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A B S T R A C T

Particle tracking in soft materials allows one to characterise the material’s local viscoelastic response, a
technique referred to as microrheology (MR). In particular, MR can be especially powerful to ponder the
impact of structural ordering on the tracer’s transport mechanism and thus disclose intriguing elements
that cannot be observed in isotropic fluids. In this work, we perform Dynamic Monte Carlo simulations
of isotropic and liquid-crystalline phases of rod-like particles and employ MR to characterise their linear
viscoelastic response. By incorporating tracers of different diameters, we can assess the combined
effect of size and ordering across the relevant time and length scales of the systems’ relaxation. While
the dynamics of small tracers is dramatically determined by the background ordering, sufficiently large
tracers have a reduced perception of the medium nanostructure and this difference directly influences
the observed MR. Our results agree very well with the picture of a microviscosity increasing with
the relevant system length scales, but also suggest the crucial relevance of long-ranged order as a key
element governing the system’s viscoelastic response.

1. Introduction
Soft Matter comprises an especially rich family of physi-

cal systems whose structural properties can be altered by weak
external stimuli, generally of the magnitude of thermal fluc-
tuations. These systems include polymers, emulsions, gels,
and many other soft materials that display an intricate mor-
phology with characteristic length scales ranging from few
nanometers to microns. To gain an insight into their mechani-
cal response, a spectrum of direct and indirect techniques has
become available [1], including macroscopic rheology and
the more recently established microrheology (MR) [2, 3, 4, 5].
Introduced by the seminal works by Mason and Weitz in
the 1990s [2, 3], MR allows one to assess the viscoelastic
behaviour of a soft material by tracking and analysing the
dynamics of guest tracers (or probe particles) dispersed in
it. The work by Mason and Weitz triggered further exper-
imental and theoretical research [6, 7, 8, 9] and eventually
led to an important extension of the original MR technique,
where a tracer is forced to displace upon application of con-
stant, pulsed or oscillating external forces [10, 11, 12, 13].
Such a technique, referred to as active MR, can capture both
the linear and nonlinear viscoelastic regimes, including very
intriguing phenomena, such as force thinning, where the ef-
fective friction coefficient decreases as the magnitude of the
applied force increases [14, 15, 16, 17]. By contrast, pas-
sive MR, relating the tracer free diffusion to the system’s
thermal fluctuations, only provides an insight into the linear
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viscoelastic response.
Recently, we have developed a simulation technique, re-

ferred to as Dynamic Monte Carlo (DMC), that can be applied
to investigate the dynamics of Brownian systems under the
most general conditions [18, 19, 20, 21, 22, 23, 24] and fi-
nally extended it to the study of active MR [17]. The DMC
method can be employed to investigate the Brownian dynam-
ics (BD) of complex fluids without the constraint of resolving
stochastic or deterministic time trajectories as required, re-
spectively, by Brownian dynamics and Molecular Dynamics
simulations. Additionally, it allows one to set separate time
steps to independently explore short and long time scales,
a feature that is especially convenient in the study of dense
colloidal suspensions, which generally exhibit a very slow
structural relaxation decay. We stress, however, that the cur-
rent DMC formulation does not explicitly model the solvent,
therefore, fluid-mediated hydrodynamic interactions (HI) are
disregarded. In this work we apply DMC simulations to inves-
tigate the free diffusion of a probe spherical particle immersed
in isotropic and liquid-crystalline phases of hard rods. Our
specific goal is understanding the effect of the background
ordering on the linear viscoelastic response of the system, by
explicitly calculating the elastic (𝐺′) and viscous (𝐺′′) mod-
uli. To this end, we have here investigated colloidal systems
comprising anisotropic particles that, at sufficiently large
densities, are able to self-assemble into ordered mesophases,
such as nematic (N) and smectic (Sm) liquid crystals (LCs).
The former display a merely orientational order, whereas the
latter are characterised by orientational and positional order.
Therefore, such colloidal LCs are especially suitable model
systems to gain an insight into the impact of nanostructured
ordering on the MR of soft materials. Additionally, we are
also interested in clarifying the impact of the tracer size on
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the properties of the local structure (microstructure) that is
accessible by MR and that is strictly related to the extension
of the system’s characteristic length scales.

Recently, MR has been employed to ponder the existence
of smectic tactoids in N phases of bent-core molecules [25]
and shed light on the differences with macroscopic rheol-
ogy in lamellar, cubic and hexagonal LCs formed in water-
monoglyceride mixtures [26]. Nevertheless, these experi-
mental works did not explore how a change in the tracer
size could produce different MR responses. In the present
work, we show that the local viscoelastic behaviour of a soft
material strongly depends on the tracer’s perception of the
surrounding environment and that this can only be fully un-
derstood if one considers the length scales characterising the
structural ordering of the host phase in relation to the tracer
size. We notice that a theory describing the dependence of the
dynamics of a tracer on the relevant length scales of a polymer
solution was proposed by Cai et al. [8]. These authors identi-
fied three separate regimes that are set on the basis of the ratio
between the tracer diameter, 𝑑𝑡, and the characteristic length
scales of the polymer matrix, which basically are the distance,
𝜉, between two chains and the distance, 𝐿𝑒, between their
entanglements. The three regimes comprise: (i) the motion
of small particles (𝑑𝑡 < 𝜉) when unaffected by the surround-
ing host polymers; (ii) the diffusion of intermediate sized
particles (𝜉 < 𝑑𝑡 < 𝐿𝑒) which is correlated to local polymer
motion; and (iii) the mobility of larger particles (𝑑𝑡 > 𝐿𝑒)
being influenced by polymers’ entanglements. These length-
scales are clearly related to the polymer chain conformations,
but ultimately also to the polymer concentration and polymer-
solvent interactions. Briefly, upon increasing 𝑑𝑡, the tracer
should experience an increasing local viscosity that would
eventually saturate to the value of the bulk viscosity when
𝑑𝑡 > 𝐿𝑒. This theoretical framework would provide infor-
mation on the fluid local viscosity on the scale of the probe
particle and, if this was sufficiently large, also on the fluid
bulk viscosity (macroviscosity). Nevertheless, this intriguing
scenario does not necessarily reproduce what experiments
indicate [27]. Other works have used empirical expressions
to fit the experimental data [28, 29], applied to different sys-
tems, including polymers [28] and living cells [30]. To the
best of our knowledge, none of these expressions incorporate
the effect of long-range ordering, which, as we will show
here, cannot a priori be neglected.

