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Abstract. We study the oscillator ẍ + n2x + h(x) = p(t), where h is a
piecewise linear saturation function and p is a continuous 2π-periodic
forcing. It is shown that there is recurrence if and only if p satisfies the
Lazer–Leach condition. This condition relates the n-th Fourier coefficient
of p(t) with the maximum of h and was first introduced to characterize
the existence of periodic solutions.
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1. Introduction

For n ∈ N = {1, 2, . . .}, consider the forced oscillator model

ẍ + n2x + h(x) = p(t), (1.1)

where h, p ∈ C(R) are bounded and p is 2π-periodic. The n-th Fourier coeffi-
cient of p is given by:

p̂n =
1
2π

∫ 2π

0

p(t)e−int dt.

In the linear case h = 0, it is a well-established fact that solutions of (1.1) are
2π-periodic (and hence bounded) if p̂n = 0, and otherwise unbounded and non-
recurrent due to resonance phenomena. In [10], Lazer and Leach studied the
case when h has two distinct finite limits h(±∞) = limx→±∞ h(x) at infinity
and all values of h lie between those limits. They were able to show that (1.1)
has a 2π-periodic solution if and only if

π|p̂n| < |h(+∞) − h(−∞)|. (1.2)
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Later, it was proven in [2] that the negation of this inequality implies that all
solutions x(t) satisfy

lim
|t|→∞

[
x(t)2 + ẋ(t)2

]
= ∞. (1.3)

See also [17] for a previous related work. Results with respect to boundedness
were obtained in [14]. There, it was shown that the same condition (1.2) leads
to the boundedness of all solutions in the special case where h = hL with L > 0
is the piecewise linear function given by

hL(x) =

⎧⎪⎨
⎪⎩

L if x ≥ 1,

Lx if |x| ≤ 1,

−L if x ≤ −1,

provided that p ∈ C5(R) is 2π-periodic (see also [6] for a related result with a
discontinuous h). Moreover, this led to the insight that almost every solution
x(t) is Poisson stable, which can be understood as follows in the context of
2π-periodic systems. There is a sequence of integers {σn}n∈Z with σn → ±∞
as n → ±∞ such that

|x(t + 2πσn) − x(t)| + |ẋ(t + 2πσn) − ẋ(t)| → 0 as |n| → ∞,

uniformly with respect to t ∈ [0, 2π]. In the same year, Liu obtained a similar
result for general h ∈ C6(R) such that lim|x|→∞ xkh(k)(x) = 0 for 1 ≤ k ≤ 6,
if p ∈ C7(R) is 2π-periodic [9]. Recent results for more general nonlinearities
can be found in [15,18]. All latter results were obtained by using variants of
Moser’s small twist theorem. However, the application of any such invariant
curve theorem requires a considerable degree of smoothness of either h(x)
or p(t). It is an interesting question if any of the nice features of solutions
survive if only mild regularity assumptions are made. In the present paper, we
investigate this question for the piecewise linear equation:

ẍ + n2x + h1(x) = p(t). (1.4)

By rescaling ẍ+n2x+hL(x) = p(t), one obtains the function h̃L(x) = sign(x)
for |x| ≥ 1

L and h̃L(x) = Lx for |x| < 1
L . Since the slope L has basically

no effect on the dynamics, we have normalized the equation by setting L =
1. Besides giving a good starting point for more general nonlinearities, such
piecewise linear oscillators are also known in the engineering literature. For
example, (1.4) can be considered as a model for an oscillator with stops (see
[5] and also [14] for the derivation of (1.4)). Our main result is the following.

Theorem 1.1. Suppose p ∈ C(R) is 2π-periodic and satisfies the Lazer–Leach
condition π|p̂n| < 2. If x(t) = x(t; x̃, ṽ) denotes the solution of (1.4) with the
initial condition x(0) = x̃ and ẋ(0) = ṽ; then, x(t; x̃, ṽ) is Poisson stable for
almost every (x̃, ṽ) ∈ R

2.

This theorem is an improvement of Corollary 2.1 in [14]. The statement
is also true for the discontinuous limit case.
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Theorem 1.2. Suppose p ∈ C(R) is 2π-periodic and satisfies the Lazer–Leach
condition π|p̂n| < 2. Moreover, assume that ∂N is countable, where N = {t ∈
R : |p(t)| = 1}. If x(t) = x(t; x̃, ṽ) denotes the solution of

ẍ + n2x + sign(x) = p(t), (1.5)

with the initial condition x(0) = x̃ and ẋ(0) = ṽ, then x(t; x̃, ṽ) is Poisson
stable for almost every (x̃, ṽ) ∈ R

2.

Remark 1.3. (a) In Theorem 1.1, the Lazer–Leach condition is not only suf-
ficient but also necessary for recurrence, since all solutions satisfy (1.3)
if π|p̂n| ≥ 2 [2].

(b) Equation (1.5) is basically the case considered in [6]. Note that one first
has to define a proper notion of solutions to (1.5) (see Definition 5.1).
We also refer the reader to [11] for a discussion of chaos in second-order
equations with signum nonlinearities.

(c) Theorems 1.1 and 1.2 show that the set of initial conditions such that
(1.3) holds has measure zero. The authors know of no example exhibit-
ing unbounded orbits, provided the assumptions of these theorems are
satisfied.

