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Focusing on four-Higgs interactions, we analyze the robustness of tree-level-derived positivity bounds
on standard model effective field theory (SMEFT) operators under quantum corrections. Among other
results, we demonstrate that: (i) Even in the simplest extensions of the Standard Model, e.g., with one new
scalar singlet or with a neutral triplet, some positivity bounds are strictly violated; (ii) the mixing of the
dimension-eight operators under renormalization, which we compute here for the first time, can drive them
out of their positivity region; (iii) the running of the dimension-eight interactions triggered by solely
dimension-six terms respects the positivity bounds. Our results suggest, on one hand, that departures from
positivity within the SMEFT, if ever found in the data, do not necessarily imply the breaking of unitarity or
causality, nor the presence of new light degrees of freedom. On the other hand, they lead to strong
constraints on the form of certain anomalous dimensions.
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I. INTRODUCTION

Effective field theories (EFT) are the right tool to
describe particle physics in the presence of significant
mass gaps. In particular, the Standard Model EFT
(SMEFT), see [1] for a review, is a very promising
candidate at energies 100 GeV≲ E≲ TeV, given that no
new resonances have been found in this regime. (The
existence of weakly coupled light degrees of freedom,
which would require extending the SMEFT, cannot be
discarded, though.)
The parameters of the SMEFT Lagrangian have been

subject of experimental scrutiny for many years. By now,
many directions in the SMEFT, although certainly not all,
have been severely constrained; see for example [2–6].
More recently, though, there has been a huge progress in

narrowing the SMEFT landscape purely from theoretical
arguments [7–19]. These rely on the basic principles of
quantum mechanics and relativity, and in particular on the
analyticity and unitarity of the S-matrix [20]. The corre-
sponding bounds, typically derived from the EFT at tree
level, appear in the form of constraints on the sign of
certain combinations of Wilson coefficients, and they are

commonly known as positivity bounds. Often, they are
complementary to current experimental limits [11].
The possibility that running effects can modify the

conclusions of positivity within the SMEFT has been only
considered [21] in the presence of quantum gravity cor-
rections (with the interesting conclusion that positivity
constraints remain valid in this case); as it has been widely
believed, since the seminal work of [20], that the bounds
derived from the EFT at tree level should hold even in the
presence of loops of massless scalars and vectors. (It has
since been suggested that any eventual departure from
positivity should be either ascribed to the failure of the EFT
description or more ambitiously to the breakdown of
quantum field theory; see for example [12] and references
therein.)
Focusing on dimension-eight operators with four Higgs

fields, in this paper we investigate under which conditions
positivity bounds are violated by running and threshold
effects of scalars and gauge bosons, even in the simplest
extensions of the SM, and derive new constraints on the
shape of certain anomalous dimensions.

II. POSITIVITY BOUNDS AT TREE LEVEL

To fix notation, let us first write the SM Lagrangian:

LSM ¼ −
1

4
GA

μνGAμν −
1

4
WI

μνWμνI −
1

4
BμνBμν

þ ðDμHÞ†ðDμHÞ þ μ2H†H − λðH†HÞ2
þ iðq̄Dqþ ūDuþ d̄Ddþ l̄Dlþ ēDeÞ
− ðq̄YdHdþ q̄YuH̃uþ l̄YeHeþ H:c:Þ: ð1Þ
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We have introduced l and e for the left-handed (LH) and
right-handed (RH) leptons, respectively; and q and u, d for
the LH and RH quarks, respectively. G, W and B represent
the gauge bosons of SUð3Þc, SUð2ÞL and Uð1ÞY , and
H ¼ 1ffiffi

2
p ðϕ1 þ iϕ2;ϕ3 þ iϕ4ÞT stands for the Higgs dou-

blet. We have also defined H̃ ¼ ϵH, with ϵ being the fully
antisymmetric tensor.
Our convention for the covariant derivative is