Our paper is organised as follows. In Section 2, we intro-
duce the DMC-based simulation technique for the study of
passive MR in a bath of colloidal hard rods. Specific details
on DMC have been discussed elsewhere and here we will only
remind the key concepts and equations that are functional
to the present study. In Section 3, we discuss the effect of
tracer size and phase ordering on the viscoelastic behaviour
of isotropic (I), nematic (N), and smectic (Sm) colloidal LCs.
We report the effective viscosity and the elastic and viscous
moduli calculated along the relevant directions of symmetry.
Finally, in Section 4, we wrap our conclusions.

2. Model and Simulations
The systems studied in this work consist of a spherical tracer
immersed in a host phase comprising rod-like particles. While
the bath particles are modelled as hard spherocylinders with
length-to-diameter ratio 𝐿∗ ≡ 𝐿∕𝜎 = 5 (see Fig. 1(a)), the
tracer is a hard spherical particle with diameter 𝑑𝑡 ≥ 0.5𝜎.
In our simulations, the colloidal suspensions comprise 𝑁𝑟 =
1400 host particles and 𝑁𝑡 = 1 spherical tracer. We use
𝑘B𝑇 , 𝜎, and 𝜏 = 𝜎2∕𝐷0 as our energy, length and time units,
with 𝑘B Boltzmann’s constant, 𝑇 the absolute temperature,
𝐷0 = 𝑘B𝑇 ∕(𝜂𝑠𝜎) and 𝜂𝑠 the viscosity coefficient of the sol-
vent. The rod diameter, 𝜎, is maintained constant, while
the tracer diameter, 𝑑𝑡, is a simulation parameter that varies
between 0.5𝜎 and 8𝜎. In this work, we are interested in
the dynamics of the tracer particle immersed in a bath of
rods forming I, N, and Sm phases. It should be pointed out
that despite the important role solvent-mediated HI may play
on the dynamics of tracer and bath particles, simulating HI
within DMC is beyond the scope of this work. Prior to simu-
late particles dynamics, we first run MC simulations in the
canonical ensemble to equilibrate the systems at the volume
fractions 𝜙 = 0.35, 𝜙 = 0.45, and 𝜙 = 0.51, corresponding
to stable I, N, and Sm phases, respectively [31]. The volume
fraction is defined in terms of the volume of a rod, 𝑣𝑟, that
of a tracer, 𝑣𝑡, and that of the simulation box, 𝑉 , and reads
𝜙 = (𝑁𝑟𝑣𝑟 + 𝑣𝑡)∕𝑉 , where 𝑣𝑟 = 𝜋𝜎3∕6 + 𝜋𝜎2𝐿∕4, and
𝑣𝑡 = 𝜋𝑑3𝑡 ∕6. Typical equilibrated snapshots of I, N, and Sm
phases of rod-like particles incorporating a spherical tracer
of size 𝑑𝑡 = 3𝜎 are provided in Fig. 1.

(b) (c) (d)      
           
 

(a)
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Figure 1: (colour on-line) (a) Example of a typical spherocylin-
der with length 𝐿 and diameter 𝜎. Snapshots of a tracer of
size 𝑑𝑡 = 3𝜎 immersed in a colloidal suspension of hard sphero-
cylinders in (a) isotropic (𝜙 = 0.35), (b) nematic (𝜙 = 0.45),
and (c) smectic (𝜙 = 0.51) phases.

To monitor the system’s long range orientational order,
we calculated the nematic and smectic order parameters. The
nematic order parameter, 𝑆2, and the nematic director, n,
correspond to the largest eigenvalue and its corresponding
eigenvector, of the following nematic order parameter tensor

𝑄𝛼𝛽 = 1
2𝑁𝑟

𝑁𝑟
∑

𝑗=1

(

3û𝑗𝛼 ⋅ û𝑗𝛽 − 𝛿𝛼𝛽
)

, (1)

where û𝑗𝛼 are unit vectors indicating the orientation of the
particle 𝑗, (𝛼, 𝛽) = {𝑥, 𝑦, 𝑧}, and 𝛿𝛼𝛽 is the Kronecker delta.
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High values of the nematic order parameter allow one to
distinguish between ordered and disordered phases. Never-
theless, this parameter does not allow a clear distinction to
be made between N and Sm phases. To address this, we
estimated the smectic order parameter, 𝜆, which reads [32]

𝜆 = max
𝑙

⟨

1
𝑁𝑟

|

|

|

|

|

|

𝑁𝑟
∑

𝑗=1
𝑒2𝜋𝑖r𝑗 ⋅n∕𝑙

|

|

|

|

|

|

⟩

, (2)

where 𝑖 is the imaginary unit, r𝑗 the vector position of particle
𝑗, and 𝑙, the layer spacing, is the value that maximises 𝜆. We
have monitored the evolution of nematic and smectic order
parameters until a plateau is reached and only fluctuations
within a stable window are observed. From equilibrium MC
simulations, we observed that 𝑆2 ≈ 0.04 and 𝜆 ≈ 0.05 for the
I phase, 𝑆2 ≈ 0.79 and 𝜆 ≈ 0.09 for the N phase, and 𝑆2 ≈
0.94 and 𝜆 ≈ 0.77 for the Sm phase. The differences between
N and Sm phases have been also confirmed by the calculation
of several distribution functions. We also notice that no
substantial changes in the order parameters were detected at
different diameters of the tracer particle.

