MAPS PRESERVING TWO-SIDED ZERO PRODUCTS ON BANACH ALGEBRAS

M. BREŠAR, M. L. C. GODOY, AND A. R. VILLENA

Abstract

Let A and B be Banach algebras with bounded approximate identities and let $\Phi: A \rightarrow B$ be a surjective continuous linear map which preserves twosided zero products (i.e., $\Phi(a) \Phi(b)=\Phi(b) \Phi(a)=0$ whenever $a b=b a=0$). We show that Φ is a weighted Jordan homomorphism provided that A is zero product determined and weakly amenable. These conditions are in particular fulfilled when A is the group algebra $L^{1}(G)$ with G any locally compact group. We also study a more general type of continuous linear maps $\Phi: A \rightarrow B$ that satisfy $\Phi(a) \Phi(b)+\Phi(b) \Phi(a)=0$ whenever $a b=b a=0$. We show in particular that if Φ is surjective and A is a C^{*}-algebra, then Φ is a weighted Jordan homomorphism.

1. Introduction

Let A and B be Banach algebras. We will say that a linear map $\Phi: A \rightarrow B$ preserves two-sided zero products if for all $a, b \in A$,

$$
\begin{equation*}
a b=b a=0 \Longrightarrow \Phi(a) \Phi(b)=\Phi(b) \Phi(a)=0 \tag{1.1}
\end{equation*}
$$

Obvious examples of such maps are homomorphisms and antihomomorphisms. Their common generalizations are Jordan homomorphisms, i.e., linear maps Ψ : $A \rightarrow B$ satisfying

$$
\Psi(a \circ b)=\Psi(a) \circ \Psi(b) \quad \forall a, b \in A
$$

where $a \circ b$ stands for the Jordan product $a b+b a$. Under the mild assumption that the centre of B does not contain nonzero nilpotent elements, every Jordan homomorphism from A onto B also preserves two-sided zero products [7] Lemma 7.20]. Next we recall that a linear map $W: B \rightarrow B$ is called a centralizer if

$$
W(a b)=W(a) b=a W(b) \quad \forall a, b \in B
$$

We say that Φ is a weighted Jordan homomorphism if there exist an invertible centralizer W of B and a Jordan homomorphism Ψ from A to B such that $\Phi=W \Psi$. Observe that Φ preserves two-sided zero products if and only if Ψ does. We also remark that, by the closed graph theorem, every centralizer W is automatically continuous if B is a faithful algebra (i.e., $b B=B b=\{0\}$ implies $b=0$), and so, in this case, Φ is continuous if and only if Ψ is.

[^0]Is every surjective continuous linear map $\Phi: A \rightarrow B$ which preserves two-sided zero products a weighted Jordan homomorphism? This question is similar to but, as it turns out, more difficult than a more thoroughly studied question of describing zero products preserving continuous linear maps (see the most recent publications [7, 11, 12, 14, 15] for historical remarks and references). It is known that the answer is positive if either A and B are C^{*}-algebras [3] Theorem 3.3] or if $A=$ $L^{1}(G)$ and $B=L^{1}(H)$ where G and H are locally compact groups with $G \in[\mathrm{SIN}]$ (i.e., G has a base of compact neighborhoods of the identity that is invariant under all inner automorphisms) [6, Theorem 3.1 (i)]. In fact, [3, Theorem 3.3] does not require that Φ satisfies (1.1) but only that for all $a, b \in A$,

$$
\begin{equation*}
a b=b a=0 \Longrightarrow \Phi(a) \circ \Phi(b)=0 . \tag{1.2}
\end{equation*}
$$

This condition was also considered in the recent algebraic paper [8]. Observe also that it is more general than the condition that Φ preserves zero Jordan products ($a \circ b=0$ implies $\Phi(a) \circ \Phi(b)=0)$ studied in [9].

The goal of this paper is to generalize and unify the aforementioned results from [3] and [6]. Our approach is based on the concept of a zero product determined Banach algebra. These are Banach algebras A with the property that every continuous bilinear functional $\varphi: A \times A \rightarrow \mathbb{C}$ satisfying $\varphi(a, b)=0$ whenever $a b=0$ is of the form $\varphi(a, b)=\tau(a b)$ for some continuous linear functional τ on A. We refer to the recent book [7] for a survey of these algebras. Let us for now only mention that they form a fairly large class of Banach algebras whose main representatives, C^{*} algebras and group algebras of locally compact groups, are also weakly amenable Banach algebras having bounded approximate identities.

In Section 2 we show that the answer to our question is positive, i.e., a surjective continuous linear map $\Phi: A \rightarrow B$ which preserves two-sided zero products is a weighted Jordan homomorphism, provided that A is zero product determined and weakly amenable, and, additionally, both A and B have bounded approximate identities (Theorem 2.5). This in particular implies that that the restriction in [6, Theorem 3.1 (i)] that $G \in[\mathrm{SIN}]$ is redundant (Corollary [2.7).

Section 3 is devoted to condition (1.2). We show that [3, Theorem 3.3] still holds if B is any Banach algebra with a bounded approximate identity, not only a C^{*}-algebra (Theorem 3.3). Our second main result regarding (1.2) considers the case where $A=\mathscr{A}(X)$ is the algebra of approximable operators (Theorem 3.4).

2. Condition (1.1)

Throughout, for a Banach space X, we write X^{*} for the dual of X and $\langle\cdot, \cdot\rangle$ for the duality between X and X^{*}. Let A be a Banach algebra. We turn A^{*} into a Banach A-bimodule by letting

$$
\langle b, a \cdot \omega\rangle=\langle b a, \omega\rangle, \quad\langle b, \omega \cdot a\rangle=\langle a b, \omega\rangle \quad \forall a, b \in A, \forall \omega \in A^{*} .
$$

The space of continuous derivations from A into A^{*} is denoted by $\mathscr{Z}^{1}\left(A, A^{*}\right)$. The main representatives of $\mathscr{Z}^{1}\left(A, A^{*}\right)$ are the so-called inner derivations. The inner derivation implemented by $\omega \in A^{*}$ is the map $\delta_{\omega}: A \rightarrow A^{*}$ defined by

$$
\delta_{\omega}(a)=a \cdot \omega-\omega \cdot a \quad \forall a \in A .
$$

The Banach algebra is called weakly amenable if every element of $\mathscr{Z}^{1}\left(A, A^{*}\right)$ is inner. For a thorough treatment of this property and an account of many interesting examples of weakly amenable Banach algebras we refer the reader to [10]. We
should remark that the group algebra $L^{1}(G)$ of each locally compact group G and each C^{*}-algebra are weakly amenable [10, Theorems 5.6.48 and 5.6.77].

