, that can filter and relabel
noisy instances during the training process of any convolutional neural network

176 a robust approach for dnns in presence of label noise

Table 12.15: Analysis of the instances that the RAFNI algorithm removed and changed from
one class to another during the training of the EILAT data set.

Noise 10% 20% 30% 40% 50% 60% 70%

% good removals 75.80% 73.58% 83.58% 88.53% 85.66% 84.80% 82.28%

Total number of removals 2595 4969 6706 9039 18519 13423 15313

% good changes 100% 99.75% 99.22% 98.98% 98.36% 95.63% 81.81%

% noisy changes 0% 0% 0.10% 0.44% 0.44% 2.15% 10.29%

Total number of changes 156 809 1022 683 3176 1486 2303

Table 12.16: Analysis of the instances that the RAFNI algorithm removed and changed from
one class to another during the training of the COVIDGR1.0-SN data set.

Noise 10% 20% 30% 40% 50%

% good removals 94.64% 94.15% 94.16% 92.92% 93.27%

Total number of removals 1866 4719 4487 6301 7282

% good changes 40.61% 68.39% 70.88% 74.58% 70.13%

Total number of changes 1091 291 443 535 385

12.9 conclusions 177

using the predictions and loss values the network gives the instances of the training
set. This progressive cleaning of the training set allows the network to improve its
generalisation at the end of the training process, improving the results the CNN has
on its own. In addition, RAFNI has the advantage that it can be used with any CNN
as the backbone network and that transfer learning and data augmentation can be
easily applied. It also does not use prior information that is usually not known, like
the noise matrix or the noise rate. In addition, it works well even when there is no
introduced noise in the data set, so it is safe to use when we do not know the noise
rate of a data set. We also made the code available so it is easier to use it.

Developing algorithms that can allow deep neural networks to perform better
under label noise is an important task since label noise is a common problem in
real-world scenarios and it negatively affects the performance of the networks. We
believe that our proposal is a great solution to this problem: it can be easily fine-tuned
to every data set, it allows to be used with any CNN, and it allows the use of transfer
learning and data augmentation. We proved its potential using various data sets with
different characteristics and using three different types of label noise. Finally, we also
compared it with several state-of-the-art algorithms, improving their results.

acknowledgements

This publication was supported by the project with reference SOMM17/6110/UGR,
granted by the Andalusian Consejería de Conocimiento, Investigación y Univer-
sidades and European Regional Development Funds (ERDF). This work was also
supported by project PID2020-119478GB-I00 granted by Ministerio de Ciencia, Innova-
ción y Univesidades, and project P18-FR-4961 by Proyectos I+D+i Junta de Andalucia
2018. Anabel Gómez-Ríos was supported by the FPU Programme FPU16/04765 by
Ministerio de Educación, Cultura y Deporte.

references

[AWA+19] E. Amid, M. K. K. Warmuth, R. Anil and T. Koren, ‘Robust bi-tempered
logistic loss based on bregman divergences’, in Advances in Neural In-
formation Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox and R. Garnett, Eds., vol. 32, Curran Associates,
Inc., 2019.

178 a robust approach for dnns in presence of label noise

[AOA+19] E. Arazo, D. Ortego, P. Albert, N. O’Connor and K. McGuinness, ‘Un-
supervised label noise modeling and loss correction’, in International
conference on machine learning, PMLR, 2019, pp. 312–321.

[FV14] B. Frenay and M. Verleysen, ‘Classification in the presence of label
noise: A survey’, IEEE Transactions on Neural Networks and Learning
Systems, vol. 25, no. 5, pp. 845–869, May 2014.

[GKS17] A. Ghosh, H. Kumar and P. Sastry, ‘Robust loss functions under label
noise for deep neural networks’, in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 31, 2017.

[GTL+19a] A. Gómez-Ríos, S. Tabik, J. Luengo, A. Shihavuddin and F. Herrera,
‘Coral species identification with texture or structure images using a
two-level classifier based on convolutional neural networks’, Knowledge-
Based Systems, vol. 184, p. 104 891, Nov. 2019.

[GTL+19b] A. Gómez-Ríos, S. Tabik, J. Luengo, A. Shihavuddin, B. Krawczyk and
F. Herrera, ‘Towards highly accurate coral texture images classification
using deep convolutional neural networks and data augmentation’,
Expert Systems with Applications, vol. 118, pp. 315–328, Mar. 2019.