Equilibrium configurations were then employed to in-
vestigate the microrheology of the systems. In particular,
the dynamics of the tracer and host particles was assessed
by performing DMC simulations in the canonical ensemble
and in cuboidal boxes with periodic boundaries. The inter-
ested reader is referred to Refs. [18, 19, 20, 22] for specific
details on the DMC method. Since our aim is to model re-
alistic time trajectories of the particles, unphysical moves
like cluster moves, swaps and jumps are not allowed. A
DMC cycle corresponds to 𝑁𝑝 ≡ 𝑁𝑟 +𝑁𝑡 random attempts
to displace and rotate the particles of the system, rotations
being only attempted for rods. These movements are ac-
cepted or rejected according to the Metropolis algorithm,
with probability min

[

1, exp(−Δ𝐸∕𝑘B𝑇 )
]

, where Δ𝐸 is the
change in energy resulting from the movement of the parti-
cle. Since particle-particle interactions are modelled via a
hard-core potential, attempted moves are always accepted
unless an overlap is detected. In particular, to determine the
occurrence of overlaps between rods, we implemented the
algorithm proposed by Vega and Lago [33]. The position
of the tracer is updated by decoupling its displacement, 𝛿r𝑡,
into three contributions, where 𝛿r𝑡 = 𝑋𝑥x̂ + 𝑋𝑦ŷ + 𝑋𝑧ẑ.
The magnitude of the attempted displacements is chosen at
random with the condition |𝑋𝛼| ≤ 𝛿𝑟, with 𝛼 = {𝑥, 𝑦, 𝑧}.
Analogously, the displacement of a rod-like particle reads
𝛿r𝑟 = 𝑋∥û𝑟 + 𝑋⟂,1v̂𝑟,1 + 𝑋⟂,2v̂𝑟,2, where û𝑟 represents a
unit vector parallel to the main rod axis, whereas v̂𝑟,𝑚, with
𝑚 = 1, 2, are two random unitary vectors perpendicular to
û𝑟 and to each other. The magnitude of the rods’ displace-
ments along the main particle axes is selected within uniform
distributions fulfilling |𝑋∥| ≤ 𝛿𝑟∥ and |𝑋⟂,𝑚| ≤ 𝛿𝑟⟂. The
maximum displacements, 𝛿𝑟, 𝛿𝑟∥ and 𝛿𝑟⟂, depend on the
translational diffusivities of the particles at infinite dilution.
For the spherical tracers, this is expressed as:

𝛿𝑟 =
√

2𝐷𝑡𝛿𝑡MC,𝑡 (3)

where𝐷𝑡 and 𝛿𝑡MC,𝑡 are, respectively, the diffusion coefficient
of the tracer at infinite dilution and its time step in the MC
time scale. Similarly, the rods’ maximum displacements are
given by:

𝛿𝑟∥ =
√

2𝐷𝑟,∥𝛿𝑡MC,𝑟 (4)

𝛿𝑟⟂ =
√

2𝐷𝑟,⟂𝛿𝑡MC,𝑟 (5)

where 𝛿𝑡MC,𝑟 is the MC time step for a rod particle, and 𝐷𝑟,∥
and 𝐷𝑟,⟂ represent its parallel and perpendicular diffusivities
at infinite dilution, respectively. In the case of rotations, the
orientation vector of the bath particles varies from û𝑟 to û𝑟 +
𝛿û𝑟, where 𝛿û𝑟 = 𝑌𝜑,1ŵ𝑟,1+𝑌𝜑,2ŵ𝑟,2, being the vectors ŵ𝑟,𝑚
arbitrary chosen in such a way that they are perpendicular to
each other and to û𝑟. The maximum rotations must satisfy
|𝑌𝜑,𝑚| ≤ 𝛿𝜑, where,

𝛿𝜑 =
√

2𝐷𝑟,𝜑𝛿𝑡MC,𝑟 (6)

with 𝐷𝑟,𝜑 is the particle rotational diffusion coefficient at infi-
nite dilution. For both spherical particles and spherocylinders
we have disregarded rotations around their axes of angular
symmetry. The inclusion of such rotations and their effects
on the particles’ dynamics are beyond the scope of this study.

The translational diffusion coefficient of the tracer at infi-
nite dilution, 𝐷𝑡, is estimated from the Stokes-Einstein equa-
tion. In this work, we have considered tracers of different
diameters, 𝑑𝑡 ≥ 0.5𝜎. Therefore, the diffusivity of the tracer
is given by:

𝐷𝑡 =
𝐷0
3𝜋

𝜎
𝑑𝑡
. (7)

By contrast, the rods’ rotational and translational diffusion
coefficients at infinite dilution have been estimated by em-
ploying the analytical expressions based on the induced-force
method for uniaxial particles proposed by Bonet Avalos et al.
[34]:

𝐷𝑟,⟂

𝐷0
=

ln(2∕𝜖) − 1∕2 − 𝐼 𝑡𝑡

2𝜋∕𝜖
(8)

𝐷𝑟,∥

𝐷0
=

ln(2∕𝜖) − 3∕2 − 𝐼 𝑡𝑡

𝜋∕𝜖
(9)

𝐷𝑟,𝜑

𝐷0
= 3

ln(2∕𝜖) − 11∕6 − 𝐼𝑟𝑟

𝜋𝜎2∕ (2𝜖)3
(10)

where 1∕𝜖 = 2 (𝐿∗ + 1), 𝐼 𝑡𝑡 = 0.5 ∫ 1
−1 𝑑𝑥 lnℎ(𝑥) ≃ −0.0061

and 𝐼𝑟𝑟 = 1.5 ∫ 1
−1 𝑑𝑥𝑥

2 lnℎ(𝑥) ≃ −0.017, with ℎ(𝑥) =
(1 − 𝑥16)1∕16 a parametric function used to model sphero-
cylinders with symmetry of revolution. The values of the so-
calculated translational and rotational diffusion coefficients
are reported in Table 1. For a multicomponent system at equi-
librium, the Brownian dynamics time can be recovered from
the rescaling of the MC time of the individual components
as follows [19]

𝛿𝑡BD =
𝑡
3
𝛿𝑡MC,𝑡 =

𝑟
3
𝛿𝑡MC,𝑟 (11)
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Table 1
Diffusion coefficients at infinite dilution of spherocylinders
with aspect ratio 𝐿∗ = 5, calculated from Eqs. 8-10.

