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A digital quantum simulation of the Agassi model from nuclear physics is proposed and analyzed. The 
proposal is worked out for the case with four different sites. Numerical simulations and analytical 
estimations are presented to illustrate the feasibility of this proposal with current technology. The 
proposed approach is fully scalable to a larger number of sites. The use of a quantum correlation function 
as a probe to explore the quantum phases by quantum simulating the time dynamics, with no need of 
computing the ground state, is also studied. Evidence is given showing that the amplitude of the time 
dynamics of a correlation function in this quantum simulation is linked to the different quantum phases 
of the system. This approach establishes an avenue for the digital quantum simulation of useful models 
in nuclear physics.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

During the past few decades the possibility of using control-
lable quantum systems to simulate other quantum systems has 
been explored extensively [1]. Different quantum platforms have 
been proposed to reproduce quantum models experimentally, in-
cluding superconducting circuits, ion traps, cold atoms, quantum 
dots, as well as quantum photonics [1]. One of the emerging 
fields proposed for quantum simulations is the analysis of nu-
clear physics models. In particular, a cloud quantum computing of 
an atomic nucleus [2], quantum simulations of Schwinger-model 
dynamics [3–6], and quantum simulations of quantum field the-
ories with trapped ions and superconducting circuits [7–10] have 
been proposed and sometimes experimentally realized. For a thor-
ough review of this research field with updated references see 
Ref. [11]. However, a paradigmatic quantum nuclear system such 
as the Agassi model [12] has not been analyzed in the context of 
quantum simulations. Its relevance in Nuclear Physics, but also in a 
wide variety of fields, including many-body quantum systems and 
quantum phase transitions, as well as the difficulty to numerically 
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compute the dynamics and static properties of large quantum sys-
tems, motivates the quantum simulation of the Agassi model.

The importance of quantum information science (QIS) in Nu-
clear Physics cannot be underestimated in view of the report of 
the U.S. Department of Energy (DOE) [13] where in its Research 
Opportunity II establishes “A broad theory program should be sup-
ported, which can, e.g., develop methods to address problems in 
NP using digital quantum computers and quantum simulators, uti-
lize QIS concepts to better understand nuclear phenomena (such 
as the nuclear many-body problem and hadronization), and de-
velop new QIS applications of importance to nuclear physics”. The 
present work represents a first step in the direction of this general 
goal. The use of quantum computing for solving present Nuclear 
Physics problems has been reviewed in [14].

The Agassi model [12] is a simple but far from trivial quan-
tum model that includes a combination of long range monopole-
monopole and short range pairing interactions. It was first pro-
posed in nuclear physics since it is an exactly solvable model 
that provides a schematic version of the pairing-plus-quadrupole 
model that has been extensively used in nuclear structure [15]. 
From the quantum phase transition view, this model presents a 
rich quantum-phase diagram for the ground state, containing sev-
eral phase transition lines [16–18], and has been widely studied in 
a variety of fields. Apart from the symmetric phase, the model has 
two broken-symmetry phases: one superconducting, linked to the 
pairing interaction, and another parity-broken phase linked to the 
monopole-monopole interaction. The phase diagram of the Agassi 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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model has been studied within a mean-field formalism [16–18]. 
As known, this kind of formalism is valid for the thermodynamic 
or large-N limit, where N is the number of sites. However, for 
mesoscopic systems, where finite-N effects are important, the cor-
responding phases and transitions are blurred and more detailed 
studies are needed for a clear understanding. In addition, beyond-
mean field methods to calculate finite-N effects are difficult to 
apply for moderately small-N. For this purpose, quantum platforms 
could be used to mimic the Agassi model. On the other hand, tools 
from quantum information, as the quantum discord, have been re-
cently employed to explore the phases in this model to gain insight 
about its structure [19].

