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Exceptional spectral phase in a dissipative collective spin model
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We study a model of a quantum collective spin weakly coupled to a spin-polarized Markovian environment
and find that the spectrum is divided into two regions that we name normal and exceptional Liouvillian spectral
phases. In the thermodynamic limit, the exceptional spectral phase displays the unique property of being made
up exclusively of second-order exceptional points. As a consequence, the evolution of any initial density matrix
populating this region is slowed down and cannot be described by a linear combination of exponential decays.
This phase is separated from the normal one by a critical line in which the density of Liouvillian eigenvalues
diverges, a phenomenon analogous to that of excited-state quantum phase transitions observed in some closed
quantum systems. In the limit of no bath polarization, this criticality is transferred onto the steady state, implying
a dissipative quantum phase transition and the formation of a boundary time crystal.

DOI: 10.1103/PhysRevA.106.L010201

Introduction. Real quantum systems are always in contact
with environments that induce dissipation and/or decoher-
ence. There is a growing interest in understanding these
effects, which, if controlled, can be used as a resource for new
devices and applications [1–3]. For this purpose, the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) approximation for
Markovian environments becomes especially relevant. It is
given by the Lindblad master equation

L(ρ) := −i[Ĥ , ρ] +
∑

i

(
L̂iρL̂†

i − 1

2
{L̂†

i L̂i, ρ}
)

= ∂ρ

∂t
, (1)

where Ĥ is the Hamiltonian describing the unitary evolution
of the closed system, and L̂i are the Lindblad jump operators
[4,5]. These operators define the interaction between the sys-
tem and the environment. The evolution of the density matrix
ρ is determined by the spectrum of the Liouvillian superop-
erator L which always has at least one eigenstate with a zero
eigenvalue, L(ρSS) = 0, determining the steady state (SS).

As the Liouvillian is non-Hermitian, it allows for the ex-
istence of exceptional points (EPs) whereby two or more
eigenvalues and eigenvectors of L coalesce [6,7]. While
Hamiltonian EPs, produced by non-Hermitian Hamiltonians,
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have been extensively studied, this is not the case for Liouvil-
lian EPs. They have been discussed in only a few cases [8–13].

In this Letter we define and characterize what we call an
exceptional spectral phase (ESP). It consists of a region of the
Liouvillian spectrum where all eigenvectors coalesce in pairs
in the thermodynamic limit (TL). The line demarcating the
boundary between the ESP and the normal spectral phase dis-
plays a divergence of the density of Liouvillian eigenvalues,
which we call a Liouvillian spectral phase transition (LSPT)
drawing an analogy with an excited-state quantum phase tran-
sition (ESQPT) [14–16] occurring in some closed quantum
systems. The main dynamical consequence of an ESP is the
slowing down of the relaxation to the SS. We also show that
the emergence of this phase is closely linked to a dissipative
quantum phase transition [17], leading to the formation of a
boundary time crystal (BTC) at the critical point [18–21].

Model and spectral properties. We consider the dynamics
of a large collective spin Ĵ [22–24], representing a set of
2 j 1/2-spins, subject to a uniform magnetic field and in con-
tact with a spin-polarized bath in the GKSL approximation.
This system is a particular limit of the Richardson-Gaudin
model and has been solved exactly in Refs. [25,26]. It is rele-
vant for the study of quantum cavity electrodynamics [27,28],
magnetic grains on a metallic surface [24], or superconducting
quantum circuits [29]. The Hamiltonian of the closed system
reads (h̄ = 1)

Ĥ = −hĴz, (2)
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where h is a local magnetic field. The Lindblad jump operators
describing the coupling to the environment are

L̂0 =
√

�0

j
Ĵz, L̂± =

√
�

j

1 ∓ p

2
Ĵ±, (3)

where � and �0 define the dissipation strength, j is the magni-
tude of the collective spin Ĵ (see Ref. [25]), and −1 � p � 1
can be understood as a control parameter accounting for the
degree of polarization in the bath, which drives the system
towards the Hamiltonian ground state for p < 0 and excites it
for p > 0. Arbitrary units are used throughout.

We express the Liouvillian superoperator in the vectorial
representation [30–33] where the density matrix ρα,β of di-
mension N × N , with N = 2 j + 1, is mapped to a vector
|α, β〉 in a Hilbert space of dimension N 2. Accordingly, the
angular momentum operators acting on the left or right of the
density matrix are mapped as Ĵ ρ → Ĵ ⊗ I |ρ〉 = K̂1|ρ〉 and
ρ Ĵ → I ⊗ ĴT |ρ〉 = K̂2|ρ〉.

