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Automatic symptom identification plays a crucial role in assisting doctors during the diagnosis process 
in Telemedicine. In general, physicians spend considerable time on clinical documentation and symptom 
identification, which is unfeasible due to their full schedule. With text-based consultation services in 
telemedicine, the identification of symptoms from a user’s consultation is a sophisticated process and time-

consuming. Moreover, at Altibbi, which is an Arabic telemedicine platform and the context of this work, 
users consult doctors and describe their conditions in different Arabic dialects which makes the problem 
more complex and challenging. Therefore, in this work, an advanced deep learning approach is developed 
consultations with multi-dialects. The approach is formulated as a multi-label multi-class classification using 
features extracted based on AraBERT and fine-tuned on the bidirectional long short-term memory (BiLSTM) 
network. The Fine-tuning of BiLSTM relies on features engineered based on different variants of the bidirectional 
encoder representations from transformers (BERT). Evaluating the models based on precision, recall, and a 
customized hit rate showed a successful identification of symptoms from Arabic texts with promising accuracy. 
Hence, this paves the way toward deploying an automated symptom identification model in production at Altibbi 
which can help general practitioners in telemedicine in providing more efficient and accurate consultations.
1. Introduction

The world has been witnessing the evolution of artificial intelligence 
(AI) flourishing and influencing widely various real-life domains, such 
as doctors’ clinics. Accurate and timely diagnosis at an early stage of 
a disease has a significant impact on a patient’s life. Moreover, there 
could be potential errors made by inexperienced physicians when iden-

tifying symptoms and determining the diagnosis. This is due to the mas-

sive number of symptoms that might be common in different diseases, 
which in turn confuse physicians. Relatively, this degrades the qual-

ity of care and loses patients’ trustworthy. Recently, machine and deep 
learning methods have enriched the diagnosis procedure by the automa-

tion of various processes. Such processes are the automatic extraction 
of symptoms, the automatic detection of diseases, the automatic map-
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ping of symptoms and diagnoses to the international classification of 
diseases (ICD-10), and others [1, 2, 3, 4]. The ICD-10 is a classifica-

tion system that uses alphanumeric codes to map diseases into generic 
categories, including symptoms. This is to promote and standardize the 
processing, presentation, and transfer of individuals’ medical informa-

tion via healthcare facilities. The ICD-10 codes are periodically refined, 
the tenth version of the codes is used in Altibbi (ICD-10). The utilization 
of AI methods in a clinic supporting software promotes the diagnosis 
process and the early detection of diseases. Computer-aided diagnosis 
(CAD) systems are emerging computational tools that showed a remark-

able ability in assisting doctors during diagnosis. A CAD system is a 
software-based application that is used as a decision support system 
for disease diagnosis in clinics. These systems do not just improve the 
reliability of decisions. But also, reduce the cost of patient monitor-
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Fig. 1. An illustration of the problem, where users in Altibbi communicate with doctors via phone calls, free question-and-answer, or chat.
ing, save doctors’ time, and provide patients with a better quality of 
care [5].

Our modern society advances in many fields. This correlated with 
the technological revolution of rising percentages of diverse diseases. 
Meanwhile, this led to a growing rise of telehealth and telemedicine 
platforms to help patients and improve their health. An impressive 
advantage of online healthcare platforms is the large volume of data 
generated at different scales of variability. Analyzing this rich unstruc-

tured data has direct benefits in improving and personalizing diagno-

sis. Often, users’ questions are rich of symptoms as they explain their 
conditions. Symptoms are signs of an illness or condition a person ex-

periences, such as headache, fatigue, or pain. Essentially, recognizing 
the symptoms from text correctly results in a higher probability of 
determining the correct diagnosis. Usually, the patient explains these 
symptoms with an inherent heterogeneity, ambiguity, unstructured and 
informal expressions. However, identifying all symptoms is intricate 
and can be incomplete, and time-consuming, especially for inexperi-

enced physicians [6]. According to Faris et al. in [7], the number of 
unique symptoms at Altibbi is surpassing 7,000 symptoms, which is 
huge enough to distract physicians. Furthermore, as Altibbi follows the 
HL7 (Level 7 Healthcare) standard to exchange clinical data; selecting 
the appropriate ICD-10 codes is hard and consumes time.

Expressing and recognizing symptoms correctly is a difficult pro-

cess either for the patient or the doctor [8]. Although, recent research 
studies have demonstrated the potential of artificial intelligence tech-

niques in disclosing possible symptoms hidden in the text. But, it has 
also presented open challenges for complex languages, such as Arabic. 
This paper extends the efforts of previous studies for the extraction of 
text-based symptoms but in the Arabic language. The Arabic language 
is the official language of over 300 million individuals across 22 coun-

tries scattered in the middle east and north Africa (MENA) region [9]. 
It has mainly two forms: modern standard Arabic (MSA), and colloquial 
Arabic. The MSA is used in formal situations, whereas the colloquial 
is used in usual conversations, where it differs from one country to an-

other and from city to city. Arabic has differences from other languages. 
It has more alphabet characters and sounds that do not exist in other 
languages. One of the major challenges when processing Arabic text is 
the presence of diverse dialects that differ among countries and cities, 
this means that the same word can be written differently aside from the 
misspellings, too. This makes Arabic preprocessing a harder process.

This research sheds light on a leading telemedicine platform that is 
known as “Altibbi2”. Altibbi provides primary care services for people 
in the MENA region, where users can chat or call doctors, upload their 
documents, and surf health-related content in Arabic. Also, they can 
send their questions as a free question-and-answer service. Intriguingly, 
Altibbi has around three million consultations stored in their databases. 
One of the most common forms of raw data in Altibbi is text-based con-

sultations where users ask their questions. Users write their questions in 
their dialect in free text, however, their explanations can be ambiguous, 

2 https://www .altibbi .com/.
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incomplete, and redundant. Besides, users do not explain thoroughly all 
encountered symptoms in their questions. When Altibbi’s doctors re-

ceive such questions, it is followed by a text-based chat or a phone call 
with the patient. Either after the call or chat, doctors assign possible 
symptoms and diagnoses. Even though, the process is not smooth as it 
sounds. First, often, the questions are vague. Patients express their ex-

perience with the condition in their informal words where symptoms 
are not clearly defined. Second, there is a high diversity of possible as-

signed symptoms among physicians. For the same question, different 
physicians might assign different symptoms. Even though they might 
be correct but also they might be incomplete, too. To illustrate, “I have 
severe pain in the back and leg, and I had an x-ray”, this is a sample of 
a question received at Altibbi. One physician will assign “Back pain” as 
a symptom, while another might assign “Low back pain”. Both are cor-

rect, but also missing the “Pain in leg” and “Person consulting for an 
explanation of investigation findings”.

