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ABSTRACT
Distyly is a floral polymorphism with reciprocal placement of male and female structures, heteromorphic self-
incompatibility, and other ancillary traits. However, breeding system breakdowns and loss of polymorphism are 
common. Here we traced the diversification of breeding strategies in the type genera of tribes Palicoureeae and 
Psychotrieae and discussed the evolution of distyly in a phylogenetic framework. We used literature and field 
information for breeding systems transitions in 46 species of Palicourea and Psychotria. Beyond distyly, we found 
four additional breeding systems, including monomorphism with herkogamy, homostyly (without herkogamy), 
monoecy and dioecy. Breeding transitions arose independently and were mostly derived from distyly. Only two 
species presented monomorphism as an intermediate state into gender specialization. It was not possible to evaluate 
the origin and evolutionary pathways for distyly in Psychotria and Palicourea as a whole, since distyly seems to be 
ancestral to their diversification. Breeding transitions in Psychotria and Palicourea appeared to be phylogenetically and 
biogeographically independent and occurred mostly in islands or isolated forest fragments, with distinct divergence 
times. Breeding transitions were not related to changes in ploidy. We propose that evolution of breeding transitions 
in Psychotria and Palicourea represent phylogenetically independent strategies to reproductive assurance in isolated 
or disturbed habitats.
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Introduction
Distyly is a genetically controlled floral polymorphism 

with two morphs which differ in the expression of 
herkogamy (Ganders 1979; Barrett 1992). Distylous species 
present flowers with a long-styled morph (pin), with anthers 

below the stigma (approach herkogamy), and a short-
styled morph (thrum), where anthers are placed above the 
stigma (reverse herkogamy) (Cardoso et al. 2018). In truly 
distylous species, female (pistil) and male (stamens) sexual 
organs of opposite floral morphs are placed at reciprocal 
height (Barrett 2019). In addition to the morphological 
floral syndrome, many distylous plants usually present a 
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diallelic self-incompatibility system, in a way that ovule 
fertilization occurs only when a flower receives pollen from 
the opposite morph. Altogether, the morphological variation 
and incompatibility system are interpreted as mechanisms 
to promote seed production through cross-pollinations 
(Ganders 1979; Barrett 1992; Barrett 2019).

Distyly is, however, an unstable breeding strategy 
(Barrett 2013; Jiang et al. 2018). The breakdown of distyly 
may result in loss of the polymorphism and acquisition of 
self-compatibility (Taylor 1989; Mast et al. 2006; Sakai & 
Wright 2008; Ferrero et al. 2009; Consolaro et al. 2011; 
Yuan et al. 2017). The breakdown of distyly commonly 
results into homostyly, with loss of intrafloral herkogamy 
and reproductive whorls placed at the same height within 
flowers (Ganders 1979; Yuan et al. 2017). Alternatively, 
the loss of the polymorphism can lead to the occurrence 
of populations with only one flower morph that resembles 
either the long-styled or short-styled morph (Ganders 
1979; Barrett 1992; Yuan et al. 2017). These are referred 
also as homostylous (e.g. Yuan et al. 2017), but since they 
retain herkogamy, they have also been referred to as pin- 
or thrum monomorphism (Cardoso et al. 2018). These 
atypical morphologies in distylous groups may occur in 
distinct ecological contexts, appearing in flowers of the 
same individual or different individuals (Sakai & Wright 
2008), kept only in isolated populations (Consolaro et al. 
2011), or be spread to the whole geographic distribution 
of the species (Rodrigues & Consolaro 2013).

Several authors have proposed hypotheses for the 
evolution of distyly. Ernst (1936), Mather & Winton (1941) 
and Baker (1966) framed the evolution of heterostyly under 
a strong genetic perspective, although these hypotheses 
differ in the temporal sequence of assumptions. Later, and 
particularly for the family Rubiaceae, Anderson (1973) 
proposed the “Morphological hypothesis” for the origin 
of distyly. In this model, the ancestral condition to distyly 
is a protandrous and self-compatible flower with delayed 
maturation and elongation of the style. The short-styled 
morph appears as a result of a mutation making the stigma 
matures below the anthers. The establishment of mutants 
occurs as the morphology enhances self-pollination and 
seed output. In Anderson’s (1973) scenario, the short-styled 
flowers of distylous Rubiaceae self-pollinate while the long-
styled flowers experience outcross pollination. Therefore, 
according to this hypothesis, the sex polymorphism 
evolved prior to the establishment of an incompatibility 
system. In contrast, the model proposed by Charlesworth 
& Charlesworth (1979) predicted the evolution of 
the incompatibility system before the morphological 
polymorphism. Specifically, under a context of inbreeding 
depression, the appearance of self-incompatibility would 
be rapidly selected in an homostylous and self-compatible 
morphology; then, mutations occurred, and reciprocal 
placement of anthers and stigma (long-styled and short-
styled morphs) would be favored in the population by 

avoiding self-interference, leading to the promotion of 
cross-pollination and fixation of distyly. Another model 
was proposed later by Lloyd & Webb (1992a; b), based 
on an ecological perspective by comparing the variation 
of flower morphology in distylous species and their close 
relatives. They predicted the evolution of distyly from an 
ancestral flower with approach herkogamy and partially 
outcrossing. Then, a dominant mutation for short style 
length would lead to a morph with reverse herkogamy 
(short-styled morph), which would spread in the population 
favored by pollinators promoting pollen flow between the 
two floral morphs. After that, ancillary traits (system of 
incompatibility and other floral polymorphisms) would 
evolve in this reciprocal herkogamous population and distyly 
with self-incompatibility would be finally established. Lloyd 
& Webb (1992a) considered the morphology of homostylous 
flowers as derived from distyly, caused by linkage breakdown 
of the supergene that controls the full heterostyly syndrome 
expression (Lloyd & Web 1992b). The most widely invoked 
selective pressure to explain distyly breakdown has been 
reproductive assurance (Yuan et al. 2017), although the 
breeding strategy transition would depend on genetic 
breakdown processes.

