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ABSTRACT

Aims. TZ Fornacis is a double-lined eclipsing binary system with similar masses (2.057+0.001 and 1.958+0.001 M,,) but characterized
by very different radii (8.28 £0.22 and 3.94 +0.17 R). This similarity in terms of mass makes it possible to study the system’s
differential stellar evolution as well as some aspects of its tidal evolution. With regard to its orbital elements, it was recently confirmed
that its orbit is circular with an orbital period of 75.7 days. The less massive component rotates about 17 times faster than the primary
one, which is synchronized with the mean orbital angular velocity. Our main objective in this work is to study both the nuclear and
the tidal evolution of the system.

Methods. To model the TZ For system, we used the MESA package, computing the grids using the exact observed masses, radii, and
effective temperatures as input, and then varying the metallicity, the core overshooting amount, and the mixing-length parameter. A
x° statistic was used to infer the optimal values of the core overshooting and the mixing-length parameters. The same procedure was
used to generate rotating models with the GRANADA code. The respective errors in the average age of TZ For were less than 5%. On
the other hand, the differential equations that govern the tidal evolution were integrated using the fifth-order Runge—Kutta method,
with a tolerance of 1 x 1077,

Results. We explored two scenarios regarding the initial eccentricities: a high one (0.30) and a case of an initial circular orbit. A
good agreement has been found between the observational values of the eccentricity, synchronism levels, and orbital period with the
values predicted by the integration of the tidal evolution equations. The influence of the friction timescale on the evolution of the
orbital elements of TZ For is also studied here. The orbital elements most affected by the uncertainties in the friction timescale are
the synchronism levels of the two components. On the other hand, we used the properties of the rotating models generated by the
GRANADA code as the initial angular velocities instead of using trial values. In this case, comparisons between the theoretical values
of the orbital elements and their observed counterparts also lead to a good interagreement.
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1. Introduction

TZ Fornacis (TZ For) is a very evolved double-lined eclips-
ing binary (DLEBS) that was first accurately investigated by
Andersen et al. (1991); see also Torres et al. (2010). Further-
more, TZ Gallenne et al. (2016) revised the absolute dimensions
of this system using interferometric observations combined with
new radial velocity measurements and confirmed that the system
demonstrates very similar components in mass (2.057 +0.001
and 1.958 + 0.001 M), but with very different radii: 8.28 + 0.22
and 3.94 +0.17 Ry, respectively. The effective temperatures for
both components are 4930+30K and 6650+200K and the
orbital period is ~75.7 days. This mass similarity and the accu-
racy of the absolute dimensions makes TZ For a good laboratory
for the study of its differential stellar evolution as well as some
aspects of its tidal evolution. In fact, both components evolve
quite similarly in the main sequence, however, during the very
fast phases of their evolution, we can significant changes in the
effective temperatures and also in their radii, apsidal motion con-
stants, and moment of inertia — on the basis of stellar evolu-
tionary models. Concerning its tidal evolution, Andersen et al.
(1991) established a circular orbit for TZ For and these authors
also found that while the primary rotates synchronously with
the mean orbital angular velocity, the secondary rotates approx-
imately 16 times faster than its respective value of synchronisa-

tion, which is on the order of 2.6 + 0.1 kms~!. These results are
consistent with those obtained by Gallenne et al. (2016).

One of the first attempts to explain some aspects of both
nuclear and tidal evolution was carried out by Claret & Giménez
(1995), who adopted the hydrodynamical mechanism proposed
by Tassoul (1987). However, that study did not provide a clear
scenario of the stellar and dynamic evolution of the system since,
at that time, the current position of the system in the HR dia-
gram was not yet fully clear. Second, timescales for the circu-
larisation and synchronisation were used (assuming a constant
orbital period) instead of formally integrating the differential
equations that govern the behavior of angular velocities, orbital
period, and eccentricity. In addition, Rieutord (1992) presented
some criticism on the hydrodynamical mechanism introduced
by Tassoul (1987) regarding the inefficiency in reducing the
synchronization time of the large-scale flows driven by Ekman
pumping in the spin-up and down of a tidally distorted star.
Later on, Tassoul & Tassoul (1996) refuted this argument. For
a more extensive discussion on this subject, we refer to Rieutord
(1992), Tassoul & Tassoul (1996), Claret & Cunha (1997). In
fact, Claret & Cunha (1997) found some disagreements between
the tidal evolution theories predictions and the observational val-
ues: while the hydrodynamic mechanism was indeed shown to
be too efficient in circularizing the orbits, the opposite happened
with the tidal torque process.
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A number of years later, Claret (2011) tried a new approach
to the problem. Instead of adopting the timescales as in
Claret & Giménez (1995), which are valid only for low eccen-
tricities and small departures from the synchronism, a more rig-
orous treatment was carried out. These authors found that while
the first approximation can be considered roughly acceptable at
least for the present status of TZ For (but not necessarily in the
past), the second is not satisfied given the observed level of asyn-
chronism of the secondary. To further improve on the previous
method, the differential equations that govern the tidal evolution
(eccentricity, angular velocities, and orbital period) were explic-
itly integrated adopting appropriate models computed with the
GRANADA code (Claret 2004). Another point that was clarified
in the 2011 paper was the position of the primary, which was
located on the clump during the helium-burning phase.