The K̂i operators are spin operators of equal magnitude j.
The Liouvillian in the vectorized space becomes

L = −�( j + 1) + ih(K̂1z − K̂2z ) + �

j
K̂1zK̂2z

+ � − �0

2 j
(K̂1z − K̂2z )2 − �

j

p

2
(K̂1z + K̂2z )

+ �

j

1 − p

2
K̂1+K̂2+ + �

j

1 + p

2
K̂1−K̂2−. (4)

The z component of the angular momentum K̂z = K̂1z − K̂2z

is a weak symmetry [34] which classifies the Liouvillian
eigenvalues into symmetry sectors with quantum numbers
−2 j � M � 2 j. The term with �0 represents a constant shift
−�0
2 j M2 in the real part of the Liouvillian eigenvalues in each

M sector. For simplicity, we set �0 = 0 hereinafter. We denote
the ordered Liouvillian eigenvalues as λN,M , with 0 � N �
2 j − |M|, such that Re(λN,M ) � Re(λN+1,M ). The eigenvalue
of the unique SS of this model is λ0,0 = 0 for any finite j.

Figure 1 shows the spectrum for a finite spin. The case with
p = 0, displayed in Fig. 1(a), shows a normal spectrum with-
out degeneracies. By contrast, the p = 0.5 case in Fig. 1(b)
has remarkable features. The eigenvalues within a region close
to the SS are quasidegenerate in pairs (orange, light) [25],
whereas no degeneracies are found in the rest of the spectrum
(blue, dark) [25]. The boundary between these two regions
displays a close packing of eigenvalues in the region where
the density of eigenvalues diverges in the TL (red solid line)
[25], defining an LSPT. The case with p = 0.99 is displayed
in Fig. 1(c) with a growing fraction of the eigenvalues that
are quasidegenerate in pairs. In all cases, the dashed green
lines represent the TL of the eigenvalues with the highest
real part for each M block, obtained from the semiclassical
approximation in the TL of Ref. [25]. Finally, Fig. 1(d) shows
how the size of the degenerate spectral region changes with
p in the sector M = 0, suggesting that the ESP disappears at
p = 0, while it covers the entire spectrum with the exception
of the SS for p = 1.

Exceptional spectral phase. Quantum Liouvillian superop-
erators can display spectral degeneracies whereby two or more
eigenvectors coalesce giving rise to EPs. To see if this occurs

FIG. 1. (a)–(c) Liouvillian spectrum for several values of the
polarization, p = 0, 0.5, and 0.99, for a finite spin j = 20 computed
with exact diagonalization (dots). The spectrum in the TL is divided
into a region with second-order EPs (orange [light] shaded region,
right) and one with no spectral degeneracies (blue [dark] shaded
region, left). These two regions are separated by a LSPT (solid red
line). We show the eigenvalues with maximum real parts (dashed
green lines) for each symmetry sector M in the TL. (d) Real part of
the M = 0 spectral sector for different values of p.

in the orange (light) region of Fig. 1, we numerically study the
M = 0 sector (analogous results are obtained for other M).

First, we study how the distance between neighboring
eigenvalues decreases with system size. Figure 2(a) shows the
evolution of the eigenvalues closest to the SS as j is increased,
for p = 0.5. Even for moderate values of j, the spectrum

FIG. 2. (a) Real part of the 18 eigenvalues closest to the SS (0
eigenvalue) in the sector M = 0 for p = 0.5 as a function of the
system size j. When j � 1 the eigenvalues agree well with the HP
approximation (circles). (b) Eigenvector distance d1 of the eigenvalue
doublet closest to the SS as a function of j, from p = 0.999 (green
squares) to p = 0.05 (blue triangles). (c) Scaling of the LSPT eigen-
value precursor with respect to the TL value λC,0/ j = −0.133 975
for p = 0.5 obtained from the distance between eigenvectors. Shapes
represent different bounds γ . In panels (b) and (c), lines represent the
best linear fit. Parameters are � = h = 1.
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displays degenerate pairs. Furthermore, each doublet is well
approximated by our Holstein-Primakoff (HP) expansion to
first order in j (TL) (see below), yielding λ2n−1,0 = λ2n,0 =
−2|p|�n, with n ∈ N, and λ0,0 = 0. Deviations from the har-
monic HP spectrum are due to finite-size effects. In Fig. 2(b)
we show how the eigenvector distance d1 between the pair of
eigenvalues closest to the SS decreases with j for different
values of p. The eigenvector distance dN between a pair of
eigenvalues is defined as dN = 1 − ||〈N + 1, 0|N, 0〉||, where
〈N + 1, 0|N, 0〉 denotes the scalar product of the right eigen-
vectors. For this calculation all eigenvectors are normalized
by the Euclidean norm of their elements. In all cases studied
for 0 < p < 1, dN decreases exponentially, producing EPs in
the TL.