The proof to Theorem 1.1 starts out similar to those of the boundedness
results stated above. A twist map P̄ : (τ̄ , v) �→ (τ̄1, v1) on the annulus S1 ×
[0,∞[ is constructed so that its orbits correspond to large amplitude solutions
of (1.4). The construction is done in such a way that P̄ is recurrent if and only
if the time-2π map associated with (1.4) is recurrent. The lift of P̄ has the
form {

τ1 = τ + 2π − L(τ)
v + R(τ, v),

v1 = v + L′(τ) + S(τ, v),

where L ∈ C2 is a positive 2π-periodic function and R,S ∈ C1. Our main
abstract result (Theorem 3.1) states that any such map is recurrent if R and
S satisfy certain bounds. This claim is established by first finding an adiabat-
ic invariant of the system and then applying a refined version of Poincaré’s
recurrence theorem; a method recently introduced by Dolgopyat [4].

The paper is organized as follows: In Sect. 2, Maharam’s recurrence theo-
rem for measure-preserving maps is introduced. In Sect. 3, we find an adiabatic
invariant for a family of exact symplectic twist maps. This leads to the proof
of Theorem 3.1 stating that this family is recurrent. Section 4 contains the ap-
plication to Eq. (1.4) and the proof of Theorem 1.1. Finally, the discontinuous
equation (1.5) is discussed in the last section.

2. Recurrence

Let (X,A, μ) be a measure space and introduce the following useful notation.
For A,B ∈ A, we write

A ⊂ B mod μ,
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if A ⊂ B ∪N , where N is a set of measure zero. Now, consider a map T : X →
X which is bi-measurable, that is

T−1(A), T (A) ∈ A for all A ∈ A.

Such a map T is said to be measure-preserving, if

μ(T (A)) = μ(A) for all A ∈ A.

As a consequence, such a measure-preserving transformation satisfies

μ(T−1(A)) ≤ μ(A) for all A ∈ A,

with equality if A ⊂ T (X) mod μ.

Remark 2.1. In the literature, there is no unique way of defining the two prop-
erties above. In particular, T is often called measure-preserving, if μ(T−1(A)) =
μ(A) for all A ∈ A. However, the definition in this work was chosen since it
seems to be the most natural in the application to mechanical problems and
suchlike.

As a simple example, consider the space X = [0,∞[ equipped with the
Lebesgue measure λ and the map T1(x) = x+1. Then, T1 is measure-preserving
in the above sense, but the strict inequality λ(T−1(A)) < λ(A) holds, e.g., for
A = [0, 2] since T−1(A) = [0, 1].

Since T maps X into itself, the iterates Tn = Tn−1 ◦ T , where T 0 = id,
are well-defined for all n ∈ N. We call the map T recurrent, if for every A ∈ A
for almost all x ∈ A there is n ∈ N such that Tn(x) ∈ A, that is

A ⊂
∞⋃

n=1

T−n(A) mod μ,

where T−n(A) denotes the pre-image under Tn. In other words, the set of
points in A not returning to A has measure zero. Since T is measure-preserving,
also any (iterated) pre-image of this set has measure zero. Hence, T is even
infinitely recurrent, i.e., for almost all x ∈ A there is an increasing sequence
{nk}k∈N ⊂ N such that Tnk(x) ∈ A for all k ∈ N.

In the case of a finite measure-space, the famous Poincaré recurrence
theorem characterizes the relation between measure-preserving and recurrent
maps. We will use it in the following form.

Lemma 2.2. Let (X,A, μ) be a measure space such that μ(X) < ∞ and suppose
T : X → X is measure-preserving. Then, T is recurrent.

Unfortunately, the situation is less clear if the space has infinite measure.
However, the statement of the recurrence theorem stays valid if there exists a
set M of finite measure which acts as some kind of bottleneck. This is described
in the following generalization of Lemma 2.2 due to Maharam, see [12], which
also recently got some attention in the context of twist maps by Dolgopyat [3].
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Lemma 2.3 (Maharam’s recurrence theorem). Let (X,A, μ) be a measure s-
pace and suppose T : X → X is measure-preserving. If there exists a set
M ∈ A with μ(M) < ∞, such that

X ⊂
∞⋃

n=1

T−n(M) mod μ,

then T is recurrent.

Proof. The “time of first return” r(x) = min{k ∈ N : T k(x) ∈ M} is well-
defined for almost all x ∈ X by assumption. In particular, it can be shown that
there is a set Γ of measure zero such that the induced map S : M\Γ → M given
by S(x) = T r(x)(x) is well-defined and satisfies S(M\Γ) ⊂ M\Γ. Moreover,
S is measure-preserving, and hence, one can apply the Poincaré recurrence
theorem to see that S is also recurrent. Now, let A ∈ A be a measurable set
in X and for k ∈ N consider the sets

Ak = {x ∈ A : r(x) = k}.

Moreover, define Bk = T k(Ak) ⊂ M. Since S is recurrent, we have

Bk ⊂
∞⋃

n=1

S−n(Bk) ⊂
∞⋃

n=1

T−n(Bk) mod μ.

From this, it follows

T−k(Bk) ⊂
∞⋃

n=1

T−(n+k)(Bk) mod μ.

Since Ak ⊂ T−k(Bk) and μ(Ak) = μ(Bk), we know that T−k(Bk) = Ak up to
a set of measure zero. This in turn implies

Ak ⊂
∞⋃

n=1

T−n(Ak) mod μ.

Finally, taking the union over all k ∈ N shows that almost every point in A
returns to A. �

There are two drawbacks to Lemma 2.3. On the one hand, such a set
M does not exist for every recurrent measure-preserving transformation, as
already a trivial example like the identity shows. On the other hand, even when
it does exist, it can be hard to find. In the following section, we will introduce
a class of measure-preserving transformations for which the construction of M
can be done explicitly.