Furthermore, one of the major challenges when dealing with patient 
medical records is the high percentage of missing data. Often, patients’ 
medical records have a high incompleteness rate of filling in inpatient 
medical information. This is because doctors have full schedules and 
short visit times, where there is not enough time for documentation 
and reporting. In [8], the authors stated that nearly 50% of doctors’ 
time is in data documentation, and Arndt et al. in [6] illustrated that 
physicians need 4-5 hours a day for interacting with clinical systems and 
entering data. Although, doctors report the symptoms and diagnoses 
by selecting the suitable ICD-10 codes which is an essential phase, but 
also consumes much time. As a result, there is a scarcity of cataloged 
symptoms on the physicians’ side. This points out an immense need 
to automate the extraction, mapping, and documentation of symptoms 
with such an intelligent approach.

The large amounts of data in Altibbi databases create a rich resource 
for AI methods to create intelligent models. Deep learning models based 
on a massive amount of unstructured data play a viable role in the 
automatic extraction of symptoms. Accordingly, this paper presents a 
deep learning model that extracts and suggests a list of symptoms for 
doctors, as presented in Fig. 1, where the users’ questions are the only 
source of data. The developed methodology formulates the problem as 
a multi-label and multi-classification problem. For each question, a list 
of the five most likely symptoms are predicted, which are associated 
with the highest probabilities.

The model is a variant of recurrent neural networks which is the 
BiLSTM. The BiLSTM network can preserve the long-term dependen-

cies among words via the use of cell states. Whilst, it holds the relevant 
information and controls its flow through the neural gates. The BiL-

STM network showed efficient performance in handling sequences of 
data, which located it in an exceptional place for such tasks [10]. Thus 
and according to Faris et al. in [11], the BiLSTM is used for the iden-

tification of symptoms in combination with contextual features (em-

bedding) engineered from the pre-training AraBERT model [12]. The 
performance of the BiLSTM model based on the AraBERT embedding 
is compared with different embedding structures of AltibbiVec, which 

https://www.altibbi.com/
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is a pre-trained Word2Vec model constructed using Altibbi’s data with 
around three million consultations [13].

The proposed model is evaluated based on precision, recall, and a 
customized hit rate metric. The constructed model revealed an ability 
to identify at least one actual symptom out of five suggested for doctors. 
It is noteworthy to emphasize the objective of symptoms identification 
in this paper which is to predict the symptoms and not to highlight and 
markup symptoms as entities in text. Therefore, a list of the most likely 
predicted symptoms are generated and presented to doctors.

The main contribution of the paper is the proposal of an auto-

matic identification system for medical symptoms of a condition from 
text-based consultation in the multi-dialect Arabic language. The main 
purpose of the proposed system is to support medical doctors in provid-

ing medical consultations and shorten the time needed in the process. 
The system is based on the development of a deep learning model based 
on features extracted from a fine-tuned AraBERT model, and a classi-

fication model of the BiLSTM network. This is by the utilization of a 
massive amount of medical consultations.

The rest of the paper is organized as follows. Section 2 presents re-

cent works in medical information extraction and symptoms extraction. 
Following this, Section 3 discusses the used material and methods, in-

cluding the formulation of the problem, the data preparation, the model 
development, and evaluation. Section 4.2 discusses the results, and Sec-

tion 5 is a conclusion of the findings.

2. Literature review

Automating the medical symptoms identification process has at-

tracted researchers’ attention for years. The continuous advancements 
in computational techniques including natural language processing 
(NLP) and deep learning models have paved the way for a much more 
promising future for a wide spectrum of applications. This section ex-

plores and summarizes relevant research studies for the automatic iden-

tification of medical symptoms in text, as well as, common algorithms 
and methods used in the medical NLP domain are manifested. Process-

ing text data is challenging particularly in the medical domain due to a 
lack of in-domain linguistic resources. However, it is harder when the 
context is a low-resource language like Arabic. In this regard, research 
efforts of symptoms identification in written texts will be reviewed and 
gaps with low-resource languages especially Arabic will be indicated. 
Further, this review covers the period from 2015 up to the present by 
searching Scopus and Google Scholar databases.

A fundamental step when building any deep or machine learning 
model is feature extraction or engineering. When the data is textual, 
the extraction of features is a bit different where the aim is to create 
word or text embeddings. Generally in medical NLP and at the fea-

ture extraction level, the BERT (as a state-of-the-art model) was used in 
several studies as in [14, 15, 16, 17], whereas, the Word2Vec model 
was used in [18, 19, 20]. In contrast, and at the algorithmic level, 
various deep learning models were widely used in medical NLP. Such 
as: The BiLSTM/LSTM in [14, 16, 20, 21, 22, 23, 24], the convolu-

tional neural network (CNN) in [19, 25], the capsule network [26], 
the transformers [27], the ResNet-34 network [28], and the generative 
adversarial network (GAN) [29]. Medical symptom extraction is a well-

known problem in health or medical-related NLP tasks. Various research 
studies devoted much effort to tackling such a problem, especially in the 
English context. For example, Jackson et al. [30] followed an NLP ap-

proach for the identification of severe mental illness symptoms from 
discharge summaries. The problem is formulated as classification into 
five categories (Catatonic, Disorganization, Manic, Positive, and Nega-

tive), which is implemented using TextHunter and around 1.2 million 
electronic health records (EHRs). The authors identified 46 symptoms of 
severe mental illness with an f1-score of 88%. Also, Du et al. [31] inves-

tigated the extraction of symptoms from clinical conversations using a 
sequence-to-sequence deep learning model. The performance was char-

acterized by an f1-score of (50-80)% depending on the task. In another 
3

paper, Eisman et al. [32] studied the identification of Angina symptoms 
from clinical notes by utilizing pre-trained transformer architectures. 
For which, the BioBERT and 459 primary care physician notes were 
used. As a result, the authors recommended the model for the auto-

matic identification of symptoms in clinical decision support systems.