Because results in Fig. 2(b) only account for a pair of de-
generate eigenvalues, we come back to the case with p = 0.5
to determine the boundary of the ESP. Following Ref. [35],
we perform the following finite-size scaling: (i) we select a
given bound γ for the distance dN , such that if dN < γ we
consider that the two eigenvectors |N, M〉 and |N + 1, M〉
have coalesced; (ii) we identify a precursor of the critical
eigenvalue, λ∗,M (γ , j), as the eigenvalue λN+1,M with the
largest real part in the symmetry sector M fulfilling dN > γ ;
and (iii) we study how this precursor changes with system
size. Hence, in Fig. 2(c) we display λ∗,0(γ , j) − λC,0, with
λC,0 being the TL critical value of the LSPT in the sector
M = 0 [25], as a function of j and for different bounds γ . Our
results show that lim j→∞ λ∗,0(γ , j) = λC,0 following a power
law λ∗,0(γ , j) − λC,0 ∼ jz, with z ≈ −1 for all bounds γ . A
similar scaling holds for any other value of 0 < p < 1 in the
other M sectors (not shown). Therefore, all the eigenvectors
with eigenvalues fulfilling Re(λN,M ) > Re(λC,M ), except for
the one with the largest real part, λ0,M, coalesce in pairs
in the TL. This shows that the Liouvillian spectrum in the
TL is split into two different regions, whose boundary is the
LSPT. We define a Liouvillian spectral phase as a region in
the Liouvillian spectrum displaying some particular properties
different from the rest of the spectrum and bounded by a
nonanalyticity in the density of eigenvalues. In our case, the
spectrum of the Liouvillian, Eq. (4), is split into two spectral
phases: a normal phase, with no degeneracies, and an excep-
tional spectral phase of second-order EPs. The size of the ESP
grows with p and covers the entire spectrum but the SS at
p = 1, as we show below.

Exact ESP in the limit p = ±1. For p = ±1 the dissipa-
tive terms are only spin-lowering (or raising) Lindblad jumps
and the Liouvillian matrix becomes triangular. Therefore, for
any system size, the Liouvillian eigenvalues of the symmetry
sector M are simply its diagonal elements,

λm,M = 〈m, m − M|L|m, m − M〉
= −�( j + 1) + ihM

+ �

2 j
[M(M + p) − 2m(M − m + p)]. (5)

These eigenvalues are all exactly degenerate in pairs λm,M ≡
λM−m+p,M except for the following: (a) m = − j + M if M �
0 and m = − j if M � 0, corresponding to the eigenstates
with highest real part of that symmetry sector (and the SS for
M = 0); and (b) m = M+p

2 if M is odd, corresponding to the

eigenvalue with lowest real part. Thus, the spectrum in the
limit p = ±1 for any j is fully degenerate in pairs except for
the extremal eigenvalues.

The action of the Liouvillian on a general eigenstate,

|N, M〉 =
min { j, j+M}∑

m=max {− j,− j+M}
ρN,M

m |m, m − M〉, (6)

with eigenvalue λN,M is given by the eigenvalue equation

[(L − λN,M )|N, M〉]m

= (λm,M − λN,M )ρN,M
m + cm+1ρ

N,M
m+1 = 0, (7)

with cm = 〈m − 1, m − 1 − M|L|m, m − M〉. This eigen-
value equation admits only one solution, which for p = 1 is

ρN,M
m =

⎧⎨
⎩

∏N−1
i=m

ci+1

λN,M−λi,M
, m < N,

1, m = N,

0, m > N,

(8)

while a similar solution holds for p = −1. Thus, for every pair
of degenerate eigenvalues, λN,M ≡ λ1+M−N,M , the dimension
of the kernel of L − λN,MI, with I being the identity matrix,
is 1. Therefore, the Liouvillian at the limits p = ±1 is nondi-
agonalizable, almost every eigenvalue is exactly degenerate in
pairs, and every pair forms a second-order EP.