𝐷𝑟,⟂∕𝐷0 𝐷𝑟,∥∕𝐷0 𝐷𝑟,𝜑𝜎2∕𝐷0

3.560 ⋅ 10−2 4.467 ⋅ 10−2 6.020 ⋅ 10−3

where 𝑡 and 𝑟 are, respectively, the acceptance rates of
the tracer and rod-like particles computed at fixed MC time
steps 𝛿𝑡𝑡,MC and 𝛿𝑡𝑟,MC. Eq. 11 indicates that, although the
two species in the system have different MC timescales, these
must re-scale to the same BD timescale. What we practically
do is setting the MC time step of the rods and determine the
MC time step of the tracer as well as 𝑡 and 𝑟 by running
short trial-and-error simulations until Eq. 11 converges. By
following this preliminary procedure, one ensures that the BD
timescale is recovered. Specifically, we have set the DMC
time step of the rods to 𝛿𝑡MC,𝑟 = 10−2𝜏 for all the systems
studied and recalculated the time step of the tracer particles as
𝛿𝑡MC,𝑡 = 𝛿𝑡MC,𝑟𝑟∕𝑡. Details of the systems studied in this
work are shown in Table S1 of the Supplementary Material
(SM). This rescaling is of utmost importance to determine the
mean-square displacement (MSD) of the tracer particle and
hence the viscoelastic response, including elastic and viscous
moduli, of the host phase. In particular, the MSD of the
tracer is the ensemble average of the particle’s displacement
from its original position in a given window of time. It is
calculated as

⟨Δ𝑟2𝑡 (𝑡)⟩ = ⟨

(

r𝑡(𝑡) − r𝑡(0)
)2
⟩, (12)

where r𝑡 indicates the position vector of the tracer particle,
and the brackets refer to ensemble average over independent
trajectories. We have generated 4000 trajectories, each con-
sisting of 6 ⋅ 105 MC cycles, to simulate the dynamics of
rods and tracer particles in I and N phases. However, it was
necessary to run a larger number of cycles (6 ⋅106 MC cycles
per trajectory) to reach the long-time diffusive regime in Sm
phases; in this case, at least 1000 trajectories were used to
calculate the ensemble averages.

In passive MR, the tracer’s MSD is used to calculate the
viscoelastic properties of the system of interest. In particular,
the complex shear modulus, 𝐺∗(𝜔) = 𝐺′(𝜔) + 𝑖𝐺′′(𝜔), with
𝐺′ and 𝐺′′ the elastic and viscous moduli, respectively, in
the Fourier domain [6] can be expressed as:

𝐺∗(𝜔) =
𝑘B𝑇

𝑖𝜋
(

𝑑𝑡∕2
)

𝜔𝐹 {⟨Δ𝑟2𝑡 (𝑡)⟩}
, (13)

where 𝜔 = 1∕𝑡 is the time frequency, and 𝐹 {⟨Δ𝑟2𝑡 (𝑡)⟩} is the
Fourier transform of the tracer’s MSD. In line with the work
of Mason [6], the shear modulus can be written as:

|

|

𝐺∗ (𝜔)|
|

=
𝑘B𝑇

𝜋
(

𝑑𝑡∕2
)

⟨Δ𝑟2𝑡 (1∕𝜔)⟩Γ [1 + 𝛼 (𝜔)]
, (14)

where 𝛼 (𝜔) ≡
(

𝑑 ln⟨Δ𝑟2𝑡 (𝑡)⟩∕𝑑 ln (𝑡)
)

|𝑡=1∕𝜔 is the local ex-
ponent of the MSD, and Γ is the gamma function. Accord-

ingly, elastic and viscous moduli are given, respectively, by:

𝐺′(𝜔) = |

|

𝐺∗ (𝜔)|
|

cos
(

𝜋𝛼(𝜔)
2

)

, (15)

𝐺′′(𝜔) = |

|

𝐺∗ (𝜔)|
|

sin
(

𝜋𝛼(𝜔)
2

)

. (16)

In this work, Eqs. 14-16 were employed to assess the vis-
coelastic behaviour of the host phases from the simulated
MSD of the tracer particle. It should be noted that, in addi-
tion to the above-mentioned Fourier transform-based method
[3, 6], there are other options to infer the viscoelastic re-
sponse of soft materials from the tracer’s MSD, including
compliance-based [35, 36] and Laplace transform-based [2]
methods. In Fig. S1 of the SM, we show that the viscous
and elastic moduli obtained with Eqs. 13-16 and with the
compliance-based method proposed by Evans et al. [35] are
in excellent agreement.

For a viscous isotropic medium the motion is dominantly
diffusive (𝛼(𝜔) ≈ 1) and 𝐺′′ dominates over 𝐺′. By contrast,
in an elastic medium the motion is restricted by the local
structure of the host phase (𝛼(𝜔) ≪ 1) and 𝐺′ becomes
prominent while 𝐺′′ vanishes. These tendencies are not only
limited to isotropic materials, but are also expected in systems
exhibiting orientational or positional order (e.g. N and Sm
phases). Indeed, in order to have more detailed information
on the viscoelastic properties of ordered phases, we have
estimated the elastic and viscous moduli in the directions
parallel and perpendicular to the nematic director as detailed
in the subsequent sections.