In this paper, we propose and analyze the digital quantum sim-
ulation of the Agassi model [12]. Although we propose a fully 
digital scheme, for some useful comparisons we refer to trapped-
ion platforms [20,21]. A quantum simulation of the Agassi model 
may enable one to carry out a full-fledged analysis of this model 
for a mesoscopic number of sites, in such situations where all clas-
sical methods will fail. For instance, apart from the mean-field 
calculations, no finite-N corrections have been calculated for the 
model in its simplest version, even for the first correction term. 
In addition, the extended Agassi model, Ref. [17], includes extra 
terms producing up to 5 different phases with three control pa-
rameters. With our approach, the extension to possible scenarios 
with inhomogeneous couplings where mean field methods will fail 
is direct, allowing one for the scalable quantum simulation of nu-
clear physics models inaccessible to classical supercomputers.

In this work, we also study how to employ quantum correlation 
functions as a probe to explore the quantum phases in the system 
via a quantum simulation of the time dynamics, without needing 
to compute the ground state. Indeed, we give evidence, analyzing 
the time dynamics of a correlation function, that its amplitude can 
be linked to the different quantum phases of the model. Thus, a 
measure of this time dynamics, that can be done routinely with 
present technology, will provide the system phase.

2. The Agassi model

The Agassi model [12] consists of N interacting fermions which 
occupy two levels, each of degeneracy �, where � is even, and 
j = �/2. Note that in the following, we will consider N = 2�. 
The lower level σ = −1 has negative parity, and the upper level 
σ = 1 has positive parity. The magnetic quantum number takes 
the values m = ±1, . . . , ± j (note that m = 0 is excluded). Thus, 
a single-particle state is labelled by (σ = ±, m). The model is 
an extension of the Lipkin-Meshkov-Glick [22] model introduced 
by D. Agassi as a toy model to test many-body theories and to 
explore the interplay between particle-hole and superfluid cor-
relations. However, the appearance of the model in the litera-
ture is scarce. Davis and Heiss [16] derived the phase diagram 
of the model and the different collective excitations in the ex-
isting phases, using Hartree-Fock-Bogoliuvov (HFB), particle-hole 
RPA and QRPA approximations. The Agassi model was also used 
to test some cumbersome numerical methods such as the merging 
of Coupled Cluster with the symmetry restored HFB theory [23]. 
In [17,18], the authors extended the model by the introduction of 
new interaction terms that give rise to an extremely rich phase di-
agram. In [24], the model was used as a test-bed for a number 
conserving particle-hole RPA theory. Finally, in [19], the authors 
use the Agassi model to study the so called two-orbital quantum 
discord.

The Agassi Hamiltonian is

H = ε J 0 − g
∑
′

A†
σ Aσ ′ − V

2

[(
J+)2 + (

J−)2
]

, (1)

σ ,σ =−1,1

2

Fig. 1. Phase diagram of the Agassi Hamiltonian (1), where � = εg/(2 j − 1) and 
χ = εV /(2 j − 1) are scaled control parameters in the Hamiltonian [16].

where, implicitly, positive (or null) coefficients are assumed. The 
operators in H are

J+ =
∑

m

c†
1mc−1m = (

J−)†
, (2)

J 0 = 1

2

∑
m

(
c†

1mc1m − c†
−1mc−1m

)
, (3)

A†
1 =

j∑
m=1

c†
1mc†

1,−m = (A1)
† , (4)

A†
−1 =

j∑
m=1

c†
−1mc†

−1,−m = (A−1)
† , (5)

Nσ =
j∑

m=− j

c†
σmcσm, N = N1 + N−1 , (6)

where c†
σ ,m (cσ ,m) are fermion creation (annihilation) operators in 

the state |σ , m〉.
The Agassi model (1) has a phase diagram with three phases, 

namely, spherical, deformed, and superfluid, in other words, a 
symmetric phase and two broken-symmetry phases (deformed HF 
and superfluid BCS). It is customary to divide the Hamiltonian by 
ε and to define the scaled parameters χ and � as g = �

2 j−1 and 
V = χ

2 j−1 to correctly scale the parameters with the system size. 
The phase diagram of the Agassi model is sketched in Fig. 1.