Dμ ¼ ∂μ − ig1YBμ − ig2
σI

2
WI

μ − ig3
λA

2
GA

μ : ð2Þ

Y stands for the hypercharge, g1, g2, and g3 represent the
Uð1ÞY , SUð2ÞL, and SUð3Þc gauge couplings; and σI and
λA denote the Pauli and Gell-Mann matrices, respectively.
We disregard the Yukawa couplings throughout this

paper, since they do not play any role in any of our
discussions. Likewise, we work in the approximation
μ2 → 0. All our results are then valid up to μ2=Λ2 correc-
tions, where Λ represents the SMEFT cutoff. Moreover,
unless otherwise stated, we also assume g1; g2; g3 → 0, as
our points are made clearer within this approximation.
The SMEFT extends the SM Lagrangian with operators

of dimension higher than four, suppressed by increasing
powers of the cutoff Λ. We neglect operators of dimension
higher than eight as well as lepton- and baryon-number
violating interactions. This leaves us with operators of
dimension six and eight only, that we choose to describe
using the Warsaw basis [22] and the basis of interactions
reported in [23],1 respectively.
Let us consider the process ϕiϕj → ϕiϕj. At low

energies, it can be described by four-Higgs interactions:

L ¼ � � � − λjHj4 þ cðiÞ
H4D2

Λ2
OðiÞ

H4D2 þ
cðjÞ
H4D4

Λ4
OðjÞ

H4D4 ; ð3Þ

see Table I for the definition of the operators. The most
common nomenclature for the dimension-six operators is
Oϕ□ (for i ¼ 1) andOϕD (for i ¼ 2) [22]; we find however
convenient to work with the different naming for clarity of
the exposition.
The usual derivation of bounds on the dimension-eight

coefficient works as follows. First, we assume that in the
UV the forward scattering amplitude AðsÞ≡Aðs; t ¼ 0Þ
for the process of interest is analytic in the complex plane
with, at most, branch cuts in the real s axis starting at
jsj > 0; see Fig. 1. Note that this implicitly assumes that the
running of the EFT Wilson coefficients, and therefore a
branch cut all the way to the origin, is either absent or
negligible. In this sense, we can talk about the EFT Wilson
coefficients, without mention to any renormalization scale.

We then consider the integral I ¼ H
AðsÞ=s3 around a

small circular path enclosing s ¼ 0. By Cauchy’s theorem,
I is fixed by the residue of the integrand at the origin.
Now, the circular path can be deformed to an infinitely

large contour as the one shown in the figure. The con-
tribution from the circular sectors to I vanishes because
the amplitude falls fast enough at infinity [25,26], while the
contribution from the discontinuities can be related to the
imaginary part of the forward amplitude [20], which by
virtue of the optical theorem is positive. Altogether, we
obtain that the residue of AðsÞ=s3 at the origin is positive,
or in other words:

d2AðsÞ
ds2

����
s¼0

> 0: ð4Þ

This residue can be computed in the EFT. Using Eq. (3) for
the process ϕ1ϕ2 → ϕ1ϕ2 at tree level, we find that

AðsÞ ¼ −2λþ cð2Þ
H4D4

s2

Λ4
; ð5Þ

which gives

cð2Þ
H4D4 > 0: ð6Þ

The processes ϕ1ϕ3 → ϕ1ϕ3 and ϕ1ϕ1 → ϕ1ϕ1 imply the
constraints:

FIG. 1. Structure of singularities of the forward two-to-two
amplitude AðsÞ in the complex plane of s. We also show the
contour of integration used in the derivation of positivity bounds.

TABLE I. Independent four-Higgs operators at dimension six
(top) and dimension eight (bottom).

Oð1Þ
H4D2 ðH†HÞ□ðH†HÞ

Oð2Þ
H4D2 ðH†DμHÞ�ðH†DμHÞ

Oð1Þ
H4D4

ðDμH†DνHÞðDνH†DμHÞ
Oð2Þ

H4D4
ðDμH†DνHÞðDμH†DνHÞ

Oð3Þ
H4D4

ðDμH†DμHÞðDνH†DνHÞ

1See [24] for a different basis of dimension-eight interactions.
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cð1Þ
H4D4 þ cð2Þ

H4D4 > 0; ð7Þ

cð1Þ
H4D4 þ cð2Þ

H4D4 þ cð3Þ
H4D4 > 0; ð8Þ

respectively; see [11]. Compatible bounds were also
obtained in [10] in the broken phase of the Higgs.