In this paper, we propose a revision to the nuclear and
dynamic evolution of the system by taking into account the
most recent determinations of the absolute dimensions by
Gallenne et al. (2016). Here, the expression nuclear evolution
refers to the changes in effective temperatures, radii, luminosi-
ties, moments of inertia, and other effects caused by nuclear
reactions in the stellar interior. To model the TZ For system, we
computed stellar evolutionary tracks with the MESA Package,
adopting the methodologies described in detail by Claret & Torres
(2016, 2017, 2018, 2019). In addition, an updated version of the
GRANADA code was used to simulate stellar rotation based on
the assumption of a solid body configuration.

The paper is structured as follows. In Sect. 2, we briefly
describe the stellar evolution code MESA and our methodol-
ogy for deriving, for each star, the semi-empirical value of f,
(overshooting parameter, see below) by comparing the observed
absolute dimensions with a series of grids of stellar models for
both components of TZ For. In this section, we also introduce
the differential equations of tidal evolution. In Sect. 3, we anal-
yse the stellar and tidal evolution for TZ For and summarise our
results. Finally, in Appendix A, we describe the method for gen-
erating rotating models introduced by Kippenhahn & Thomas
(1970) and implemented in the GRANADA code and adapted
to the particular case of TZ For.

2. Stellar models and the differential equations of
tidal evolution

2.1. Stellar models

The stellar evolutionary tracks used to fit the absolute dimen-
sions of TZ For were computed using the Modules for Exper-
iments in Stellar Astrophysics package (MESA; Paxton et al.
2011, 2013, 2015) version 7385. Microscopic diffusion was
included and mass loss was considered following the formula-
tion by Reimers (1977), with an efficiency coefficient of = 0.2
(not to be confused with 1 of the Radau equation). For the
convective envelopes, we employed the mixing-length formal-
ism (Bohm-Vitense 1958), where ayr is a free parameter. The
calibrated value of the mixing-length parameter for the Sun in
these models is ayr = 1.84 for Z; = 0.0134. For the opac-
ities, we adopted the mixture given by Asplund et al. (2009).
The enrichment law used in pairings with such opacities was
AY/AZ = 1.67, with the primordial helium ¥, = 0.249 following
Ade et al. (2016). Convective core overshooting was considered
in the diffusive approximation which is characterized by the free
parameter fo,. For more details, we refer to Freytag et al. (1996)
and Herwig et al. (1997). The grids were computed starting from
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the pre-main sequence (PMS) and the effects of rotation were
ignored for this set of models.

As previously commented, a series of papers by
Claret & Torres (2016, 2017, 2018, 2019) used stellar evo-
lutionary models and a select sample of 50 well-measured
detached DLEBS to calibrate the dependency of core overshoot-
ing on stellar mass. Here, we use the results of one of these
papers (Claret & Torres 2018) as a reference where the case of
TZ For had already been analysed. In that paper, several grids
were computed for this system using as a main input the exact
observed masses, radii, and effective temperatures varying the
metallicity, as well as the core overshooting amount and the
mixing-length parameter. In the search for the best solution for
the two components, we adopt a y? statistic to infer the optimal
values of the overshooting and the mixing-length parameters.
Due to intrinsic limitations in the stellar models (opacities,
equations of state, mass loss, etc.) and considering the obser-
vational errors, the derived ages for the two components were
allowed to differ by up to 5%. The best fits for TZ For, adopting
the mixture by Asplund et al. (2009) and the enrichment law
described above, are as follows: aypri = 1.91, ey = 1.85
and fo,1 = 0.017, and fo,» = 0.015 for a metallicity of
Z = 0.015. The derived mean age of the two components is
1.13 + 0.04 Gyr. Figure 1 shows the resulting HR diagram where
the primary is located at the clump. We note that our solution
is slightly different from that found by Gallenne et al. (2016)
since these authors located the secondary near the red hook.
Another interesting aspect derived from Claret & Torres (2018)
is that if a different enrichment law is adopted for TZ For, for
instance, AY/AZ = 1.0, we obtain essentially the same result:
the primary is also in the core helium-burning phase (clump)
and the secondary on the subgiant branch. This suggests that the
fov parameter is insensitive to helium content for this particular
case.

On the other hand, TZ For was also recently studied by
Costa et al. (2019), who used a different method from that
of Claret & Torres (2017). The basic difference between the
two methods is that Costa et al. (2019) introduced rotation into
their models (taking into account rotational mixing) by assum-
ing constant values of core overshooting and MLT parameters.
According to these authors, they found: a good agreement with
models computed with fixed overshooting parameter, 4,y = 0.4,
and initial rotational rates, w, uniformly distributed a in a wide
range between O and 0.8 times the break-up value, at varying
initial mass. We also note that their definition of A, is different
from the one we used (diffusive approximation, characterized by
the parameter fy).

2.2. Differential equations of tidal evolution

Here, we adopt the differential equations for the tidal evolution in
the frame of the weak friction model (Hut 1981). The respective
equations for an initial eccentricity different from zero can be
written as:
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Fig. 1. HR diagram for TZ For. The models were calculated adopting
Z = 0.015. Solid line indicates the primary component while the dashed
one represents the secondary.
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In the above equations, e is the orbital eccentricity, A is the
semimajor axis, {; is the angular velocity of the component i,
and w is the mean orbital angular velocity, while S; is the radius
of gyration of the component i, then ky; is the apsidal motion
constant of the component i and R; is the radius of the component
i,and g = My/M,, qo = M{/M; and tr is an estimation of the
timescale of tidal friction which is given by:
tr = (MR*/L)'”, ®)
where L is the luminosity, R the radius, and M the stellar mass.
For a solar-type star, tp ~ 0.43 yr.