Our first result is a sharpening of [5, Theorem 2.7] (see also [7, Theorem 6.6]).
Theorem 2.1. Let A be a Banach algebra, and suppose that:
(a) A is zero product determined;
(b) A has a bounded approximate identity;
(c) A is weakly amenable.

Then there exists a constant $C \in \mathbb{R}^{+}$such that for each continuous bilinear functional $\varphi: A \times A \rightarrow \mathbb{C}$ with the property that for all $a, b \in A$,

$$
\begin{equation*}
a b=b a=0 \Longrightarrow \varphi(a, b)=0 \tag{2.1}
\end{equation*}
$$

there exist $\sigma, \tau \in A^{*}$ such that

$$
\|\sigma\| \leq C\|\varphi\|, \quad\|\tau\| \leq C\|\varphi\|
$$

and

$$
\varphi(a, b)=\sigma(a b)+\tau(b a) \quad \forall a, b \in A
$$

Proof. Let $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ be an approximate identity for A of bound M.
Since A is weakly amenable, the map $\omega \mapsto \delta_{\omega}$ from A^{*} to the Banach space $\mathscr{Z}^{1}\left(A, A^{*}\right)$ is a continuous linear surjection, and so, by the open mapping theorem, there exists a constant $N \in \mathbb{R}^{+}$such that, for each $D \in \mathscr{Z}^{1}\left(A, A^{*}\right)$, there exists an $\omega \in A^{*}$ with

$$
\|\omega\| \leq N\|D\|
$$

and

$$
a \cdot \omega-\omega \cdot a=D(a) \quad \forall a \in A
$$

Towards the proof of the theorem, we proceed through a detailed inspection of the proof of [5], Theorem 2.7].

Define $\varphi_{1}, \varphi_{2}: A \times A \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
& \varphi_{1}(a, b)=\frac{1}{2}[\varphi(a, b)+\varphi(b, a)], \\
& \varphi_{2}(a, b)=\frac{1}{2}[\varphi(a, b)-\varphi(b, a)] \quad \forall a, b \in A .
\end{aligned}
$$

It is clear that both φ_{1} and φ_{2} satisfy condition (2.1) and that

$$
\left\|\varphi_{1}\right\| \leq\|\varphi\|, \quad\left\|\varphi_{2}\right\| \leq\|\varphi\|
$$

Since φ_{1} is symmetric it follows from the last assertion of [5], Lemma 2.6] (or [7], Theorem 6.1]) that there exists a $\xi \in A^{*}$ such that

$$
\begin{equation*}
2 \varphi_{1}(a, b)=\langle a \circ b, \xi\rangle \quad \forall a, b \in A \tag{2.2}
\end{equation*}
$$

For each $a \in A$, we observe that

$$
\left\langle a \circ e_{\lambda}, \xi\right\rangle=2 \varphi_{1}\left(a, e_{\lambda}\right) \quad \forall \lambda \in \Lambda
$$

and hence that

$$
\left|\left\langle a \circ e_{\lambda}, \xi\right\rangle\right| \leq 2 M\|\varphi\|\|a\| \quad \forall \lambda \in \Lambda .
$$

Taking limit and using $\lim _{\lambda \in \Lambda} a \circ e_{\lambda}=2 a$ we see that

$$
2\langle a, \xi\rangle \leq 2 M\|\varphi\|\|a\|
$$

This shows that

$$
\begin{equation*}
\|\xi\| \leq M\|\varphi\| \tag{2.3}
\end{equation*}
$$

Our next concern will be the behaviour of the skew-symmetric functional φ_{2}. By [4, Lemma 4.1] (or [7], Theorem 6.1]), there exists a $\psi \in A^{*}$ such that

$$
\varphi_{2}(a b, c)-\varphi_{2}(b, c a)+\varphi_{2}(b c, a)=\langle a b c, \psi\rangle \quad \forall a, b, c \in A .
$$

The proof reveals that the functional ψ is defined by

$$
\langle a, \psi\rangle=\lim _{\lambda \in \Lambda} \varphi_{2}\left(a, e_{\lambda}\right) \quad \forall a \in A
$$

so that

$$
\begin{equation*}
\|\psi\| \leq M\|\varphi\| \tag{2.4}
\end{equation*}
$$

By [5, Lemma 2.6] (or the proof of [7, Theorem 6.5]), the map

$$
D: A \rightarrow A^{*}, \quad\langle b, D(a)\rangle=\varphi_{2}(a, b)+\frac{1}{2}\langle a \circ b, \psi\rangle
$$

is a continuous derivation, and clearly (using (2.4))

$$
\|D\| \leq\left\|\varphi_{2}\right\|+\|\psi\| \leq(1+M)\|\varphi\|
$$

Consequently, there exists an $\omega \in A^{*}$ such that

$$
\begin{equation*}
\|\omega\| \leq N\|D\| \leq N(1+M)\|\varphi\| \tag{2.5}
\end{equation*}
$$

and

$$
a \cdot \omega-\omega \cdot a=D(a) \quad \forall a \in A
$$

and hence

$$
\langle b a-a b, \omega\rangle-\varphi_{2}(a, b)=\frac{1}{2}\langle a \circ b, \psi\rangle \quad \forall a, b \in A
$$

Viewing this expression as a bilinear functional on $A \times A$, we see that the left-hand side is skew-symmetric and the right-hand side is symmetric. Therefore, both sides are zero. Thus

$$
\begin{equation*}
\varphi_{2}(a, b)=\langle b a-a b, \omega\rangle \quad \forall a, b \in A \tag{2.6}
\end{equation*}
$$

We then define

$$
\sigma=\frac{1}{2} \xi-\omega, \quad \tau=\frac{1}{2} \xi+\omega
$$

From (2.3) and (2.5) we see that

$$
\begin{aligned}
\|\sigma\| & \leq\left(\frac{1}{2} M+N+N M\right)\|\varphi\| \\
\|\tau\| & \leq\left(\frac{1}{2} M+N+N M\right)\|\varphi\|
\end{aligned}
$$

and from (2.2) and (2.6) we deduce that

$$
\varphi(a, b)=\sigma(a b)+\tau(b a) \quad \forall a, b \in A
$$

We can now start our consideration of maps preserving two-sided zero products.
Lemma 2.2. Let A be a Banach algebra, and suppose that:
(a) A is zero product determined;
(b) A has a bounded approximate identity;
(c) A is weakly amenable.