Aside from the wide occurrence of heterostyly across 
plant families, the ancestral state reconstruction has not 
been well documented outside the Amaryllidaceae (Graham 
& Barrett 2004; Santos-Gally et al. 2012), Boraginaceae 
(Schoen et al. 1997; Ferrero et al. 2009), Passifloraceae 
(Truyens et al. 2005), Primulaceae (Mast et al. 2006) and 
Plumbaginaceae (Costa et al. 2019). These studies allow us 
to comprehend if heterostyly evolved more than once in 
those families and which theoretical models for evolution 
can be inferred (Barrett & Shore 2008; Barrett 2019). 
Interestingly, these studies revealed different underlying 
mechanisms for the changes in the breeding system. For 
example, in Passifloraceae (Truyens et al. 2005) and in 
Primulaceae (Mast et al. 2006) breeding system transitions 
were attributed to changes in ploidy level and recombination 
in a supergene. In Narcissus L. (Amaryllidaceae) changes in 
the breeding system correlated with changes in functional 
pollinators (Pérez-Barrales et al. 2006; Santos-Gally et al. 
2012). Again, variation in ploidy level and inefficiency in 
pollination service in marginal habitats in Boraginaceae 
seemed to have driven evolutionary shifts in distylous 
breeding system (Schoen et al. 1997; Ferrero et al. 2009). 
Another interesting shift in the breeding system of distylous 
species involves gender specialized flowers, as explained by 
Beach & Bawa (1980). In their model, the origin of dioecy 
from distyly has been caused by a gradual process, triggered 
by a disruption in the disassortative pollen flow among the 
distylous morphs and a shift in pollinator fauna (e.g. long-
tongued to short-tongued bees), followed by unidirectional 
pollen flow and ultimately the selection of unisexual flowers, 
the female flower from the pin morph and the male flower 
from the thrum morph.
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Rubiaceae is one of the plant families with the largest 
number of distylous species, in which distyly seems to 
have evolved and been lost multiple times (Barrett & 
Shore 2008; Barrett 2019). Monomorphism (either pin or 
thrum) and homostyly are hypothesized to be alternative 
reproductive strategies derived from distyly in the Rubiaceae 
(Ganders 1979; Hamilton 1990), although the proper genetic 
mechanisms are yet to be detailed. The tribe Psychotrieae, 
holding more than 2,000 species, is traditionally considered 
to be monophyletic (e.g. Taylor 1996; Bremer & Eriksson 
2009) and, possibly, presents the largest number of distylous 
species in the Angiosperms (Naiki 2012). Among the genera 
considered in Psychotrieae, Psychotria and Palicourea present 
complex relationships. Recent studies supported the 
division of the genera into two sister tribes (Psychotrieae 
and Palicoureeae) based on molecular, morphological 
and chemical differences (Robbrecht & Manen 2006; 
Razafimandimbison et al. 2014; 2017). Despite the large 
number of distylous species, few studies have attempted 
to understand breeding system evolution for the groups. 
Sakai & Wright (2008) studied genetic relationships and 
breeding system transitions in 21 species of Psychotria 
in the Barro Colorado Island, Panama. They detected a 
repeated and independent evolution pattern of breeding 
system transitions derived from distylous ancestors. In the 
subfamily Rubioideae, Ferrero et al. (2012) pointed that 
distyly is ancestral to the Psychotrieae and Spermacoceae 
Alliances, suggesting that more detailed studies would be 
important to understand breeding system evolution in 
the Rubiaceae. These breeding transitions in Rubiaceae are 
sometimes linked to changes in ploidy, but a consistent 
pattern has not been detected for the family (Naiki, 2012).

One decade after the evolutionary studies of Sakai & 
Wright (2008) in the genus Psychotria, here we conducted 
a literature review and interpreted the breeding system 
evolution for a larger and worldwide sample of species of 
Psychotrieae and Palicoureeae, with a focus on their type 
genera. We particularly aimed to address the following 
questions: i) what breeding systems do occur in the species 
and whether are they derived from distyly?; ii) are the shifts 
in breeding systems associated with ecological conditions 
(e.g. isolated habitats) or polyploidy? iii) how many times has 
distyly evolved and been lost in these taxa and whether is 
there a phylogenetic signal for evolution of these traits?; iv) 
when, in a paleobotanical context, have breeding system shifts 
occurred?; v) which of the theoretical models for evolution 
and breakdown of distyly can be supported for these genera?