III. POSITIVITY BOUNDS AT ONE LOOP

In order to analyze the fate of the above results when
moving to one loop, we must first notice that the Wilson
coefficients of the operators, at the EFT cutoff scale Λ,
admit themselves a perturbative expansion. To make it
clear, we introduce a weak coupling g and write:

cðjÞ
H4D4 ¼ gcðjÞ tree

H4D4 þ g2cðjÞ loop
H4D4 þ � � � ; ð9Þ

and similarly for cðiÞ
H4D2 and λ. Thus, the forward amplitude

for ϕ1ϕ2 → ϕ1ϕ2 scattering to order Oðg2Þ in a neighbor-
hood of s ¼ 0 reads:

AðsÞ∼−2gλtreeþ g2
�
−2λloopþ 3

2π2
ðλtreeÞ2 logΛ

2

s

�

þ
�
gcð2Þ tree

H4D4 þ g2cð2Þ loop
H4D4 −

βð2Þ
H4D4

2
log

Λ2

s

�
s2

Λ4
; ð10Þ

up to finite terms proportional to the tree level Wilson

coefficients. The βð2Þ
H4D4 stands for the β function of cð2Þ

H4D4 ,

defined by μdcð2Þ
H4D4=dμ ¼ βð2Þ

H4D4. This function receives
two contributions, corresponding to the renormalization
triggered by pairs of dimension-six interactions and to that
driven by dimension-eight operators via λ. Schematically:

1

g2
βð2Þ
H4D4 ∼ γ0ijc

ðiÞ tree
H4D2 c

ðjÞ tree
H4D2 þ γiλ

treecðiÞ tree
H4D4 ; ð11Þ

where γ0 and γ are anomalous dimensions. Several inter-
esting conclusions can be derived from considering
Eq. (10) in different limits.
To start with, let us assume that none of the effective

interactions is generated at tree level, and λtree ¼ 0 as well.
Then, ignoring s-independent terms, AðsÞ is simply:

AðsÞ ∼ cð2Þ loop
H4D4

s2

Λ4
: ð12Þ

Upon making the same reasoning leading to Eq. (4), we

obtain cð2Þ;loop
H4D4 > 0.

Let us now turn our attention to the case in which all
effective operators butOð2Þ

H4D4 can arise at tree level, and still
λtree ¼ 0. The amplitude AðsÞ near s ¼ 0 is

AðsÞ ∼ g2
�
cð2Þ loopH4D4 −

γ0ij
2
cðiÞ treeH4D2 c

ðjÞ tree
H4D2 log

Λ2

s

�
s2

Λ4
: ð13Þ

In this case, the branch cut all the way to s ¼ 0 originated
by the logarithm prevents using the argument outlined in
the previous section. To circumvent this obstacle, one can
include a small mass m for the Higgs, thus generating an
analytic region around s ¼ 0. This amounts to deforming
the logarithm logΛ2=s → log ½Λ2=ðsþm2Þ�. We can sub-
sequently study the limit m2 → 0 upon expanding the
logarithm in powers of s=m2; see [20,27]. In such limit,
the dominant contribution is

AðsÞ ∼ −g2
γ0ij
2
log

Λ2

m2
cðiÞ tree
H4D2 c

ðjÞ tree
H4D2

s2

Λ4
þOðs3Þ: ð14Þ

A first implication of this result is that cð2Þ loop
H4D4 can have

either sign without affecting the positivity of the forward
amplitude. Therefore, the bound obtained in the previous

section, cð2Þ
H4D4 > 0, does not necessarily hold in models in

which this coefficient arises only in loops, provided that
other operators are generated at tree level.
Further, requiring the second derivative of AðsÞ to be

positive at the origin implies very severe constraints on the

running of cð2ÞH4D4 triggered by pairs of dimension-six
interactions, namely:

γ0ijc
ðiÞ tree
H4D2 c

ðjÞ tree
H4D2 < 0: ð15Þ

Note that, because arbitrary values of the dimension-six
Wilson coefficients are compatible with the assumption

cð2Þ tree
H4D4 ¼ 0 [28], and given that λ can be always made
zero by just tuning the renormalizable Lagrangian, the
bound above is completely general. (Up to gauge correc-
tions which, however, as we show below, are not present
in this case.) Moreover, using the exact same reasoning
one concludes that this inequality is valid even when
including fermionic dimension-six operators, the relevant

of which are OHψR
¼ ðH†iD

↔

μHÞðψRγ
μψRÞ, Oð1Þ

HψL
¼

ðH†iD
↔

μHÞðψLγ
μψLÞ, Oð3Þ

HψL
¼ ðH†iD

↔I
μHÞðψLγ

μσIψLÞ, as

well asOHud ¼ ðH̃iDμHÞðuγμdÞ þ H:c:, with ψR ¼ e, u, d
and ψL ¼ l, q.
Conversely, the renormalization of cð2ÞH4D4 driven by λ can

take it out of its positivity region. To show why, let us now
consider the limit of negligible dimension-six terms (this is

only for simplicity of the exposition) and also cð2Þ tree
H4D4 ¼ 0.

Upon deforming again the logarithm, we obtain:

AðsÞ∼g2

2

�
3

2π2
ðλtreeÞ2Λ

4

m4
− γiλ

treecðiÞ tree
H4D4 log

Λ2

m2

�
s2

Λ4
: ð16Þ
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In the limit m2 → 0, the first term dominates and therefore

γic
ðiÞ tree
H4D4 is not necessarily negative for arbitrary values of

the Wilson coefficients. This conclusion still holds if
dimension-six operators are not ignored, precisely because
they do not contribute to AðsÞ at tree level, and because
they fulfill Eq. (15).
All these observations hold still in the presence of gauge

couplings, although the proof is less straightforward. (For
example, the massless gauge bosons induce poles at s ¼ 0
even at tree level.) Likewise, analyses analogous to the one
we just did for ϕ1ϕ2 → ϕ1ϕ2 but applied to ϕ1ϕ3 → ϕ1ϕ3

and ϕ1ϕ1 → ϕ1ϕ1 reveal that the bounds in Eqs. (7) and (8)
could be also violated at the loop level.
In summary, we can conclude that:
(i) If effective interactions can arise at tree level, but

either cð2Þ
H4D4 or the combination cð1Þ

H4D4 þ cð2Þ
H4D4 or

cð1Þ
H4D4 þ cð2Þ

H4D4 þ cð3Þ
H4D4 vanishes accidentally at this

order, then the constraints in Eqs. (6), (7), or (8) can
be broken, respectively.

(ii) If no operator can be generated at tree level, then all
bounds in Eqs. (6)–(8) are satisfied at one loop.

(iii) The renormalization of cðjÞ
H4D4 by pairs of dimension-

six operators maintain those Wilson coefficients
within their (tree-level) positivity region.

(iv) The renormalization of cðjÞ
H4D4 by relevant couplings

(including mixing with other dimension-eight oper-
ators) can drive these Wilson coefficients out of their
positivity region.

IV. ONE-LOOP MATCHING OF UV MODELS

In the reminder of this paper, we show that our previous
arguments, albeit somewhat heuristic, are in fact realized in
minimal extensions of the SM. Technical details on the
following computations will be thoroughly explained else-
where [29].
First, let us extend the SM with a heavy scalar neutral

singlet S of mass M ¼ Λ, with interaction Lagrangian:

LS ¼ κSSH†H: ð17Þ

This is obviously not the most generic Lagrangian, but it
suffices to illustrate our point.

At tree level, we obtain: cð1Þtree
H4D4 ¼cð2Þtree

H4D4 ¼0, cð3Þtree
H4D4 ¼2

κ2S
M2.