The functions f; can be written as:
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For the case of very small initial eccentricities we have:
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On the other hand, the corresponding theoretical internal struc-
ture constants, k;, were computed as a function of time for each
component during its evolution through the integration of the
differential equations on a Radau order of j:

dnj(a) 6p(a) . )
a— B i+ D= 1) = jG+ 1), j=2,3,4, (18)
da  p(a)
where
a d€j
=28y 19
€ da (19)

and where a is the mean radius of the equipotential surface
within the star, €; is the tesseral harmonics of order j, then p(a)
is the mass density at the distance a from the centre, and p(a) is
the mean mass density within an equipotential of radius a. The
following boundary conditions were applied: 7;(0) = j — 2, and

(%) — _3G=Dbdp
da 7=0 - j+1 da’

The moment of inertia was integrated simultaneously using
the following equation:

8 RZ R
I= ”3 f p(rrtdr,
0

where D = p(a)/p(a).

(20)

where R is the radius of the configuration and p(r) the local den-
sity. The radius of gyration was computed by using a simple
equation:

7 \2
= (MR2) ‘
Equations (11) and (13) were integrated simultaneously through

a fifth-order Runge—Kutta method, with a tolerance level of
1x 1077,

2n

3. Tidal evolution of TZ For

The eccentricities of the orbit of TZ For as measured by
Andersen et al. (1991), Gallenne et al. (2016) are very similar
(0.000 and 0.00002) and so we can assume the orbit to be cir-
cular. At this point, we can analyse two possible scenarios: the
first one assuming a high initial eccentricity and the other an ini-
tially circular system. To get the eccentricity e, Q;/w, Q,/w and
the orbital period as a function of time Eqgs. (1)-(4) were inte-
grated using as input the internal structure of theoretical stellar
models discussed in Sect. 2.1. A necessary condition for such
integrations is knowing the boundary conditions of the differ-
ential equations. As explained in Claret (2011), such “observa-
tional” initial values are unknown. However, we can introduce
some initial test values for the eccentricity, orbital period, and
angular velocities to study the tidal evolution. Finally, using
this procedure we obtain the evolution of these parameters
as a function of time to be compared with their observed
counterparts.
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Fig. 2. Evolution of the orbital period as a function of time. The two
vertical lines indicate the error bars for the mean age of the system.
Initial Py, = 80.1 days, eéiniia = 0.30, and Q /w = Q,/w = 21.5.

The rotational velocity measured by Gallenne et al. (2016)
for the secondary component, Vosin i = 45.7 + 1kms™!, is
not very different from that measured by Andersen et al. (1991),
namely: V,sin i = 42 + 2kms~'. However, for the primary the
rotational velocities given by the authors are 6.1 +0.3km s™! and
4.0 + 1, respectively. Here, we adopt the most recent measure-
ments by Gallenne et al. (2016) to obtain the observational ratios
Q/w=1.10+0.03 and Q,/w = 17.60 = 0.03.

3.1. Case of a highly eccentric orbit

As we can verify by inspecting Eqgs. (1)-(4), the evolution of
the orbital parameters is strongly dependent on the relative radii
of the components (eighth and sixth power). At the present
evolutionary state of both components of TZ For, the relative
radii contribute only slightly to the tidal evolution of the system
(around 0.07 and 0.03), respectively. Figure 2 shows the evolu-
tion of the orbital period as a function of time for the case of an
initial Py, = 80.1 days, €initial = 0.30 and Q;/w = Q/w = 21.5.
The pronounced peak in the period at log 7 = 9.01 (7 represents
the time in years) is due to the relative radius of the primary
reaching its maximum (~0.23), while the respective value for
the secondary is on the order of only 0.03. Such a peak is statisti-
cally very difficult to detect observationally due to the short time
interval during which it occurs. From this point on, the period
remains practically constant and consistent, within the uncer-
tainties of the stellar models and with its current observational
counterpart.

A very useful quantity in tidal evolution studies is the
timescale (or critical time) for circularisation, or the correspond-
ing log g, since it works as a primary diagnostic tool. In
the present case, such critical values were computed until the
initial eccentricity decayed to 0.368 X ejnita. In these calcula-
tions, it was assumed that the system is synchronized, namely,
Q12 = w and eipiriar = 0.30. Figure 3 illustrates the log g or
equivalently the time scale as a function of the orbital period
(black line). The primary (red square), at the age log v = 9.01
for which the orbit becomes circularized, is above the critical
circularisation curve. On the other hand, the secondary (open
star) is below the mentioned curve. This is a preliminary indi-
cation of the only slight contribution of the secondary to the
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Fig. 3. Critical values for circularisation as a function of the orbital
period for the case of TZ For (continuous line). The tiny black error
bars represent the actual position of the TZ For, the square and the filled
star denotes the primary and secondary component, respectively, at the
time the system achieves circularisation.
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Fig. 4. Evolution of the eccentricity as a function of time. Same details
as in Fig. 2.

circularisation of the orbit. With regard to eccentricity result-
ing from the integrations of Egs. (1)-(4), its behaviour is sim-
ilar to that of the orbital period as shown in Fig. 4, and it
also decreases rapidly at log7 =~ 9.01. On the other hand, sev-
eral numerical tests reveal that, at least for the case of TZ For,
the times for the circularisation of the orbit for these MESA
models do not depend strongly on the initial values of the
eccentricity.