Material and methods

Selected species and breeding system data
We selected 46 species of Psychotria and Palicourea 

species for which breeding system information was known 

from field and/or herbarium observations and effectively 
published. The studied species (names and authority in 
Tab. 1; whenever necessary, Palicourea was abbreviated 
to P. and Psychotria to Psy.) belong to five biogeographic 
regions: Neotropical, Panamanian, Sino-Japanese, Oriental 
and Hawaiian (Holt et al. 2012; Razafimandimbison et al. 
2014). We used their up-to-date accepted names based on 
IPNI and World Flora Online (www.ipni.org and http://www.
wfo.org) and provided synonyms due to recent combinations 
(e.g. Delprete & Kirkbride 2016). We focused on the type 
genera (Palicourea and Psychotria) since they include most 
of the accepted species, and to avoid the ongoing taxonomic 
reorganization within the sister genera in each tribe.

We classified the breeding system of the species based 
on Ganders (1979), considering homostyly when flowers 
presented no herkogamy and monomorphism when all 
flowers had a morphology like one of the distylous floral 
morphs. We also included habitat information for the species, 
whether they occurred in insular, isolated or disturbed 
areas, or continental and pristine continuous habitats. 
Both breeding systems and ecological information were 
retrieved from literature and direct field observations. We 
added chromosome number information whenever possible 
based on CCDB (http://ccdb.tau.ac.il), Correa et al. (2010), 
and Kiehn & Berger (2020), and compared the data with 
chromosome numbers and ploidy levels observed for the 
genera and the Rubiaceae as a whole (Naiki 2012; Kiehn & 
Berger 2020). We tested if there was a relationship between 
ploidy levels and breeding system by contingency analysis 
and chi-square independence test (Sokal & Rohlf 1994).

Molecular data and analyses
We downloaded all DNA sequences available for species 

of the genera Psychotria and Palicourea in GenBank (www.
ncbi.nlm.nih.gov/genbank/) and maximized the number of 
species with the same sequences available. As a result, we 
focused on complete 45S ribosomal DNA (composed by 18S 
ribosomal RNA, internal transcribed spacer 1, 5.8S ribosomal 
RNA, internal transcribed spacer 2, and 26S ribosomal RNA). 
DNA sequences were aligned and edited in Geneious version 
11.0 (http://www.geneious.com, Kearse et al. 2012) using 
the MAFFT v. 7 algorithms (Katoh & Standley 2013). The 
nucleotides substitution model was estimated in Mega 7.0 
(Kumar et al. 2016) and the best model was selected using the 
AIC values. The phylogenetic relationship of the species was 
estimated through Maximum Likelihood analysis based on the 
GTR model in Mega 7.0 (Kumar et al. 2016). Node supports 
were estimated by performing 1,000 bootstrap replications 
(Felsenstein 1985). Branch lengths and divergence times 
were estimated rooting and calibrating the tree with Faramea 
multiflora A. Rich. as an outgroup and the estimated age for 
fossil records of the genus Faramea Aubl. as the Oligocene 
(Graham 2009). The divergence times of species with shifts 
in their breeding system were estimated using the fossil-
calibrated phylogenetic tree (using ~34 mya for Faramea). 

http://www.ipni.org
http://www.wfo.org
http://www.wfo.org
http://ccdb.tau.ac.il
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.geneious.com
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Table 1. Studied species of Palicourea (P.) and Psychotria (Psy.). The accepted names used through the text is followed by the GeneBank reference; recent synonyms due to new combinations; 
breeding systems; habitat of breeding system studies, either insular, fragmented or continental and relatively pristine; references for breeding system information; and level of ploidy 
(chromosome number). Pin-mono = Pin-monomorphism, Thrum-mono = Thrum-monomorphism.

Accepted name (World Flora) Genbank reference Recent Synonyms Breeding system Habitat Breeding system reference Plody 2n

Palicourea alpina (Sw.) DC. KJ804878.1 Homostyly Island Tanner 1982

P. calophlebia Standl AF149321.1 Distyly Fragment Taylor 1997

P. corymbifera (Müll.Arg.) Standl. AF149320.1 Distyly Fragment Santos 2016

P. crocea (Sw.) Schult. AF149322.1 Distyly Fragment Costa & Machado 2017

P. semirasa Standl. AF149324.1 Distyly Fragment Lau & Bosque 2003

P. guianensis Aubl. AF072010.1 Pin-mono Continental Taylor 1997

P. lasiorrhachis Oerst. AF072009.1 Distyly Continental Feinsinger & Busby 1987 44

P. macrobotrys (Ruiz & Pav.) Schult. AF149335.1 Homostyly Fragment Coelho & Barbosa 2003

P. macrocalyx Standl. KC480539.1 Distyly Fragment Taylor 1989

P. montivaga Standl. KC480540.1 Thrum-mono Fragment Taylor 1989

P. padifolia (Willd. ex Schult.) Taylor & Lorence AF072008.1 Distyly Fragment Ree 1997 44

P. petiolaris Kunth AF149337.1 Distyly Continental Sobrevilla et al. 1983

P. pittieri Standl. AF149338.1 Distyly Island Sakai & Wright 2008

P. rigida Kunth AF149342.1 Distyly Continental Machado et al. 2010 22

Psychotria cuspidata Bredem. ex Schult. EF667969.1 P. acuminata (Benth.) Borhidi Distyly Fragment Bawa & Beach 1983