Moreover, Leiter et al. [33] identified symptoms of congestive heart 
failure based on clinical notes using a deep learning model. In con-

sequence, the identified symptoms were classified into three classes 
with an f1-score of 71%. Further, Wu et al. [34] extracted symptoms 
and function profiles of mental disorders based on data documented in 
EHRs by implementing a dictionary and machine learning approach. 
Around 500 records were utilized in the model, where it had a sat-

isfactory performance with an f1-score of approximately (75-77)%. In 
[35], Uddin et al. identified depressive symptoms from text using a 
deep learning model based on LSTM. The model was trained on two 
constructed datasets from a public online information channel in Nor-

way, where they were having 11,807 and 21,470 instances. In the 
developed method, the tokens were represented based on a symptom-

based one-hot encoding scheme, where the model achieved an f1-score 
of 98%. Nonetheless, Wang et al. [36] developed a clinical NLP ap-

proach for the identification of symptoms of Coronavirus Disease. The 
constructed “COVID-19 SignSym” was built based on clinical texts from 
five databases and a hybrid of deep learning models, curated lexicons, 
and pattern-based rules. The developed tool showed efficient perfor-

mance and it is freely available on the Internet.

Roughly, different studies for symptom identification were con-

cerned with general text that is not related directly to the medical or 
clinical text. For instance, Magge et al. [37] developed a framework 
called “SEED” for symptom extraction from social media posts. The au-

thors implemented deep learning and transfer learning approach that 
achieved an f1-score of 85%. Additionally, Yao et al. [38] tried to ex-

tract depressive symptoms from an online depression community using 
a deep classification approach. The objective of the model was to clas-

sify the identified symptoms into five categories: emotional, cognitive, 
motivational, vegetative, physical, and seeking help. For this, network 
analyses were conducted to find effective features of depression in on-

line communities. Guo et al. [39] presented a general symptoms and 
diseases inference model using a deep learning approach. The MetaMap 
is used for the extraction of symptom terms and then they were repre-

sented using the term frequency-inverse document frequency (TF-IDF). 
According to the proposed methodology and regarding the MIMIC-III 
dataset, the BiLSTM model achieved significant improvement in terms 
of the area under the curve (AUC) with 85.3% and f1-score with 56.3%. 
Also, Abulaish et al. [40] constructed a system that is known as “Dis-

eaSE” for symptoms extraction and associations modeling. Eight dis-

eases were considered; which are dengue, malaria, diarrhea, cholera, 
meningitis, influenza, meningitis, and leishmaniasis. Using TextRank 
and the PubMed database yielded the identification of new symptoms 
that were not listed in the Center of Disease Control.

There are other noticeable works in the literature that targeted 
the problem of symptom identification in other language contexts. For 
example, in the German context, Schafer et al. [41] proposed a BERT-

based model for the identification and extraction of symptoms using 
German patient monologues. The hybrid approach of BERT and the 
Curriculum Learning and Augmented Descriptions method achieved the 
highest f1-score of 90%. Also, in the Italian context, Polignano et al. 
[42] proposed a health bot that processes symptoms, and suggests diag-

noses and treatments. Moreover, Wada et al. [43] attempted to extract 
symptom names from general medical text using a deep learning ap-

proach in Japanese. However, as the training texts were curated from 
the general web, the identified symptoms have no standard medical 
terminologies. Faviez et al. [44] detected symptoms in tweets using a 
fuzzy matching approach in French. Extracting coronavirus symptoms 
was presented as an application with a precision of detection of 81%.

Prior studies have demonstrated the potential of automatic symptom 
extraction in different languages. However, to the best of our knowl-
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edge, there are very few attempts were dedicated to the analysis and 
identification of symptoms embedded in text in the multi-dialect Ara-

bic context. For instance, Alghamidi et al. [45] proposed a model for 
the prediction of depression symptoms in Arabic psychological forums. 
Different models were experimented with which depended on machine 
learning or lexicon-based and rule-based approaches with different em-

bedding algorithms. The models showed efficient detection of posts 
with depression symptoms of a recall of 80%, and precision of 79%. 
Also, Alotaibi et al. [46] created a big data model for the detection of 
symptoms and diseases from Twitter posts in the Arabic context in Saudi 
Arabia. Around 18.9 million tweets were used to build a machine learn-

ing model, which achieved a performance higher than 80% in terms of 
accuracy and f1-score.

In consequence, this research is proposed to identify the symptoms 
from users’ questions which are written in multi-dialect Arabic using a 
deep learning model. The next section demonstrates the used methods 
and datasets.

3. Methodology

This section discusses the methodology that is followed in this work 
to develop the proposed symptoms identification system. The method-

ology consists of five main stages: problem formulation, data collection 
and preparation, feature engineering, model development, and evalua-

tion. Fig. 2 presents an abstract overview of the proposed system. In the 
following subsections, the five stages are discussed.

3.1. Problem formulation

This paper presents the problem of symptom identification that 
is formulated as supervised multi-label multi-classification. In super-

vised multi-label classification, multiple labels are assigned to a sample 
(𝑥 ∈ 𝑋), where the labels are in the set (𝐿). Samples are presented as 
numerical vectors of features, hence, it is a mapping function from the 
feature space 𝑋 to 𝐿; such that ℎ ∶𝑋 ←←→ 𝑃 (𝐿), where 𝑃 is the probability.

