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Abstract: The increase in cancer incidences shows that there is a need to better understand tumour
heterogeneity to achieve efficient treatments. Interestingly, there are several common features among
almost all types of cancers, with chronic inflammation induction and deaminase dysfunctions singled
out. Deaminases are a family of enzymes with nucleotide-editing capacity, which are classified
into two main groups: DNA-based and RNA-based. Remarkably, a close relationship between
inflammation and the dysregulation of these molecules has been widely documented, which may
explain the characteristic intratumor heterogeneity, both at DNA and transcriptional levels. Indeed,
heterogeneity in cancer makes it difficult to establish a unique tumour progression model. Currently,
there are three main cancer models—stochastic, hierarchic, and dynamic—although there is no
consensus on which one better resembles cancer biology because they are usually overly simplified.
Here, to accurately explain tumour progression, we propose interactions among chronic inflammation,
deaminases dysregulation, intratumor genetic heterogeneity, cancer phenotypic plasticity, and even
the previously proposed appearance of cancer stem-like cell populations in the edges of advanced
solid tumour masses (instead of being the cells of origin of primary malignancies). The new tumour
development model proposed in this study does not contradict previously accepted models and it
may open up a window to interesting therapeutic approaches.

Keywords: deaminases dysregulation; AID; APOBEC; ADAR; cancer phenotype plasticity; cancer
stem cells; tumour development model

1. Introduction

It is a well-known fact that genome- and transcriptome-based modifications can greatly
influence cellular behaviour. In this sense, two main families of enzymes with nucleotide-
editing properties have been described: cytidine and adenosine deaminases. On the one
hand, cytidine deaminase catalyses the cytosine-to-uracil conversion; activation-induced
cytidine deaminase (AID) is a representative member with single-stranded DNA-editing
properties and is mainly expressed in B lymphocytes in physiological conditions. It plays a
key role in antibody diversification through “somatic hypermutation” and “class switch
recombination” processes [1]. The apolipoprotein B mRNA editing catalytic polypeptide-
like (APOBEC) family also belongs to the cytosine deamination group and consists of
11 enzymes with both single-stranded DNA- and RNA editing capacities [2]. On the
other hand, adenosine deaminases acting on RNA (ADARs) represent a group of enzymes
with adenosine deaminase activity that mediate the adenosine-to-inosine transition and
promote the post-transcriptional editing of RNA-based molecules. In mammals, three
ADAR family members are described: ADAR1, which mainly acts in repetitive, non-coding
RNA sequences, such as Alu motifs; ADAR2, which mainly edits non-repetitive, coding
RNA sequences; and ADAR3, which exerts RNA-editing inhibitory roles [3]. Furthermore,
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alternative splicing of the ADAR1 gene leads to the generation of the ADAR1p110 nuclear
isoform and the main cytoplasmic one (the ADAR1p150 isoform) [4].

In the majority of cases, cancer remains an incurable and deadly disorder, with in-
creasing incidence each year [5]. Notably, the relevance of deaminases in cancer biology,
including AID [6], APOBECs [7], and ADARs has been demonstrated [8]. Moreover, it has
been confirmed that inflammation is one of the hallmarks of almost all types of cancers [9],
many of which remarkably emerge in the background of chronic inflammation [10]. In-
terestingly, it has been shown that there is a close relationship between pro-inflammatory
signals and the upregulation of AID [11], APOBECs [12], and the ADAR1p150 isoform [13],
suggesting an important link between inflammation, deaminase activity, and cancer biology.

Another common feature of cancer is its heterogeneity, not only between different
tumour types but between different patients with the same malignancies and even the
same tumour masses. Regarding this, cancer stem cells (CSCs) have been identified as
a particular subpopulation of cancerous cells with dynamic stem-like phenotypes that
can be acquired by well-differentiated cancerous cells [14]. Notably, ADAR-dependent
RNA editing can induce a significant variety of cellular phenotypes from a limited set of
genes. Moreover, ADARs have been observed to play a key role in the acquisition of a
CSC-like phenotype by well-differentiated tumour cells [15], suggesting the relevance of
non-genetic alterations in the phenotypic changes undergone by malignant cells during
tumour progression.

To date, three main tumour development models have been generally accepted by
the scientific community: (i) the stochastic model [16]; (ii) the hierarchic model [17]; and
(iii) the dynamic theory [18]. Recently, based on the dynamic and changing features of
cancer development, we suggested that CSCs may appear in an advanced stage of the
primary tumour progression instead of being the cells of origin [19]. In this regard, chronic
inflammation and nucleotide-editing driven by deaminases may be crucial mediators of
tumour development and growth. Indeed, here we propose the integration of three models
along with deaminases to better explain cancer biology: (i) the stochastic theory with
the ability of DNA-based deaminases to create genetic heterogeneity; (ii) the dynamic
theory and CSC appearances in an advanced tumour stage; and (iii) the hierarchic model
and metastatic growth; both (ii) and (iii) are linked with cancer phenotypic plasticity and
non-genetic alterations, such as RNA editing. In addition, the roles played by chronic in-
flammation and deaminases in cancer behaviours are discussed with the goal of suggesting
novel therapeutic approaches.