3. Quantum simulation of the Agassi model

To simulate a quantum model, a mapping between the original 
Hamiltonian and one suited for the digital simulation is needed. 
Here an Agassi Hamiltonian with j = 1 is considered. This contains 
four different sites, to analyze a case that may be experimentally 
realized with current technology. To simplify the notation we rela-
bel the original fermion operators as

c1,1 → c1, c1,−1 → c2, c−1,1 → c3, c−1,−1 → c4, (7)

and the corresponding relationships for the creation operators. The 
mapping is carried out through the Jordan-Wigner image of the 
above fermions and is written as,

ci = I1 ⊗ . . . ⊗ Ii−1 ⊗ σ−
i ⊗ σ z

i+1 ⊗ . . . ⊗ σ z
N , (8)

and the corresponding Hermitian conjugate one for the creation 
operator. σ x, σ y

, σ z are Pauli matrices at position i and σ± =
i i i i
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1
2 (σ x

i ± iσ y
i ). The symbol ⊗ stands for the tensor product. We con-

sider in this work N = 4, then the model space is of dimension 
24 = 16 and, therefore, each operator is given by a 16 × 16 ma-
trix. It is worth to mention that the Jordan-Wigner transformation 
produces a non-local Hamiltonian.

The spin image of the building block operators is

J+ = −σ+
2 ⊗ σ z

3 ⊗ σ−
4 − σ+

1 ⊗ σ z
2 ⊗ σ−

3 , (9)

J 0 = (1/4)(σ z
1 + σ z

2 − σ z
3 − σ z

4 ), (10)

J− = ( J+)† = −σ−
2 ⊗ σ z

3 ⊗ σ+
4 − σ−

1 ⊗ σ z
2 ⊗ σ+

3 , (11)

A†
1 = σ+

1 ⊗ σ+
2 , A†

−1 = σ+
3 ⊗ σ+

4 , (12)

A1 = σ−
1 ⊗ σ−

2 , A−1 = σ−
3 ⊗ σ−

4 . (13)

Finally, one can write down the Agassi Hamiltonian (1) for the 
case of j = 1 as,

H = H1 + H2 + H3, (14)

where

H1 = ε − g

4
(σ z

1 + σ z
2 ) − ε + g

4
(σ z

3 + σ z
4 ), (15)

H2 = − g

4
(σ z

1 ⊗ σ z
2 + σ z

3 ⊗ σ z
4 ), (16)

H3 = −(g + V )(σ+
1 ⊗ σ+

2 ⊗ σ−
3 ⊗ σ−

4

+σ−
1 ⊗ σ−

2 ⊗ σ+
3 ⊗ σ+

4 ). (17)

Note that H1 and H2 only depend on σ z and, therefore, any state 
with well defined σ z components will be its eigenstate. H3 de-
pends on g and V and it vanishes for g = −V . Moreover, one 
should consider that,

[H1, H2] = 0, [H2, H3] = 0, [H1, H3] �= 0. (18)

The term H3 can be further decomposed in terms of tensor 
products of Pauli matrices,

H3 = − g + V

8

(
σ x

1 σ x
2 σ x

3 σ x
4 + σ x

1 σ
y

2 σ x
3 σ

y
4

+ σ x
1 σ

y
2 σ

y
3 σ x

4 + σ
y

1 σ x
2 σ x

3 σ
y

4 + σ
y

1 σ x
2 σ

y
3 σ x

4

+ σ
y

1 σ
y

2 σ
y

3 σ
y

4 − σ
y

1 σ
y

2 σ x
3 σ x

4 − σ x
1 σ x

2 σ
y

3 σ
y

4

)
, (19)

where the symbols ⊗ have been taken out to simplify the notation.
It is worth noting that for this simple case, j = 1, the ion-

mapped Hamiltonian (14) depends on just one effective control 
parameter, g + V (see Eq. (19)), and not on g and V separately, 
as in the thermodynamic limit of the model [16–18]. Therefore, 
it is only possible to distinguish for j = 1 between a symmetric 
phase (SP) that is obtained for g + V < 1 and a broken-symmetry 
phase (BSP) emerging for g + V > 1. In this simplest case, the 
phase diagram is of dimension 1 as shown in Fig. 5 (upper colored 
panel). The critical point in the transitional path between these 
two phases is g + V = 1.