Dynamical slowing-down in the exceptional phase. As a
consequence of the appearance of EPs, the number of eigen-
vectors of the Liouvillian is smaller than the dimension of the
Hilbert space, N 2. Hence, generalized eigenvectors of rank
2 |N, M〉 are required to span the complete Hilbert space.
Their dynamical relevance in an ESP can be measured by the
dimension of the space D spanned by such generalized eigen-
vectors. From our previous results, we infer that 0 < D/N 2 <

1/2 for 0 < p < 1 in the TL; the larger p is, the larger the
ratio D/N 2 is. We therefore expect that the time evolution of
a large variety of initial conditions will be influenced by these
generalized eigenvectors.

To study the consequences of the EPs’ precursors in
finite-size systems we employ the HP expansion in the TL,
defining an initial density matrix composed by the SS and
its closest doublet in the M = 0 sector. To compute these
slow decaying states we map the collective spin operators
to a bosonic space for, e.g., p > 0, K̂i+ = b†

i

√
2 j − b†

i bi =
(K̂i−)† and K̂iz = − j + b†

i bi, with bi, i ∈ {1, 2} standard bo-
son annihilation operators, and we keep the highest-order
terms in j. A nonunitary (L is non-Hermitian) Bogoli-
ubov transformation β1 = ub̂1 − vb̂†

2, β2 = ub̂2 − vb̂†
1 (β1 =

ub̂†
1 − vb̂2, β2 = ub̂†

2 − vb̂1), with u = (1 + p)/(2
√

2), v =
(1 − p)/(2

√
p), and u = v = 1/

√
p, such that [βi, β j] = δi j ,

diagonalizes the highest-order Liouvillian, Lh/� = (ih/� −
p)β1β1 − (ih/� + p)β2β2. Therefore, the SS is the vacuum
state of the quasiboson operators satisfying Lh|0, 0〉 = 0,

|0, 0〉 =
2 j∑

n=0

αn

n!
(b†

1b†
2)n|0〉 = 1

Z

j∑
m=− j

αm+ j |m, m〉, (9)

where α = 1−p
1+p and Z is a normalization constant. Every

other eigenstate is generated by successive application
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FIG. 3. Time evolution of δĴz(t ) from the initial condition |ρ(0)〉
(10) with a = 0 and b = 1/6 for p = 0.5 and j = 160. Circles repre-
sent the purely exponential evolution for j = 160 and the solid line is
the theoretical curve [Eq. (10)]. Inset: Comparison of the difference
between numerics and theory, 
Ĵz(t ), for different system sizes.
Lines represent the best linear fit to the points, revealing a power-law
behavior 
Ĵz(t ) ∼ j−a, a = O(1).

of the quasiboson creation operators onto the SS,
while its corresponding generalized eigenvector satisfies
(Lh − λN,M )|N, M〉 = |N, M〉. For example, in the
symmetry sector M = 0, the slowest decaying eigenvector
is |1, 0〉 = 4p/(1 + p)2b̂†

1b̂†
2|0〉 − 2/(1 + p)|0〉, and its

generalized eigenvector, |1, 0〉 = ∑2 j
n=0 �n/n!(b̂†

1b̂†
2)n|0〉,

with �0 = 1, �1 = −(1 + 2p)/(1 + p), �2 = p/(1 + p)2,
and �n = �2[2p/(1 + p)]n−2

(n
2

)−1
, n � 3.

Starting from an initial density matrix |ρ(t = 0)〉 =
|0, 0〉 + a|1, 0〉 + b|1, 0〉, with a and b ensuring the physical-
ity of the density matrix, the time evolution in the TL is given
by [36]

|ρ(t )〉 = |0, 0〉 + (a + bt )eλ1,0t |1, 0〉 + beλ1,0t |1, 0〉, (10)

where λ1,0 = −2|p|� is the dissipative gap in the TL. Con-
sequently, the relaxation to the SS is slowed down by a linear
correction, proportional to the overlap between the initial con-
dition and |1, 0〉. This correction is quite significant at short
times. For example, for a decay constant of λ1,0 = −2, the
time for the population of the eigenstate |1, 0〉 to be reduced
by half would be t1/2 = 0.3466 for normal eigenstates, while
for an EP it would be t1/2 = 0.5731, implying a 65% increase,
if both the eigenstate and its corresponding generalized eigen-
vector of rank 2 are populated.