Psy. brachiata Sw. AF072001.1 P. brachiata (Sw.) Borhidi Pin-mono Continental Faivre & McDade 2001

Psy. gracilenta Müll. Arg. AF072004.1 P. gracilenta (Müll. Arg.) Delprete & Kirkbr. Pin-mono Island Sakai & Wright 2008 44

Psy. nuda (Cham. & Schltdl.) Wawra AF072053.1 Distyly Fragment Silva & Vieira 2015 22

Psychotria capitata Ruiz & Pav. AF072005.1 P. violacea (Aubl.) A. Rich Distyly Island Sakai & Wright 2008 22/44

Psy. carthagenensis Jacq. KC480533.1 Pin-mono Fragment Consolaro et al. 2011 44

Psy. cephalophora Merr. KJ804900.1 Distyly Island Watanabe et al. 2015

Psy. chagrensis Standl. AF072051.1 Distyly Island Sakai & Wright 2008

Psy. deflexa DC. AF072006.1 P. deflexa (DC) Borhidi Distyly Continental Sá et al. 2016 32

Psy. elata (Sw.) Hammel AF072011.1 P. elata (Sw.) Borhidi Distyly Fragment Silva & Vieira 2015 44

Psy. grandiflora H.Mann AY350670.1 Distyly Island Sohmer 1978

Psy. grandis Sw. KJ804909.1 Distyly Island Sakai & Wright 2008

Psy. hathewayi Fosberg AY350664.1 Distyly Island Sohmer 1978

Psy. hexandra H. Mann. AF034907.1 Distyly Island Sohmer 1977
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Accepted name (World Flora) Genbank reference Recent Synonyms Breeding system Habitat Breeding system reference Plody 2n

Psy. hobdyi Sohmer AF034906.1 Distyly Island Sohmer 1977 88

Psy. hoffmannseggiana (Willd. ex Schult.) Müll.Arg. EF667970.1 P. hoffmansegiana (Willd. ex Schult.) Borhidi Pin-mono Island Sakai & Wright 2008 22

Psy. horizontalis Sw. AF072047.1 Distyly Island Sakai & Wright 2008

Psy. limonensis K. Krause AF072052.1 Distyly Island Sakai & Wright 2008

Psy. manillensis Bartl. ex DC. AF072025.1 Monoecy Island Watanabe et al. 2015 84

Psy. mapourioides DC. AF072040.1 Homostyly Fragment Pers. obs. 40

Psy. marginata Sw. AF072049.1 Distyly Island Sakai & Wright 2008 22/24

Psy. micrantha Kunth AF072048.1 Pin-mono Island Sakai & Wright 2008

Psy. nervosa Sw. AF072046.1 Distyly Continental Hernández-Ramírez 2012 22

Psy. cyanococca Seem. ex Dombrain AF071998.1 P. cyanococca (Dombrain) Borhidi Distyly Island Sakai & Wright 2008 22

Psy. poeppigiana Müll.Arg. AF071993.1 P. tomentosa (Aubl.)Borhidi Distyly Continental Coelho & Barbosa 2004 44

Psy. pubescens Sw. AF071997.1 P. berteroana (DC.) Borhidi Distyly Island Sakai & Wright 2008

Psy. racemosa Rich. AF071995.1 P. racemosa (Aubl.)Borhidi Pin-mono Island Sakai & Wright 2008

Psy. asiatica L. AF072035.1 Dioecy Island Watanabe et al. 2013 22/44

Psy. serpens L. AF072036.1 Distyly Island Sugawara et al. 2014 22

Psy. tenuifolia Sw. AF072050.1 Pin-mono Island Sakai & Wright 2008

Psy. trichophora Mull.Arg. AF149407.1 P. trichopbora (Müll. Arg.) Delprete & Kirkb. Distyly Fragment Sá et al. 2016 22

Psy. viridis Ruiz & Pav. FJ208620.1 Distyly Fragment Pers. obs. 44

Coussarea hydrangeifolia (Benth.)  
Benth. & Hook. f. ex Müll. Arg. EU145360.1 Distyly Pereira 2007 22

Faramea multiflora A.Rich. ex DC. EU145363.1 Distyly Consolaro 2008 22

Hedyotis acutangula Champ. ex Benth. HQ148754.1 Distyly Wu et al. 2010

Oldenlandia pulcherrima (Dunn) Chun. JF976500.1 Distyly Liu et al. 2012 18

Mussaenda lancipetala X.F.Deng & D.X.Zhang KM005547.1 Pin-Mono Duan et al. 2018

Mussaenda macrophyla Wall. KM005544.1 Distyly Duan et al. 2018 22

Mussaenda shikokiana Makino KC339498.1 Dioecy Duan et al. 2018

Rudgea hostmanniana Benth. AF072014.1 Distyly Zappi 2003

Rudgea stipulacea (DC.) Steyerm. JX155099.1 Distyly Zappi 2003

Rudgea virburnoides (Cham.) Benth. KJ804983.1 Distyly Zappi 2003

Table 1. Cont.
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Besides Faramea multiflora, we included other species as 
outgroups to allow a better representation and support to the 
ancestral state inference (see Tab. 1 for names and authority): 
a species of another Rubioideae tribe, Coussareeae; three 
species in the sister Spermacoceae Alliance; two less related 
species inside the Psychotrieae Alliance itself; and three 
Rudgea Salisb., a sister genus to Palicourea and Psychotria inside 
the Psychotrieae Alliance. The availability of DNA sequences 
and breeding system information was also considered for the 
selection of the outgroups.