3.1. Theoretical model for the implementation

In order to carry out a quantum simulation with the Agassi 
model, we propose to employ a digital protocol, via a Lie-Trotter-
Suzuki decomposition [1]. The protocol will rely on expressing the 
quantum evolution operator U (t) = exp(−iHt) for the Hamiltonian 
H in Eq. (14) by means of a Trotterized dynamics, in terms of 
H1,2,3 of Eqs. (15), (16), and (17),

U (t) � {exp[−i(H1 + H2)(t/nT )]exp[−iH3(t/nT )]}nT , (20)
3

Fig. 2. Fidelity |〈φ(t)|φ(t)T 〉|2 as a function of (g + V )t for nT = 10 in panels a) and 
c) and as a function of nT for t = 5 in panel b) and t = 1 in panel d). In all cases 
the parameters of the Hamiltonian are ε = 1 and g = V = 1. Red dots in panels a), 
and b) and also those in c) and d) correspond to the same data points.

where the error produced will depend on the commutator [(H1 +
H2), H3] and scale as 1/nT , where nT denotes the number of Trot-
ter steps.

Once the dynamics has been decomposed into the previous 
blocks, each of these can be implemented efficiently with trapped-
ion systems. The operator exp(−iH1t) consists of single-qubit gates 
which are customary with trapped ions, to fidelities often above 
99.99% [25]. The operator exp(−iH2t) is composed of two two-
qubit gates which can be carried out via Mølmer-Sørensen gates 
with fidelities above 99.9% in some experimental setups [26], in 
addition to single-qubit gates to rotate the basis from x to z. And 
finally, exp(−iH3t) consists of the exponential of sum of tensor 
products of four Pauli matrices, which can be carried out effi-
ciently with trapped ions [27,28]. Namely, each exponential of a 
tensor product of four Pauli operators can be implemented via two 
Mølmer-Sørensen gates and a local gate, together with the neces-
sary single qubit gates to rotate the bases of the Pauli operators 
in the tensor product to those needed. Given that all the 4-body 
terms in Eq. (19) commute, they may be carried out sequentially 
without digital error, namely, with one Trotter step for the whole 
H3 term.

The scaling in our protocol is efficient, given that the num-
ber of necessary elementary gates in trapped ions, i.e., single 
and two-qubit gates, is polynomial in the number of interacting 
fermions, N , in the Agassi model. On the other hand, with a classi-
cal computer the scaling would be inefficient given that the Hilbert 
space dimension would grow exponentially in N . Of course, un-
der highly symmetric configurations one may obtain a solution, in 
some cases, in terms of polynomial resources. However, in general 
terms, with a generalized Agassi model with, e.g., inhomogeneous 
couplings, this will not be possible and a quantum simulator such 
as the one proposed here will provide an exponential gain in re-
sources with respect to a classical computer.

3.2. Numerical simulations

Note that for all the calculations presented in this section a cer-
tain initial state is considered, in our case, | ↓1 ⊗ ↓2 ⊗ ↑3 ⊗ ↑4〉
which corresponds to the state with the minimum value of the an-
gular momentum projection, J 0 = −1 (see definition of J 0 (10)).

We plot in Fig. 2 our numerical results for the digital decompo-
sition. In Fig. 2a we show the fidelity |〈φ(t)|φ(t)T 〉|2 as a function 
of (g + V )t with nT = 10, where |φ(t)〉 and |φ(t)T 〉 denote the ex-
act numerical state and the one obtained via the Trotterized digital 
dynamics, respectively. Panel c) is just a zoom of a) for small t . In 
Figs. 2b and 2d we depict the fidelity |〈φ(t)|φ(t)T 〉|2 as a function 
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Fig. 3. Survival probability |〈φ(t)|φ(0)〉|2 as a function of (g + V )t for ε = 1, g =
V = 0.5 in panel a) and ε = 1, g = V = 1 in panel b). The considered initial state is 
| ↓1 ⊗ ↓2 ⊗ ↑3 ⊗ ↑4〉.

of nT for t = 5 and t = 1, respectively, where t denotes the total 
simulated time interval. The red dots in panels b) and d) corre-
spond to the red dots in panels a) and c), respectively. This figure 
makes clear that the Trotter dynamics match very efficiently the 
exact calculation in a large time interval even for small number of 
Trotter steps, nT . Calculations with larger systems [29] points into 
the same conclusions raised in this work, however digital quantum 
simulations for j � 1 are beyond current technology.