Multi-label classification can be handled broadly by two different 
techniques; transformation methods, and adaptation methods. Trans-

formation methods treat each label as a binary classification problem 
with either one-versus-all or one-versus-one strategies, where outputs 
from all classifiers are combined to produce the final set of labels for 
a test example. A critical drawback of transformation methods is that 
they do not consider the relationships between labels and treat each of 
them independently. Also, transformation methods require building a 
higher number of classification models on smaller sets of data. Adapta-

tion methods build on the existing traditional (single-target) algorithms 
to directly handle the associations among labels. For example, adapting 
the neural network to use a new error function, or using a new split-

ting criterion in tree algorithms [47]. As adaptation methods can better 
resolve dependencies among labels, various neural network-based ap-

proaches constructed in the literature have shown successful ability in 
handling the multi-label classification problem [48, 49].

Generally, in neural-based adaptation methods, the output can be 
extracted by two different implementations. First, it is from one out-

put dense layer where the number of neurons is the number of labels. 
Second, it is from multiple output dense layers where each layer cor-

responds to a label. In both implementations, the activation method is 
set to Sigmoid which outputs a probability for each label independently 
in the interval [0, 1] as in Equation (1). All generated probabilities are 
not constrained to have a sum of one, for example, given that the final 
output layer has four neurons for four labels (e.g., symptoms) with raw 
outputs of [-1.5, 0.2, -0.7, 1.3]. After Sigmoid activation, the output 
probabilities are 0.182, 0.549, 0.332, and 0.786 of the four symptoms, 
respectively.

𝜎(𝑧) = 1
(1)
1 + 𝑒−𝑧

4

Table 1. Summary of the used datasets.

The Dataset for Embedding

Number of questions 3,310,996

Vocabulary size before preprocessing 1,032,093

Vocabulary size 171,385

The Dataset for the Classifier

Data size after removing duplicates 578,941

Data size after removing infrequent labels 567,399

Data size after sampling 5000 row per label 501,004

Number of unique symptoms before preprocessing 4,689

Number of unique symptoms after preprocessing 2,348

Vocabulary size 165,781

In this paper, the problem is formulated by an adaptation approach 
using a deep recurrent neural network with one output dense layer and 
Sigmoid activation. The choice of adaptation methods is that the model 
will train on the entire dataset without the need for manipulating or 
transforming it, while also considering the associations among symp-

toms, and better suggesting relevant symptoms together. Also, handling 
the multi-labeling by a single output dense layer instead of a multiple 
is envisaged to reduce the complexity of the model which better suits a 
light model’s production.

3.2. Data collection and preparation

All used data in this work was drawn from Altibbi’s databases. Two 
datasets are used; one for building the embeddings, and the other is for 
building the classifier of the symptom identification system. For build-

ing the embeddings, the collected data is all from Altibbi content and 
accounts for 3,310,996 questions. Whereas, for building the classifier, 
578,941 consultations are used. The medical consultations are questions 
asked by patients from different Arab countries; such as Jordan, Egypt, 
and Saudi Arabia. The consultations are in the form of questions in vari-

ous Arabic dialects. For example, such consultation is “ روھش اھرمع يتلفط
ولیك اھنزو اھلكوا ونشو اھتیھش حتفی يغبا ”, which is translated into “My baby 

is 6 months old, I want to increase her appetite and what type of food 
to give her, she weighs a kilo”.

The two datasets are preprocessed by applying different preprocess-

ing steps. This includes removing duplicate questions and cleaning the 
text from punctuations, symbols, English characters, and numbers. Also, 
removing the elongation of characters and the diacritics. Furthermore, 
the text was preprocessed at the label level. As questions are accompa-

nied by a list of symptoms; questions with infrequent symptoms were 
removed. The infrequent symptoms are the ones that appeared in less 
than ten questions. The number of initial symptoms in the dataset which 
were used for building the classifier was 4,689, while after preprocess-

ing, the unique symptoms in 501,004 consultations were 2,348. Fig. 3

shows the count of the most frequent 25 symptoms across this dataset.

A statistical analysis at the question-level is visualized in Fig. 4. It 
is clear that the longest question has 175 tokens, where most of the 
questions are not higher than 30 tokens. In subfigure (b), most of the 
questions are accompanied by only one symptom, given that the aver-

age of symptoms across the dataset that is used for building the classifier 
is about 1.5 symptoms per consultation.

The following Table 1 summarizes the main attributes of the 
datasets.

3.3. Feature engineering

For feature engineering, two approaches we developed, evaluated 
and compared. The first is to extract contextual embeddings from 
AraBERT by fine-tuning them. The fine-tuning of AraBERT is performed 
by freezing the entire architecture and adding a new final classifier layer 
(the BiLSTM) where only its parameters will be updated using a dataset 
of approximately half a million consultations. The second is to train the 
Word2Vec (AltibbiVec) model from scratch using around three million 
Arabic medical consultations and use the extracted embeddings with the 
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Fig. 2. An illustrative description of the proposed intelligent symptom identifier.
classification dataset to train and evaluate the BiLSTM. This subsection 
explains and provides an overview of features engineering approaches 
including AraBERT and AltibbiVec models.

3.3.1. AraBERT embedding

BERT as a language representation model learns deep bidirectional 
representations of text by jointly considering the left and right contexts. 
The structure of BERT is deep Transformers designed to pre-train on 
a huge amount of unlabeled text and learn by self-supervision when 
5

fine-tuning with labeled data. A Transformer network is a composition 
of two sub-networks; the encoder, and the decoder. The encoder is re-

sponsible for creating a vector representation of the input. Whereas, 
the decoder takes the encoder’s output as input to generate the target 
output. BERT was developed by Google in 2018 [49] and used the en-

coder part only of the Transformer in two configurations; the base and 
large. Essentially, the embedding of tokens can be extracted from the 
last layer, any of the encoder layers, concatenating or summing all lay-

ers, or even considering only the last four layers as in [49].
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Fig. 3. The frequency of the most recurring symptoms across the dataset.