Remark 2.4. If X is σ-finite, the following observation can be made. A measure-
preserving map T : X → X is recurrent if and only if there is a covering
{Xj}j∈N of X and a collection of sets {Mj}j∈N with μ(Mj) < ∞ such that
for all j ∈ N we have T (Xj) ⊂ Xj and Xj ⊂ ∪∞

n=1T
−n(Mj) mod μ.
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Note that there are several more generalizations to the Poincaré recur-
rence theorem, and depending on the situation one might choose the appro-
priate version. For example, if {Xj}j∈N is a covering of X with μ(Xj) < ∞
and for every fixed j ∈ N the measure-preserving map T satisfies

lim
n→∞

1
n

μ

(
n⋃

k=1

T k(Xj)

)
= 0,

then T is also recurrent (see [8]). For a more thorough discussion of maps
preserving an infinite measure, we refer the reader to [1,3].

3. Exact Symplectic Twist Maps

We identify the circle S1 with the quotient space R/2πZ. With a small abuse
of notation, Cn(S1) denotes the space of n-times continuously differentiable
functions F : R → R that are 2π-periodic. Sometimes, we will not differentiate
between a map F̄ : S1 → S1 and its lift satisfying

F (θ + 2π) = F (θ) mod 2π.

For v∗ > 0, consider the space Mv∗ = S1×[v∗,∞[ equipped with the absolutely
continuous measure μ = v dθ̄⊗dv. In this chapter, we will mostly study maps:

f̄ : Mv∗ → S1 × [0,∞[, (θ̄, v) �→ (θ̄1, v1),

and we will use the same convention as above regarding its lift on the universal
cover Mv∗ = R × [v∗,∞[. Moreover, assume f̄ is a C1-diffeomorphism with
respect to its image. We say f̄ satisfies the twist condition if

∂θ̄1

∂v
�= 0, in Mv∗ .

Furthermore, suppose there is a function η = η(θ̄, v) in C1(Mv∗) such that

dη = v2
1dθ̄1 − v2dθ̄, (3.1)

where we use the usual abuse of notation dθ̄1 = ∂θ̄1
∂θ̄

dθ̄ + ∂θ̄1
∂v dv. Then, f̄ is

called exact symplectic twist map. There are two direct consequences: First,
the map is symplectic in the sense that

v1dθ̄1 ∧ dv1 = vdθ̄ ∧ dv. (3.2)

And second, given any v > v∗ denote by Cv the embedded circle S1 × {v}.
Then,

0 =
∫

Cv

dη =
∫

S1

(
v2
1

∂θ̄1

∂θ̄
− v2

)
dθ̄. (3.3)

Let us also introduce the class Fu(m) of continuous functions F : Mv∗ → R,
for some v∗ > 0, such that {vmF (·, v)}v≥v∗ converges uniformly as v → ∞.
Since we want to analyze the recurrence properties of f̄ , we need to make
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sure that the forward iterates f̄n are well-defined for n ∈ N. To this end, let
D1 = Mv∗ and Dn+1 = f̄−1(Dn) for n ∈ N. Then,

D =
∞⋂

n=1

Dn ⊂ Mv∗

denotes the set of initial condition (θ̄0, v0), for which the complete forward
orbit (θ̄n, vn) := f̄n(θ̄0, v0), n ∈ N, is well-defined. Moreover, the restricted
map

f̄ : D → D
is bi-measurable, since f̄ is a diffeomorphism and also preserves the measure
μ, due to (3.2). Moreover, this restricted version of f̄ is a self-map, which is
necessary for the application of Lemma 2.3. Note that possibly D = ∅. The
so-called escaping set of f̄ is given by:

E =
{

(θ̄0, v0) ∈ D : lim
n→∞ vn = ∞

}

and clearly f is non-recurrent on E . Its complement D\E on the other hand
can be covered by the measurable sets:

Bm =
{

(θ̄0, v0) ∈ D : lim inf
n→∞ vn ≤ m

}
, m ∈ N.

Since every orbit starting in Bm eventually has to enter the set S1 × [0,m+1],
Lemma 2.3 can be applied to the restricted map f̄ : Bm → Bm. It follows easily
that f̄ is recurrent on D\E . Therefore, proving that f̄ : D → D is recurrent
is equivalent to showing μ(E) = 0. This is the subject of our main abstract
result. The strategy of the proof will be to apply Lemma 2.3 with X = E and
T = f̄ .

Theorem 3.1. Consider the twist map f̄ : Mv∗ → S1 × [0,∞[, of which the lift
f is given by {

θ1 = θ + 2π − L(θ)
v + R(θ, v),

v1 = v + L′(θ) + S(θ, v),

where L ∈ C2(S1), L > 0, R,S ∈ C1(Mv∗), R ∈ Fu(2), S ∈ Fu(1) and

sup
(θ,v)∈Mv∗

vν2 |∂νR(θ, v)| < ∞, lim
v→∞ vν2∂νR(θ, v) = 0,

for every θ ∈ R and ν = (ν1, ν2) with |ν| = 1. Moreover, assume that f̄ is one-
to-one and exact symplectic in the sense that there is a function η ∈ C1(Mv∗)
with dη = v2

1dθ̄1 − v2dθ̄. Then μ(E) = 0, where

E =
{

(θ̄0, v0) ∈ Mv∗ : lim
n→∞ vn = ∞

}

denotes the escaping set of f̄ .
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Remark 3.2. Under the stronger assumptions L ∈ C6(S1), R,S ∈ C5(Mv∗)
and

sup
(θ,v)∈Mv∗

v2+ν2 |∂νR(θ, v)| < ∞, sup
(θ,v)∈Mv∗

v1+ν2 |∂νS(θ, v)| < ∞,

for any multi-index ν = (ν1, ν2) with |ν| ≤ 5, KAM-theory is applicable and
shows the boundedness of all orbits. See [14] for a suitable invariant curve
theorem and its application to a map of the type under consideration.