Also, we can observe in Fig. 2 that the digital error remains 
negligible for a sizeable time evolution with a nontrivial dynamics 
and a sufficiently large nT . With respect to the total gate error in a 
plausible implementation with trapped ions, one can estimate its 
magnitude via adding the single and two-qubit gate errors times 
the corresponding number of gates. In our specific 4-qubit pro-
posal, there are 52 single-qubit gates and 50 two-qubits gates. 
If one assumes experimentally achieved values of 0.0001 for the 
single-qubit gate error [25] and 0.001 for the two-qubit one [26], 
an estimate for the total gate error EG will be, assuming nT = 5, 
EG � 5 × (52 × 0.0001 + 50 × 0.001) � 0.28. Thus, with a conser-
vative gate counting, we estimate that the achieved fidelity may 
be above 70%. Moreover, the number of gates is such that one 
may perform the experiment well before the decoherence time, in 
less than ten milliseconds. Therefore, our proposal may be carried 
out in trapped-ion setups with current technology, for a proof-of-
principle model with j = 1, i.e., N = 4. We point out that in this 
heuristic analysis we have assumed a well-controlled experiment 
with uncorrelated errors. In addition, the protocol is efficiently 
scalable to many fermionic modes, namely, N � 1, once the sin-
gle and two-qubit gate fidelities, as well as coherence times, are 
improved. This is due to the fact that the number of terms in 
our digital decomposition scales polynomially in N , as opposed 
to classical supercomputers, for which the scaling would be expo-
nential in the general case. Moreover, the nuclear physics models 
we consider will always have a polynomial number of terms when 
expressed as sum of many-body tensor products of Pauli matri-
ces. This is due to the fact that the H3 Hamiltonian will contain 
at most products of four c fermionic operators, and this implies 
that the number of σ+ and σ− operators will be at most of 
four per term, independently of the number N of modes. Regard-
ing the connection to usual observables in nuclear physics, in a 
quantum simulation experiment such as this, one may compute 
the quantum state via quantum tomography [30], for systems up 
to 8 qubits, and the Hamiltonian spectra via quantum phase esti-
mation algorithm [31], which is polynomial (i.e., efficient) in the 
size of the system. We point out that quantum tomography would 
only be useful for a quantum experiment with few qubits, as the 
one explicitly described here. For scaling up the experiment to 
4

Fig. 4. Correlation function σz(1, 2) ≡ 〈σ z
1 σ z

2 〉 −〈σ z
1 〉〈σ z

2 〉 for an initial state | ↓1 ⊗ ↓2

⊗ ↑3 ⊗ ↑4〉 and Hamiltonian parameters ε = 1, g = 0.5, and V = 0 in a), ε = 1, 
g = 0.5, and V = 0.5 in b), and ε = 1, g = 0.5, and V = 1 in c). Lines correspond to 
exact calculations while dots refer to a Trotter expansion with nT = 5.

many qubits, we propose to employ instead two-point correlation 
functions as shown in Fig. 4, which can be measured directly in 
trapped ions via resonance fluorescence. In nuclear physics, some-
times observables evaluated in different times are desirable. In this 
sense, we point out that it is possible to carry out this kind of 
measurement in a digital quantum simulator, as was proposed, e.g., 
in Ref. [32,33].

In Fig. 3 we plot the survival probability |〈φ(t)|φ(0)〉|2 as a 
function of (g + V )t to show that the dynamics of the system 
is not trivial and significantly changes in the time interval con-
sidered in Fig. 2. Finally, in Fig. 4 we depict the correlation func-
tion σz(1, 2) ≡ 〈σ z