2. Deaminases and Cancer Inflammation

It has been widely reported that chronic inflammation is one of the hallmarks of solid
tumours, promoting tumour progression and even the appearance of metastasis [9]. Indeed,
it is a well-known fact that many cancers emerge in the background of chronic inflamma-
tion, which constitutes a risk factor in tumorigenesis [10]. Importantly, the induction of AID
expression has been associated with chronic inflammation and oncogenesis [20]. In fact, it
has been noted that both the TNFα pro-inflammatory factor and NFKβ pro-inflammatory
signalling promoted AID upregulation [11]. Moreover, the dysregulation of AID has been
documented to play a relevant role in the progression of lymphoid carcinomas, such as
Burkitt’s B-cell lymphoma [6], and non-lymphoid malignancies, such as gastric cancer [21],
colorectal cancer [22], and cholangiocarcinoma [11]. In the same regard, a close relationship
between inflammatory-related cytokines, such as IFN, TNFα, IL1, and IL6, and APOBEC3s
subfamily member expressions have been shown [12]. For example, the correlation be-
tween the IFNγ-derived signature and APOBEC3B and APOBEC3C expression has been
characterised [23]. Additionally, the positive feedback loop between APOBEC3B and IL6
has been highlighted as a mechanism by which chronic inflammation may be supported
in hepatocellular carcinoma through the constitutive activation of the JAK1/STAT3 path-
way [24]. The induction of the APOBEC3B expression by canonical and non-canonical
pro-inflammatory NFKβ pathways has also been shown [25]. Similarly, the enhancement
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of APOBEC3A expression by pro-inflammatory factors, including IFNα, IFNγ, or LPs,
has also been described [26,27]. Interestingly, it has been observed that APOBEC3A and
APOBEC3B cytidine deaminases are the two members of this family of proteins that are
the most frequently overexpressed in many types of malignancies [28]. Notably, some
studies have revealed that APOBEC3A exhibits the highest enzymatic activity compared to
other family components [7], suggesting the special importance of this molecule in cancer
biology. In fact, recent studies have exposed the importance of APOBEC3A, not only in
cancerous cells but also in stromal cells of the tumour microenvironment (TME). Specifically,
it has been shown that APOBEC3A induces the polarization of monocytes/macrophages,
including tumour-associated macrophages (TAMs), toward a pro-inflammatory M1-like
phenotype through its RNA editing activity [27].

Regarding ADARs, a general increase in the A-to-I RNA editing activity, associated
with clinical prognostic values, has been documented in the majority of cancers [8]. Remark-
ably, it has been demonstrated that the JAK/STAT3 pro-inflammatory pathway promotes
A-to-I RNA editing in leukemic stem cells [29]. Strikingly, ADAR1 has also been shown
to be a negative regulator of IFN-derived signalling. For instance, it has been shown that
ADAR1 induces the upregulation of miR-302a. This event promotes the inhibition of the
IRF9/STAT1 pathway and, thus, suppresses the pro-inflammatory signal derived from
IFN stimulation in gastric cancer cells [30]. Similarly, it has been reported that ADAR1,
apart from the IFN-related response, was able to block the TNFα-derived pro-inflammatory
pathway [31]. According to these facts, the inhibition of pro-inflammatory signalling by
ADAR1 could be considered a negative feedback loop to control the inflammatory response
and avoid chronic ADAR1 overexpression. Furthermore, it is relevant to point out that
the nuclear ADAR1p110 isoform exhibits a constitutive expression, whereas cytoplasmic
ADAR1p150 expression is inducible by pro-inflammatory signals, such as interferon [13],
the latter being of special emphasis in the present article. Interestingly, the importance
of the upregulation of the ADAR1p150 isoform, but not ADAR1p110, in the progression,
aggressiveness, and growth of several malignancies, such as acute myeloid leukaemia [15],
triple-negative breast cancer [32], and melanoma [33] has been revealed, suggesting that
chronic inflammation in cancer disease may bypass the cellular control of ADAR1 through
the mentioned negative feedback loop. Additionally, some data suggest that ADAR1 could
also play an important role in the TME establishment. According to its anti-inflammatory
activity, it has been observed that ADAR1 overexpression in macrophages induces the
polarization toward an M2-like anti-inflammatory phenotype through the ADAR1/miR-
21/FOXO1/IL10 axis [34]. Considering this fact, it seems reasonable to propose that there
is a relevant role played by ADAR1 in the TAM M2 polarization characteristics of many
solid malignancies, such as triple-negative breast cancer [35]. Consistent with the potential
role of ADAR1 in the TME establishment, the expression of ADAR1 in cancer-associated
fibroblasts (CAFs) has also been studied, correlating with the expression of CAF-related
biomarkers, such as FAPα, and with the abundance of CAFs in colorectal cancer [36].
Indeed, the authors demonstrated that healthy fibroblasts co-cultured with a conditioned
medium from colorectal cancer cells overexpressed ADAR1 and increased their invasive
potential through AZIN1 mRNA editing, reinforcing the idea about a potential association
between ADAR activity and the “malignification” of stromal cells triggered by cancerous
cells. To note, previous studies exposed the existence of two main areas within the TME in
advanced stages of tumour progression, the pro-inflammatory TME with M1-like TAMs
and the anti-inflammatory/regenerative TME with M2-like TAMs (reviewed in [37]).