Fig. 4. The distribution of questions lengths (a) and the number of symptoms (b).
AraBERT is a pre-trained BERT architecture in the Arabic context 
[12]. It was pre-trained on around 12 million new articles in Arabic 
and was evaluated on three different tasks; sentiment analysis, question-

answering, and named-entity recognition. In this paper, two versions of 
AraBERT were used; the AraBERT-base-v1 and AraBERT-base-v2. The 
main difference between the two versions is the size of the data. For 
the first version, the size of the data in terms of sentences is 77 million. 
It has 2.7 billion words and the model’s size is 23 GB. Whereas, the 
second version, is 200 million sentences, 8.6 billion words, and 77 GB 
in size. Furthermore, the first version is trained across 1.2 a million 
steps and the second version is over 3 million steps. Meanwhile, both 
of them have 136 million parameters and were trained using a tensor 
processing unit (TPU). The two versions were fine-tuned by freezing all 
the entire encoding layers and updating only the weights of the final 
classification layer. The sequence output from the last encoder layer in 
AraBERT is drawn and fed into the BiLSTM layer, where this sequence 
contains the embedding of all its tokens.

3.3.2. AltibbiVec

Embedding models convert text-based data into numerical vectors; 
these numeric representations of words encompass statistic and seman-

tic relationships, where similar words which appear in the same context 
should have similar vector representations, and hence, a high similarity 
score. The Word2Vec model is a neural-based embedding model that is 
capable of capturing the the semantics of words. The Word2Vec model 
has two implementation structures: continuous bag-of-words (CBOW), 
and skip-gram (SG) [50], which both are used and implemented in this 
work.
6

AltibbiVec embedding model stands on the Word2Vec architecture 
and was used and compared with the AraBERT embedding. AltibbiVec 
is a Word2Vec embedding model that was trained from scratch based 
on Altibbi’s medical consultations. The model was trained using around 
three million medical questions with 1,032,093 unique words. Also, six 
structures of the model were implemented with the CBOW and SG struc-

tures, at three embedding dimensions: 50, 100, and 200. AltibbiVec is 
used to create an embedding matrix of the tokens embedding which is 
then used to form the embedding layer.

3.4. Classification model development

The proposed symptoms identification system mainly consists of first 
the constructed embeddings, and second the classifier (BiLSTM). The 
extracted embeddings as mentioned in the previous subsections are used 
as an embedding layer and fed into the BiLSTM.

The BiLSTM has a chain structure of units, where each unit is com-

posed of a memory cell, input gate, output gate, and forget gate. Gen-

erally, the structure of the gate includes of element-wise multiplication 
operator and a Sigmoid function. If the Sigmoid’s output is zero means 
the information will be discarded, while one means the data flows. 
Given a time step 𝑡, the BiLSTM network takes as an input 𝑥𝑡 and gener-

ates at the end the hidden state ℎ𝑡 that is through a Softmax or Sigmoid 
layer produces the output 𝑦𝑡. The chain structure of the BiLSTM/LSTM 
units and their gates can process long sequences of data and preserve 
relevant information by the cell state. The purpose of the cell state is 
to hold the information in the cell while regulating and controlling the 
flow of information through the gates. This ensures moving significant 
and relevant information through the cell and discards others. The BiL-
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STM network is constructed from forward and backward connections, 
which means it utilizes the previous (historical) and next (future) infor-

mation in the hidden states. This makes it a suitable algorithm in this 
context.

In order to utilize the AraBERT embeddings, the tokens embeddings 
of each corresponding sequence are extracted from the last layer in 
AraBERT. Then, the embedding of the first token in the sequence which 
is the “[CLS]” is extracted and fed into the BiLSTM. The embedding of 
the “[CLS]” token is a contextual embedding that encodes the whole se-

quence. In contrast, at AltibbiVec, the learned embeddings of tokens are 
used to create an embedding matrix which is used to build an embed-

ding layer for the BiLSTM. In this case of Word2Vec, the questions were 
tokenized using the Keras library [51], and the maximum sequence 
length was set to 50. The final classification model encompasses the

embeddings from either AraBERT or AltibbiVec, the BiLSTM network, 
and the final output dense layer which has a number of neurons equals 
the number of labels. This classification model is trained and the pa-

rameters updated using the smaller dataset that is intended to build the 
BiLSTM classifier. A 10% of this dataset is used to evaluate the perfor-

mance of the model in predicting the symptoms. This is demonstrated 
in the following subsection.

3.5. Model evaluation

The symptoms identification model is evaluated based on two 
types of evaluation measures, statistical-based, including precision@𝑘, 
recall@𝑘, and a customized hit rate. As well as by depending on a sub-

ject matter expert who is a verified and certified medical coder. As 
the trained model identifies symptoms, the objective is to predict the 
most likely top-𝑘 symptoms and present them to doctors. The precision 
presents the ratio of how many predicted symptoms are actually in the 
ground truth, as presented in Equation (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1
𝑛

𝑛∑
𝑖=1

|𝑌𝑖 ∩ ℎ(𝑥𝑖)|
|ℎ(𝑥𝑖)| (2)

The recall is the ratio of how many actual symptoms were predicted 
(as in Equation (3)). Given that the number of examples in the testing 
dataset is 𝑛, 𝑌𝑖 is the ground truth label, ℎ(𝑥𝑖) is the predicted value.

𝑅𝑒𝑐𝑎𝑙𝑙 = 1
𝑛

𝑛∑
𝑖=1

|𝑌𝑖 ∩ ℎ(𝑥𝑖)|
|𝑌𝑖| (3)

The actual labels are the verified unique symptoms. However, the 
measures of precision and recall are calculated in the first top 𝑘 symp-

toms instead of all of the symptoms. Besides, regarding the operations 
team at Altibbi, doctors prefer to see a maximum of five suggested 
symptoms to select from them. Therefore, the precision and recall are 
calculated at values of 𝑘 from 1 to 5. To illustrate, given a consul-

tation that is labeled by 3 actual symptoms and a suggested list of 
symptoms presented to doctors is of length 5. If only two of the five 
suggested symptoms are correct, then the precision@5 is (2/5) and 
the recall@5 is (2/3). In this regard, the model is evaluated by com-

puting the precision@1, precision@2, precision@3, precision@4, and 
precision@5. Also, similarly is for the recall.