Concerning the synchronisation of the two components the
situation is more complex (Fig. 5). Due to the strong impact of
the changes in the radius of the primary in the tidal evolution,
this component reaches the synchronism at the same time of sta-
bilisation of the orbital period and of circularisation of the orbit.
The effect of the differential evolution is clearly noted since the
secondary is relatively far from synchronism given that its angu-
lar velocity is approximately 17 times faster than that of the pri-
mary component for the age derived for TZ For (log T = 9.053).
Figure 6 shows the orbital period and the rotational veloc-
ity of each component as a function of log. The respective
theoretical values are also in good agreement with the observa-
tional data from Gallenne et al. (2016). The spikes in the rota-
tional velocities of the primary and secondary in the intervals
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Fig. 5. Evolution of the levels of synchronism as a function of time. The
angular velocities of the two components were normalized to the mean
angular orbital velocity. The continuous line represents the primary and
the dashed one denotes the secondary. Same details as in Fig. 2.
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Fig. 6. Time evolution of the orbital period (black line) and of the rota-
tional velocities, both primary (red line) and secondary (green line) as
well as their respective error bars (blue). The figure in the lower left
corner illustrates the variations in the relative radii of the primary and
secondary. Same details as in Fig. 2.

of log 7 = 9.00-9.013 and 9.050-9.072, respectively, are a con-
sequence of the rapid variations of the surface gravities of both
stars (Fig. 6, lower left corner). All these results are in agree-
ment with the observed eccentricity of the system, the measured
rotational velocities of both components, and the orbital period
considering the intrinsic uncertainties of the evolutionary models
(opacities, loss of mass, equation of state, etc.) and the uncertain-
ties in the friction timescale (Sect. 3.3).

Within this scenario, the nuclear evolution of the primary
component is the main activity responsible for the circularisa-
tion of the orbit of the system, for the orbital period stabilisa-
tion, and also for the primary synchronisation at log 7 = 9.01. It
remains synchronized until the derived age of TZ For, since its
relative radius decreases, thus contributing little to its evolution
by tides after the maximum value of the relative radius r;. The
case of the secondary component is somewhat different. Despite
the small difference in mass, the secondary has a small relative
radius at log7 ~ 9.01 while r; = 0.23 and therefore the tidal
forces are still not sufficient to act on its synchronisation that
will occur later, namely, at log 7 = 9.065.
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Fig. 7. Evolution of the orbital period as a function of time. The two
vertical lines indicate the error bars for the mean age of the system.
Initial Py, = 70.0 days, ejnitia = 0.00, and Q,/w = Q/w = 18.2.

Te]
12 2 R e B e e S S R L S

oL ]
N.

log T

Fig. 8. Evolution of the levels of synchronism as a function of time. The
continuous line represents the primary and the dashed one denotes the
secondary. Same details as in Fig. 7.

3.2. Case of initial circular orbit

The results of the tidal evolution for the case of an initial cir-
cular orbit with the following parameters: initial orbital period
Pon = 70.0 days, ejnitia = 0.00, and Q) /w = Q/w = 18.2 can
be seen in Figs. 7 and 8. Unlike the case with ejyiia = 0.30,
the orbital period increases from 70 to 75days stabilising at
logT =~ 9.01. On the other hand, Fig. 8§ shows that the angular
velocities of the two components present an aspect similar to that
of Fig. 5, except for the shape of the peak around logr = 9.01.
The synchronisation times for the two components are approx-
imately the same as those obtained for a very eccentric initial
orbit. Taking into account the limitations of the stellar evolu-
tionary models and the friction timescale, fr, we can consider
that the theoretical levels of synchronism of both components;
although two very different initial conditions have been used,
the time evolution of the eccentricity and orbital period are also
consistent with their actual observational equivalents at the mean
age determined for TZ For.

3.3. Influence of the uncertainties of tr on the tidal evolution
of TZ For

As we have seen, an acceptable agreement has been achieved
between the evolutionary models and the absolute dimensions
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Fig. 9. Effects on the orbital period due to uncertainties in the friction
time scale 77. The black line represents the evolution of the period as in
Fig. 2 while the green line denotes the case [1.5 X 7] and the blue one
illustrates the case [0.5 X 7r]. Same initial conditions as in Fig. 2.
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Fig. 10. Effects on the eccentricity due to uncertainties in the friction
time scale 7z. The black line represents the evolution of the eccentricity
as in Fig. 3 while the green line denotes the case [1.5 X #7] and the blue
one illustrates the case [0.5 X #x]. Same initial conditions as in Fig. 2.

of TZ For with an error in age <5%. In the previous section,
we show that the tidal theory in the weak friction approach is
capable of explaining the current orbital period, the behavior of
the eccentricity, and the synchronization levels of the two com-
ponents. However, one of the weakest points in Eqgs. (1)—(4) is
the friction time-scale, 7. In this section, we try to estimate the
influence of friction time uncertainties on the tidal evolution of
TZ For. For this purpose, we adopted a very simple scheme:
we assume that the errors in 7z are of +50%. As before, we
integrate the aforementioned equations changing ¢z for the case
Pinitial = 80.1 days, éinitial = 0.30, and Q;/w = Qy/w = 21.5 that
was taken as the reference.