Therefore, it seems reasonable to propose a link between both i) APOBECs and the
pro-inflammatory TME and ii) ADAR1 and the anti-inflammatory/regenerative-like TME,
concluding that chronic inflammation may support deaminase implications in cancer pro-
gression and TME development. In summary, the expression of deaminases is enhanced by
pro-inflammatory signals. Nevertheless, APOBEC activity may further support inflamma-
tion in positive feedback, whereas ADAR activity may inhibit the inflammatory responses
through a negative feedback loop (Figure 1).
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Figure 1. Chronic inflammation background. Inflamed tissue releases pro-inflammatory cytokines,
such as TNFα, IFN, IL1, or IL6. These factors may trigger the activation of the pro-inflammatory
pathways in the target cells, with NFKβ signalling being a representative example. Such a pro-
inflammatory response may lead to increased DNA- and RNA-based editing by enhanced activity of
deaminases, such as AID, APOBECs, and ADARs. Moreover, deaminases exhibit opposite regulatory
feedbacks in the context of inflammation. To note, APOBEC activity may sustain chronic inflammation
in a positive feedback loop whereas ADAR activity may be prone to inducing an anti-inflammatory
response, thus exerting negative control feedback.

3. RNA Editing, Cellular Transcriptome, and Cancer Stem Cells

The role of CSCs in cancer progression is widely accepted, yet doubts remain as to
whether they should be considered induced or inducers. Notably, the plastic and changing
nature of the CSC-like phenotype, which can be acquired by well-differentiated cancerous
cells, has been highlighted [14]. Moreover, it has been proposed that the CSC popula-
tion may rise from non-stem cancerous cells undergoing the epithelial-to-mesenchymal
transition (EMT) process in an advanced stage of primary tumour progression [19]. In-
terestingly, it has been documented that ADAR1 plays a key role in the generation of
induced pluripotent stem cells (iPSCs), promoting the somatic cell plasticity required for
the reprogramming process [38]. Furthermore, Crews and colleagues characterised CSC-
specific RNA editing events with the prognostic value in leukaemia [39], reinforcing the
relationship between ADAR-dependent RNA editing and CSCs biology. Remarkably, a
recent study has presented the relevance of ADAR1-dependent RNA editing, induced by
pro-inflammatory signals, in the evolution of pre-leukemic stem cells to leukemic CSCs [15].
Interestingly, the link between ADARs and CSCs may be reinforced by the previously
suggested close relationship between the appearance of CSCs within a tumour mass and
the generation of an anti-inflammatory TME [37]. In addition, ADAR1 action in EMT has
also been shown. For instance, it has been observed that both ADAR1 p110 and p150
isoforms exhibit important roles in the EMT triggered by TGFβ supply in oral squamous
cell carcinoma. Additionally, the overexpression of ADAR1 enhanced cell migration, in-
vasiveness, and proliferation, and is positively correlated with lymph node metastases,
tumour progression, and poor prognosis [40]. Similarly, ADAR1 enhanced proliferation,
migration, EMT, and the invasiveness of pancreatic ductal adenocarcinoma through the
circNEIL3/miR-432/ADAR1/GLI1-editing axis and, simultaneously, the overexpression of
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ADAR1 correlated with tumour progression and metastasis [41]. Further, the enhancement
of ADAR-dependent RNA editing activity (especially the ADAR1p150 isoform) was noted
to promote EMT, cell proliferation, invasion, migration, and even the evolution of thyroid
carcinoma toward a more undifferentiated and aggressive type [42]. This study particularly
documented the importance of miR-200b editing in the oncogenic role of ADAR1, revealing
the potential of altering the transcriptome by RNA editing in the regulation of cancer
cell behaviour.