At one loop and at the matching scale2 μ ¼ M, we get

instead: cð1Þ loop
H4D4 ¼ − 39

144π2
κ4S
M4, c

ð2Þ loop
H4D4 ¼ − 39

144π2
κ4S
M4, c

ð3Þ loop
H4D4 ¼

− 187
720π2

κ4S
M4.

Therefore, cð2Þ
H4D4 ¼ − 39

144π2
κ4S
M4 < 0, and cð1Þ

H4D4 þ cð2Þ
H4D4 ¼

− 39
72π2

κ4S
M4 < 0, and then both Eqs. (6) and (7) are violated

within this model.
Let us now consider the SM extended with a scalar real

triplet Ξ of mass M, too. The relevant Lagrangian is

LΞ ¼ κΞH†ΞIσIH: ð18Þ

When integrating Ξ out up to one loop, we obtain:

cð1ÞH4D4 ¼ 4
κ2Ξ
M2 − 107

144π2
κ4Ξ
M4, cð2ÞH4D4 ¼ − 61

144π2
κ4Ξ
M4, and cð3ÞH4D4 ¼

−2 κ2Ξ
M2 − 271

720π2
κ4Ξ
M4. The tree and loop contributions are mani-

fest. Once again, cð2ÞH4D2 < 0.
In both cases, it can be checked by explicit computation

that gauge corrections do not restore positivity provided
g≲ κ=M.
Let us now turn our attention to three scalar extensions of

the SM which do not generate any four-Higgs operators at
tree level (including those of dimension six). These involve
adding a heavy doublet with Y ¼ 1=2 (φ) and adding heavy
quadruplets with Y ¼ 1=2 (Θ1) and Y ¼ 3=2 (Θ3), respec-

tively. We obtain: cð1Þ
H4D4 ¼ jλφj2

24π2
, cð2Þ

H4D4 ¼ jλφj2
24π2

, cð3Þ
H4D4 ¼ jλφj2

6π2
;

as well as cð1Þ
H4D4 ¼ jλΘ1 j2

9π2
, cð2Þ

H4D4 ¼ jλΘ1 j2
36π2

, cð3Þ
H4D4 ¼ − jλΘ1 j2

18π2
; and

cð1Þ
H4D4 ¼ 0, cð2Þ

H4D4 ¼ jλΘ3 j2
4π2

, cð3Þ
H4D4 ¼ 0; where λφ, λΘ1

and λΘ3

are the unique linear couplings between one heavy field and
three H bosons that can be written at the renormalizable
level in each case; see [30].
In all these cases, as we already anticipated, the con-

ditions in Eqs. (6)–(8) do hold.

V. RENORMALIZATION GROUP EVOLUTION

Let us now focus on the running of the Wilson
coefficients cðjÞH4D4 . The contribution triggered by pairs of
dimension-six operators, computed in [28], reads:

16π2βð1Þ
H4D4 ¼ 8

3

�
−2ðcð1Þ

H4D2Þ2 − 11

8
ðcð2Þ

H4D2Þ2 þ 4cð1Þ
H4D2c

ð2Þ
H4D2

þ3c2Hd þc2He þ2ðcð1ÞHl Þ2 − 2ðcð3ÞHl Þ2þ6ðcð1ÞHqÞ2 − 6ðcð3ÞHqÞ2 þ 3c2Hu − 3c2Hud

�
; ð19Þ

2At lower scales, the matching corrections involve logarithmic terms ∼ logM=μ. These can be reproduced from the running triggered
by dimension-six and dimension-eight terms (these latter ones proportional to the quartic coupling generated at tree level) that we work
out in the subsequent section. The same applies to the triplet model discussed next.
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16π2βð2Þ
H4D4 ¼ 8