3. Results
In this section, we investigate the combined effect of size

and structural order on the linear viscoelastic response of
soft materials as probed by passive MR. To this end, we have
employed colloidal suspensions of rod-like particles, here
modelled as hard spherocylinders, which, by forming N and
Sm LCs, allow one to ponder the implications of nanostruc-
tured ordering and associated symmetry breaking on the MR
response. Hard spherocylinders exhibit a very rich phase
behaviour [31]; upon increasing the number density of parti-
cles, or volume fraction, the system first breaks orientational
symmetry and self-assemble into N phases, then positional
ordering in one dimension and forms Sm phases, and finally,
a crystal phase is found upon further increasing density. Here
we explore the rheological behaviour of a system of rod-like
particles with passive MR, incorporating spherical tracers of
different sizes, as described above. In the isotropic fluid, the
effect of the tracer size is studied in more detail, discussing in
particular the microviscosity as a function of the tracer size,
whereas we focus on the different components of the elastic
and viscous moduli in N and Sm LCs.

3.1. Effect of the size of the probe on the viscoelastic
behaviour of dense colloidal suspensions

In Fig. 2, we report the elastic and viscous moduli for the
isotropic fluid, obtained from the tracer’s MSD, with tracer
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diameters ranging from 0.5𝜎 to 8𝜎. The corresponding er-
rors are estimated by 𝐺′ and 𝐺′′ assessed from the MSDs
of the tracer particles with their associated errors in both
limits, ⟨Δ𝑟2𝑡 (𝑡)⟩+ 𝛿⟨Δ𝑟2𝑡 (𝑡)⟩, and ⟨Δ𝑟2𝑡 (𝑡)⟩− 𝛿⟨Δ𝑟2𝑡 (𝑡)⟩ where
𝛿⟨Δ𝑟2𝑡 (𝑡)⟩ indicates the standard error at time 𝑡 of the averaged
MSDs. The top panel shows 𝐺′ and 𝐺′′ for the smallest and
largest tracer diameter, that is 𝑑𝑡 = 0.5𝜎 and 8𝜎. The elastic
and viscous moduli resulting from intermediate tracer sizes
exhibit a similar behaviour. One can observe an increase of
both viscous and elastic response as measured by larger trac-
ers, but the profile of both moduli changes only moderately,
keeping the same qualitative behaviour. In particular, for each
tracer diameter studied here, 𝐺′′ is larger than 𝐺′ across the
whole spectrum of time frequencies, revealing the basically
viscous response of a fluid-like bath. These tendencies are
explored in more detail in the bottom panel of the same fig-
ure, where we plot the ratio  ≡ 𝐺′′∕𝐺′, also referred to as
loss tangent [37], which reflects the liquid-like ( ≫ 1) and
solid-like ( ≪ 1) nature of the host phase. Although this
ratio is larger than one for all cases, as expected, it decreases
upon increasing the tracer size, suggesting that the system
is indeed fluid-like at small frequency scales (𝐺′′ > 10𝐺′),
but becomes viscoelastic at intermediate scales (𝐺′′ ≈ 2𝐺′

for 𝜔∕𝜏−1 ∼ 1), until a more viscous behaviour at larger
frequencies is reached again.
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Figure 2: (colour on-line) Top panel: viscous (𝐺′′, dashed
lines) and elastic (𝐺′, solid lines) moduli of a bath of hard
spherocylinders in an isotropic phase containing a spherical
tracer of diameter 0.5𝜎 (red curves) and 8𝜎 (blue curves).
Bottom panel: loss tangent,  ≡ 𝐺′′∕𝐺′, for different diameters
of the tracer. Estimated errors are delimited by the dotted
lines.

Interestingly enough, while for the smaller tracers there is
a marked difference in the loss tangent, for sufficiently large
tracers, namely for 𝑑𝑡 ≥ 2𝜎, the loss tangent vs frequency
profile tends to progressively saturate and to collapse on a

single master curve. This tendency denotes the threshold
of the tracer size above which the probe starts to notice the
bath particles in its immediate vicinity more readily than the
(implicit) solvent molecules. For large tracers, this saturation
is anticipated at small frequencies, corresponding to long
time scales, when tracer motion is distinctly diffusive and the
viscous modulus prevails. Both viscous and elastic moduli,
however, exhibit a tendency to plateau at intermediate fre-
quencies with the size of the tracer, causing the loss tangent
to converge to a single curve. Nevertheless, convergence
of  is not obvious at higher frequencies or, equivalently,
shorter timescales, with size effects becoming more and more
relevant. Since at short times tracers are still confined within
the cage of their nearest neighbours, the contribution of their
elastic modulus becomes larger with the tracer size and the
loss tangent decreases progressively until merging into a sin-
gle curve. This overall saturation apparently corresponds to
the “bulk” behaviour, as seen by microrheology, which does
not necessarily correspond to macroscopic rheology, as we
shall see below.
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Figure 3: (colour on-line) Effective viscosity vs tracer size for
systems in the isotropic phase. Microviscosities obtained from
the viscous modulus at short frequencies (𝜂MR ∼ 𝐺′′(𝜔)∕𝜔|𝜔→0)
and the Stokes-Einstein equation at long times are represented
by empty circles and diamonds, respectively. The inset compares
the microviscosities obtained by our simulations (empty circles)
to the model of Kalwarczyk and coworkers [28, 29] (solid line).
Absolute errors are smaller than the size of the symbols.

The microviscosity of the bath can be obtained from the
small frequency behaviour of the viscous modulus, 𝐺′′(𝜔 →
0) ∼ 𝜂MR𝜔. The results, as a function of the tracer diameter,
are presented in Fig. 3 and compared to the results from the
Stokes-Einstein relation using the long-time self-diffusion
coefficient obtained from the simulated MSD of the tracer par-
ticle, available in Fig. S5 of SM. Please note that as the size of
the tracer decreases its interaction with the solvent medium
is favoured and 𝜂MR approaches 𝜂𝑠. Conversely, large trac-
ers perceive the bath particles more effortlessly and the vis-
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cosity they probe increases notably such that 𝜂MR∕𝜂𝑠 ≫ 1.
Nonetheless, both results agree very well on how the tracer
size influences microviscosity, which grows steadily with no
evidence of saturating to a bulk-like plateau. Similar results
have been previously obtained for a bath of colloidal spheres,
measured with active MR [38], highlighting that MR should
be employed cautiously to estimate the shear viscosity of
the bath, at least within this range of tracer sizes. Analo-
gously, the monotonic increase of viscosity with tracer size
has been reported in simulations of polymer melts [39] and
experiments on dilute suspensions of rod-like fd-viruses at
specific concentration ranges [40]. The analysis of the re-
sults in Figs. 2 and 3 provides further support to MR as a
technique on its own to measure the mechanical response of
the system to microscopic stresses, but not as a substitute to
macroscopic rheology. According to Squires [41], the rea-
son for this difference is that in MR the stress field induced
by the moving tracer is not affine, contrary to the case of
macroscopic rheology.