In this respect, the deep impact on the global transcriptome of A-to-I RNA editing,
which can alter the RNA structure, stability, subcellular location, coding sequence, binding
affinity, and even RNA splicing has been revealed [43]. In addition, the regulatory potential
of RNA-based deaminases extends beyond their editing activities, with a good example
being the negative regulation of ITGB3 expression in melanoma, both transcriptionally and
post-transcriptionally by ADAR1 through an RNA editing-independent mechanism [44].
Focusing on RNA editing activity, a recent study identified several A-to-I editing events
during human pluripotent stem cell-to-cardiomyocyte differentiation. Specifically, a minor
(but significant) proportion of them were located within transcript coding sequences lead-
ing to amino acid changes [45], which may contribute to the generation of new proteins
with distinct functions. In parallel with this, it has been reported that A-to-I editing within
the mRNA 3′-untranslated region may represent a frequent event in many malignancies
and can modify miRNA-binding motifs altering the miRNA putative targets. As an exam-
ple, the editing of the apoptosis-inducing gene DFFA made it targetable by miR-140-3p in
some breast cancer cells, leading to specific phenotypic characteristics [46]. A similar effect
can be observed when ADAR-dependent editing occurs within the miRNA, which may
change its specificity to target different mRNAs [47]. In the context of miRNAs, ADAR1
can also modulate their biogenesis and, thus, can differentially regulate the gene transcripts
along with cellular behaviour. A recent study revealed different and specific miRNA sig-
natures in healthy colon cells, non-stem colorectal carcinoma cells, colorectal CSCs, and
colorectal carcinoma patients according to the tumour progression stage, including the
metastatic phase [48]. For instance, it has been shown that ADAR1 physically interacts
with miR-21 precursors, promoting its downregulation in macrophages, which leads to
a radical change in their phenotypic polarization [34]. Moreover, ADAR1 can influence
the ratio of non-coding RNAs, such as miRNAs, processed through an RNA editing inde-
pendent manner, by forming a complex with miRNA biogenesis-related factors, such as
Dicer [49]. Furthermore, gene transcripts can be regulated by alternative splicing to gener-
ate different protein isoforms. Remarkably, it has been reported that splicing-related motifs
frequently harbour A-to-I editing sites [50]. On the other hand, ADAR1-dependent editing
activity can also influence alternative splicing through a different mechanism relying on
the editing of splicing-associated factors. For example, Ramírez-Moya and co-workers
documented the ADAR1-related editing of the CDK13 transcript, a splicing regulator in
thyroid cancer, which alters the splicing patterns and promotes cell viability, proliferation,
and invasiveness [51]. Notably, splicing patterns conditioning the RAC1/RAC1b transcrip-
tional ratio have been presented as a key factor in the maintenance of the pancreatic CSCs
phenotype [52].

On the other hand, the potential of exosome content as a prognostic tool in cancer
disease has been proposed. It was suggested that exosome cargos (including RNA-based
molecules, such as mRNA or miRNAs) vary according to the tumour progression stage,
tumour aggressiveness, invasiveness, metastatic capacity, or drug resistance [53]. A similar
event was described regarding TME-derived vesicles, such as CAF-derived exosomes,
whose cargo miRNAs differed from that of healthy fibroblast-derived exosomes [54]. Re-
markably, the existence of specific sequence motifs within miRNA, named “surface target-
ing motifs”, which may be implicated in the miRNA packaging into extracellular vesicles,
including exosomes, has been described [55]. Additionally, the presence of a 25-nucleotide
zip code-like sequence element in the 3′UTR of mRNA transcripts responsible for the mR-
NAs packaging into exosomes [56] has also been described. Considering the potential of
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ADAR-dependent RNA editing to modify RNA sequences, it seems reasonable to suggest
that the dysregulation of ADAR activity may also explain, at least partially, the changes in
cellular behaviour, transcriptome, phenotype, and even exosome cargos and intercellular
communication during tumour progression and TME generation (Figure 2).
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Figure 2. Wide transcriptome alteration by ADARs. Panel (A) shows the ADAR-mediated mRNA
editing. ADARs can influence pre-mRNA maturation by interfering with the splicing process.
Furthermore, ADARs can edit mature transcripts on different sites. For instance, ADARs can modify
the “miRNA regulatory motif” within the 3′UTR region and, thus, can alter mRNA regulation by
certain miRNAs. On the other hand, ADARs are able to edit the coding sequence of the mature
transcript, thereby conditioning the final protein. Panel (B) represents the miRNA alteration by RNA
editing. ADARs can regulate the multistep biogenesis of miRNAs in different ways; for example, the
direct precursor editing or the physical interaction with regulatory factors, such as Dicer. Additionally,
ADARs may edit the mature miRNA within its “mRNA targeting sequence”, thereby altering its
mRNA targeting potential. Panel (C) shows the potential regulation of intercellular communication
and extracellular vesicle cargos by single-nucleotide editing. RNA editing by ADARs can modify
specific sequences within cellular mRNAs and miRNAs, such as the “zip code-like sequence” or the
“surface targeting motif”, respectively (“packaging motifs”). The editing of such motifs may condition
the packaging of certain mRNAs and miRNAs into extracellular vesicles, such as exosomes, and may
alter the intercellular communication and the coordinated behaviour of a cellular population.

In addition to ADAR-dependent RNA editing, other deaminases of the APOBEC
family, such as APOBEC3A [57], exhibit RNA editing activity and, thus, may also have
the potential to induce relevant transcriptome changes in cancer disease. Moreover, the
potential of RNA-based deaminases and RNA editing to promote significant phenotypic
changes may be enhanced by the existence of other RNA-based molecules, also susceptible
to being edited, with a relevant role in CSC maintenance, for example, circular RNAs [58]
or long non-coding RNAs [59]. Taking all of this into account, these data suggest that RNA
editing may provide significant transcriptome diversity from a limited source of a gene
set, subsequently leading to proteomic diversity and cancer progression, towards a more
aggressive and invasive phenotype, such as the CSC-like one [60]. Nonetheless, to the best
of our knowledge, there is no evidence of a direct causative relationship between RNA
editing and the acquisition of a stem-like phenotype by cancerous cells, so this idea remains
theoretical, which may prove interesting to clarify in future studies.
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4. Deaminases and Our Understanding of Tumour Progression