3

�
−2ðcð1Þ

H4D2Þ2 − 5

8
ðcð2Þ

H4D2Þ2 − 2cð1Þ
H4D2c

ð2Þ
H4D2

−3c2Hd −c2He −2ðcð1ÞHl Þ2 − 2ðcð3ÞHl Þ2−6ðcð1ÞHqÞ2 − 6ðcð3ÞHqÞ2−3c2Hu

�
; ð20Þ

16π2βð3Þ
H4D4 ¼ 8

3

�
−5ðcð1Þ

H4D2Þ2 þ 7

8
ðcð2Þ

H4D2Þ2 − 2cð1Þ
H4D2c

ð2Þ
H4D2 þ 4ðcð3ÞHl Þ2 þ 12ðcð3ÞHqÞ2 þ 3c2Hud

�
: ð21Þ

(The Wilson coefficients of the fermionic operators are
matrices in flavor space, so c2 must be interpreted as the
trace Tr½c†c�.)
It can be trivially seen, for example, that βð2Þ

H4D4 < 0,
implying

cð2Þ
H4D4ðμÞ ∼ βð2Þ

H4D4 log
μ

Λ
> 0; ð22Þ

given that μ=Λ < 1 within the region of validity of
the EFT.
Likewise, we have that βð1Þ

H4D4 þ βð2Þ
H4D4 < 0 as well as

βð1ÞH4D4 þ βð2ÞH4D4 þ βð3ÞH4D4 < 0, and therefore all bounds in
Eqs. (6)–(8) are respected by dimension-six quantum
corrections at all scales.
For illustration, in the equations above we have marked

which positive (fermionic) coefficients in βð1ÞH4D4 are can-

celed by βð2Þ
H4D4, forcing the second inequality even though it

could well be that βð1Þ
H4D4 > 0. Note also that βð3Þ

H4D4 can be

positive in a plethora of cases, for example simply if cð3ÞHl is
the only nonvanishing Wilson coefficient. The same holds

for βð1ÞH4D4 þ βð3ÞH4D4 as well as for β
ð2Þ
H4D4 þ βð3ÞH4D4. That is, the

cancellations are in place precisely in those combinations
given by the positivity bounds.
However, the mixing of the three cðjÞ

H4D4 due to renorma-
lizable terms drive the former away from their positivity
region. Indeed, upon a thorough computation including the
(in this case dominant) contribution from gauge couplings,
we obtain that:

16π2βð1ÞH4D4 ¼ 1

6
½ð30cð1ÞH4D4 þ 41cð2ÞH4D4 þ 15cð3ÞH4D4Þg22

− ð16cð1Þ
H4D4 þ 7cð2Þ

H4D4 þ 15cð3Þ
H4D4Þg21

þ 16ð3cð1Þ
H4D4 þ cð2Þ

H4D4 þ cð3Þ
H4D4Þλ�; ð23Þ

16π2βð2Þ
H4D4 ¼ 1

6
½ð28cð1Þ

H4D4 þ 43cð2Þ
H4D4 þ 15cð3Þ

H4D4Þg22
þ ð14cð1Þ

H4D4 þ 33cð2Þ
H4D4 þ 15cð3Þ

H4D4Þg21
þ 16ðcð1Þ

H4D4 þ 3cð2Þ
H4D4 þ cð3Þ

H4D4Þλ�; ð24Þ

16π2βð3ÞH4D4 ¼ −
1

3
½ð36cð1ÞH4D4 þ 29cð2ÞH4D4 þ 42cð3ÞH4D4Þg22

þ ð8cð1ÞH4D4 þ 2cð2ÞH4D4 þ 9cð3ÞH4D4Þg21
− 16ð3cð1Þ

H4D4 þ 2cð2Þ
H4D4 þ 5cð3Þ

H4D4Þλ�: ð25Þ

(We do not include fermionic dimension-eight operators,
because they do not arise in the models in which we later

use these expressions.) It is clear that βð2ÞH4D4 is not
necessarily negative; likewise for the other positivity
relations.
As a matter of example, let us assume that

cð2Þ
H4D4ðμ ¼ MÞ ¼ 0. Then, we have:

cð2Þ
H4D4ðμÞ∼−

1

96π2
½ð28g22þ14g21þ16λÞcð1Þ

H4D4ðMÞ

þð15g22þ15g21þ16λÞcð3Þ
H4D4ðMÞ� logM

μ
: ð26Þ

If cð1Þ
H4D4ðμ ¼ MÞ ≥ 0 and cð3Þ

H4D4ðμ ¼ MÞ ≥ 0, as predicted
for example in the neutral singlet scalar extension of the