Moreover, as the number of symptoms in the ground truth across 
consultations varies, the testing dataset was divided into groups. So, 
Group (1) is labeled only by one correct symptom, Group (2) by two 
symptoms, and likewise up to Group (5) with five symptoms. The num-

ber of consultations in the Groups from (1) to (5) is 44,938, 4,127, 805, 
176, and 35, respectively. Subsequently, the model was evaluated based 
on a customized hit rate metric. The calculation of the customized hit 
rate is based on groups of data 𝐺 and the probability of prediction 𝑃 . 
Hence, the model predicts the likelihood of predicting correctly all the 
expected symptoms given the number of actual symptoms. For example, 
at G2, the actual expected symptoms are two, the probabilities of pre-

dicting at least one of them and two of them correctly are computed. In 
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Fig. 5. A demonstration of deploying the symptoms identification model to 
production in Altibbi.

this regard, for (G1, P1); the hit rate is predicting the one actual symp-

tom correctly averaged over all the samples in G1. Also, for (G4, P3) is 
the rate of predicting at least three symptoms correctly over all samples 
in G4.

In addition, the model was evaluated manually by expert doctors 
who compared the model’s suggested symptoms with the symptoms as-

signed by general practitioners for a sample of consultations. The model 
is deployed on Altibbi’s mobile app for general practitioners to use. A 
screenshot of the deployed model is shown in Fig. 5. After finishing 
the chat or the call with the patient, the doctor fills a recommendation 
with symptoms, diagnoses, required labs, and medications. During this, 
suggested symptoms from the model are displayed for general practi-

tioners to select from. A sample of 500 consultations was provided to 
expert doctors for evaluation. The consultations have the actual cor-

rect symptoms assigned by general practitioners and the suggested list 
of symptoms from the model. The role of experts was to check if any 
of the suggested symptoms were correct and met the actual symptoms 
labeled by the general practitioner.

4. Experiments and results

This section presents two main experiments at the feature engineer-

ing level; the first is to extract contextual features from the AraBERT 
model and then fine-tune a BiLSTM classification layer. The second is 
to use AltibbiVec embedding model for feature engineering and then to 
fine-tune the BilSTM network, too. The implemented experiments were 
evaluated using precision, recall, and a customized hit rate. The follow-

ing subsections will present the configuration settings to implement the 
experiments and a discussion of the results.

4.1. Experimental setup

The structure of the model consists of an embedding layer, a BiLSTM 
layer, and a dense output layer. Different embedding models were ex-

perimented with and compared to AraBERT. Primarily, this includes the 
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Fig. 6. A description of the designed methodology. In which, different dimensions of the embedding models are used, i.e., 768 for AraBERT and (50, 100, 200) for 
AltibbiVec.
Table 2. Parameters settings for fine-tuning 
AraBERT. Keys: (L.R.) is the learning rate, 
(B.S.) is the batch size, (M.T.C) is the maxi-

mum token count, and (Dim.) is the embed-

ding dimension.

Parameters Value

Optimizer Adam

L.R. 0.001

Activation Sigmoid

Epochs 10

B.S. 128

Loss BCELoss

M.T.C 200

Dim. 768

Table 3. Parameters settings for AltibbiVec.

Parameters Value

Window size 40

Minimum count frequency 5

Down sampling 0.01

Epochs 30

original two versions of AraBERT, and other versions of AltibbiVec at 
CBOW and SG structures at three different dimensions (i.e., 50, 100, and 
200). Table 2 shows the parameters’ settings for fine-tuning AraBERT. 
Initially, AraBERT embeddings were extracted from the base version of 
the model and the last encoder layer. The input of the embedding layer 
is a tensor of first the batch size, the sequence length, and the embed-

ding dimension.

Regarding AltibbiVec, Table 3 recaps the attributes used in training 
AltibbiVec. The words with a frequency less than five were dropped, 
and the context of words was captured at a window size of 40 according 
to Silberztein et al. [52]. Furthermore, the number of training epochs 
was set to 30.

For BiLSTM, the optimizer is set to Adam, the number of BiLSTM 
layers is one, the activation function is Sigmoid, the number of epochs 
is 50, the batch size is 128, and the loss function is the Binary_Crossen-

tropy. Additionally, as the number of LSTM units influences the perfor-

mance, the BiLSTM is tuned based on ten different numbers of units as 
presented in Table 4. For which, the evaluation is based on a customized 
hit rate metric. It is clear from the table that the hit rate increases 
slightly as the units increase up to 40 where then it relatively remains 
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Table 4. The results of fine-tuning BiLSTM 
based on the number of units.

No. of Units Recall

8 0.442

16 0.496

24 0.514

32 0.518

40 0.523

48 0.523

56 0.529

64 0.525

72 0.529

80 0.522

constant at approximately 52%. Moreover, when the units were 56 or 
72, the model had an equal and maximum hit rate of 52.9%. The hit 
rate is computed and will be presented in the next subsection on differ-

ent precision levels. Since increasing the number of units also increases 
the model’s complexity, so the number of units was set to a minimum 
of 56.

The neurons in the last linear dense layer are the number of unique 
symptoms with the Sigmoid function. However, the highest five proba-

ble symptoms are selected and mapped to the ICD-10 codes. At Altibbi, 
the tenth Australian modified version of the ICD-10-AM codes is used. 
Fig. 6 shows the structure of the methodology, where 𝑛 is the number 
of labels.

Conventionally, for training the classifier, the fine-tuning dataset 
was divided into three proportions: 80%, 10%, and 10% for training, 
validating, and testing, respectively. This division is very common in 
the literature [33, 53].

Regarding the environmental settings, the Keras [51] deep-learning 
framework is used. Also, all experiments were implemented using 
Python (3.7) on Ubuntu-1804-bionic-64 cloud server, the memory is 
64 GB, and the processor is Intel(R) Core(TM) i7-7700 with a speed of 
3.6 GHz. Whereas, the GPU model is GeForce GTX 1080 of 8 GB.