It is a well-known fact that the extreme heterogeneity of cancer makes it difficult to
reach a consensus on a unique tumour development model. Although three main models
have been generally accepted based on stochastic, hierarchic, and dynamic theories, there
is still some controversy regarding the matter. The stochastic model relies on the “Clonal
Evolution hypothesis”, which postulates that intratumor genetic heterogeneity, shown as
subclonal differences, is a consequence of genomic instability and accumulation of the
variable mutational burden during each cellular replication. Although this theory may
explain intratumor genetic heterogeneity, it evades the existence of phenotypic/functional
diversity, such as the highly-differentiated and stem-like phenotypes, between genetically
similar subclones [16]. Focusing on the different intratumor genetic variants, it may be
relevant to highlight the potential of DNA-based deaminases to induce single-nucleotide
genetic alterations. In fact, distinctive APOBEC-mutational spectra have been observed
in many types of malignancies [61]. Similarly, Ye and co-workers described AID-specific
mutational patterns in certain subtypes of lymphomas [62]. Thus, deaminases acting on
DNA strongly contribute to the generation of genetically distinct subclonal populations
within a tumour. Examples include, among others, APOBEC3B in breast cancer [63] or AID
in B cell lymphoma [64]. Furthermore, changes in the deaminase-associated mutational
signatures during tumour progression have been identified and proposed as a model of
tumour growth [65]. To note, both AID [64] and APOBEC [66] hyperactivity have also been
related to tumorigenesis, suggesting a crucial role played by aberrant DNA-editing as the
start point of cancer growth.

On the other hand, the hierarchic model proposes a hierarchical organization within
the tumour mass, with CSCs representing the top of the hierarchy. This theory states that
tumorigenesis starts when a healthy stem cell escapes from proliferation control due to the
accumulation of a specific mutational burden and becomes a CSC. Next, this CSC will gen-
erate the intratumor heterogeneity and the distinct subpopulations of well-differentiated
cancerous cells through asymmetric divisions [17]. Nonetheless, this model ignores the doc-
umented intratumor subclonal genetic diversity within a single tumour mass. Similar to the
hierarchic theory, the dynamic model focuses on the intratumor phenotypic heterogeneity
but the CSC-like phenotype may not be stable over time. Conversely, the stem-like features
could be acquired by well-differentiated cancerous cells through specific environmental
cues leading to the generation of new CSCs [18]. Consistently, it seems reasonable to state
that such phenotypic flexibility could be associated, at least partially, with non-genetic
alterations, such as RNA editing (see previous sections), and more, considering that it has
been shown that ADAR-dependent A-to-I RNA editing could mediate the upregulation
of key oncogenes and the downregulation of important tumour suppressor ones [67]. In
the same regard, it has been shown that AID can induce epigenetic modifications, func-
tioning as DNA demethylation [68]. Interestingly, the AID demethylating activity, rather
than its mutagenic potential, has been associated with the enhancement of proliferation,
invasiveness, migration, metastatic capacity, and the promotion of the EMT process in renal
cell carcinoma [69]. Similar results were described by Li’s group, which reported that AID
promoted cell proliferation, migration, and invasiveness in bladder cancer through DNA
demethylation [70]. In accordance with this, it has been previously noted that metastatic
processes (presumably driven by CSCs) may not rely on metastasis-specific mutations but
epigenetic alterations [71].

Furthermore, as it has been proposed, reflecting on the beginning of what one usu-
ally knows as “advanced stage of tumour progression”, CSCs may come from well-
differentiated cells located in the tumour mass edges instead of being the cells of origin of
the primary tumour (CSCs may be induced during primary tumour development rather
than being the inducing cells) [19]. According to this hypothesis, ADAR-dependent edit-
ing activity, in an advanced stage of tumour progression may contribute to promoting a
deep phenotypic switch leading to the appearance of CSCs, thus, showing the relevance
of post-transcriptional RNA editing in advanced stages rather than in an early phase



Int. J. Mol. Sci. 2022, 23, 8720 8 of 16

of primary tumour progression. In agreement with this, it has been observed that the
ADAR-dependent editing of CSF3R, MSH2, NUMA1, and KDM2 was only observed in
metastatic lesions of lung cancer but not in primary tumours [72]. Furthermore, a re-
cent study noted the importance of both DNA- and RNA editing in the progression of
acute myeloid leukaemia. It was established the mutagenesis driven by APOBEC3 family
members was a “pre-requisite” prior to the phenotypic changes driven by ADAR RNA
editing [15]. Importantly, RNA editing may not be the only factor contributing to such a
phenotypic switch, with metabolic changes being another representative example [73], but
it may still play a central role. Additionally, other studies have pointed out the importance
of the combination of both mutagenesis and environmental cues in cancer biology. For
instance, it has been demonstrated that the mutagenesis in the KRAS gene on its own
was not sufficient to produce pancreatic ductal adenocarcinoma, and that epigenetic alter-
ations, i.e. changes in DNA methylation patterns, derived from pro-inflammatory/tissue
damage-associated signalling were also required [74]. Interestingly, non-genetic changes,
such as RNA editing, generally exhibit a transitory nature, considering the short half-life
of RNA-based molecules [75], reinforcing the relevance of chronic rather than acute or
punctual inflammation in carcinogenesis and tumour progression in order to induce lasting
phenotypic changes derived from transcriptome-based modifications.