In Fig. 3 we numerically compute the time evolution of
Ĵz starting from this initial state for a finite-size system with
j = 160, and we compare it with the expected value in the TL
given by Eq. (10). In the main panel, we represent δĴz(t ) =
〈Ĵz (t )〉−〈Ĵz (∞)〉
〈Ĵz (0)〉−〈Ĵz (∞)〉 , where we calculate the time evolution of finite-
size systems by numerically computing the exponential matrix
eL·t . The time evolution of Ĵz(t ) is almost indistinguishable
from the analytical curve in the TL at any time. Even for
finite j, the slowing down in the relaxation to the SS is
comparable to that of a true EP. This is reflected in the inset

of Fig. 3 by the relative difference between the finite size
and theoretical time evolution curves (computed in the TL),

Ĵz(t ) = [δĴz(t ) − δĴz(t )theo]/δĴz(t )theo, as a function of j and
for different fixed times t . The black lines are a fit of the
numerical points to a power-law behavior 
Ĵz(t ) ∼ j−a, with
a = O(1). As we observe in the inset, the relative difference
between the evolution for finite j and that of an EP becomes
larger as time increases, but is rapidly reduced for bigger
system sizes, as the distance between neighboring eigenvalues
drops.

Summarizing, the presence of an ESP with a large fraction
of quasi-EPs slows down the evolution to the SS for a large
variety of initial conditions having a significant overlap with
the set of generalized eigenvectors.

Steady state and dissipative quantum phase transition.
We now focus on the SS, Eq. (9), in the TL. Writing this
state in the original space of density matrices, it coincides
with the canonical equilibrium ensemble for the Hamiltonian
equation (2), ρSS ≡ exp(−βH )/Z , with an inverse tempera-
ture β = 1

h ln( 1−p
1+p ) and a partition function Z = e−βh j (1 −

eβh(2 j+1))/(1 − eβh), enabling an easy computation of all
thermodynamic properties of the SS. In particular, the mag-
netization for an arbitrary polarization of the bath in the TL
can be evaluated as 〈Ĵz〉SS = (1/h)∂ ln Z/∂β,

lim
j→∞

〈Ĵz〉SS

j
=

{−sgn(p), p �= 0,

0, p = 0.
(11)

The abrupt change in the sign of the magnetization implies
the existence of a dissipative QPT (DQPT) at p = 0 already
discussed in Ref. [25]. At the critical point p = 0, the Liouvil-
lian equation (4) conserves the total angular momentum, and
therefore, in addition to the z component K̂z, it commutes with
K̂2 = (K̂1 − K̂2)2, closing a O(3) algebra, and allowing for a
complete analytical solution [13] of the Liouvillian spectrum:

λK,M = ihM + �

2 j
M2 − �

2 j
K (K + 1). (12)

Here, K and M are quantum numbers given by K̂ and
K̂z, respectively, satisfying 0 � K � 2 j and −K � M � K .
For each M, K = |M| gives the eigenvalue with the largest
real part. Note that λK,M=0 ∈ R while λK,M �=0 ∈ C with
Im(λK,M ) = hM. The completeness of the exact solution pre-
cludes the existence of EPs. When the imaginary term ihM
is discarded, Eq. (12) represents the spectrum of an axially
symmetric rotor with j acting as the moment of inertia. In
the TL such a moment of inertia diverges and the O(3) sym-
metry may be broken, implying that (i) an infinite number
of Liouvillian eigenstates |K, 0〉 become degenerate with the
SS, and (ii) analogously for M �= 0, an infinite number of
eigenstates |K, M〉 have 0 real part but oscillate with a pe-
riod T = 2π/(hM ). These two properties characterize the
critical phase as a BTC. Moreover, from the complete set of
Liouvillian eigenstates |K, M〉 in the coupled basis, we ob-
tain the eigenmatrices by decoupling with a Clebsch-Gordan
coefficient,

|m〉〈m′| ≡ (−1) j−m′ |m,−m′〉
=

∑
K,M

(−1) j−m′ 〈 jm, j − m′|K, M〉|K, M〉, (13)
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FIG. 4. Dynamics at p = 0 for the system with � = h = 1.
(a) Time evolution of 〈Ĵx〉 for an initial state with maximum 〈Ĵx (t =
0)〉, computed from Eq. (17). From light to dark, j = 10 × 2k , k =
0, . . . , 10. (b) Entropy evolution in time computed for a pure initial
state ρ(0) = | j〉〈 j|; the dashed line represents the upper bound of the
entropy for j = 10 × 210.