4.2. Results and discussion

This section discusses the results of BiLSTM at different embedding 
dimensions and models in terms of precision, recall, and customized hit 
rate.
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Table 5. The evaluation results based on precision and recall.

Model Dim. Metric G1 G2 G3 G4 G5

Word2Vec-SG 50 Precision 0.266 0.310 0.319 0.351 0.291

Recall 0.527 0.453 0.402 0.371 0.291

Word2Vec-SG 100 Precision 0.267 0.312 0.328 0.331 0.320

Recall 0.541 0.468 0.410 0.384 0.326

Word2Vec-SG 200 Precision 0.268 0.312 0.321 0.345 0.291

Recall 0.544 0.472 0.405 0.381 0.291

Word2Vec-CBOW 50 Precision 0.255 0.304 0.308 0.337 0.309

Recall 0.516 0.453 0.393 0.384 0.309

Word2Vec-CBOW 100 Precision 0.259 0.300 0.309 0.344 0.291

Recall 0.518 0.450 0.392 0.369 0.286

Word2Vec-CBOW 200 Precision 0.257 0.301 0.304 0.325 0.269

Recall 0.517 0.448 0.389 0.374 0.263

AraBERT-base-v1 768 Precision 0.243 0.304 0.312 0.330 0.291

Recall 0.481 0.441 0.395 0.369 0.291

AraBERT-base-v2 768 Precision 0.232 0.290 0.306 0.321 0.291

Recall 0.444 0.418 0.385 0.364 0.291

Table 6. The performance of the BiLSTM model over groups of data based on the number of 
symptoms.

Model Dim. Group Hit Rate

P1 P2 P3 P4 P5 Overall

G1 0.541 - - - -

G2 0.698 0.238 - - -

Word2Vec-SG 50 G3 0.781 0.378 0.072 - -

G4 0.898 0.489 0.176 0.011 -

G5 0.771 0.514 0.171 0.000 0.000 0.532

G1 0.541 - - - -

G2 0.696 0.240 - - -

Word2Vec-SG 100 G3 0.791 0.371 0.066 - -

G4 0.881 0.477 0.153 0.023 -

G5 0.771 0.571 0.229 0.029 0.000 0.532

G1 0.544 - - - -

G2 0.708 0.236 - - -

Word2Vec-SG 200 G3 0.779 0.358 0.077 - -

G4 0.898 0.443 0.165 0.017 -

G5 0.771 0.457 0.200 0.029 0.000 0.535

G1 0.516 - - - -

G2 0.684 0.221 - - -

Word2Vec-CBOW 50 G3 0.779 0.343 0.057 - -

G4 0.869 0.483 0.165 0.017 -

G5 0.771 0.486 0.229 0.057 0.000 0.508

G1 0.524 - - - -

G2 0.686 0.225 - - -

Word2Vec-CBOW 100 G3 0.771 0.347 0.056 - -

G4 0.875 0.443 0.148 0.023 -

G5 0.743 0.486 0.200 0.029 0.000 0.515

G1 0.517 - - - -

G2 0.683 0.222 - - -

Word2Vec-CBOW 200 G3 0.770 0.352 0.055 - -

G4 0.892 0.449 0.153 0.017 -

G5 0.771 0.400 0.143 0.029 0.000 0.509

G1 0.545 - - - -

G2 0.719 0.262 - - -

AraBERT-base-v1 768 G3 0.813 0.425 0.084 - -

G4 0.795 0.384 0.086 0.016 -

G5 0.872 0.615 0.154 0.026 0.000 0.537

G1 0.574 - - - -

G2 0.730 0.265 - - -

AraBERT-base-v2 768 G3 0.806 0.391 0.088 - -

G4 0.881 0.483 0.148 0.017 -

G5 0.771 0.571 0.257 0.057 0.000 0.564
Table 5 presents the precision and recall at different embedding 
models and different dimensions across G1, G2, G3, G4, and G5. The 
best results are highlighted with boldface style. The Word2Vec at the 
SG structure shows the best precision at dimension (200) at G1 with 
(26.8%). At G2, the SG structure attained the same results at dimen-

sions: 100 and 200 with a precision of 31.2%. Regarding G3 and G5, 
the best results obtained when the dimension is 100 with the precision 
are 32.8%, 32.0%, respectively. The G4 group gained the best preci-

sion when the SG structure was 50 with 35.1%. Regarding the recall, 
G1 and G2 obtained the best results when the SG dimension is 200 with 
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values of 54.4% and 47.2%, respectively. However, for G3, G4, and G5; 
the best recall is obtained when the dimension is 100 with recall val-

ues of 41.0%, 38.4%, and 32.6%. Generally, when comparing the SG 
with the CBOW structure, the SG demonstrated a better performance 
in terms of precision and recall. In contrast, in the two versions of the 
AraBERT model, AraBERT showed a slight decrease in the performance 
over precision and recall.

Table 6 displays the results of the customized hit rate metric for BiL-

STM at AraBERT, different structures and dimensions of Word2Vec, and 
across groups of data. The acronym 𝐺1 denotes the group of data with 
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one actual symptom, 𝑃1 is the probability of predicting this one symp-

tom correctly, 𝑃2 is the probability of predicting the two symptoms 
correctly, and so on. Regarding the overall hit rate, the SG structure of 
Word2Vec at dimension 200 achieved 53.5%. Whereas AraBERT-base-

v1 attained a slightly highest hit rate of 53.7%, and AraBERT-base-v2 
attained the highest of 56.4%. Even that, regarding Word2Vec, the SG 
structure at dimensions 50 and 100 performed slightly the same by 
having 53.2%. Roughly, the SG structure was better than the CBOW 
structure. Whilst, AraBERT was better than the SG and CBOW. Consid-

ering Group (1) of the dataset, the probability of predicting the actual 
symptom correctly was the highest at the second version of AraBERT 
base model (57.4%). The SG at dimension 200 achieved almost simi-

lar to AraBERT by having 54.4%. Similarly was the AraBERT-base-v2 
which had a hit rate of 54.5%. Also, the SG at dimensions 50 and 100 
was gaining relatively close to (54.1%). Increasing the dimension of the 
SG model did not dramatically influence the hit rate at 𝑃1. Comparably 
is for the CBOW, where the best was at dimension 100 of 52.4%.