Figure 9 illustrates the influence of considering errors in ¢ of
+50% in the evolution of the orbital period where we have taken
the results shown in Fig. 2 (black line) as a reference. The dif-
ferences AP/ P in the stabilisation zone of the period are respec-
tively 1.4% for the case of [1.5 X ] and 2.5% for the case of
[0.5 x tr]. Such differences are acceptable given the mentioned
intrinsic uncertainties in the calculation of the theoretical stellar
models. In relation to the evolution of the eccentricity (Fig. 10)
the differences in the circularisation times are almost indistin-
guishable for the three configurations.
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Fig. 11. Effects on the levels of synchronism of TZ For due to uncertain-
ties in the friction time scale #x. The black line represents the evolution
of angular velocities as shown in Fig. 5, while the green line denotes the
case of [1.5 X tx] and the blue one illustrates the case of [0.5 X #5]. The
continuous lines denote the primary component and the dashed ones the
secondary. The error bars are represented in red. Same initial conditions
as in Fig. 2.

The evolution of normalized angular velocities is more com-
plex than the case of eccentricity (see Fig. 11) since they present
the greatest differences. For example, the values of the normal-
ized rotational velocities of the secondary, considering the mean
age of TZ For, differ up to 6% and 14% for [1.5 X tr] and
[0.5 X tF], respectively.

We also note that for a 50% larger value of ¢y, the normal-
ized angular velocities are approximately equal to or larger than
those of the reference model; the opposite occurs reducing by a
half #z. It is also remarkable that in both cases, the synchroniza-
tion times for the two components converge to log 7 =~ 9.01 and
9.065, respectively, even though the normalised angular veloci-
ties are different before this time. We can consider that despite
assuming uncertainties in #r on the order of 50% and also con-
sidering the intrinsic uncertainties in the evolutionary models,
the synchronization levels of the two components, the circular-
isation time, and the stabilization time of the orbital period are
compatible with their observational counterparts.

3.4. Another hypothetical scenario: Estimation of the role of
rotating models

The fact that the current orbital period of TZ For is long implies
some peculiarities. The behaviour of the orbital period (Figs. 2, 7
and 9) shows very accentuated changes in this variable during only
a short interval of time (log 7 = 9.01). Such rapid changes prac-
tically govern the tidal evolution of the system due to the impact
of the changes in the relative radii, k,, and the moments of inertia,
mainly in the case of the primary component. Outside this short
interval of time the orbital period remains practically constant. Of
course, there are many more theoretical scenarios that we have
on hand to explain the current state of TZ For’s orbital elements,
beyond those presented in Sects. 3.1—3.3. Here, we try to address
one of these, which is focused on rotation. In fact, a rotating stel-
lar model evolves differently from a standard one. The differences
will be larger if additional phenomena, such as turbulent diffusion,
core overshooting, or rotational-mixing, are taken into account.
The evolution of a rotating model will differ from the standard
one in terms of luminosity, effective temperatures, lifetimes of
Hydrogen and He burning, and changes in the surface chemical
abundances, as well as its internal structure (k; and ). Differently
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Fig. 12. Rotational velocities for TZ For for the case of solid body rota-
tion. Continuous line represents the primary and the dashed one denotes
the secondary. The calculations were performed following a revised ver-
sion of GRANADA code by Claret (1999). The derived mean age of the
system is 1.23 £ 0.05 Gyr.

from the results presented in the previous sections, we investigate
here the role of rotating models in the evolution of the orbital ele-
ments of TZ For. For this purpose, we introduced rotation in the
GRANADA code using the method by Kippenhahn & Thomas
(1970), improved by Endal & Sofia (1976, 1978) and adapted
in this code by Claret (1999). Such a code is designed to treat
systems disturbed by rotation and by tidal forces. To take into
account only the effects of rotation, we assumed the mass ratio
to be ¢ = 0. We adopted the solid body and overall conser-
vation of angular momentum approach for simplicity. However,
such rotating models present some limitations: by definition, in
such models, the angular velocity is the same throughout the
model. Another important simplification is that rotational mix-
ing has not been considered (only core overshooting is taken into
account). These simplifications limit the scope of our conclusions,
but they allow us to estimate the effects of the departure from
spherical geometry on k, and on the radius of gyration which
are key for the tidal evolution calculations.