Let B be a Banach algebra and let $\Phi: A \rightarrow B$ be a continuous linear map which preserves two-sided zero products. Then there exist:

- a closed left ideal L of B containing $\Phi(A)$ and a continuous linear map $U: L \rightarrow B$,
- a closed right ideal R of B containing $\Phi(A)$ and a continuous linear map $V: R \rightarrow B$
such that

$$
\begin{gathered}
U(x y)=x U(y), \quad V(z x)=V(z) x \quad \forall x \in B, \quad \forall y \in L, \forall z \in R \\
U(\Phi(a))=V(\Phi(a)) \quad \forall a \in A
\end{gathered}
$$

and

$$
U(\Phi(a \circ b))=V(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A
$$

Proof. Let $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ be an approximate identity for A of bound M, and let C be the constant given in Theorem 2.1.

We define

$$
\begin{gathered}
L=\left\{x \in B: \text { the net }\left(x \Phi\left(e_{\lambda}\right)\right)_{\lambda \in \Lambda} \text { is convergent }\right\} \\
U: L \rightarrow B, \quad U(x)=\lim _{\lambda \in \Lambda} x \Phi\left(e_{\lambda}\right) \quad \forall x \in L
\end{gathered}
$$

and

$$
\begin{gathered}
R=\left\{x \in B: \text { the net }\left(\Phi\left(e_{\lambda}\right) x\right)_{\lambda \in \Lambda} \text { is convergent }\right\}, \\
V: R \rightarrow B, \quad V(x)=\lim _{\lambda \in \Lambda} \Phi\left(e_{\lambda}\right) x \quad \forall x \in R .
\end{gathered}
$$

It is clear that L is a left ideal of B, R is a right ideal of B, and routine verifications, using that the net $\left(\Phi\left(e_{\lambda}\right)\right)_{\lambda \in \Lambda}$ is bounded, show that both L and R are closed subspaces of B. It is also obvious that both U and V are continuous linear maps with $\|U\| \leq M\|\Phi\|$ and $\|V\| \leq M\|\Phi\|$ and that

$$
U(x y)=x U(y), \quad V(z x)=V(z) x \quad \forall x \in B, \forall y \in L, \forall z \in R .
$$

We claim that

$$
\begin{equation*}
\left(\Phi\left(a^{2}\right) \Phi\left(e_{\lambda}\right)\right)_{\lambda \in \Lambda} \rightarrow \Phi(a)^{2} \quad \forall a \in A \tag{2.7}
\end{equation*}
$$

Fix an $a \in A$. By the Hahn-Banach theorem, for each $\lambda \in \Lambda$ there exists a $\xi_{\lambda} \in B^{*}$ with $\left\|\xi_{\lambda}\right\|=1$ and

$$
\begin{equation*}
\left\langle\Phi\left(a^{2}\right) \Phi\left(e_{\lambda}\right)-\Phi(a)^{2}, \xi_{\lambda}\right\rangle=\left\|\Phi\left(a^{2}\right) \Phi\left(e_{\lambda}\right)-\Phi(a)^{2}\right\| \tag{2.8}
\end{equation*}
$$

For each $\lambda \in \Lambda$, we consider the continuous bilinear functional

$$
\varphi_{\lambda}: A \times A \rightarrow \mathbb{C}, \quad \varphi_{\lambda}(u, v)=\left\langle\Phi(u) \Phi(v), \xi_{\lambda}\right\rangle \quad \forall u, v \in A
$$

which clearly satisfies (2.1) and

$$
\left\|\varphi_{\lambda}\right\| \leq\|\Phi\|^{2}
$$

Hence Theorem 2.1 yields the existence of $\sigma_{\lambda}, \tau_{\lambda} \in A^{*}$ such that

$$
\left\|\sigma_{\lambda}\right\| \leq C\|\Phi\|^{2}, \quad\left\|\tau_{\lambda}\right\| \leq C\|\Phi\|^{2}
$$

and

$$
\begin{equation*}
\left\langle\Phi(u) \Phi(v), \xi_{\lambda}\right\rangle=\sigma_{\lambda}(u v)+\tau_{\lambda}(v u) \quad \forall u, v \in A \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9) we deduce that

$$
\begin{align*}
\left\|\Phi\left(a^{2}\right) \Phi\left(e_{\lambda}\right)-\Phi(a)^{2}\right\| & =\left\langle\Phi\left(a^{2}\right) \Phi\left(e_{\lambda}\right), \xi_{\lambda}\right\rangle-\left\langle\Phi(a)^{2}, \xi_{\lambda}\right\rangle \\
& =\sigma_{\lambda}\left(a^{2} e_{\lambda}\right)+\tau_{\lambda}\left(e_{\lambda} a^{2}\right)-\sigma_{\lambda}\left(a^{2}\right)-\tau_{\lambda}\left(a^{2}\right) \tag{2.10}\\
& =\sigma_{\lambda}\left(a^{2} e_{\lambda}-a^{2}\right)+\tau_{\lambda}\left(e_{\lambda} a^{2}-a^{2}\right) \quad \forall \lambda \in \Lambda .
\end{align*}
$$

We now observe that

$$
\begin{aligned}
& \left|\sigma_{\lambda}\left(a^{2} e_{\lambda}-a^{2}\right)\right| \leq C\|\Phi\|^{2}\left\|a^{2} e_{\lambda}-a^{2}\right\|, \\
& \left|\tau_{\lambda}\left(e_{\lambda} a^{2}-a^{2}\right)\right| \leq C\|\Phi\|^{2}\left\|e_{\lambda} a^{2}-a^{2}\right\| \quad \forall \lambda \in \Lambda,
\end{aligned}
$$

and so, taking limits and using that

$$
\lim _{\lambda \in \Lambda}\left\|a^{2} e_{\lambda}-a^{2}\right\|=\lim _{\lambda \in \Lambda}\left\|e_{\lambda} a^{2}-a^{2}\right\|=0
$$

we see that

$$
\lim _{\lambda \in \Lambda} \sigma_{\lambda}\left(a^{2} e_{\lambda}-a^{2}\right)=\lim _{\lambda \in \Lambda} \tau_{\lambda}\left(e_{\lambda} a^{2}-a^{2}\right)=0
$$