[HZR+16] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image
recognition’, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[JZL+18] L. Jiang, Z. Zhou, T. Leung, L.-J. Li and L. Fei-Fei, ‘Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted
labels’, in International Conference on Machine Learning, PMLR, 2018,
pp. 2304–2313.

[JNC16] I. Jindal, M. Nokleby and X. Chen, ‘Learning deep networks from noisy
labels with dropout regularization’, IEEE, Dec. 2016, pp. 967–972.

[KH+09] A. Krizhevsky, G. Hinton et al., ‘Learning multiple layers of features
from tiny images’, 2009.

[KSH12] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification
with deep convolutional neural networks’, Advances in neural information
processing systems, vol. 25, pp. 1097–1105, 2012.

12.9 conclusions 179

[LHZ+18] K.-H. Lee, X. He, L. Zhang and L. Yang, ‘Cleannet: Transfer learning
for scalable image classifier training with label noise’, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[LWL+17] W. Li, L. Wang, W. Li, E. Agustsson and L. Van Gool, ‘Webvision
database: Visual learning and understanding from web data’, arXiv
preprint arXiv:1708.02862, 2017.

[MWH+18] X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. Erfani, S. Xia, S. Wijewickrema
and J. Bailey, ‘Dimensionality-driven learning with noisy labels’, in
International Conference on Machine Learning, PMLR, 2018, pp. 3355–3364.

[OTH18] R. Olmos, S. Tabik and F. Herrera, ‘Automatic handgun detection alarm
in videos using deep learning’, Neurocomputing, vol. 275, pp. 66–72, Jan.
2018.

[PRK+17] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock and L. Qu, ‘Making
deep neural networks robust to label noise: A loss correction approach’,
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 1944–1952.

[RLA+14] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan and A. Rabinovich,
‘Training deep neural networks on noisy labels with bootstrapping’,
arXiv preprint arXiv:1412.6596, 2014.

[Shi] A. Shihavuddin, Coral reef dataset, mendeley data, v2, https://data.
mendeley.com/datasets/86y667257h/2, Accesed on: 06-04-2021.

[SC18] G. Song and W. Chai, ‘Collaborative learning for deep neural networks’,
in Proceedings of the 32nd International Conference on Neural Information
Processing Systems, ser. NIPS’18, Montréal, Canada: Curran Associates
Inc., 2018, pp. 1837–1846.

[SKL19] H. Song, M. Kim and J.-G. Lee, ‘Selfie: Refurbishing unclean samples
for robust deep learning’, in International Conference on Machine Learning,
PMLR, 2019, pp. 5907–5915.

[SKP+20] H. Song, M. Kim, D. Park, Y. Shin and J.-G. Lee, ‘Learning from
noisy labels with deep neural networks: A survey’, arXiv preprint
arXiv:2007.08199, 2020.

180 a robust approach for dnns in presence of label noise

[SBP+15] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev and R. Fergus, ‘Training
convolutional networks with noisy labels’, 3rd International Conference
on Learning Representations, ICLR 2015, Jan. 2015.

[TGM+20] S. Tabik et al., ‘Covidgr dataset and covid-sdnet methodology for pre-
dicting covid-19 based on chest x-ray images’, IEEE Journal of Biomedical
and Health Informatics, vol. 24, no. 12, pp. 3595–3605, Dec. 2020.

[WLM+18] Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song and S.-T. Xia, ‘Iterative
learning with open-set noisy labels’, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 8688–8696.

[XXY+15] T. Xiao, T. Xia, Y. Yang, C. Huang and X. Wang, ‘Learning from massive
noisy labeled data for image classification’, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 2691–2699.

[YW19] K. Yi and J. Wu, ‘Probabilistic end-to-end noise correction for learning
with noisy labels’, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 7017–7025.

[ZBH+21] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, ‘Understanding
deep learning (still) requires rethinking generalization’, Communications
of the ACM, vol. 64, no. 3, pp. 107–115, Mar. 2021.

[ZCD+17] H. Zhang, M. Cisse, Y. N. Dauphin and D. Lopez-Paz, ‘Mixup: Beyond
empirical risk minimization’, arXiv preprint arXiv:1710.09412, 2017.

[ZS18] Z. Zhang and M. R. Sabuncu, ‘Generalized cross entropy loss for train-
ing deep neural networks with noisy labels’, in 32nd Conference on
Neural Information Processing Systems (NeurIPS), 2018.