In the proof, we will need the following auxiliary lemma, which is basically
a variant of Lemma 4.1 in [7].

Lemma 3.3. Consider a map f̄ : D → S1 × [0,∞[, (θ̄, v) �→ (θ̄1, v1), where
D ⊂ S1 × [0,∞[. Let ρ(θ̄, v) = v + β(θ̄) with β ∈ C(S1). Moreover, suppose
there is v∗ > 0 such that for all (θ̄, v) ∈ D ∩ Mv∗ we have

|ρ(f̄(θ̄, v)) − ρ(θ̄, v)| ≤ δ(v)
v

, (3.4)

where δ : [v∗,∞[→ [0,∞[ is a decreasing function with limv→∞ δ(v) = 0. Then,
there is a set M ⊂ S1 × [0,∞[ with μ(M) < ∞ such that every unbounded
orbit of f̄ enters M.

Proof. Let (ρj)j∈N ⊂ [2v∗,∞[ be an increasing sequence with limj→∞ ρj = ∞
such that

ρ1 >
1

2ρ1
+ ‖β‖∞ and δ

(ρj

2

)
< 2−(j+1)

for all j ∈ N. Now, define

M =
⋃
j∈N

Mj , Mj = ρ−1

((
ρj − 1

2jρj
, ρj +

1
2jρj

))
.

Then, Mj ⊂ S1 × [0,∞[, and moreover, we have

μ(Mj) =
∫ 2π

0

∫ ρj+
1

2jρj
−β(θ̄)

ρj− 1
2jρj

−β(θ̄)

v dv dθ̄

=
∫ 2π

0

2−j

(
1 − β(θ̄)

ρj

)
dθ̄

≤ 2−j+1π

(
1 +

‖β‖∞
2v∗

)
.

In particular, this implies μ(M) < ∞.
Fix some (θ̄0, v0) ∈ D such that the corresponding complete forward orbit

(θ̄n, vn) is unbounded. Moreover, select j0 ∈ N such that

ρj0 > 2‖δ‖∞v−1
∗ + 2‖β‖∞. (3.5)

Since lim supn→∞ ρ(θ̄n, vn) = ∞, there is N ∈ N so that ρ(θ̄N , vN ) > ρj0 .
Thus, ρ(θ̄N , vN ) lies in the interval ]ρj0 , ρj1 ] for some j1 > j0. Since the orbit is
unbounded, there must be a first index K > N such that ρ(θ̄K , vK) /∈]ρj0 , ρj1 ].
But this cannot happen without the orbit entering either Mj0 or Mj1 . First
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consider the case that ρ(θ̄K , vK) > ρj1 ≥ ρ(θ̄K−1, vK−1). Then, using (3.4)
and (3.5) yields

vK−1 = ρ(θ̄K−1, vK−1) − β(θ̄K−1)

≥ ρ(θ̄K , vK) − δ(vK−1)
vK−1

− β(θ̄K−1)

> ρj1 − ‖δ‖∞v−1
∗ − ‖β‖∞

>
ρj1
2 .

From this, it follows

|ρ(θ̄K , vK) − ρj1 | ≤ |ρ(θ̄K , vK) − ρ(θ̄K−1, vK−1)| ≤ δ(vK−1)

vK−1
<

2δ
(ρj1

2

)
ρj1

<
1

2j1ρj1

.

Thus, (θ̄K , vK) ∈ Mj1 . In the other case, ρ(θ̄K−1, vK−1) > ρj0 ≥ ρ(θ̄K , vK),
we have

vK−1 > ρj0 − β(θ̄K−1) >
ρj0
2 .

Then, (θ̄K , vK) ∈ Mj0 follows analogously. �

Now, we are in position to prove the main result of this section.

Proof of Theorem 3.1. As the first step, we perform the change of variables
Φ : (θ, v) �→ (τ, r) defined by

τ(θ) = γ

∫ θ

0

1
L(s)2

ds, r(θ, v) = γ− 1
2 L(θ)v,

where

γ = 2π

(∫ 2π

0

1
L(s)2

ds

)−1

> 0.

The constant γ is chosen such that

τ(θ + 2π) = τ(θ) + 2π.