Taking limit in (2.10) we now deduce that

$$
\lim _{\lambda \in \Lambda}\left\|\Phi\left(a^{2}\right) \Phi\left(e_{\lambda}\right)-\Phi(a)^{2}\right\|=0
$$

which gives (2.7).
Of course, 2.7) gives

$$
\begin{equation*}
\Phi\left(a^{2}\right) \in L, \quad U\left(\Phi\left(a^{2}\right)\right)=\Phi(a)^{2} \quad \forall a \in A \tag{2.11}
\end{equation*}
$$

In the same way as (2.7) one proves that

$$
\left(\Phi\left(e_{\lambda}\right) \Phi\left(a^{2}\right)\right)_{\lambda \in \Lambda} \rightarrow \Phi(a)^{2} \quad \forall a \in A
$$

which clearly yields

$$
\begin{equation*}
\Phi\left(a^{2}\right) \in R, \quad V\left(\Phi\left(a^{2}\right)\right)=\Phi(a)^{2} \quad \forall a \in A \tag{2.12}
\end{equation*}
$$

It remains to prove that $\Phi(A) \subset L \cap R$. From (2.11) and (2.12) we deduce immediately that

$$
\begin{gather*}
\Phi(a \circ b) \in L \cap R \\
U(\Phi(a \circ b))=V(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A \tag{2.13}
\end{gather*}
$$

For each $a \in A$, [1] Theorem II.16] gives $b, c \in A$ such that $a=b c b$, so that

$$
a=\frac{1}{2} b \circ(b \circ c)-\frac{1}{2} b^{2} \circ c
$$

and (2.13) then gives $\Phi(a) \in L \cap R$ and further $U(\Phi(a))=V(\Phi(a))$.
Lemma 2.3. Let A and B be Banach algebras, and suppose that:
(a) A is zero product determined;
(b) A has a bounded approximate identity;
(c) A is weakly amenable;
(d) B is faithful.

Let $\Phi: A \rightarrow B$ be a continuous linear map having dense range and preserving twosided zero products. Then there exists an injective continuous centralizer $W: B \rightarrow$ B such that

$$
W(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A
$$

Proof. We apply Lemma2.2, Since Φ has dense range, it follows that $L=R=B$ and that $U=V$. Set $W=U(=V)$. Then W is a centralizer on B and

$$
W(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A
$$

The only point remaining concerns the injectivity of W. We claim that

$$
\begin{equation*}
\operatorname{ker} W B^{3}=B^{3} \operatorname{ker} W=\{0\} \tag{2.14}
\end{equation*}
$$

Let $x \in \operatorname{ker} W$. For each $a \in A$, we have

$$
0=W(x) \Phi\left(a^{2}\right)=W\left(x \Phi\left(a^{2}\right)\right)=x W\left(\Phi\left(a^{2}\right)\right)=x \Phi(a)^{2}
$$

and, since the range of Φ is dense, we arrive at

$$
x y^{2}=0 \quad \forall y \in B
$$

We thus get

$$
x(y z+z y)=0 \quad \forall x \in \operatorname{ker} W, \forall y, z \in B
$$

For all $x \in \operatorname{ker} W$ and $y, z, w \in B$ we have (using that $x z \in \operatorname{ker} W$)

$$
(x y z) w=(-x z y) w=-(x z) y w=(x z) w y=x(z w) y=-x y(z w)
$$

whence $x y z w=0$, and so $\operatorname{ker} W B^{3}=\{0\}$. Similarly we see that $B^{3} \operatorname{ker} W=\{0\}$. Thus, (2.14) holds.

It is an elementary exercise to show that an element b in a faithful algebra B satisfying $b B^{3}=B^{3} b=\{0\}$ must be 0 . Indeed, one first observes that every $c \in$ $B^{2} b B^{2}$ satisfies $c B=B c=\{0\}$, which yields $B^{2} b B^{2}=\{0\}$. Similarly we see that this implies $B^{2} b B=B b B^{2}=\{0\}$, hence $B b B=B^{2} b=b B^{2}=\{0\}$, and finally $b B=$ $B b=\{0\}$. Therefore, $b=0$.

Thus, (2.14) shows that $\operatorname{ker} W=\{0\}$.
Lemma 2.4. Let A and B be Banach algebras, and suppose that B has a bounded approximate identity. Let $\Phi: A \rightarrow B$ be a surjective linear map, and let $W: B \rightarrow B$ be a linear map such that

$$
W(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A
$$

Then W is surjective.
Proof. Set $x \in B$. By [1, Theorem II.16], there exist $y, z \in B$ such that $x=y z y$, so that

$$
x=\frac{1}{2} y \circ(y \circ z)-\frac{1}{2} y^{2} \circ z .
$$

Since Φ is surjective, we can choose $a, b, c, d \in A$ with

$$
\Phi(a)=y, \quad \Phi(b)=y \circ z, \quad \Phi(c)=y^{2}, \quad \Phi(d)=z
$$

The condition on W now gives

$$
\begin{aligned}
W\left(\Phi\left(\frac{1}{2} a \circ b-\frac{1}{2} c \circ d\right)\right) & =\frac{1}{2} \Phi(a) \circ \Phi(b)-\frac{1}{2} \Phi(c) \circ \Phi(d) \\
& =\frac{1}{2} y \circ(y \circ z)-\frac{1}{2} y^{2} \circ z=x .
\end{aligned}
$$

We are now ready to establish our main result.
Theorem 2.5. Let A and B be Banach algebras, and suppose that:
(a) A is zero product determined;
(b) A has a bounded approximate identity;
(c) A is weakly amenable;
(d) B has a bounded approximate identity.

Let $\Phi: A \rightarrow B$ be a surjective continuous linear map which preserves two-sided zero products. Then Φ is a weighted Jordan homomorphism.