Finally, we apply a pseudo-empirical model derived by
Kalwarczyk and coworkers for the diffusion of tracers in poly-
mer matrices [28, 29]. This model describes the dependence
of microviscosity on the system characteristic lengths as an
exponential law of the type 𝜂MR = 𝜂𝑠 exp

[(

𝑅eff∕𝜉
)𝑎], where

𝑅eff is the effective radius of the tracer, 𝜉 = 0.32𝜎 marks
the mean free distance between the host phase elements, and
𝑎 = 0.56 is an exponent of order one. The interested reader
is referred to Section S5 of SM for additional details on the
calculation of these parameters. The optimal fitting curve
is shown in the inset of Fig. 3 (continuous green line). The
model describes correctly the microviscosity measured in the
simulations (empty circles), and predicts a saturation outside
the range of tracer sizes studied here. A similar saturation has
also been observed in experiments of polystyrene nanoparti-
cles within polymeric matrices of partially hydrolyzed poly-
acrylamide [42], and in dilute suspensions of rod-like viruses
with 𝐿∗ ≡ 𝐿∕𝜎 = 133 in the presence of spherical tracers
of size comparable to the characteristic lengths of the host
particles (64 ≤ 𝑑𝑡∕𝜎 ≤ 152) [40].

3.2. Effect of orientational order on the viscoelastic
properties of dense colloidal suspensions

Liquid-crystalline phases exhibit long range orientational
order, which is characterised by the nematic director. Or-
dering affects the overall mechanical properties, but most
prominently breaks the bath isotropy. To gain an insight into
the effect of the order on the mechanical properties of the
N and Sm phases, we have calculated their elastic and vis-
cous moduli at tracer diameters between 𝑑𝑡 = 1𝜎 and 3𝜎.
Similarly to the tendencies observed in the I phase, both 𝐺′

and 𝐺′′ increase with the tracer size (Figs. S3 and S4 of SM).
Indeed, 𝐺′′ is larger than 𝐺′ despite the fact that N and Sm
LCs are denser than the I phase discussed previously. Never-
theless, their loss tangent,  ≡ 𝐺′′∕𝐺′, shown in Fig. S7 of
SM, exhibits a decrease upon increasing tracer size, with the
profiles tending to collapse on a single curve at intermediate
frequencies. Although all loss tangents confirm the dominant

viscous nature of nematics and smectics, it is clear that N
and Sm LCs are perceived more and more solid-like by larger
tracers.

In passive MR, the anisotropic diffusion of the tracer can
be translated to different behaviours of the moduli in the paral-
lel and perpendicular directions to the nematic director. This
opens up even more the possibility of assessing the effect of
positional and orientational order on the viscoelastic proper-
ties of the N and Sm LCs which is certainly intriguing and
will be tackled below. Following the work by Hasnain and
Donald [43], the tracer’s MSD parallel, Δ𝑟2𝑡,∥, and perpendic-
ular, Δ𝑟2𝑡,⟂, to the nematic director may be used to estimate the
parallel (𝐺′

∥, 𝐺
′′
∥ ) and perpendicular (𝐺′

⟂, 𝐺
′′
⟂) components

of the elastic and viscous moduli. In the N phase, regardless
the tracer size, the perpendicular component of both elastic
and viscous moduli is larger than the component along the
nematic director (Fig. S8 of SM). Similar observations were
reported by Habibi et al. [44] in experiments of disodium
chromoglycate solutions displaying N phases. In our case,
this difference is caused by the tracer’s anisotropic diffusion,
being more hindered in the perpendicular direction due to the
barrier imposed by the oriented rods. Thereby, the system
exhibits a more solid-like in the perpendicular direction, with
𝐺′
⟂ > 𝐺′

∥. Nonetheless, we notice that for sufficiently large
tracers, the difference between both moduli becomes more
and more subtle, indicating that the system is more isotropic
as seen by larger tracers. This is a consequence of the space
perturbation caused by the tracer, breaking the nematic order
on its surroundings and “probing” a locally isotropic system.

An equivalently comprehensive analysis can be inferred
from the parallel (∥ ≡ 𝐺′′

∥ ∕𝐺
′
∥) and perpendicular (⟂ ≡

𝐺′′
⟂∕𝐺

′
⟂) components of the loss tangent for the N phase

which are depicted in the top panel of Fig. 4. Interestingly,
the loss tangents tend to acquire a very similar qualitative
and quantitative profile upon increasing tracer size. As such,
it is not the individual values of directional 𝐺′ and 𝐺′′ that
saturate to a plateau, but rather their ratio, which can be con-
sidered as an indicator of the occurrence of a local bulk-like
behaviour being perceived by the probe particle. Further-
more, Fig. 4(a) highlights an interesting crossover between
parallel and perpendicular loss tangents at low frequencies
as the tracer diameter increases from 1𝜎 to 2𝜎. More specifi-
cally, ⟂ > ∥ at 𝑑𝑡 = 1𝜎, while ⟂ < ∥ at 𝑑𝑡 ≥ 2𝜎. The
low-frequency domain corresponds to the long-time diffusive
regime, which dramatically depends on system packing and
ordering as well as on tracer size. Although both packing and
ordering are the same, tracers of different size perceive the
presence of surrounding rods differently and their dynamics
adapt to the same environment accordingly. Consequently,
while small tracers experience a dominant viscous-like char-
acter of nematics in the perpendicular direction, larger tracers
see this prevailing viscosity along the nematic director.