Indeed, a pro-inflammatory TME has been suggested to be generated by tumour
cells from the earliest stages of tumour growth and chronically maintained during can-
cer progression, prior to the appearance of an anti-inflammatory/regenerative TME in
the advanced stages [37]. Importantly, the pro-inflammatory environment followed by
an anti-inflammatory/regenerative one may be in agreement with the aforementioned
APOBEC-derived DNA-editing prior to ADAR-dependent phenotypic changes (according
to everything presented in Section 2). To summarise, inflammatory disorders, including
viral infection-driven inflammation [66], may promote the generation of genetic mutations
produced by the DNA-based deaminases, such as APOBECs or AID and, thus, cellular
malignization. In parallel with this, epigenetic alterations, for example, changes in methyla-
tion patterns driven by AID, might also contribute to tumorigenesis. Together, these events
driven by inflammatory signals may promote the emergence of a primary tumour, which
may trigger the formation of a pro-inflammatory TME. Next, such a pro-inflammatory
environment may support the stochastic growth of the primary tumour, highlighting the
generation of the characteristic intratumor genetic heterogeneity and different subclonal
populations due to, at least in part, the constitutive activity of DNA-based deaminases.
Then, in a more advanced stage, the inflammatory environment chronically maintained
during tumour growth may induce well-differentiated cancer cells located in the tumour
mass border to become CSCs. This phenotypic switch may mainly be caused by non-genetic
modifications, such as AID-dependent demethylations and ADAR-mediated constitutive
RNA editing. As previously mentioned, cancerous cells may require sufficient time to
accumulate specific mutations until the phenotypic switch can be completed. In other
words, the acquisition of such specific mutational burdens may allow malignant cells to
react differently to external environmental signals and become CSCs. Obviously, this idea
requires further confirming experimental studies. Moreover, such a CSC population may
promote the generation of an anti-inflammatory/regenerative TME adjacent to the tumour
mass. Finally, CSCs located in the tumour edges would trigger the formation of distant
metastatic tumours in the last stages of cancer progression. To note, the hierarchical growth
of metastatic tumours and the differentiation of CSCs into distinct cancer subpopulations
may also rely on phenotypic changes and, thus, on non-genetic events, including RNA edit-
ing. Therefore, it seems reasonable to propose a crucial role of ADARs in such metastatic
growth (Figure 3).
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Figure 3. Inflammation, deaminases, and tumour progression. In Panel (A), a background of chronic
and non-resolved inflammation that may alter the activity of both DNA- and RNA-based deaminases,
including AID, APOBECs, and ADARs is presented. In Panel (B), the emergence and stochastic
growth of the primary tumour in the earliest stages are shown. The collaboration of both epigenetic
and genetic alterations driven by DNA-based deaminases in the emergence of malignant cells is
highlighted. Moreover, DNA-editing may induce the appearance of genetically distinct cancerous cell
subpopulations according to the stochastic model. Additionally, a pro-inflammatory TME with pro-
inflammatory CAFs and M1 TAMs is generated and sustained by, at least partially, APOBEC activity.
Panel (C) identifies the appearance of CSCs on the edges of the tumour mass in an advanced stage.
Non-genetic alterations, such as epigenetic modifications and constitutive RNA editing, may allow a
phenotypic switch underlined by the acquisition of a CSC-like phenotype by non-stem cancerous
cells located mainly in the borders. Furthermore, the appearance of CSCs may induce the generation
of an anti-inflammatory/regenerative TME, with myoCAFs and M2 TAMs, just adjacent to CSCs. In
such events, ADARs may play a relevant role by promoting an anti-inflammatory response. Panel (D)
shows the final stages of tumour progression in which CSCs may migrate (through intravasation and
extravasation) and generate a metastatic tumour with a hierarchical organization. It seems reasonable
to assume that there is an important role played by ADAR RNA editing in the phenotypic switch
during the differentiation of CSCs into well-differentiated cancer cell subpopulations.

Regarding the huge heterogeneity of cancer, it is true that not all human malignan-
cies may emerge from a background of chronic inflammation. Nevertheless, deaminase
dysregulation could also be driven by other factors. As an example, the dysregulation
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of APOBEC3C through gene mutations and the expression alterations mediated by non-
coding RNAs have been associated with breast cancer risk and progression [76]. Thus, the
model presented here could be applied, at least in part, to the absence of an inflammatory
background considering that one of its main pillars relies on deaminase alterations.