Since τ ′(θ) = γ
L(θ)2 > 0, the map τ ∈ C3(S1, S1) is a diffeomorphism. Hence,

also Φ is a diffeomorphism with regard to its image. The Taylor expansion of
τ implies

τ(θ1) = τ(θ1 − 2π) = τ(θ) − γ

L(θ)v
+ R1(θ, v), (3.6)

where

R1(θ, v) = γR(θ,v)
L(θ)2 +

∫ θ1−2π

θ

(θ1 − 2π − s)τ ′′(s) ds

= γR(θ,v)
L(θ)2 + (θ1 − 2π − θ)2

∫ 1

0

(1 − λ)τ ′′((1 − λ)θ + λ(θ1 − 2π)) dλ

= γR(θ,v)
L(θ)2 +

(
R(θ, v) − L(θ)

v

)2
∫ 1

0

(1 − λ)τ ′′
(
θ + λ

(
R(θ, v) − L(θ)

v

))
dλ.
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Then R1 ∈ Fu(2), since R ∈ Fu(2) and

lim
v→∞ v2(θ1 − 2π − θ)2

∫ 1

0

(1 − λ)τ ′′((1 − λ)θ + λ(θ1 − 2π)) dλ = L(θ)2
τ ′′(θ)

2
holds uniformly in θ. Moreover, a direct calculation shows that also the deriva-
tives have the same asymptotics, i.e., for ν = (ν1, ν2) with |ν| = 1 we have

sup
(θ,v)∈Mv∗

vν2 |∂νR1(θ, v)| < ∞, lim
v→∞ vν2 |∂νR1(θ, v)| = 0.

Similarly, the Taylor expansion of L yields

L(θ1) = L(θ1 − 2π) = L(θ) + L′(θ)
(
R(θ, v) − L(θ)

v

)
+ I(θ, v)

with I ∈ Fu(2). Altogether, this yields

L(θ1)v1 =
(
L(θ) − L(θ)L′(θ)

v + L′(θ)R(θ, v) + I(θ, v)
) (

v + L′(θ) + S(θ, v)
)

= L(θ)v + S1(θ, v),

where S1 ∈ Fu(1). On Φ(Mv∗), we define

R2(τ, r) = R1

(
Φ−1(τ, r)

)
and S2(τ, r) = γ− 1

2 S1

(
Φ−1(τ, r)

)
.

Then, the lift g = Φ ◦ f ◦ Φ−1 of the transformed twist map ḡ is given by:{
τ1 = τ + 2π −

√
γ

r + R2(τ, r),
r1 = r + S2(τ, r),

with R2 ∈ Fu(2) and S2 ∈ Fu(1). Moreover, writing Φ−1(τ, r) = (θ(τ), v(τ, r))
we get

∂R2

∂τ
=

∂R1

∂θ
(θ, v)θ′ +

∂R1

∂v
(θ, v)

∂v

∂τ

=
∂R1

∂θ
(θ, v)

L2(θ)
γ

− ∂R1

∂v
(θ, v)

vL(θ)L′(θ)
γ

.

In particular, it follows

sup
(τ,r)∈Φ(Mv∗ )

∣∣∣∣∂R2

∂τ
(τ, r)

∣∣∣∣ < ∞, and lim
r→∞

∂R2

∂τ
(τ, r) = 0,

for any τ ∈ R. Also, note that ḡ is again one-to-one and

r2
1dτ̄1 − r2dτ̄ = dη̂

holds for η̂ = η ◦ Φ−1. Therefore, the new map is an exact symplectic twist
map as well. Hence, Lemma 3.3 can be applied to ḡ if a suitable adiabatic
invariant ρ(τ̄ , r) can be found. In order to construct ρ, let

α(τ) = lim
r→∞ rS2(τ, r)

be the uniformly continuous and 2π-periodic limit. Due to the fact that ḡ is
exact symplectic, we know by (3.3) that∫ 2π

0

(
r2
1

∂τ1

∂τ
− r2

)
dτ = 0
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holds for any fixed r > r∗ = γ− 1
2 maxθ∈R L(θ)v∗. Furthermore, we have

r1(τ, r)2
∂τ1

∂τ
(τ, r) − r2 = r2 ∂R2

∂τ
(τ, r) + 2rS2(τ, r) + W (τ, r),

where W = S2
2 + ∂R2

∂τ (2rS2 + S2
2). In particular, W is bounded on Mr∗ and

W (τ, r) → 0, as r → ∞. Since R2 is 2π-periodic in τ , we get∫ 2π

0

(2rS2(τ, r) + W (τ, r)) dτ = 0.

Sending r → ∞ yields
∫ 2π

0
α(τ) dτ = 0 by the dominated convergence theorem.

Now, the sought adiabatic invariant can be defined as ρ(τ, r) = r+β(τ), where

β(τ) = γ− 1
2

∫ τ

0

α(s) ds.

Note that β ∈ C1(S1), because α is purely periodic. With a similar argument
as before, it follows

β(τ1) = β(τ) + γ− 1
2

∫ τ1−2π

τ

α(s) ds

= β(τ) + γ− 1
2 (τ1 − 2π − τ)

∫ 1

0

α((1 − λ)τ + λ(τ1 − 2π)) dλ

= β(τ) +
(

R2(τ, r)√
γ

− 1
r

)∫ 1

0

α((1 − λ)τ + λ(τ1 − 2π)) dλ

= β(τ) − 1
r

∫ 1

0

α((1 − λ)τ + λ(τ1 − 2π)) dλ + S3(τ, r),

with S3 ∈ Fu(2). From this, we obtain

ρ(τ1, r1) = r + S2(τ, r) + β(τ) − 1

r

∫ 1

0

α((1 − λ)τ + λ(τ1 − 2π)) dλ + S3(τ, r)

= ρ(τ, r) +
1

r

(
rS2(τ, r) −

∫ 1

0

α((1 − λ)τ + λ(τ1 − 2π)) dλ + rS3(τ, r)

)

= ρ(τ, r) +
S4(τ, r)

r
,

where S4(τ, r) → 0 uniformly as r → ∞. Therefore, one can find a decreasing
function δ : [r∗,∞[→ R with |S4(τ, r)| ≤ δ(r) on Mr∗ , such that δ(r) →
0, as r → ∞. Thus, we have shown that all conditions of Lemma 3.3 are
satisfied. The application yields a set M with μ(M) < ∞ such that every
unbounded orbit of ḡ enters M. But since lim supn→∞ rn = ∞ holds if and
only if lim supn→∞ vn = ∞, this means that every unbounded orbit of f̄ enters
M′ = Φ−1(M). In particular, this implies

E ⊂
∞⋃

n=1

f̄−n(M′) mod μ.