Contrary to the nematic case, the parallel components
of 𝐺′ and 𝐺′′ in smectics (Fig. S9 in SM) are larger than
their perpendicular components, most likely due to a less
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Figure 4: (colour on-line) Loss tangent in the directions parallel
(∥ = 𝐺′′

∥ ∕𝐺
′
∥, solid lines) and perpendicular (⟂ = 𝐺′′

⟂∕𝐺
′
⟂,

dashed lines) to the nematic director of a bath of hard sphero-
cylinders in the N (top panel) and Sm (bottom panel) phases
with tracer particle diameters 1𝜎, 2𝜎, and 3𝜎 represented by
black, red, and blue curves, respectively. Estimated errors are
delimited by the dotted lines.

hindered diffusion in the perpendicular direction to the ne-
matic director. This somewhat counter-intuitive result is due
to the trajectories that tracers preferentially explore while
diffusing through Sm LCs. In particular, small tracers spend
a significant amount of time in the quasi-2D spacing be-
tween contiguous layers, jumping from an inter-layer region
to another when random density fluctuations occur, as also
already established in the past [45]. By contrast, larger trac-
ers (𝑑𝑡 = 3𝜎) experience a smoother diffusion, where abrupt
jumps are rarely observed, and perceive the surrounding me-
dia, whose global ordering and packing are unchanged, as
more homogeneous than it actually is. In other words, the
layered arrangement of the Sm phase has moderate impact
on the dynamics of the tracer, which breaks the ordering and
ends up perceiving a different effective viscoelasticity.

To facilitate interpretation, Fig. 4(b) depicts the loss tan-
gent of the individual moduli components in Sm phase. No-
ticeably, at low frequencies,  ≃ 1 for 𝑑𝑡 = 2𝜎 in the parallel
direction as shown by the solid red line. This component ex-
hibits a non-monotonic behaviour as a function of the tracer
size, whereas it decreases continuously in the perpendicular
direction. Also different from the nematic case in Fig. 4(a),
the curves do not collapse for large tracers, and the mechani-
cal properties of the system, as probed by the tracer, continue
evolving for larger tracers. We believe that the non-monotonic
behaviour of the parallel component can also be due to the
change in the tracer’s dynamics with its size. As a result,
diffusion into the layer is most hindered for 𝑑𝑡 = 2𝜎, causing
the smallest 𝐺′′∕𝐺′ ratio observed in Fig. 4(b). In any case,

it should be noted that the typical indications of viscoelastic
behaviour, namely, a plateau in 𝐺′ and a minimum in 𝐺′′,
are not observed even for the case of 𝑑𝑡 = 2𝜎 in the parallel
component. As a matter of fact, the tracer’s MSD does not
exhibit the typical intermediate plateau that would prove a
localisation length (Fig. S10 in SM).
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Figure 5: (colour on-line) Microviscosities of a bath of hard
spherocylinders in the I (empty symbols), N (black symbols),
and Sm (red symbols) phases for different sizes of the tracer
particle. Top panel: microviscosity calculated in the three spa-
tial coordinates. Bottom panel: microviscosity in the parallel (∥,
solid circles) and perpendicular (⟂, solid diamonds) directions
to the nematic vector. Absolute errors are smaller than the size
of the symbols.

Finally, the microviscosity obtained from the low-fre-
quency trend of 𝐺′′ is shown in Fig. 5 for the three phases
studied in the 3D case (top panel) as well as the parallel
and perpendicular components to the nematic director in
the liquid-crystalline phases (bottom panel). According to
Fig. 5(a), the isotropic microviscosity is significantly larger
in denser states, and grows monotonically with the tracer
size but without reaching a plateau. More captivating is the
behaviour of the longitudinal and transverse components of
microviscosity depicted in Fig. 5(b). In the N phase the per-
pendicular component exceeds its parallel counterpart and
both grow monotonically with the size of the tracer. This
is consistent with what has been reported in experiments of
spherical probe particles diffusing in nematic suspensions
of prolate micelles [46] and fd-viruses [47]. Interestingly,
the spacing between the parallel and perpendicular microvis-
cosity decreases with increasing the diameter of the probe
particle similar to that previously observed in experiments
[46]. By contrast, in the Sm phase the perpendicular compo-
nent is surpassed by the parallel one, which in turn displays a
non-monotonic dependence on tracer size. Small tracers do
feel the surrounding ordering and naturally accommodate in
the region delimited by adjacent smectic layers. Accordingly,
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the residence time in the inter-layer region is much longer
for tracers with 𝑑𝑡 = 2𝜎 (Fig. S11 of SM), which results in a
lower mobility along the nematic director and explains the
non-progressive increase of the microviscosity in this direc-
tion. Furthermore, the preference of these tracer particles to
remain in the interstitial spaces between the smectic layers
favours their mobility across the quasi-2D region between
neighbouring layers, leading to a perpendicular microviscos-
ity that is smaller than that detected in N phases, despite the
Sm phase being significantly denser.

It is therefore evident that the interplay between the long-
range order of the host phase and the relative size of the tracer
to the bath particles has a major role to play in predicting the
viscoelastic properties of structured fluids. To the best of our
knowledge, this has only been discussed in the literature by a
limited number of works, particularly from the point of view
of MR and numerical simulations [48, 49, 50]. Certainly,
empirical scaling laws that neglect long-range ordering might
not be able to accurately predict the effective viscosity of
tracers diffusing in nanostructured fluids. Our results may
have relevant implications in the study of the shear of liquid-
crystalline phases or the transport of beads or impurities in
nanostructured materials.

4. Conclusions
Microrheology (MR) makes use of tracer particles to pro-

voke local deformations in the host fluid and hence measure
its viscoelastic properties on the tracer’s characteristic length
scales [7, 51]. It is therefore different from macroscopic rhe-
ology which probes the material’s response over much larger
length scales. MR has been successfully applied to the study
of colloids [5, 17, 52], polymers [53], gels [54, 55] and bi-
ological matter [40, 56]. However, much less attention has
been devoted to the implications on MR measurements of
the nanostructured ordering and associated symmetry break-
ing that some of the above-mentioned systems might exhibit.
LCs of colloidal particles are excellent model systems to pon-
der the effect of orientational and positional ordering on the
viscoelastic response along the relevant directions.