For the second group (G2), the AraBERT-base-v2 model achieved the 
best hit rate at 𝑃1 of 73.0%. Whereas AraBERT-base-v1 attained a hit 
rate of 71.9%. Besides, the SG structure at dimension 200 gained a recall 
metric of 70.8%. The SG structure at lower dimensions demonstrated 
a trivial decrease which was having approximately 69% of recall. Re-

garding the CBOW structure at G2 and 𝑃1, it attained slightly less recall 
metric than the SG by having roughly (68%). Generally at 𝑃2 regard-

less of the embedding structure or dimension, predicting the actual two 
symptoms correctly is considerably less, which is on average 23% for 
the Word2Vec and 26% for AraBERT. The highest hit rate at 𝑃2 was 
26.5% by AraBERT-base-v2. For the third group (G3), when the number 
of symptoms increases, the recall decreases. The highest recall at 𝑃1 was 
by the AraBERT-base-v1 of 81.3%, while its second version was 80.6%. 
Next is the SG structure at dimension 100 (79.1%). Generally, when 
comparing the SG structure with the CBOW, the SG achieved better 
performance than the CBOW with a recall of an average of (77.3%). For 
𝑃2, the SG achieved almost 36.9% regardless of the dimension, while 
the CBOW achieved an average of 34.7%. However, the AraBERT-base-

v1 gained the best of a hit rate of 42.5%. As it might be anticipated, 𝑃3
has lower recall values that are less than 10%. Considering what has 
been mentioned, AraBERT achieved at least better than others. Predict-

ing the three actual symptoms correctly in regards to 𝐺3 is much harder 
for the model. However, having one symptom predicted correctly is of 
a recall of about 81%.

Regarding Group (4), the probability of 𝑃1 is generally higher 
than other groups with fewer symptoms. On average, the hit rate was 
87.3%. Further, it was the highest at 𝑃1 by the SG structure of 89.8%. 
Markedly, dimensions 50 and 200 obtained the same maximum recall 
(89.8%). The CBOW performed approximately similar to the SG by hav-

ing 89.2% at dimension 200. Whereas, the AraBERT-base version 1 and 
2 achieved 79.5%, 88.1%, respectively. Regarding 𝑃2, it was better on 
average than 𝑃2 for the groups of fewer symptoms. Almost, the av-

erage performance of the models at 𝑃2 is 45.6%. The SG structure at 
dimension 50 attained the best hit rates at 𝑃2 and 𝑃3, which were 
48.9%, and 17.6%, respectively. For 𝑃4, the probabilities decrease dra-

matically to less than 2%. Finally, at Group (5) and 𝑃1, the average 
recall was 78.0%, where the highest was 87.2% by the AraBERT-base-

v1 model. At 𝑃2, almost the recall was 51.3%, while it was the highest 
by the AraBERT-base-v1 model of 61.5%. For 𝑃3, the AraBERT-base-

v2 achieved the best hit rate of 25.7%. The SG (dimension=100) and 
CBOW (dimension=50) obtained the same and the posterior best hit 
rate of 22.9%. Regarding 𝑃4, the recall metric declined to approxi-

mately less than 6%. Drastically, at 𝑃5 the model failed to predict all 
the five symptoms correctly.

To conclude, for the Word2Vec model, the SG structure showed 
slightly better performance in terms of hit rate than the CBOW. Fur-

thermore, optimizing the dimension parameter did not improve sig-

nificantly the hit rate, where it was fluctuating smoothly. Moreover, 
regardless of the number of actual symptoms, the model was able to 
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Table 7. The precision and recall based 
on the manual evaluation. Keys: A.S.C is 
the average number of symptoms identified 
correctly per consultation, and A.L.O.S is at 
least one symptom identified correctly.

Metric Value

Recall 0.706

Precision 0.233

A.S.C 1.164

A.L.O.S 0.711

predict correctly at least one correct symptom for most of the consul-

tations. In addition to this, the evaluation of AraBERT and Word2Vec 
shows comparable results for AraBERT at 𝐺1, 𝐺2, 𝐺3, and 𝐺5 for 𝑃1
and 𝑃2 considering the customized hit rate metric.

The results of the manual evaluation which was conducted by ex-

pert doctors are presented in Table 7. It shows the overall precision and 
recall of 500 evaluated consultations. The model performed success-

fully with an overall recall of 70.6% and precision of 23.3%. The low 
precision is due to that it is always computed by dividing by 5 regard-

less of the number of actual symptoms assigned to the corresponding 
consultations. Moreover, the model could predict at least one symptom 
correctly (71.1%) over the entire dataset disregarding the number of ac-

tual symptoms. Given that the average number of actual symptoms in 
the 500 consultations is 1.593, whereas, the average number of identi-

fied symptoms by the model is 1.164. This shows a promising ability of 
the model in predicting and identifying the possible symptoms in such 
rich and multi-dialectical language.

5. Conclusion

This work targeted the identification of symptoms for text-based 
medical consultations in a multi-dialect Arabic language context. Al-

tibbi as a digital health platform was referred to as a case study and 
a source of a huge number of consultations. Two datasets were used, 
one for learning the embedding, and the other for training the BiLSTM 
classification model. The AraBERT is used to construct contextual em-

bedding and is compared with the Word2Vec at different dimensions 
and structures. Evaluating the model based on precision, recall, and a 
customized hit rate revealed a successful ability to predict at least one 
of the symptoms correctly with slightly superior performance with the 
AraBERT embedding. The experiments also show that relying merely on 
the text of the medical questions as a source of features showed salient 
results to proceed into actual deployment. As future work, pre-training 
the BERT model from scratch using Altibbi’s content and using it as an 
embedding model is of significant interest to improve the performance 
of the symptom extraction model. Also, enhancing the model’s perfor-

mance with other sources of data such as chat and call information is 
envisaged to boost the model capability.
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