SM, then cð2Þ
H4D4ðμÞ is strictly negative, in conflict with

Eq. (6). As we discussed above, this does not contradict the
positivity of the forward scattering amplitude around
s ¼ 0, as this is dominated by the running of the relevant
couplings. Note, though, that these latter SM contributions
are of completely different relevance at the much larger s
tested in typical experiments (where incidentally they are
absorbed in the background), and in particular they do not
necessarily restore any positivity in that case.
Similar violations of the positivity bounds occur in

many other models for which some of the combinations
of Wilson coefficients entering the inequalities in
Eqs. (6)–(8) vanish at tree level. To mention a few of
the simplest ones:

S ∼ ð1; 1Þ0 ↦ cð1;2;3ÞH4D4 ∼ ð0; 0; 1Þ; ð27Þ

Ξ ∼ ð1; 3Þ0 ↦ cð1;2;3Þ
H4D4 ∼ ð2; 0;−1Þ; ð28Þ

B ∼ ð1; 1Þ0 ↦ cð1;2;3Þ
H4D4 ∼ ð−1; 1; 0Þ; ð29Þ
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B1 ∼ ð1; 1Þ1 ↦ cð1;2;3Þ
H4D4 ∼ ð1; 0;−1Þ; ð30Þ

W ∼ ð1; 3Þ0 ↦ cð1;2;3ÞH4D4 ∼ ð1; 1;−2Þ: ð31Þ

The first two fields are scalars, while the last three arevectors.
The first numbers in parentheses and the subscript represent
the SUð3Þc × SUð2ÞL quantum numbers and the hyper-
charge, respectively. The last numbers in parentheses contain

the ratios of the cð1;2;3Þ
H4D4 Wilson coefficients at tree level.

For the sake of example, we plot the evolution of

cð1Þ
H4D4 þ cð2Þ

H4D4 þ cð3Þ
H4D4 in Fig. 2. For each model, we

assume that the Wilson coefficients are fixed to the values
given in Eqs. (27)–(31) at the matching scaleM ¼ 10 TeV.
All curves include also the (subleading) contribution of
dimension-six terms to the running.

VI. CONCLUSIONS

We have argued that tree-level-derived positivity bounds
on the Wilson coefficients cðjÞ

H4D4 of four-Higgs dimension-
eight operators within the SMEFT do not necessarily hold
at one loop.

First, they can be violated at the matching scale. We have
underpinned this statement with explicit calculations. In
particular, we have computed the one-loop matching of the
singlet and triplet scalar extensions of the SM (which are
not only among the simplest ones but they are also of great
phenomenological interest [31–37]) onto the SMEFT to
dimension eight, demonstrating the violation of two of
the three positivity bounds. And second, all positivity
bounds can be broken by their running triggered by
renormalizable interactions such as the Higgs quartic or
the gauge couplings.
In this respect, it would be interesting to study modified

scale-dependent constraints, relying on s-dependent inte-
gration contours such as the arcs discussed in [38]; see also
Sec. 11 of [27].
Conversely, we have shown that the renormalization

of cðjÞH4D4 driven by dimension-six terms does not break
positivity. This implies strong constraints on the form of the
corresponding anomalous dimensions. In turn, this obser-
vation provides new nonrenormalization results, which we
are currently exploring.
Finally, let us note that the experimental program for

measuring (or bounding) the Wilson coefficients cðjÞ
H4D4 in

multi-boson final states (they modify the quartic gauge
couplings) is already ongoing [39]. The feasibility for
disentangling the three different couplings relies on the fact
that they enter through different combinations in different
channels; for example in ZZ, WW and WZ [10].
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