In searching for the best solution, we used the same method
and the statistics )(2 described above for the MESA models, also
taking into account the grids of initial angular velocities. The
input physics for the best solution for the rotating models was:
X = 0711, Z = 0015, aMLT1 = 182, aMLT2 = 182, oyl = 023,
and aoyo = 0.21. The adopted opacities are based on the mix-
ture of Asplund et al. (2009). We note that convective core over-
shooting in the GRANADA code is simulated adopting a step-
function, characterized by the parameter a,, whose relation with
fov 18 given by aoy/ fov = 11.36 £ 0.22 following Claret & Torres
(2017). The initial angular velocities were Q; = 5.2 X 1075 57!
and Q, = 4.9x1073 s~!. The rotacional velocities of both compo-
nents reaching the ZAMS (zero age main sequence) are 84.0 and
77.0kms™!, respectively. These values are compatible with the
observational data for DLEBS with similar masses, as for exam-
ple, the case of V1647 Sgr, whose observational counterparts
are, respectively, 80+ 5kms™' and 77 +5kms™" (Torres et al.
2010, Table 2). The derived common age was 1.23 +0.05 Gyr.
The difference between the ages of TZ For as derived using
the MESA and GRANADA codes are due mainly to the dif-
ferent nuclear network adopted in both codes (see Claret 2004,
Sect. 2). Furthermore, the introduction of rotation also influences
the determination of the ages. For details on the implementation
of rotation in GRANADA models, we refer to Appendix A.
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Fig. 13. Evolution of the orbital period as a function of time. Initial
Py, = 72.03 days, einia = 0.30, and Q;/w = Q,/w = 56.0. The initial
conditions for the angular velocities of the two components are those of
the GRANADA models with rotation near the ZAMS. The two vertical
lines indicate the error bars for the mean age of the system.

The results of these calculations can be seen in Fig. 12, where
the rotational velocities are represented as a function of log g. As
it can be inspected in such a figure, the theoretical values of the
rotational velocities are in good agreement with their observa-
tional counterparts. In such a figure, it can be verified that both
components of TZ For are in the same evolutionary stages as in
the case shown in Fig. 1. In fact, the corresponding HR Diagram
for such models corroborates this point. This similarity indicates
that, although the present evolutionary models were computed
using a different code and input physics from that discussed in
Sect. 2.1, the intercomparison leads to similar results concern-
ing the evolutionary status of TZ For and also the respective
internal structure (k, and moment of inertia). This shows the
consistency between the two stellar evolution codes used in the
present study, despite the differences in the respective nuclear
networks and the implementation of rotation in the GRANADA
models.

In order investigate the effects of the intrinsec stellar rota-
tion, we proceeded to calculate the evolution by tides using the
rotating GRANADA models. As a novelty, we did not use trial
values for the rotational velocities (as we had done in the case
of the MESA models). Here, we adopt the initial Q; derived
from GRANADA models with rotation (Fig. 12) as initial con-
ditions. The similarities between Figs. 2, 4, and 5 (MESA) and
their corresponding ones using the rotating GRANADA models
(Figs. 13—15) are notorious, except for the timescale and the ini-
tial orbital period adopted, which is as expected. This fact con-
firms again that the internal structures of both models are very
similar. On the other hand, in Fig. 16 we can see that such a
similarity also extends to the rotational velocities. Comparing
the rotational velocities shown in Figs. 6 and 16, we note that
both are morphologically similar. However, they differ regarding
the values being the ones shown in Fig. 16 systematically larger.
The reason for this is that in Fig. 16, the adopted initial period
is smaller than its counterpart in Fig. 6. In addition, the corre-
sponding angular velocities were computed with initial values
of Q;/w larger than in the case shown in Fig. 6 (56.0 and 21.5,
respectively). In fact, the maximum value of the relative radius
of the primary in Fig. 16 is larger than that shown in Fig. 6 (0.25
and 0.23, respectively). This implies, for example, that the tidal
interaction is about 2.0 times stronger in the case of Fig. 16 dur-
ing such maxima.

A101, page 7 of 9
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Fig. 14. Evolution of the eccentricity as a function of time. Same details
as in Fig. 13.
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Fig. 15. Evolution of the levels of synchronism as a function of time.
The continuous line represents the primary and the dashed one denotes
the secondary. Same details as in Fig. 13.

3.5. Summary

We studied the nuclear and tidal evolution of the TZ For system
using evolutionary tracks computed with two different codes.
Such models reproduce, within the observational errors, the
absolute dimensions of the system with a tolerance of 5% in the
common age.

Regarding tidal evolution, we integrated the equations of Hut
(1981) in the cases of high (0.30) and low (0.0) initial eccentric-
ities. Good agreement has been found between the observed val-
ues of eccentricity, orbital period, and synchronism levels with
their theoretical counterparts. The influence of friction time in
such calculations was also studied and we have concluded that
its influence affects the synchronization levels of both compo-
nents is greater, although we consider that they are acceptable
given the intrinsic uncertainties in 7 and in the stellar evolution-
ary models.

On the other hand, we computed rotating evolutionary tracks
with the code GRANADA. Such models, which also reproduce
the absolute dimensions of TZ For, were used to estimate the
influence of rotating models on tidal evolution. For this pur-
pose, we used the theoretical initial angular velocities of the
two components as the initial conditions for the integrations of
Egs. (1)—(4). These values do not replace the observational val-
ues for which we do not have reliable data so far, but we believe

A101, page 8 of 9

o o
Sprr—— V7T 7 T T T T 71— 9
— E {1

: 1o
O E
®E 18 =@
: o 8
< E lo
o E - ~

RL: 18 =

P 1 g

o OF — Jo £
~E of 1 ]© ‘m

— .