Proof. Since B has a bounded approximate identity, it follows that B is faithful. We conclude from Lemma 2.3 that there exists an injective continuous centralizer $W: B \rightarrow B$ such that

$$
\begin{equation*}
W(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A \tag{2.15}
\end{equation*}
$$

Lemma 2.4 now shows that W is surjective.
Having proved that W is an invertible centralizer, we can define $\Psi=W^{-1} \Phi$ which is a surjective continuous linear map and, further, we deduce from (2.15) that Ψ is a Jordan homomorphism. Of course, $\Phi=W \Psi$.

The crucial examples of zero product determined Banach algebras are the group algebras $L^{1}(G)$ for each locally compact group G and C^{*}-algebras [7, Theorems 5.19 and 5.21]. Furthermore, these Banach algebras are also weakly amenable and have bounded approximate identities. Therefore, it is legitimate to apply Theorem 2.5 in the case where A is a group algebra or a C^{*}-algebra.

Corollary 2.6. Let G be a locally compact group, let B be a Banach algebra having a bounded approximate identity, and let $\Phi: L^{1}(G) \rightarrow B$ be a surjective continuous linear map which preserves two-sided zero products. Then Φ is a weighted Jordan homomorphism.

Our final corollary generalizes [6, Theorem 3.1 (i)].
Corollary 2.7. Let G and H be locally compact groups, and let $\Phi: L^{1}(G) \rightarrow$ $L^{1}(H)$ be a surjective continuous linear map which preserves two-sided zero products. Then there exist a surjective continuous Jordan homomorphism $\Psi: L^{1}(G) \rightarrow$ $L^{1}(H)$ and an invertible central measure $\mu \in M(H)$ such that $\Phi(f)=\mu * \Psi(f)$ for each $f \in L^{1}(G)$.
Proof. By Corollary 2.6, there exist an invertible cetralizer W of $L^{1}(H)$ and a surjective continuous Jordan homomorphism $\Psi: L^{1}(G) \rightarrow L^{1}(H)$ such that $\Phi=W \Psi$. The centralizer W can be thought of as an element of the centre of the multiplier algebra of $L^{1}(H)$ which is, by Wendel's Theorem (see [10, Theorem 3.3.40]), isomorphic to the measure algebra $M(H)$. This gives a measure $\mu \in M(H)$ as required.

3. Condition (1.2)

We will not discuss Theorem 2.5 in the case where A is a C^{*}-algebra, because in this case condition (1.1) can be weakened to condition 1.2). Showing this is the main purpose of this section.

Lemma 3.1. Let A be a Banach algebra, and suppose that:
(a) A is zero product determined;
(b) A has a bounded approximate identity.

Let B be a Banach algebra and let $\Phi: A \rightarrow B$ be a continuous linear map satisfying condition (1.2). Then there exist a closed linear subspace J of B containing $\Phi(A)$ and a continuous linear map $W: J \rightarrow B$ such that

$$
W(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A
$$

Moreover, if B has a bounded approximate identity and Φ is surjective, then W is a surjective map from B onto itself.

Proof. Let $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ be an approximate identity for A of bound M.
We define

$$
J=\left\{x \in B: \text { the net }\left(\Phi\left(e_{\lambda}\right) \circ x\right)_{\lambda \in \Lambda} \text { is convergent }\right\}
$$

and

$$
W: J \rightarrow B, \quad W(x)=\lim _{\lambda \in \Lambda} \frac{1}{2} \Phi\left(e_{\lambda}\right) \circ x \quad \forall x \in J
$$

It is clear that J is a linear subspace of B and routine verifications, using that the net $\left(\Phi\left(e_{\lambda}\right)\right)_{\lambda \in \Lambda}$ is bounded, show that J is a closed linear subspace of B. It is also obvious that W is a continuous linear map with $\|W\| \leq M\|\Phi\|$.

Applying [7, Theorem 6.1 and Remark 6.2] to the continuous bilinear map $\varphi: A \times A \rightarrow B$ defined by

$$
\varphi(a, b)=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A
$$

we see that there exists a continuous linear map $S: A \rightarrow B$ such that

$$
\begin{equation*}
\Phi(a) \circ \Phi(b)=S(a \circ b) \quad \forall a, b \in A \tag{3.1}
\end{equation*}
$$

For each $a \in A$, we thus have

$$
\Phi\left(e_{\lambda}\right) \circ \Phi(a)=S\left(e_{\lambda} \circ a\right) \quad \forall \lambda \in \Lambda
$$

Using $\lim _{\lambda \in \Lambda} e_{\lambda} \circ a=2 a$ and the continuity of S, we see by taking limit that

$$
\lim _{\lambda \in \Lambda} \Phi\left(e_{\lambda}\right) \circ \Phi(a)=2 S(a)
$$

This shows that $\Phi(a) \in J$ and that $W(\Phi(a))=S(a)$. On the other hand, using (3.1), we see that

$$
\begin{equation*}
W(\Phi(a \circ b))=S(a \circ b)=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A \tag{3.2}
\end{equation*}
$$

Of course, if Φ is surjective, then $J=B$. Now suppose that, in addition, B has a bounded approximate identity. Then, on account of (3.2), Lemma 2.4 shows that W is surjective.

Lemma 3.2. Let A and B be a Banach algebras, let $\Phi: A \rightarrow B$ be a continuous linear map, and let $\omega \in B$. Suppose that:
(a) A is the closed linear span of its idempotents.
(b) $\Phi\left(a^{2}\right) \circ \omega=2 \Phi(a)^{2}$ for each $a \in A$.