We traced the ancestral states for the breeding system in 
species of Psychotria and Palicourea (and whenever possible 
to the outgroups) based on the consensus phylogenetic tree. 
Breeding system character state reconstruction was built-up 
using maximum likelihood in Mesquite 2.5 (Maddison & 
Maddison 2008). We also used trace characters over trees 
with maximum likelihood. Breeding system information was 
categorized as 0 – monomorphism, 1 – distyly, 2 hosmostyly, 
3 – dioecy and 4 – monoecy. We used stochastic mapping 
character reconstruction using continuous Markov’s chain 
model, which allows trait changes in all possible evolutionary 
pathways (Nielsen 2002). Independent evolution of the 
breeding systems of the studied species was calculated using 
Pagel’s Lambda considering free homoplasy of characters, 
which calculates likelihoods using a speciation/extinction 
model reduced from the BiSSE model. This index ranges 
from zero, which means no phylogenetic signal in the trait, 
to one meaning strong phylogenetic signal in the trait. Low 
likelihood values (e.g. closer to zero) indicate independent 
trait evolution (Maddison et al. 2007).

Results

Taxa breeding system and distribution
Out of the 46 studied species (Tab. 1), 31 were truly distylous 

and 15 presented other breeding systems. We recorded ten 
species with monomorphism, mostly pin-monomorphism 
with stigmas above the anthers (except Palicourea montivaga, 
which is thrum-monomorphic), three homostylous species, 
one dioecious species and one monoecious species. Among the 
outgroups, most were typically distylous. However, Mussaenda 
lancipetala is thrum-monomorphic and Mussaenda shikokiana 
is dioecious. Dioecy is reported for Coussarea, although the 
studied species is truly distylous. Breeding system transitions 
were commonly associated with island populations and isolated 
forest fragments, 11 in 15 transition cases, although those 
habitats were also more common among the studied species 
(see Tab. 1).

The chromosome number data obtained was still 
inconclusive to define ploidy trends. Studied species were 
either diploid (2n = 2x = 22/24), tetraploid (2n = 4x = 44) or 
octoploid (2n = 8x = 88/84) with a few aneuploidy cases. For 
the 21 species which we got chromosome number estimates 

(Tab. 1), only six showed anomalous distyly and only one 
was diploid. Among the truly distylous, seven species were 
diploid and eight species polyploid. A chi-square test for the 
contingency analysis showed no significant dependence 
between breeding system and ploidy (p=0.098). Limited 
data preclude finer analyses for chromosome data.

Phylogenetic inference
The phylogenetic relationships between Psychotria and 

Palicourea species was inferred using 716bp following the 
GTR nucleotides substitution model (Fig. 1). We found 
two groups of species of the two genera which were clearly 
separated from Rudgea species (84 bootstrap) and from 
the other outgroups. The first group included exclusively 
Neotropical species of Psychotria (Heteropsychotria) and 
Palicourea, all in the tribe Palicoureeae (26 species). The 
second group was distinct from the first with a support of 
49 bootstrap, and included species of heterogeneous origin 
(Fig. 1) but all from the tribe Psychotrieae (20 species). 
Although some recent synonyms may indicate otherwise, 
the accepted names in The World Flora were all congruent 
with phylogenetic placement.

Ancestral state inference and breakdown of distyly
The mating system transitions were mostly derived from 

distyly and were present across the species phylogeny, both 
in tribe Palicoureeae (eight transitions) and Psychotrieae (six 
transitions). The divergence time analyses indicated tribe 
divergence ca. 25 mya (Fig. 1). Dioecy and monoecy appeared 
only in species of Psychotrieae of the Sino-Japanese 
regions, and the divergence time analyses indicated they 
arose up to ca. 20 mya. in Psy. manillensis. Homostyly and 
monomorphism shifts were recorded in 12 species, mostly 
in the Neotropics, and occurred mostly in the Pliocene and 
Pleistocene (less than five mya). However, Psy. racemosa, Psy. 
brachiata (Palicoureeae) and Psy. mapourioides (Psychotrieae) 
may have diverged earlier, up to ca. 20 mya. The 14 shifts in 
breeding system seemed to have evolved independently of 
the phylogenetic similarities between the studied species 
(Pagel’s lambda = 0.21.)