E oo E . >
oF ° r —e1 1o
©F b=t 13

E 8.9 B8.95 9 9.05 9.1 J

E 1og 7 bt——:—‘ ]
el
8.9 8.95 9 9.05 9.1

log T

Fig. 16. Rotational velocities, according to the integrations of Egs. (1)—
(4), as a function of time for the rotating models shown in Fig. 12. Con-
tinuous red line represents the primary and the green one denotes the
secondary. The two blue lines indicate the error bars for the mean age
of the system. Lower-left corner illustrates the variations in the relative
radii of the primary and secondary. Same initial conditions as in Fig. 13.

it is a small step forward. As in the previous cases, we found a
good agreement between the observed orbital elements and their
corresponding theoretical values.

Acknowledgements. 1thank an anonymous referee for his/her careful reading of
the original version as well as for his/her comments and suggestions. The Spanish
MEC (ESP2017-87676-C5-2-R, PID2019-107061GB-C64, and PID2019-
109522GB-C52) is gratefully acknowledged for its support during the develop-
ment of this work. A.C. acknowledges financial support from the State Agency
for Research of the Spanish MCIU through the “Center of Excellence Severo
Ochoa” award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709).
This research has made use of the SIMBAD database, operated at the CDS, Stras-
bourg, France, and of NASA’s Astrophysics Data System Abstract Service.

References

Ade, P. A. R., Aghanim, N., Arnaud, M., et al. 2016, A&A, 594, A13

Andersen, J., Clausen, J. V., Nordstrom, B., Tomkin, J., & Mayor, M. 1991,
A&A, 246, 99

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481

Bohm-Vitense, E. 1958, Z. Astrophys., 46, 108

Claret, A. 1999, A&A, 350, 56

Claret, A. 2004, A&A, 424,919

Claret, A. 2011, A&A, 526, A157

Claret, A., & Cunha, N. C. S. 1997, A&A, 318, 187

Claret, A., & Giménez, A. 1995, A&A, 296, 180

Claret, A., & Torres, G. 2016, A&A, 592, A15

Claret, A., & Torres, G. 2017, ApJ, 849, 18

Claret, A., & Torres, G. 2018, ApJ, 859, 100

Claret, A., & Torres, G. 2019, AplJ, 876, 134

Costa, G., Girardi, L., Bressan, A., et al. 2019, MNRAS, 485, 4641

Endal, A. S., & Sofia, S. 1976, ApJ, 210, 184

Endal, A. S., & Sofia, S. 1978, ApJ, 220, 279

Freytag, B., Ludwig, H.-G., & Steffen, M. 1996, A&A, 313, 497

Gallenne, A., Pietrzyiiski, G., Graczyk, D., et al. 2016, A&A, 586, 35

Grevesse, N., & Sauval, A. J. 1998, SSRyv, 85, 161

Herwig, F., Bloecker, T., Schoenberner, D., & El Eid, M. 1997, A&A, 324, L81

Hut, P. 1981, A&A, 99, 126

Kippenhahn, R., & Thomas, R. C. 1970, in Stellar Rotation, ed. A. Slettebak
(Dordrecht, Holland: D. Reidel Publ. Co.), 20

Kopal, Z. 1959, Close Binary Systems (London: Chapman & Hall)

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3

Paxton, B., Cantiello, M., Arras, P, et al. 2013, ApJS, 208, 4

Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15

Reimers, D. 1977, A&A, 61, 217

Rieutord, M. 1992, A&A, 259, 581

Tassoul, J. L. 1987, ApJ, 322, 856

Tassoul, J. L., & Tassoul, M. 1996, Fundament. Cosmic Phys., 16, 337

Torres, G., Andersen, J., & Giménez, A. 2010, A&ARYv, 18, 67


http://linker.aanda.org/10.1051/0004-6361/202243573/1
http://linker.aanda.org/10.1051/0004-6361/202243573/2
http://linker.aanda.org/10.1051/0004-6361/202243573/3
http://linker.aanda.org/10.1051/0004-6361/202243573/4
http://linker.aanda.org/10.1051/0004-6361/202243573/5
http://linker.aanda.org/10.1051/0004-6361/202243573/6
http://linker.aanda.org/10.1051/0004-6361/202243573/7
http://linker.aanda.org/10.1051/0004-6361/202243573/8
http://linker.aanda.org/10.1051/0004-6361/202243573/9
http://linker.aanda.org/10.1051/0004-6361/202243573/10
http://linker.aanda.org/10.1051/0004-6361/202243573/11
http://linker.aanda.org/10.1051/0004-6361/202243573/12
http://linker.aanda.org/10.1051/0004-6361/202243573/13
http://linker.aanda.org/10.1051/0004-6361/202243573/14
http://linker.aanda.org/10.1051/0004-6361/202243573/15
http://linker.aanda.org/10.1051/0004-6361/202243573/16
http://linker.aanda.org/10.1051/0004-6361/202243573/17
http://linker.aanda.org/10.1051/0004-6361/202243573/18
http://linker.aanda.org/10.1051/0004-6361/202243573/19
http://linker.aanda.org/10.1051/0004-6361/202243573/20
http://linker.aanda.org/10.1051/0004-6361/202243573/21
http://linker.aanda.org/10.1051/0004-6361/202243573/22
http://linker.aanda.org/10.1051/0004-6361/202243573/23
http://linker.aanda.org/10.1051/0004-6361/202243573/24
http://linker.aanda.org/10.1051/0004-6361/202243573/25
http://linker.aanda.org/10.1051/0004-6361/202243573/26
http://linker.aanda.org/10.1051/0004-6361/202243573/27
http://linker.aanda.org/10.1051/0004-6361/202243573/28
http://linker.aanda.org/10.1051/0004-6361/202243573/29
http://linker.aanda.org/10.1051/0004-6361/202243573/30
http://linker.aanda.org/10.1051/0004-6361/202243573/31