Finally, due to the fact that μ
(
Φ−1(M)

)
= μ(M) < ∞, we can apply Lemma

2.3 to the restricted map f̄ : E → E and deduce its recurrence. However, orbits
starting in E are by definition non-recurrent and thus μ(E) = 0. �



R. Ortega, H. Schliessauf Ann. Henri Poincaré

4. A Piecewise Linear Oscillator

In this section, we prove our main result, Theorem 1.1. As indicated in the
introduction, we start by constructing a twist map suitable for the application
of Theorem 3.1, such that its orbits correspond to large-amplitude solutions
of

ẍ + n2x + h1(x) = p(t). (4.1)

In a second step, we then show that the recurrence of this twist map implies
Poisson stability of almost every solution.

To this end, suppose x is a solution of (4.1) such that there are τ ∈ R and
v > 0 with x(τ) = 0 and ẋ(τ) = v. Then, x is also a solution of the integral
equation

x(t) = v
sinn(t − τ)

n
+

∫ t

τ

[p(s) − h1(x(s))]
sin n(t − s)

n
ds, (4.2)

and the derivative is given by

ẋ(t) = v cos n(t − τ) +
∫ t

τ

[p(s) − h1(x(s))] cos n(t − s) ds. (4.3)

Given any time span T > 0, it follows from these formulas that x(t)/v is
arbitrary close to (sinn(t − τ))/n in C2[τ, τ + T ] for large values of v. In
particular, one can find v∗ > 0 with the following property. If v > v∗, then
x(t) has 2n consecutive non-degenerate zeros

τ = τ0 < τ1 < · · · < τ2n = τ ′

and crosses the line x = (−1)i twice in each interval (τi, τi+1). We denote these
crossings by τ∗

i < ∗τi+1 and write

vi = ẋ(τi), v∗
i = ẋ(τ∗

i ), ∗vi = ẋ(∗τi),

for the corresponding velocities. For i = 0, . . . , 2n − 1, each of the three maps

(τi, vi) → (τ∗
i , v∗

i ) → (∗τi+1,
∗vi+1) → (τi+1, vi+1)

can be described in terms of a forced linear oscillator. The arguments in Propo-
sition 2.2 and Proposition 2.3 of [13] show that these maps are of class C1 and
exact symplectic in the sense of (3.1). Since the induced function

P̄ : Mv∗ → S1 × [0,∞[, P̄ (τ̄ , v) = (τ̄ ′, v′) = (τ̄2n, v2n),

can be decomposed into 6n such maps, also P̄ ∈ C1(Mv∗) is exact symplectic.
The map P̄ is one-to-one due to the unique solvability of the corresponding
initial value problem. Following the computations in Section 7 of [14], it can
be seen that for p ∈ C(S1) the associated lift P : Mv∗ → R × [0,∞[ has the
form {

τ ′ = τ + 2π − (1/nv)L1(τ) + R1(τ, v),
v′ = v + L2(τ) + R2(τ, v),

(4.4)

where

L1(τ) = 2π�(einτ p̂n) + 4, L2(τ) = 2π�(einτ p̂n),
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and R1 ∈ F1(2), R2 ∈ F0(1). Here, Fk(r) denotes the space of functions
F (τ, v) such that F ∈ Ck(Mv∗) for some v∗ > 0 and

sup
(τ,v)∈Mv∗

vr+ν2 |∂νF (τ, v)| < ∞

for every multi-index ν = (ν1, ν2) with |ν| ≤ k. We define Fk
u (r) to be the

subspace Fk(r)∩Fu(r), i.e., all F ∈ Fk(r) such that {vrF (·, v)}v≥v∗ converges
uniformly as v → ∞. Throughout the computations in [14], one can in fact
replace the space Fk(r) by Fk

u (r) with some obvious adjustments. This leads
to the conclusion that R1 ∈ F1

u(2) and R2 ∈ Fu(1). The Poincaré map of
the discontinuous oscillator discussed in the next section has an expansion
of the same form. This is shown in full detail in [16]. Finally, note that for
L1 ∈ C2(S1) we have L′

1 = nL2 and also the condition L1 > 0 is guaranteed
by (1.2). In total, P̄ satisfies all assumptions of Theorem 3.1 and therefore the
escaping set

EP =
{

(τ̄ , v) ∈ Mv∗ : (τ̄ ′
j , v

′
j) = P̄ j(τ̄ , v) ∈ Mv∗∀j ∈ N and lim

j→∞
v′

j = ∞
}

has measure zero.
Going back to the question of Poisson stability, we denote by x(t) =

x(t; x̃, ṽ) the solution of (4.1) satisfying the initial condition x(0) = x̃ and
ẋ(0) = ṽ. Thus, the time-2π map of (4.1) is given by

Π : R2 → R
2, (x̃, ṽ) �→ (x(2π; x̃, ṽ), ẋ(2π; x̃, ṽ)).