Discussion
Our results showed evolutionary transitions in breeding 

systems in species of Psychotria and Palicourea as derived 
from distyly. Shifts in the breeding system and anomalous 
distyly appeared independently multiple times across the 
phylogenetic analyses, with different types of breeding 
systems and with at least one possible reversion to a distylous 
stage. Monoecy and dioecy appeared only in Asian taxa and 
were of Miocene origin, while homostyly and herkogamous 
monomorphism occurred mostly in Neotropical taxa and 
appeared mostly later in the ancestral state reconstruction. 
These trends are discussed in detail below.
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Figure 1. Phylogenetic consensus tree of Psychotria and Palicourea species (Rubiaceae) inferred by maximum likelihood of rRNA 
sequences. Numbers at branches indicate bootstrap values. Taxonomic classifications and Biogeographical regions followed Holt et 
al. (2012) and Razafimandimbison et al. (2014). Trace over tree breeding system information and estimated transitions are presented 
in different colors (gray branches indicated undefined ancestral breeding system). Tree was rooted and calibrated with Faramea fossil 
record (~34 mya) to infer divergence times. Different colors in species names represent different breeding system strategies. Bars 
represent standard deviation of divergence times.
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Breeding systems
Most species analyzed here were truly distylous with 

different flower morphs in the studied populations. We did 
not finer analyses of distylous species for changes in mating 
systems or isoplethy, which may precede distyly breakdown 
(Sá et al. 2016), but most distylous species here are self-
incompatible and distyly is functional. Despite our limited 
sample (possibly less than 10 % of the species of either 
group) we found in Palicourea and Psychotria species almost 
all the kinds of breeding transitions described in literature, 
including classical homostyly without herkogamy, pin- and 
thrum-monomorphism, monoecy and dioecy (Barrett 2019). 
But monomorphism was by far the most common kind of 
breeding deviation in the species.

The occurrence of monomorphism in species of 
Psychotria and Palicourea may be due to the variation in 
self-incompatibility expression in Rubiaceae (Bawa & 
Beach 1983). The weakening or breakdown of physiological 
incompatibility can lead to unbalanced population morph 
ratio (unisoplethy) and even to the establishment of 
monomorphic populations (Sá et al. 2016; Barrett et al. 
1989). Among the species of our study, only P. montivaga 
showed short-styled, thrum-monomorphism (reverse 
herkogamy; Taylor 1989), all the other transitions were 
pin-monomorphic with approach herkogamy. The exposure 
of pin stigma and possibly incompatibility breakdown may 
explain why, most of the time, the long-styled morph is 
the one fixed in monomorphic populations and species 
(Arroyo et al. 2002; Sakai & Wright 2008; Barrett 2015; 
Balogh & Barrett 2016). It is hypothesized that the approach 
herkogamy in pin flowers has a better performance in 
founding populations since they are more likely to receive 
pollen grains than the stigma in thrum flowers (Baker et al. 
2000). Moreover, in genetic models of distyly expression 
in other angiosperms, the long-styled morph genotype is 
commonly recessive (ss), and the short-styled morph is 
heterozygote (Ss) (Dulberger 1964; Barrett 2019). Thus, 
the allelic frequency (s/S) in distylous population under 
negative frequency-dependent selection is respectively 3:1, 
and the odds of losing the S allele is much greater than the 
odds of losing the s allele. If this model holds for Rubiaceae, 
this can be the reason why pin-monomorphic populations 
of Psychotria and Palicourea are more common than thrum-
monomorphic populations.

The monomorphism of Psy. hoffmansegianna, Psy. 
racemosa, Psy. brachiata, Psy. tenuifolia, Psy. micrantha 
(Sakai & Wright 2008), Palicourea guianensis (Taylor 
1997) and P. montivaga (Taylor 1989) were reported in 
island populations studies in Central America. In Psy. 
carthagenensis the monomorphism was also associated 
with populations somewhat isolated or disturbed, or in 
the edge of species distribution range (Consolaro et al. 
2011, E. Rodrigues unpublished studies). All monomorphic 
populations of Palicourea and Psychotria studied so far are 

self-fertile and are viewed as examples of the advantage of 
selfing and reproductive assurance as strategies in colonizing 
islands or marginal distribution habitats, as predict by 
Baker’s law (Baker 1967; Pannel et al. 2015). Evolutionary 
studies on distyly showed that breeding system variation 
across populations (distyly and monomorphism with 
approach herkogamy) were associated with differences 
in pollinators morphology (short-tongued pollinivorous 
and long-tongued nectivorous), as in Narcissus papyraceus 
(Amaryllidaceae) (Pérez-Barrales & Arroyo 2010). In 
contrast, the monomorphism in populations of Luculia 
pinceana (Rubiaceae) seems to be linked to founder effect 
events and differences in the self-incompatibility of the 
floral morphs (Zhou et al. 2012). Founder effect may also be 
responsible for the fixation of monomorphism in species and 
populations of Palicourea and Psychotria. Among the studied 
species, there are records of truly distylous populations 
for Psy. hoffmansegianna, Psy. racemosa and P. guianensis in 
Brazilian forests (Sá et al. 2016, E. Rodrigues unpublished 
studies), while the same species are monomorphic in 
island habitats (Sakay & Wright 2008). Homostyly without 
herkogamy was reported in P. macrobotrys, P. alpina and 
Psy. mapourioides. In P. macrobotrys homostyly occurred 
in marginal habitats of the species distribution (Coelho & 
Barbosa 2003) and in P. alpina in an island population in 
Jamaica (Tanner 1982). In these species, homostyly seems 
to be fixed at the species level, since there are no records 
of distyly in either species elsewhere (Taylor 1997). In Psy. 
mapouriodes, homostyly occurred in a population in the 
Brazilian Northeastern region (Parque Estadual Mata do 
Pau-Ferro, E. Rodrigues, pers. obs.) in a rain forest fragment 
isolated amid the dry Caatinga vegetation (Veloso et al. 
1991). Contrastingly, in forests of the Cerrado region, the 
species appears to be truly distylous (Tangará da Serra, 
Mato Grosso; Parque Nacional de Brasília, Distrito Federal 
Brazil, E. Rodrigues, pers. obs).