A. Claret: TZ For tidal evolution

Appendix A: Brief description of the numerical
method for computing stellar rotating models

The formalism by Kippenhahn & Thomas (1970) has been used
to simulate the effects of the stellar rotation on the internal den-
sity concentration as well as on the evolution of the rotational
velocity. The mathematical basis of this method can be found
in Kippenhahn & Thomas (1970) and improved by Endal &
Sofia (1976, 1978). A star distorted by rotation and by tides is
represented by a Roche’s critical surface. The suitable potential
is written in terms of massratio, relative distance and angular
velocities. This potential presents some advantages, as for exam-
ple: if the only interest is to investigate the effects of stellar rota-
tion, then the mass ratio ought to be ¢ = 0.0.

To simulate rotating stars we restricted the calculation to first
order theory and the total potential can be written as given by
Kopal (1959):

My | Lorgine-

V= r? 2

4nG d /s ,

=3 Palcost) j: P (a°f)da’, (A1)
where
r=a(l - f,P(cosH)), (A2)

50243

= A3

f2 3GM, (2 + 1) (A-3)

In the above equations Q is the angular velocity, P»(cosf) is
the second Legendre polynomial, a the radius of the level sur-
face, 17, is the solution of the Radau’s equation (Eq. 11), and the
remaining symbols retain their usual meaning.

In this framework a generic function F(r, 8, ¢) has its coun-
terpart according to:

T _ ¢-1
F=S, deS,

where dS is the element of surface for constant values of . On
the other hand, the effective gravity is given by:

_dy
9= an
where dn is the distance between two neighbouring surfaces.

The corresponding volume of the configuration is thus given
by:

(A4)

(A.5)

(A.6)

The usual differential equations of the stellar structure are
changed to:

67',/, _ 1 (A 7)
oM, 47rpr£’ ’
0P, __GMy A
 =———/p :
oM, 4nr,
dL, OE 05

_e OB _pl A9
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(9lnT¢ _ 3KL¢P,/,fT
dlnPy 16ﬂacGM¢,T$fp.

(A.10)

In the above equations, My, L, are the mass and lumi-
nosity enclosed by a constant equipotential, € is the nuclear
energy generation rate per unit mass, E is the internal energy
per unit of mass, T and P the temperature and pressure, p the
density, a the radiation pressure constant (not to be confused
with mean radius of an equipotential), and ¢ the velocity of
light in vacuum. In principle, when using these approximations,
it would be necessary to solve the Poisson equation simulta-
neously. We note that if we choose the potential as the solu-
tion corresponding to the Roche model, such a condition is not
necessary.

After some algebra the Schwarzschild criterion can be writ-
ten as:

= Vads Viad 71,
olnPy Min[Vad: Vraa fp]

(A.11)

where V,; and V,,, are the "spherical" adiabatic and radiative
gradients. The variables fp and f; are computed following the
equations:

fp = dnry, ———, (A.12)
GMyS g™
and
4772 2 1
fr=|—L| —. (A.13)
SL/, gg—l

The functions fp and fr depend on the shape of the equipo-
tential surfaces and for fp and fr = 1.0 that we recover the
spherical model. To simulate rotating models we have used an
updated version of the GRANADA code described in Claret in
1999 (and revised in 2022). Inspecting Egs. A1-A3, we note that
Eq. 11 should be integrated simultaneously to obtain 7, at each
point of the model to solve the modified differential equations
of stellar structure. This is also necessary for the calculation of
average local gravity and its inverse. Regarding the numerical
method used to calculate the rotating models we introduced the
following procedure to take into account these requirements: the
first model is computed without rotation. It will give, through
integrations, the values of 77, and therefore of the integral in
Eq. Al for each point to be used in a second model which
includes rotation. For this second model (and all the following
ones), the values of the integral and of 7, will include the rota-
tional effects. The model n will be computed considering the
values of the integral and of 77, as derived from the model n — 1.
Provided that neighboring models have similar structures (small
steps in time) the method guarantees a good accuracy. Finally,
to compute fp and fr, we need to use a relationship between
ry and the mean radius of a given equipotential a. Such vari-
ables are connected by the following equation which is solved by
iteration:

3 2
r;za3(1+§f§—§f§). (A.14)

For more detailed information on the implementation of rota-
tion in the GRANADA code, we refer to Claret (1999).

A101, page 9 of 9



	Introduction
	Stellar models and the differential equations of tidal evolution
	Stellar models
	Differential equations of tidal evolution

	Tidal evolution of TZ For
	Case of a highly eccentric orbit
	Case of initial circular orbit
	Influence of the uncertainties of tF on the tidal evolution of TZ For
	Another hypothetical scenario: Estimation of the role of rotating models
	Summary

	References
	Brief description of the numerical method for computing stellar rotating models