It can be shown that Π preserves the 2-dimensional Lebesgue measure λ. We
now prove that it is also recurrent. To this end, consider x(t) = x(t; x̃, ṽ) for
some (x̃, ṽ) ∈ R

2. The solution of the unperturbed linear system z̈ + n2z = 0
satisfying the same initial condition z(0) = x̃, ż(0) = ṽ is given by z(t) =
r̂ sin n(t−τ̂)

n for some τ̂ ∈ R and r̂ =
√

n2x̃2 + ṽ2. Furthermore, x(t) also solves
the integral equation

x(t) = r̂
sin n(t − τ̂)

n
+

∫ t

0

[p(s) − h1(x(s))]
sin n(t − s)

n
ds. (4.5)

Again, x(t)/r̂ is close to (sin n(t − τ̂))/n in C2[0, 4π] for large values of r̂.
Let r(t) =

√
n2x(t)2 + ẋ(t)2. Then, one can infer from (4.5) that there is a

constant Cp > 0 (depending on ‖p‖∞) such that

|r(t) − r(0)| ≤ Cp, for t ∈ [0, 4π]. (4.6)

Thus, if r̂ = r(0) > v∗+Cp, then r(t) > v∗ holds for all t ∈ [0, 4π]. In particular,
there is a unique first τ ≥ 0 such that x(τ) = 0 and v = ẋ(τ) > v∗. Let S be
the induced map

S : R2\E → Mv∗ , (x̃, ṽ) �→ (τ, v),

where

E = {(a, b) ∈ R
2 :

√
n2a2 + b2 ≤ v∗ + Cp}.

S is a diffeomorphism with respect to its image and the inverse map can be
obtained by plugging t = 0 into (4.2) and (4.3). For a given solution x(t) =
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x(t; x̃, ṽ) define rn = r(2πj) for j ∈ N. Then, the escaping set EΠ of the map
Π is given by

EΠ =
{

(x̃, ṽ) ∈ R
2 : lim

j→∞
rj = ∞

}
.

It can be shown by the same argument as in Sect. 3 that the restricted map
Π : R

2\EΠ → R
2\EΠ is recurrent. Thus, it remains to show that λ(EΠ) =

0. Suppose (x̃, ṽ) ∈ EΠ. In view of (4.6), this means limt→∞ r(t) = ∞. Let
m ∈ N be such that Πj(x̃, ṽ) ∈ R

2\E for all j ≥ m. Moreover, set (τ ′
0, v

′
0) =

S (Πm(x̃, ṽ)) and denote its corresponding orbit by (τ ′
j , v

′
j) = P j(τ ′

0, v
′
0). Then,

clearly limj→∞ v′
j = limj→∞ r(τ ′

j) = ∞ so that ι (S (Πm(x̃, ṽ))) ∈ EP , where
ι : Mv∗ → Mv∗ denotes the covering map ι(τ, v) = (τ̄ , v). This leads to the
inclusion

EΠ ⊂
∞⋃

m=0

Π−m
(
S−1(ι−1(EP ))

)
,

which in turn implies λ(EΠ) = 0. In summary, we have shown that Π is re-
current. Due to the symmetry of the problem, the same is true for the inverse
map Π−1. Now, the Poisson stability of almost every solution x(t; x̃, ṽ) follows
from the fact that the corresponding flow is Lipschitz-continuous on R

2.

5. The Discontinuous Case

Consider the piecewise linear oscillator

ẍ + n2x + sign(x) = p(t), (5.1)

where p ∈ C(S1). Let N = {t ∈ R : |p(t)| = 1} and suppose the set ∂N of
its boundary points is countable. The goal of this section is to proof Theorem
1.2, that is to show that almost every solution of (5.1) is Poisson stable. But
first we have to give the following

Definition 5.1. We say a function x ∈ C1(I) with I =]α, β[⊂ R is a solution
of (5.1) if it satisfies the following conditions:

(i) ẋ(t) �= 0 if t ∈ Z, where Z = {t ∈ R : x(t) = 0},
(ii) x ∈ C2(I\Z) and x satisfies (5.1) on I\Z.

Moreover, we say a solution is global if I = R.

Between two consecutive zeros, any such solution must coincide with
the solution of the corresponding linear problem. Thus given (τ, v) ∈ R

2, let
y±(t) = y±(t; τ, v) be the unique solution of

ÿ + n2y ± 1 = p(t), y(τ) = 0, ẏ(τ) = v.

The functions (t, τ, v) �→ y±(t; τ, v), ẏ±(t; τ, v) are both in C1(R3). Moreover,
note that y±(t) also solves the integral equation

y(t) =
v

n
sin(n(t − τ)) +

∫ t

τ

(p(s) ∓ 1)
sin(n(t − s))

n
ds. (5.2)
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In the following, we discuss properties of the solution y+(t). Its counterpart
y−(t) can be dealt with completely analogously. It can be shown that all solu-
tions of the linear equations are either oscillatory or of constant sign [13]. In
particular, if v �= 0 there is a unique time τ̂ > τ and a corresponding velocity
v̂ such that

y+(τ̂) = 0, y+(t) �= 0 ∀t ∈]τ, τ̂ [, ẏ+(τ̂) = v̂. (5.3)

Therefore, we can define the map

S+ : R × R+ → R × (R− ∪ {0}), S+(τ, v) = (τ̂ , v̂),

where R+ = ]0,∞[ and R− = ]−∞, 0[. This mapping is well-defined, one-to-one
and satisfies

S+(τ + 2π, v) = S+(τ, v) + (2π, 0) ∀τ ∈ R.