Then $\omega^{2} \Phi(a)=\Phi(a) \omega^{2}$ for each $a \in A$.
Proof. Let $e \in A$ be an idempotent. From (b) we see that

$$
\begin{equation*}
\omega \Phi(e)+\Phi(e) \omega=\Phi(e) \circ \omega=\Phi\left(e^{2}\right) \circ \omega=2 \Phi(e)^{2} \tag{3.3}
\end{equation*}
$$

By multiplying (3.3) by $\Phi(e)$ on the left we obtain

$$
\begin{equation*}
\Phi(e) \omega \Phi(e)+\Phi(e)^{2} \omega=2 \Phi(e)^{3} \tag{3.4}
\end{equation*}
$$

and multiplying by $\Phi(e)$ on the right we get

$$
\begin{equation*}
\omega \Phi(e)^{2}+\Phi(e) \omega \Phi(e)=2 \Phi(e)^{3} \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5) we arrive at $\omega \Phi(e)^{2}=\Phi(e)^{2} \omega$, which, on account of (3.3), yields

$$
\omega^{2} \Phi(e)=\Phi(e) \omega^{2}
$$

Since A is the closed linear span of its idempotents, it follows that

$$
\omega^{2} \Phi(a)=\Phi(a) \omega^{2} \quad \forall a \in A
$$

In the proof of the next results we will use the first Arens product on the second dual $A^{* *}$ of a Banach algebra A. We will denote this product by juxtaposition. Furthermore, we will use the following basic facts about the weak* continuity of the first Arens product which the reader can find in [10].
(A1) For each $a \in A$, the map $\xi \mapsto a \xi$ from $A^{* *}$ to itself is weak* continuous.
(A2) For each $\xi \in A^{* *}$, the map $\zeta \mapsto \zeta \xi$ from $A^{* *}$ to itself is weak* continuous.
(A3) If A is a C^{*}-algebra, then the product in $A^{* *}$ is separately weak* continuous.

Theorem 3.3. Let A be a C^{*}-algebra, let B be a Banach algebra having a bounded approximate identity, and let $\Phi: A \rightarrow B$ be a surjective continuous linear map such that for all $a, b \in A$,

$$
a b=b a=0 \Longrightarrow \Phi(a) \circ \Phi(b)=0 .
$$

Then Φ is a weighted Jordan homomorphism.
Proof. By Lemma 3.1 there exists a surjective continuous linear map $W: B \rightarrow B$ such that

$$
\begin{equation*}
W(\Phi(a \circ b))=\Phi(a) \circ \Phi(b) \quad \forall a, b \in A \tag{3.6}
\end{equation*}
$$

We write $\Phi^{* *}: A^{* *} \rightarrow B^{* *}$ and $W^{* *}: B^{* *} \rightarrow B^{* *}$ for the second duals of the continuous linear maps $\Phi: A \rightarrow B$ and $W: B \rightarrow B$, respectively. We claim that

$$
\begin{equation*}
W^{* *}\left(\Phi^{* *}(x \circ y)\right)=\Phi^{* *}(x) \circ \Phi^{* *}(y) \quad \forall x, y \in A^{* *} \tag{3.7}
\end{equation*}
$$

Set $x, y \in A^{* *}$, and take nets $\left(a_{i}\right)_{i \in I}$ and $\left(b_{j}\right)_{j \in J}$ in A such that

$$
\begin{aligned}
& \left(a_{i}\right)_{i \in I} \rightarrow x \\
& \left(b_{j}\right)_{j \in J} \rightarrow y \quad \text { in }\left(A^{* *}, \sigma\left(A^{* *}, A^{*}\right)\right)
\end{aligned}
$$

On account of (3.6), we have

$$
\begin{equation*}
W\left(\Phi\left(a_{i} b_{j}+b_{j} a_{i}\right)\right)=\Phi\left(a_{i}\right) \Phi\left(b_{j}\right)+\Phi\left(b_{j}\right) \Phi\left(a_{i}\right) \quad \forall i \in I, \forall j \in J \tag{3.8}
\end{equation*}
$$

and the task is now to take the iterated $\operatorname{limit}^{\lim }{ }_{j \in J} \lim _{i \in I}$ on both sides of the above equation. Throughout the proof, the limits $\lim _{i \in I}$ and $\lim _{j \in J}$ are taken with respect to the weak* topology. From (A3) and the weak* continuity of both $\Phi^{* *}$ and $W^{* *}$ we deduce that

$$
\begin{align*}
\lim _{j \in J} \lim _{i \in I} W^{* *}\left(\Phi^{* *}\left(a_{i} b_{j}+b_{j} a_{i}\right)\right) & =\lim _{j \in J} W^{* *}\left(\Phi^{* *}\left(x b_{j}+b_{j} x\right)\right) \tag{3.9}\\
& =W^{* *}\left(\Phi^{* *}(x y+y x)\right)
\end{align*}
$$

From (A1)-(A2) (applied to the Arens product of $B^{* *}$) and the weak* continuity of $\Phi^{* *}$ we deduce that

$$
\begin{align*}
\lim _{j \in J} \lim _{i \in I} \Phi\left(b_{j}\right) \Phi\left(a_{i}\right) & =\lim _{j \in J} \Phi\left(b_{j}\right) \Phi^{* *}(x) \tag{3.10}\\
& =\Phi^{* *}(y) \Phi^{* *}(x)
\end{align*}
$$

The remaining iterated limits

$$
\lim _{j \in J} \lim _{i \in I} \Phi\left(a_{i}\right) \Phi\left(b_{j}\right)
$$

must be treated with much more care than the previous ones. We regard A as a C^{*} algebra acting on the Hilbert space of its universal representation, and we regard the continuous bilinear map

$$
A \times A \rightarrow B, \quad(a, b) \rightarrow \Phi(a) \Phi(b)
$$

as a continuous bilinear map with values in the Banach space $B^{* *}$ which is separately ultraweak-weak* continuous. By applying [13, Theorem 2.3], we obtain that the bilinear map above extends uniquely, without change of norm, to a continuous
bilinear map $\phi: A^{* *} \times A^{* *} \rightarrow B^{* *}$ which is separately weak* continuous. From this, and using (A1)-(A2) and the weak* continuity of $\Phi^{* *}$, we obtain

$$
\begin{align*}
\lim _{j \in J} \lim _{i \in I} \Phi\left(a_{i}\right) \Phi\left(b_{j}\right) & =\lim _{j \in J} \lim _{i \in I} \phi\left(a_{i}, b_{j}\right) \\
& =\phi(x, y) \\
& =\lim _{i \in I} \lim _{j \in J} \phi\left(a_{i}, b_{j}\right) \tag{3.11}\\
& =\lim _{i \in I} \lim _{j \in J} \Phi\left(a_{i}\right) \Phi\left(b_{j}\right) \\
& =\lim _{i \in I} \Phi\left(a_{i}\right) \Phi^{* *}(y) \\
& =\Phi^{* *}(x) \Phi^{* *}(y) .
\end{align*}
$$