Reinforcing the possibility of considering DNA-based deaminase dysfunctions as
the start point of tumour development may need additional research since, putting AID
aside, it has been suggested that APOBEC aberrant activity may not be detected at an
early stage of cancer progression in all types of malignancies [23]. Another consideration
relies on the presence of an inflammatory microenvironment from the earliest stages of
tumour progression, which makes it reasonable to assume that both APOBEC- and ADAR-
derived signalling may be simultaneously active in tumour cells. Therefore, the previously
mentioned APOBEC-positive feedback around inflammation and the ADAR-negative one
may represent an “antagonizing co-existence”. As far as we are concerned, currently,
there is no information comparing the relative strengths of both regulatory feedbacks,
but one could throw some light on this unknown area. In the early stages of tumour
development, the APOBEC-positive feedback around inflammation may predominate
over the ADAR-negative one, whereas the accumulation of additional specific mutations
and/or the appearance of CSCs in later stages may contribute to a switch in the said
balance, promoting the predominance of anti-inflammatory signalling. In this context, the
activity of DNA-based deaminases, such as APOBECs, may exist in all stages of the tumour
progression timeline instead of only being present in earlier phases. In support of this, it
has been documented that metastatic tumours may exhibit a higher mutational burden
compared to primary ones [77], although it does not necessarily imply that such additional
mutations are the drivers of metastatic spread. However, it is possible that specific DNA
mutations could promote the acquisition of a CSC-like phenotype by well-differentiated
cancerous cells, so it may be important to design future studies focused on determining how
frequent such an event is within human cancers. Moreover, although it has been shown
that the majority of tumours usually present a significantly elevated A-to-I RNA editing
activity [8], the promotion of ADAR1 activity does not correlate with tumour progression
and poor prognosis in all these malignancies. For instance, it has been revealed that the
downregulation of ADAR1 strongly correlated with cancer invasion, progression, and
metastasis in melanoma [44]. Therefore, it could be interesting to research further the
relationship between inflammation, ADARs, and RNA editing in this malignancy type,
for instance by separately studying ADAR1p110 and ADAR1p150 isoforms. Regarding
inflammation, one could consider that the generation of a pro-inflammatory TME with
M1 TAMs by an individual’s tumour cells from the earliest stages of cancer development
may be a contradictory event according to the anti-cancer behaviour of M1-like TAMs
presented above. Nonetheless, the upregulation of CD47 by cancerous cells has been
identified and this allows them to strongly mitigate their targeting by immune cells, such as
macrophages [78]. In other words, malignant cells may be able to evade anti-cancer M1-like
TAMs while indirectly benefiting from a pro-inflammatory environment. Furthermore,
the opposite TAM polarization towards an anti-inflammatory, tumour-supportive M2-like
phenotype in later stages may represent direct support for tumour cells by an inflammation-
independent mechanism. In agreement, it has been documented that M2 macrophages
enhanced proliferation, invasion, migration, tumour formation, the EMT process, and
metastasis in colon cancer cells [79].

5. Diagnostic and Therapeutic Considerations

A significant proportion of cancer mutational burden may be environmentally-dependent,
having an intrinsic order rather than exhibiting a random nature associated with inher-
ent replication mistakes. In fact, it has been noted that a significant proportion of single-
nucleotide alterations in many types of malignancies, such as bladder, head and neck, breast,
cervix, and lung cancer can be classified as APOBEC-specific mutational patterns [63]. Re-
markably, unlike random events, causative events driven by well-defined factors and
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molecules may have, at least partially, “predictable” and “controllable” sides. Regarding di-
agnosis, an association between the overexpression of APOBEC3A and/or APOBEC3B and
certain clinical features in breast cancer, including the absence of ER, PGR, and HER2 recep-
tors, high histological grades, activation of proliferation-related gene sets, and poor clinical
outcomes, has been determined. Conversely, APOBEC3C-H expression patterns correlated
with pro-inflammatory-related gene sets, a specific tumour immune landscape, and a better
prognosis [63]. Moreover, the authors associated the overexpression of APOBEC3A-B with
other genetic aberrations, including neoantigen copy number alteration, aneuploidy, or
homologous recombination defects. Delving deeper, focusing on the molecular entities
responsible for these genetic alterations could provide additional valuable information. A
good example could be the prediction of the most probable locations of single-nucleotide
mutations based on the overexpression of a specific APOBEC family member, which may
greatly facilitate the diagnostic process. Regarding this idea, it has been observed that
the APOBEC-mediated deamination preferentially occurs in TCW-specific DNA sequence
motifs (“W” being any type of nucleotide) [80]. Furthermore, structural studies revealed
substrate specificity differences between distinct members of the APOBEC3 group, such
as APOBEC3A, 3B, or 3G [28], showing the existence of deamination motif heterogeneity
regarding each deaminase. Therefore, an in-depth analysis of solid tumour biopsies could
be proposed to establish a correlation between the activity of specific deaminases and the
most probable mutational genome map. This information could provide an approximate
idea about the most probable evolutionary path regarding the acquisition of different muta-
tional sets of an early-diagnosed cancer, to predict, at least in part, the best therapeutic line.
As an example, an association between certain types of mutations and a better response to
anti-cancer drugs (for instance, afatinib or neratinib in the case of cervical cancer) has been
revealed [80].