1 σ z
2 〉 −〈σ z

1 〉〈σ z
2 〉, showing that the time dynamics 

alone can be used as a probe to explore the different quantum 
phases of the system via this correlation function. As mentioned 
above, the critical point in the Agassi model for j = 1 is given 
by g + V = 1. Fig. 4 shows three calculations for this correlation 
function: a) g + V < 1 (symmetric phase), b) g + V = 1 (phase 
transition point), and c) g + V > 1 (non-symmetric phase). One 
can clearly see that at one side of the phase transition the corre-
lation amplitude maximum is smaller than one (symmetric phase, 
Fig. 4a with g + V < 1), it is already one at the transition point 
(Fig. 4b, with g + V = 1) continue being 1 at the other side (bro-
ken phase, Fig. 4c, with g + V > 1), and extra oscillations appear 
which amplitudes depend on the control parameter value (also vis-
ible in Fig. 4c). A quite similar behavior is obtained for other initial 
states and correlation functions, such as σz(1, 3) or σz(3, 4), ob-
taining also a maximum amplitude for g + V = 1. This is more 
clearly shown in Fig. 5, in which the amplitude of the oscillation 
is plotted as a function of the control parameter g = V , where the 
critical point is at g = V = 0.5. The figure shows that this ampli-
tude reaches the value 1 at the critical point and keeps this value 
in the broken-symmetry phase (g + V ≥ 1). In the upper part of 
the figure the phase diagram of the model is sketched, separating 
the symmetric phase (SP) and the broken-symmetry phase (BSP). 
This is an evidence that one does not need to compute the ground 
state to distinguish the different quantum phases in the system. 
The most direct time dynamics for a typical initial state allows 
one to obtain signatures of these quantum phases in the ampli-
tude of the time dynamics of the correlation function. This type of 
procedure resembles a dynamical quantum phase transition (see 
Ref. [34]), which is a type of quantum phase transition in the time 
domain. In Ref. [35], the author studied the Rabi model through 
a quench, noticing that its evolution provides hints on the phase 
of the ground state of the system. The analysis of the time evo-
lution of the correlation function σz(1, 2), among other possible 
functions, provides information on the whole Hilbert space of the 
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Fig. 5. Maximum value of the correlation function σz(1, 2) for an initial state | ↓1

⊗ ↓2 ⊗ ↑3 ⊗ ↑4〉 as a function of the Hamiltonian parameters g = V (with ε = 1). 
In the upper part the phase diagram is sketched: SP for the symmetric phase and 
BSP for the broken-symmetry phase. The critical point corresponds to g = V = 0.5.

system, including its ground state. We plan to extend the present 
formalism to larger systems and to other observables, such as the 
Loschmidt echo, to explore how robust are the obtained results. 
Even very small systems, such as the one we are considering with 
j = 1, can present some precursors of quantum phase transitions 
as it was explained in Ref. [36]. Although the quantum phase tran-
sition is strictly defined in the thermodynamic limit, already for 
really small sizes its effect is noticeable in several observables that 
can act as order parameters.

4. Conclusions

We have proposed and analyzed the quantum simulation of the 
Agassi model. Our numerical simulations and analytical estima-
tions show that this protocol is feasible with current technology, 
for instance, using trapped ions. The proposal has been exempli-
fied with four sites to be implemented with four trapped ions, 
while it is scalable to many sites with polynomial resources. We 
also give evidence that the time dynamics of a quantum corre-
lation function for typical initial states can serve as a probe to 
explore the different quantum phases of the model, with no need 
of computing specifically the ground state. Indeed, the different 
phases of the system can be matched to the time dynamics of 
the amplitudes of the correlation function. With recent advances 
in trapped-ion quantum platforms approaching a few tens of ions 
in a quantum processor [37,38], we are already going through the 
crossover for outperforming the fastest classical supercomputers 
for useful scientific problems. Our approach is a step in this direc-
tion, for the efficient quantum simulation of the Agassi model and 
related nuclear physics systems with digital quantum platforms. An 
appeal of trapped-ion quantum platforms is the all-to-all connec-
tivity that enables one to implement the N-body tensor products 
of Pauli matrices with just two Mølmer-Sørensen gates. However, 
to be able to carry out a full-fledged quantum simulation of the 
Agassi model with trapped ions, two-qubit gate fidelities will still 
need to improve. Even though the scaling of our quantum algo-
rithm is polynomial in the number of quantum particles, beyond 
a few hundred spins one will need to employ a full fledged er-
ror corrected quantum computer, with the consequent overhead in 
resources that will be needed.
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