From (3.8), (3.9), (3.10), and (3.11), it may be concluded that

$$
\begin{aligned}
W^{* *}\left(\Phi^{* *}(x \circ y)\right) & =\lim _{j \in J} \lim _{i \in I} W\left(\Phi\left(a_{i} \circ b_{j}\right)\right) \\
& =\lim _{j \in J} \lim _{i \in I} \Phi\left(a_{i}\right) \Phi\left(b_{j}\right)+\lim _{j \in J} \lim _{i \in I} \Phi\left(b_{j}\right) \Phi\left(a_{i}\right) \\
& =\Phi^{* *}(x) \circ \Phi^{* *}(y),
\end{aligned}
$$

and (3.7) is proved.
Define $\omega=\Phi^{* *}(1) \in B^{* *}$, where 1 is the unit of the von Neumann algebra $A^{* *}$. Setting $x=y$ in (3.7) we conclude that

$$
\begin{equation*}
W^{* *}\left(\Phi^{* *}\left(x^{2}\right)\right)=\Phi^{* *}(x)^{2} \quad \forall x \in A^{* *} \tag{3.12}
\end{equation*}
$$

and setting $y=1$ in (3.7) we see that

$$
\begin{equation*}
2 W^{* *}\left(\Phi^{* *}(x)\right)=\omega \Phi^{* *}(x)+\Phi^{* *}(x) \omega \quad \forall x \in A^{* *} \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13) we deduce that

$$
\Phi^{* *}\left(x^{2}\right) \circ \omega=2 \Phi^{* *}(x)^{2} \quad \forall x \in A^{* *}
$$

Since $A^{* *}$ is a von Neumann algebra, it is the closed linear span of its projections and we are in a position to apply Lemma 3.2, which gives

$$
\left.\omega^{2} \Phi^{* *}(x)\right)=\Phi^{* *}(x) \omega^{2} \quad \forall x \in A^{* *}
$$

In particular,

$$
\omega^{2} \Phi(a)=\Phi(a) \omega^{2} \quad \forall a \in A
$$

Since Φ is surjective, it may be concluded that

$$
\omega^{2} u=u \omega^{2} \quad \forall u \in B
$$

From (3.13) we see that, for each $a \in A$,

$$
\begin{aligned}
\omega W(\Phi(a)) & =\omega \frac{1}{2}(\omega \Phi(a)+\Phi(a) \omega) \\
& =\frac{1}{2}\left(\omega^{2} \Phi(a)+\omega \Phi(a) \omega\right) \\
& =\frac{1}{2}\left(\Phi(a) \omega^{2}+\omega \Phi(a) \omega\right) \\
& =\frac{1}{2}(\Phi(a) \omega+\omega \Phi(a)) \omega \\
& =W(\Phi(a)) \omega .
\end{aligned}
$$

Since both Φ and W are surjective, it may be concluded that

$$
\begin{equation*}
\omega u=u \omega \quad \forall u \in B \tag{3.14}
\end{equation*}
$$

From (3.13) we now deduce that

$$
W(\Phi(a))=\frac{1}{2}(\omega \Phi(a)+\Phi(a) \omega)=\omega \Phi(a) \quad \forall a \in A
$$

and hence that

$$
W(u)=\omega u \quad \forall u \in B
$$

Furthermore, for all $a, b \in B$, using (3.14) we obtain

$$
\begin{gathered}
W(a b)=\omega a b=W(a) b, \\
W(a b)=(\omega a) b=(a \omega) b=a W(b),
\end{gathered}
$$

whence W is a centralizer on B. In order to prove that W is an invertible centralizer, it remains to show that W is injective. If $a \in \operatorname{ker} W$, then

$$
a B=a W(B)=W(a) B=\{0\}
$$

and therefore $a=0$.
Since W is an invertible centralizer on B, (3.6) shows that $W^{-1} \Phi$ is a Jordan homomorphism, and hence Φ is a weighted Jordan homomorphism.

Our final concern will be the algebra $\mathscr{A}(X)$ of approximable operators on a Banach space X. It is shown in [2] that $\mathscr{A}(X)$ has the so-called property \mathbb{B} for each Banach space X (see also [7, Example 5.15]). Further, it is known that $\mathscr{A}(X)$ has a bounded left approximate identity if and only if the Banach space X has the bounded approximation property (see [10, Theorem 2.9.37]). In this case, $\mathscr{A}(X)$ is actually a zero product determined Banach algebra (see [2, Lemma 2.3] or, alternatively, [7] Proposition 5.5]). Another remarkable feature of $\mathscr{A}(X)$ is that it has a bounded approximate identity if and only if X^{*} has the bounded approximation property (see [10, Theorem 2.9.37]).

Theorem 3.4. Let X be a Banach space such that X^{*} has the bounded approximation property, let B be a Banach algebra having a bounded approximate identity, and let $\Phi: \mathscr{A}(X) \rightarrow B$ be a surjective continuous linear map such that for all $S, T \in \mathscr{A}(X)$,

$$
S T=T S=0 \Longrightarrow \Phi(S) \circ \Phi(T)=0
$$

Then Φ is a weighted Jordan homomorphism.
Proof. We begin by applying Lemma 3.1 to obtain a surjective continuous linear map $W: B \rightarrow B$ such that

$$
\begin{equation*}
W(\Phi(S \circ T))=\Phi(S) \circ \Phi(T) \quad \forall S, T \in \mathscr{A}(X) . \tag{3.15}
\end{equation*}
$$

Let $\left(E_{\lambda}\right)_{\lambda \in \Lambda}$ be a bounded approximate identity for $\mathscr{A}(X)$. Then we regard $\left(\Phi\left(E_{\lambda}\right)\right)_{\lambda \in \Lambda}$ as a bounded net in the second dual $B^{* *}$ of B. It follows from the Banach-Alaoglu theorem that this net has a $\sigma\left(B^{* *}, B^{*}\right)$-convergent subnet. Hence, by passing to a subnet, we may supose that $\left(E_{\lambda}\right)_{\lambda \in \Lambda}$ is a bounded approximate identity for $\mathscr{A}(X)$ such that

$$
\lim _{\lambda \in \Lambda} \Phi\left(E_{\lambda}\right)=\omega \quad \text { in }\left(B^{* *}, \sigma\left(B^{* *}, B^{*}\right)\right)
$$

for some $\omega \in B^{* *}$.
Set $T \in \mathscr{A}(X)$. Writting E_{λ} for S in (3.15), we obtain

$$
\begin{equation*}
W\left(\Phi\left(E_{\lambda} T+T E_{\lambda}\right)\right)=\Phi\left(E_{\lambda}\right) \Phi(T)+\Phi(T) \Phi\left(E_{\lambda}\right) \quad \forall \lambda \in \Lambda \tag{3.16}
\end{equation*}
$$

and our next goal is to take limits on both sides of (3.16). Since

$$
\lim _{\lambda \in \Lambda}\left(E_{\lambda} T+T E_{\lambda}\right)=2 T \quad \text { in }(\mathscr{A}(X),\|\cdot\|)
$$

the continuity of $W \Phi$ gives

$$
\begin{equation*}
\lim _{\lambda \in \Lambda} W\left(\Phi\left(E_{\lambda} T+T E_{\lambda}\right)\right)=2 W(\Phi(T)) \quad \text { in }(B,\|\cdot\|) . \tag{3.17}
\end{equation*}
$$