Classic homostyly has been considered a result of 
recombination in the distylous supergene, as in Primula 
(Conti et al. 2000; Mast et al. 2006), in Turnera (Barrett 
& Shore 1987) and in Villarsia albiflora (Menyanthaceae) 
(Ornduff 1988). Despite the lack of similar genetic studies 
with the distylous Psychotria and Palicourea species, 
homostyly is probably analogous to the accepted for other 
distylous plants groups (Barrett & Shore 2008). Recent data 
has shown that the structure of the purported supergene 
is more complex (Barrett 2019) and recombination may be 
rarer (Cocker et al. 2018). However, homostyly occurred 
independently at least in 45 species of Primula (Mast et 
al. 2006; Barrett 2019). Breakdown events and homostyly 
in Psychotria and Palicourea may represent similar events 
and offer a great model for the study of the evolution of 
the distyly expression and regulation.

Regardless of the genetic process which leads to distyly 
breakdown and homostyly, transitions will putatively depend 
on ecological pressures to be established in populations 
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(Richards 1998). Pollinator-mediated selection processes, as in 
Exochaenium Griseb. (Gentianaceae; Kisling & Barrett 2013), 
or founder effect, as in Plumbaginaceae (Costa et al. 2019) 
and Amsinckia (Boraginaceae; Schoen et al. 1997), may explain 
homostyly establishment in insular or isolated Rubiaceae 
populations. Thereby, ecological and biogeographic factors seem 
to influence the breeding system transitions for both Psychotria 
and Palicourea species, probably leading to a uniparental 
colonization or loss of one of the morphs when species 
colonize islands (Sakai & Wright 2008) or when populations 
are isolated by ecological factors such as disturbance, habitat 
fragmentation, or reduced pollination services (Consolaro et 
al. 2011; Zhou et al. 2012; Costa & Machado 2017). But other 
transitions, such as gender distinction, may be more complex 
and require a sequence of events.

Dioecy and monoecy were the breeding system in 
Psy. asiatica (Psy. rubra) and Psy. manillensis, respectively. 
The breeding system transition of both species occurred 
in the Japanese archipelago (Watanabe et al. 2013). 
Beach & Bawa (1980) predicted the evolution of dioecy 
from distyly by disruption of disassortative pollen flow 
between the distylous morphs under a context of shifts 
in pollinator fauna. Thomson & Barrett (1981) pointed 
out the importance of self-incompatibility ancestor in 
the evolution and selection of dioecy. However, for Psy. 
asiatica it is unknown if the species ancestors had self-
incompatibility or whether there are distylous populations 
outside the Japanese island, which hinders the evaluation of 
possible pathways for the evolution of dioecy from distyly. 
The monoecious Psy. manillensis also occurs in a Japanese 
island habitat. Putatively the closest related species of 
Psy. asiatica, Psy. manillensis is polyploid, suggesting that 
chromosome doubling might be responsible for the origin 
of male and female flowers in this species (Watanabe & 
Sugawara 2015). However, our phylogenetic reconstruction 
(see below) did not support this inference since the species 
appeared apart and possibly required monomorphism as 
intermediate stages from a hermaphrodite ancestor (Beach 
& Bawa 1980). A complex pathway to dioecy would also 
require disruptive selection in male and female sex allocation 
(Barrett 2002), usually associated with some degree of 
male sterility and selection of unisexual flowers. Actually, 
recent studies indicate polygamous populations of Psy. 
manillensis, with different flower morphologies and breeding 
behaviors (Watanabe et al. 2020). Thus, intermediate stages 
and self-interference may have played important roles on 
the evolution of unisexual flowers, as previously proposed 
(Casper & Charnov 1982; Charlesworth 1989; Charlesworth 
& Morgan 1991). In insular habitats, like the Japanese 
Islands, these evolutionary transitions to gender isolation 
may have ensured cross-pollination and eliminated the risks 
of interference between sexual functions.

Heterostyly has been postulated as rare or absent in 
islands (Pailler et al. 1998) and the breakdown of distyly 
has been observed during species colonization in oceanic 

islands (Barrett et al. 1989; Sakai & Wright, 2008; Barrett 
& Shore, 2008; Watanabe & Sugawara, 2015). However, 
this mating system transition seems to be species specific, 
since there are also truly distylous species in islands, such 
as Psy. cephalophora and Psy. boninensis (Hayata) Nakai and 
Psy. serpens in the Japanese archipelago (Sugawara et al. 
2014; Watanabe et al. 2015; Watanabe et al. 2013), and Psy. 
deflexa, Psy. chagrensis, Psy. marginata and other Psychotria 
species in Barro Colorado Island, Panama (Sakai & Wright 
2008). So, the breakdown of distyly and breeding transitions 
seems to not be more frequent in those habitats, at least 
in tribes Psychotrieae and Palicoureeae.