In the context of “controlling” the mutational events, the inhibition of specific APOBEC
members that are overexpressed in many cancer types could be proposed [81]. However,
it is important to point out that such a strategy would only prevent the acquisition of
additional APOBEC-associated mutations, but it would not reverse those already acquired.
To this end, the development of different molecular constructs combining the Crispr/Cas9
technology with DNA-based deaminases, such as AID or APOBECs with the objective
of obtaining a targetable DNA based-editing tool has been studied [82]. However, there
are still key limitations, such as off-target effects or wide editing windows [28]. Hence, a
targetable DNA-editing approach seems suitable to be used in pre-clinical studies rather
than in clinical practice in the near future.

Interestingly, Wang and co-workers have identified around 19 A-to-I RNA editing
hotspots in many types of malignancies, which were associated with tumour stage and
patient overall survival [83]. Similarly, the existence of specific RNA modification patterns
that correlated with patient overall survival, metastasis, specific signalling pathways, anti-
cancer drug response, and even TME composition (i.e., M2 TAM infiltration) in colorectal
cancer has also been demonstrated [84]. Similar to DNA-editing factors, it seems reasonable
to assume that each RNA editing molecule may exhibit its own site-specific activity. For
instance, it is known that ADAR1 mainly acts in repetitive, non-coding RNA sequences,
such as Alu motifs, whereas ADAR2 mainly edits non-repetitive, coding RNA sequences [3].
A recent comprehensive and quantitative study documented distinct specific sequences
edited by ADAR1, ADAR2, or by a coordinated interplay between the two enzymes [85].
Additionally, it has been pointed out that the majority of RNA editing events belong to
A-to-I modifications rather than to C-to-U ones, which, along with the data described
earlier, can significantly simplify the RNA editing analysis in clinical practice by using
next-generation RNA sequencing techniques [86].

The use of RNA editing factors to induce controlled changes in RNA-based molecules
could represent a potential therapeutic approach. As an example, the development of an
APOBEC3A mutant, without its DNA-based editing activity, to avoid off-target activities on
DNA and, thus, restricting its base editor function only to RNA-based molecules, has been
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shown [57]. However, controlled RNA editing strategies still present several limitations,
such as the lack of efficiency, bystander editing, or sequence restrictions, which need to be
addressed before its therapeutic use as an alternative to genome editing [87]. In addition, it
must be taken into account that RNA-based molecules exhibit a transient and short half-life
only, unlike DNA. This fact may imply that any strategy based on RNA modification
should be a long-term and constitutive treatment rather than a single-dose therapy in
order to achieve relevant therapeutic effects. Similarly, this idea may be extrapolated to
other strategies: silencing upregulated ADARs, direct RNA molecule-related therapies,
such as the dysregulated miRNA blockade [88] and/or anti-inflammatory strategies in
order to alter RNA editing. An interesting feature of the transient nature of RNA editing
may be its reversibility without the long-term maintenance of the triggering signals of
such an event. This hypothesis may imply the need for continuous signalling to achieve
RNA editing-derived biological effects, including the stable maintenance of the CSC-like
phenotype. In other words, without such constitutive signals, the stem-like phenotype
would be lost after a short period of time. In support of this idea, the dependence of the
CSC-like phenotype on continuous environmental cues, such as low-attachment conditions,
has been reported [89].

6. Conclusions

To date, cancer is one of the most deadly and scariest diseases worldwide despite
the huge efforts made by the scientific community to achieve effective treatments. To this
end, a better understanding of tumour progression represents a crucial factor in defining
and establishing the best therapeutic targetable bases. Nonetheless, there is no consensus
on tumour development as the widely-accepted models seem to be oversimplifications.
Focusing on the common features of nearly all types of malignancies, such as chronic
inflammation, deaminase dysregulation, or DNA- and RNA-based editing alterations
could help us to identify crucial points, which may lead to the proposal of more accurate
tumour development models and the significant improvement of its clinical management.
Here, we propose a dynamic association of the key features of tumour development,
including chronic inflammation, deaminase dysfunctions, intratumor genetic heterogeneity,
and cancer phenotypic plasticity. Importantly, the idea presented in this study does not
contradict any of the previously established postulates and experimental observations,
but it may present a more accurate point of view with interesting clinical implications. In
summary, the model proposed here combines previously established tumour development
theories: primary tumours may emerge in the background of chronic inflammation and
may grow at the earlier stages according to the stochastic hypothesis. In an advanced stage
of tumour progression, the CSC population coming from well-differentiated cancer cells
may appear at the edges of the solid tumour mass according to the dynamic model. Finally,
CSCs may migrate to distant organs where they may promote metastatic growth according
to the hierarchic theory.
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ADARs adenosine deaminases acting on RNA
AID activation-induced cytidine deaminase
APOBEC apolipoprotein B mRNA editing catalytic polypeptide-like
CSCs cancer stem cells
EMT epithelial-to-mesenchymal transition
iPSCs induced pluripotent stem cells
CAFs cancer-associated fibroblasts
TAMs tumour-associated macrophages
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