On the other hand, since

$$
\lim _{\lambda \in \Lambda} \Phi\left(E_{\lambda}\right)=\omega \quad \text { in }\left(B^{* *}, \sigma\left(B^{* *}, B^{*}\right)\right)
$$

and $\Phi(T) \in B$, we can appeal to (A1)-(A2) to deduce that

$$
\begin{align*}
& \lim _{\lambda \in \Lambda} \Phi\left(E_{\lambda}\right) \Phi(T)=\omega \Phi(T) \\
& \lim _{\lambda \in \Lambda} \Phi(T) \Phi\left(E_{\lambda}\right)=\Phi(T) \omega \quad \text { in }\left(B^{* *}, \sigma\left(B^{* *}, B^{*}\right)\right) . \tag{3.18}
\end{align*}
$$

Hence, taking limits in (3.16) and using (3.17) and (3.18), we obtain

$$
\begin{equation*}
2 W(\Phi(T))=\omega \Phi(T)+\Phi(T) \omega \tag{3.19}
\end{equation*}
$$

Having (3.15) and (3.19) and using that $\mathscr{A}(X)$ is the closed linear span of its idempotents, we can now apply Lemma 3.2 to obtain

$$
\omega^{2} \Phi(T)=\Phi(T) \omega^{2} \quad \forall T \in \mathscr{A}(X)
$$

From the surjectivity of Φ we deduce that

$$
\omega^{2} a=a \omega^{2} \quad \forall a \in B
$$

By using the same method as in the proof of Theorem 3.3 we verify that $\omega a=$ $a \omega$ for each $a \in B$, that $W(a)=\omega a$ for each $a \in A$, and that W is an invertible centralizer on B such that $W^{-1} \Phi$ is a Jordan homomorphism.

References

[1] M. Akkar, M. Laayouni. Théorèmes de factorisation dans les algèbres completes de Jordan. Collect. Math. 46 (1995), 239-254.
[2] J. Alaminos, M. Brešar, J. Extremera, A. R. Villena, Maps preserving zero products, Studia Math. 193 (2009), 131-159.
[3] J. Alaminos, M. Brešar, J. Extremera, A. R. Villena, Characterizing Jordan maps on C^{*}-algebras through zero products, Proc. Edinb. Math. Soc. 53 (2010), 543-555.
[4] J. Alaminos, M. Brešar, J. Extremera, A. R. Villena, Zero Lie product determined Banach algebras, Studia Math. 239 (2017) 189-199.
[5] J. Alaminos, M. Brešar, J. Extremera, A. R.Villena, Zero Lie product determined Banach algebras, II, J. Math. Anal. Appl. 474 (2019), 1498-1511.
[6] J. Alaminos, J. Extremera, A. R. Villena, Orthogonality preserving linear maps on group algebras, Math. Proc. Cambridge Philos. Soc. 158 (2015), 493-504.
[7] M. Brešar, Zero Product Determined Algebras, Frontiers in Mathematics, Birkhäuser/Springer, 2021.
[8] M. Brešar, M. L. C. Godoy, Weighted Jordan homomorphisms, preprint, arXiv: 2111.15232.
[9] M. A. Chebotar, W.-F. Ke, P.-H. Lee, R. Zhang, On maps preserving zero Jordan products, Monatsh. Math. 149 (2006), 91-101.
[10] H. G. Dales, Banach algebras and automatic continuity. London Mathematical Society Monographs, New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000.
[11] J. J. Garcés, Complete orthogonality preservers between C^{*}-algebras, J. Math. Anal. Appl. 483 (2020), 123596, 16 pp.
[12] J. J. Garcés, A. M. Peralta, One-parameter groups of orthogonality preservers on C^{*}-algebras, Banach J. Math. Anal. 15 (2021), 24, 23 pp.
[13] B. E. Johnson, R. V. Kadison, J. R. Ringrose, Cohomology of operator algebras. III: reduction to normal cohomology. Bull. Soc. Math. France 100 (1972), 73-96.
[14] T. Kochanek, Approximately order zero maps between C^{*}-algebras, J. Funct. Anal. 281 (2021), 109025, 49 pp.
[15] S. Y. Manjegani, J Soltani Farsani, On the Fourier algebra of certain hypergroups, Quaest. Math. 43 (2020), 1513-1525.
M. Brešar, Faculty of Mathematics and Physics, University of Ljubljana, and Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia Email address: matej.bresar@fmf.uni-lj.si
M. L. C. Godoy and A.R. Villena, Departamento de Análisis Matemático, FaCUltad de Ciencias, Universidad de Granada, Granada, Spain

Email address: mgodoy@ugr.es
Email address: avillena@ugr.es

[^0]: 2020 Mathematics Subject Classification. 43A20, 46H05, 46L05.
 Key words and phrases. Zero product determined Banach algebra, weakly amenable Banach algebra, group algebra of a locally compact group, C^{*}-algebra, algebra of approximable operators, weighted Jordan homomorphism, two-sided zero products, linear preserver.

 The first author was supported by the Slovenian Research Agency (ARRS) Grant P1-0288. The second and the third author were supported by MCIU/AEI/FEDER Grant PGC2018-093794-B-I00 and Junta de Andalucía Grant FQM-185. The second author was also supported by MIU Grant FPU18/00419 and MIU Grant EST19/00466. The third author was also supported by Proyectos I+D+i del programa operativo FEDER-Andalucía Grant A-FQM-484-UGR18.