Different ploidy levels were present in typical and 
anomalous distylous species. No clear relationship 
among breeding systems and polyploidy was found. This 
relationship is not clear either for species of Amsinckia 
(Boraginaceae) (Schoen et al. 1997) and Turneraceae (Shore 
et al. 2006). There is also evidence for Rubiaceae species 
that polyploidization has no clear link with the breakdown 
of heterostyly (Naiki 2012). Although wider sampling 
may show otherwise, the breeding systems transitions 
of Palicourea and Psychotria do not seem to be related to 
chromosome number or polyploidy.

Phylogenetic insights
The phylogenetic reconstruction attempted here was 

limited to the species of Psychotria and Palicourea with 
both rRNA sequences and breeding system information, 
so that it is limited in scope, should be used cautiously, 
and has no taxonomic intent. However, it resulted in a 
topology that broadly agrees with recent phylogenetic 
studies in the Rubiaceae (Razafimandimbison et al. 2008; 
2014; 2017; Wikström et al. 2020). The clear exeption was 
the position of Rudgea, placed in Palicoureeae Alliance in 
Razafimandimbison et al. (2014) and here as a sister group 
Palicoureeae and Psychotrieae, probably a result of our 
limited sampling. In any case, the phylogenetic framework 
for the studied group is an ongoing discussion and may 
result in further reorganization.

Despite being limited by available breeding system 
information and rRNA sequences, our sample included 
species from the two tribes in similar proportions and 
from different biogeographical regions worldwide; and 
breeding system transitions appeared in both groups and 
regions. The multiple and apparently independent shifts 
were similar to the observed by Sakai & Wright (2008) for 
Barro Colorado Psychotria. Due to this ample distribution, 
we expect the shifting events will be even more numerous 
and independent whenever a wider sample of species of 
the tribes are put together. Numerous breeding systems 
shifts and distyly breakdown events have been described for 
Rubiaceae (Ferrero et al. 2012) and distylous angiosperms 
as a whole (Barrett 2019), and seem to be an homoplasic 
trait (e.g. Zhong et al. 2019).
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Distyly appeared as ancestral to the diversification of 
the genera Psychotria and Palicourea as previously proposed 
for the Psychotrieae Alliance (Ferrero et al. 2012). The 
breeding system ancestral state reconstruction for Psychotria 
and Palicourea species did not corroborate the model of 
evolution of distyly proposed by Anderson (1973). As far 
as we could see, there was no protandry as ancestral state 
or as breeding system deviation in the species of our study. 
The results of the phylogenetic reconstruction did not agree 
with Charlesworth & Charlesworth (1979) predictions 
either. Homostyly was mostly derived from distyly and 
there was little evidence of homostyly as ancestral breeding 
system or reversion to distyly from homostyly. Our results 
corroborate Hamilton (1990) and Lloyd and Webb (1992a; 
b) predictions about derived floral morphology from distyly. 
As they both proposed, homostyly and monomorphism 
were basically derived from distyly. However, the breeding 
system phylogenetic reconstruction of our study does not 
allow inferences for the evolution of distyly using Lloyd and 
Webb (1992a) model. Distyly seems to have been already well 
established before the diversification of the Psychotrieae 
Alliance (Ferrero et al. 2012). Further studies and addition 
of more species of Psychotria and Palicourea, or even at the 
family level, will be required to elucidate the evolution of 
the floral polymorphism, making clear what is the ancestral 
condition of distylous Rubiaceae.

The breeding system transitions in Psychotria and 
Palicourea seemed to have occurred in distinct geological 
times. The Sino-Japanese species, which distyly breakdown 
events involved gender specialization, had their estimated 
diversification before the Miocene (more than 10-13 mya), 
while the Neotropical species, which distyly breakdown events 
led to monomorphism, had their estimated diversification 
mostly less than five mya, in the Pliocene and in the 
Pleistocene (nine out of 12 species). In the Miocene, under 
a warmer climate, the Sino-Japanese flora presented extensive 
humid forests (Tanai 1972; Hsu 1983). In the Neotropics, 
dry and humid forests had multiple expansion cycles during 
the Pleistocene and even earlier than that (Ratter 1992; 
Oliveira-Filho and Ratter 1995; Werneck et al. 2012). The 
species with breakdowns in distyly evolved under climate 
shifts of the Miocene and Pleistocene that have been seen 
as trigger mechanisms for species diversification (Tanai 
1972; Antonelli & Sanmartín 2011). In addition, in these 
new colonizing areas scenario, distyly breakdowns may have 
been strategies for reproductive assurance (Yuan et al. 2017).

The diverse breeding systems observed for the studied 
Psychotria and Palicourea derived from distyly and evolved 
independently across the species of this study. They were 
not associated with the tribe phylogenetic divisions either, 
evolving independently in Psychotria and Palicourea of 
different origins and possibly at different geological times. 
Despite limited sampling, transitions did not appear to 
be linked to ploidy changes either. Nevertheless, breeding 
system transitions in Psychotria and Palicourea were reported 

in populations and species that occurred in islands or 
relatively isolated forest habitats, ecological scenarios 
where founder effect may have played an important role 
in establishment of species and populations with breeding 
systems derived from distyly. Our results indicate that, 
although distyly is widespread in Psychotria and Palicourea 
across their Pantropical distribution, these plants repeatedly 
evolved alternative breeding strategies, possibly to ensure 
reproductive success in their diversity of habitats.
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