We notice that former experiments applied MR to molec-
ular and lyotropic LCs to study, respectively, the formation of
smectic domains in nematics of bent-core molecules [25] and
how viscoelasticity probed by MR compares to that probed
by macroscopic rheology [26]. However, these experiments
employed single-sized probes, neglecting how smaller or
larger tracers could perceive the order of the surrounding
nanostructured fluid, adapt their dynamics and eventually
produce distinct MR responses. The hypothesis that triggered
the present work was that only by scaling the characteristic
lengths of the host phase to the tracer size would it be possible
to have a full insight into the linear viscoelastic response of a
nanostructured fluid as probed by passive MR.

To test this hypothesis, we have performed DMC simula-
tions of isotropic and liquid-crystalline phases of colloidal
hard rods. Our goal was assessing the combined effect of
phase ordering and tracer size on the system response across
the relevant time scales of its structural relaxation. The key

lesson that can be learnt is that structure, dynamics and MR
are intimately correlated and, only if gauged with each other,
can pave the path to a comprehensive understanding of the vis-
coelastic behaviour of complex fluids. The striking evidence
of this apparently obvious conclusion is given by the analysis
of the microviscosity in the Sm phase. Its non-monotonic
dependence on the tracer size along the phase director sug-
gests that the effect of phase ordering should not be neglected
and that empirical scaling laws, merely based on geometrical
considerations, might not be especially accurate when assess-
ing MR in nanostructured fluids [28, 29, 30]. The impact
of long-ranged order is also fully appreciated when calculat-
ing the microviscosity experienced by the probe particle at
low frequencies, that is when 𝜂MR ∼ 𝐺′′(𝜔 → 0)∕𝜔. More
specifically, perpendicularly to the phase director, the micro-
viscosity of relatively small tracers (𝑑𝑡 ≤ 2𝜎) in the N phase
was found to be larger than that in the Sm phase. This was
ascribed to the typical arrangement of positionally-ordered
LCs, which constrains the tracer to the low-density, quasi-2D
region between adjacent smectic layers, thus favouring its dif-
fusion as compared to that observed in merely orientationally-
ordered phases. Larger tracers, which can no longer fit in the
inter-layer spacing of smectics, end up perceiving a microvis-
cosity that eventually becomes larger than that in the N phase.
On the other hand, the microviscosity along the Sm phase
director displays an unexpected non-monotonic behaviour.
From our analysis, compared to 𝑑𝑡 = 1𝜎 and 3𝜎 size tracers,
the long residence time of tracers with 𝑑𝑡 = 2𝜎 in the inter-
stitial regions between the layers, substantially diminishes
their capability to diffuse through the inter-layers, causing
a sharp increase in microviscosity when 𝑑𝑡 passes from 2𝜎
to 3𝜎. It thus results evident that geometrical elements (e.g.
tracer and system characteristic lengths), while indeed rele-
vant to gain a solid view on the system viscoelastic response,
should be assessed within a more inclusive scenario, where
long-ranged structural ordering and its implications on tracer
mobility play fundamental roles.

The analysis of the loss tangent,  ≡ 𝐺′′(𝜔)∕𝐺′(𝜔), in-
dicates that isotropic and liquid-crystalline phases are essen-
tially viscous at small frequencies, but then exhibit a gradually
increasing elastic response and mature into viscoelastic at
larger frequencies. This tendency results to be dramatically
determined by the tracer size in isotropic phases, where from
 ≈ 10 at 𝜔𝜏 = 1 it decreases to  ≈ 2 upon increasing
the tracer diameter from 𝑑𝑡 = 0.5𝜎 to 8𝜎. Equally interest-
ing is observing that the loss tangent tends to a plateau for
sufficiently large tracers (𝑑𝑡 ≥ 2𝜎), indicating that a "bulk"
behaviour can be eventually achieved within the limits im-
posed by microrheology, which do not necessarily overlap
with those of macroscopic rheology. Similar qualitative and
quantitative trends are also found in N and Sm LCs, sug-
gesting that larger and larger tracers have an increasingly
reduced perception of the nanostructure of the surrounding
medium. In other words, sufficiently large probe particles see
the bath as a continuous fluid whose nanostructure is not rel-
evant. This explains why the microviscosity in the Sm phase
decreases abruptly when 𝑑𝑡 increases from 2𝜎 to 3𝜎. As a
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confirmation of the strong link existing between structure,
dynamics and MR, these considerations are consistent with
the change in the tracer dynamics that one observes in Sm
phases along the director. The rattling-and-jumping dynam-
ics at 𝑑𝑡 = 1𝜎, with the probe sporadically hopping from one
inter-layer region to another, transforms into a merely rattling
dynamics at 𝑑𝑡 = 3𝜎, with the probe effectively missing the
presence of a layered structure.

Finally, we would like to stress that DMC simulations ne-
glect the fluid-mediated hydrodynamic interactions between
tracer and bath particles, which might have a non-negligible
impact on diffusive properties and consequently on MR [40].
While this impact is expected to be especially relevant if trac-
ers were much smaller than the mesh size of the network of
rods [40, 57], which is not the case explored here, we are
currently working on a new version of the DMC technique
that will incorporate HI effects and eventually provide an
additional degree of precision to the measurements reported
here. A step in this direction would imply to treat HI within
the induced force method [34, 58], which estimates the effect
on the mobility of each particle due to the presence of its
surrounding neighbours. Each particle’s mobility matrix is
related to integrals of the Oseen tensor over particle surfaces,
which can be evaluated numerically. The main advantage
of this methodology is that the mobility matrices can be ob-
tained unequivocally for spherical particles as well as for
particles with axial symmetry such as spherocylinders.
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