with M = m − m′. The density matrix can be evolved in time
using the exact spectrum equation (12) and ρ(t ) = eLtρ(0).
For an initial density matrix ρ(0) = ∑

mm′ ρmm′ |m〉〈m′|,

ρ(t ) =
∑

mm′,KM,nn′
ρmm′e[ihM+ �

2 j M2− �
2 j K (K+1)]t (−1) j−m′

× 〈 jm, j − m′|K, M〉
× 〈 jn, j − n′|K, M〉(−1) j−n′ |n〉〈n′|. (14)

For an observable Ô, the expectation value 〈Ô(t )〉 =
Tr[ρ(t )Ô] equals

〈Ô(t )〉 =
∑

mm′,KM,nn′
ρmm′ 〈n′|Ô|n〉e[ihM+ �

2 j M2− �
2 j K (K+1)]t

× (−1) j−m′ 〈 jm, j − m′|K, M〉(−1) j−n′

× 〈 jn, j − n′|K, M〉. (15)

Using the expressions of the angular momentum matrix
elements in terms of Clebsch-Gordan coefficients and the cor-
responding orthogonality properties, the result for 〈Ĵz(t )/ j〉 is

〈Ĵz(t )/ j〉 = 〈Ĵz(0)/ j〉e− �
j t −−−→

j→∞
〈Ĵz(0)/ j〉, (16)

implying that 〈Ĵz(t )/ j〉 stays frozen in its initial value in the
TL [37], with this value depending only on the initial state. This
is a consequence of result (i), implying that the nonunitary
evolution conserves the initial value of 〈Ĵz(t )/ j〉 if the bath is
not polarized.

The consequences of result (ii) can be explored by studying
the dynamics of 〈Jx/ j〉,

〈Ĵx(t )/ j〉 = 〈Ĵx(0)/ j〉e− �
2 j t cos(ht ) −−−→

j→∞
〈Ĵx(0)/ j〉 cos(ht ).

(17)
This implies that 〈Ĵx(t )/ j〉 does not reach a SS value; instead,
it remains oscillating with no damping in the TL. In Fig. 4(a)
we illustrate how the damping of 〈Ĵx(t )/ j〉 is reduced as we
increase the value of j towards the TL.

The critical point p = 0 of the dissipative QPT, having the
unusual property of a BTC, is the starting point of a LSPT
that extends into the region 0 < |p| < 1 and serves as the
boundary of the ESP. A similar phenomenon usually links
QPTs and ESQPTs in closed systems [14–16].

Finally, we show how dissipation dominates the dynamics
at p = 0 despite the previous results. We display in Fig. 4(b)
the entropy as a function of time S (t ) = Tr [ρ(t ) ln ρ(t )]
of a pure initial state ρ(0) = | j〉〈 j|, where we obtain ρ(t )
by numerically computing the exponential matrix eL·t . The
dissipation induces the growth of the entropy at a rate de-
pending only on the system parameters until it saturates at the
maximum entropy Smax = ln(2 j + 1). Even when the initial
value of 〈Ĵz〉 is conserved, the entropy grows boundlessly in
the TL.

Conclusions. In this Letter, we propose the existence of
an exceptional spectral phase in a system composed by a
collective spin interacting with a polarized bath and subject
to a magnetic field. The main consequence is that the relax-
ation towards the SS is slowed down in the thermodynamic
limit when the initial state is spread over this phase. The
exceptional phase is separated from the rest of the Liouvillian
spectrum by a critical line in which the density of eigenvalues
diverges, which constitutes the generalization of an excited-
state quantum phase transition to an open quantum system.
We also show that this critical line is transferred onto the SS
when the bath is not polarized, giving rise to a dissipative
quantum phase transition and to the formation of a BTC.
Due to the widespread presence of ESQPTs in collective spin
models, it is reasonable to expect that these unique features
should not be exclusive to this particular model. We believe
that it is then of great interest to investigate more general
scenarios of dissipative collective spin systems searching for
similar properties [20].
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