Let Σ+ = {(τ, v) ∈ R × R+ : v̂ = 0}. The map S+ can have discontinuities on
Σ+. On the open set (R×R+)\Σ+ however, the implicit function theorem can
be applied to the equation y+(τ̂ ; τ, v) = 0. This way one obtains a function
τ̂ = τ̂(τ, v) in C1 ((R × R+)\Σ+). Also, v̂(τ, v) = ẏ+(τ̂ ; τ, v) is in that class.
Since the same argument can be applied to the inverse, this shows that S+

restricted to (R × R+)\Σ+ is a diffeomorphism with respect to its image.
Moreover, S+ is symplectic in the sense of (3.1) on this domain (see Proposition
2.2 in [13]). Next we will show that Σ+ has measure zero. To this end, define

N+ = {τ̂ ∈ R : (τ̂ , 0) ∈ S+(Σ+)}.

Fix some τ̂∗ ∈ N+ and let (τ∗, v∗) = S−1
+ (τ̂∗, 0). The equation y+(τ ; τ̂ , 0) = 0

can be solved implicitly for τ around τ = τ∗ and τ̂ = τ̂∗. This yields an open
interval Iτ̂∗ containing τ̂∗ and a function τ = ττ̂∗ of class C1(Iτ̂∗) such that
τ(τ̂∗) = τ∗ and

y+(τ(τ̂); τ̂ , 0) = 0, for τ̂ ∈ Iτ̂∗ .

Hence, the map T = Tτ̂∗ defined by

T : Iτ̂∗ → R
2, τ̂ �→ (τ(τ̂), ẏ+(τ(τ̂); τ̂ , 0)),

is also C1 and λ(T (Iτ̂∗)) = 0. We have Tτ̂∗(τ̂∗) = S−1
+ (τ̂∗, 0). Note however that

Tτ̂∗(τ̂) = S−1
+ (τ̂ , 0) does not have to hold for τ̂ in a neighborhood of τ̂∗. But

we still have Σ+ = S−1
+ (N+ × {0}) ⊂ ⋃

τ̂∗∈N+
Tτ̂∗(Iτ̂∗). So if one can extract a

countable sub-covering, then clearly λ(Σ+) = 0 follows.
First suppose τ̂∗ ∈ N+ ∩ N+, where N+ = {t ∈ R : p(t) = 1}. If τ̂∗ would

be in the interior of N+, then y+(t) = 0 holds in a neighborhood of τ̂∗. But
this contradicts the minimality condition in (5.3). Thus, τ̂∗ ∈ N+ ∩ ∂N+. By
assumption, this set is countable and hence λ(S−1

+ ((N+ ∩ N+) × {0})) = 0.
Now, assume τ̂∗ ∈ N+\N+, that is p(τ̂∗) �= 1. Then, y+(t; τ̂∗, 0) has a strict

local extremum in τ̂∗. Due to the continuous dependence on initial condition,
one can in fact find ε > δ > 0 such that τ̂ ∈]τ̂∗−δ, τ̂∗+δ[ implies y+(t; τ̂ , 0) �= 0
for t ∈ [τ̂∗ −ε, τ̂∗ +ε]\{τ̂}. Moreover, since v∗ > 0, one can find a neighborhood
U of (τ∗, v∗) such that y+(t; τ, v) �= 0 if t ∈]τ, τ̂∗ − ε[ for all (τ, v) ∈ U . By
decreasing δ > 0 if necessary, one can assume that ]τ̂∗ − δ, τ̂∗ + δ[⊂ Iτ̂∗ and
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T (]τ̂∗ −δ, τ̂∗ +δ[) ⊂ U . Then, Tτ̂∗(·) = S−1
+ (·, 0) on ]τ̂∗ −δ, τ̂∗ +δ[. In particular,

it follows that N+\N+ is open and that S−1
+ (·, 0) ∈ C1(N+\N+,R×R+). Thus,

λ(S−1
+ ((N+\N+) × {0})) = 0.

In summary, we have shown that Σ+ has measure zero. Using y−(t) in-
stead of y+(t) in (5.3), one can define the successor map

S− : R × R− → R × (R+ ∪ {0}), S−(τ, v) = (τ̂ , v̂),

and the set Σ− = S−1
− (R × {0}). Again, S− restricted to (R × R−)\Σ− is

a symplectic diffeomorphism with respect to its image and Σ− has measure
zero. Now, define Σ1

± = Σ± and Σr
± = S−1

± (Σr−1
∓ ) for r ≥ 2. Then Σr

± consists
of those points (τ0, v0) ∈ R × R± such that the corresponding orbit (τj , vj)
satisfies vj �= 0 for j = 0, . . . , r − 1 and vr = 0. Finally, define

Σ =
⋃
r∈N

(Σr
+ ∪ Σr

−) ∪ (R × {0}),

then Σ has measure zero and every (τ0, v0) ∈ R
2\Σ leads to a complete forward

orbit (τj , vj)j∈N0 , where N0 = N ∪ {0}, that never touches the line v = 0. In
particular, the map

P : (R × R+)\Σ → R × [0,∞[, P (τ0, v0) = (S− ◦ S+)n(τ0, v0) = (τ2n, v2n),

is well-defined. Analogously to the last section, one can show that P has an
expansion of the form (4.4) and moreover satisfies all conditions necessary
for the application of Theorem 3.1. Hence, the corresponding twist map P̄
is recurrent. Since P̄ is recurrent for almost all (τ̄ , v) ∈ S1 × R+, we have
limj→∞ τj = ∞ for almost all orbits (τj , vj) starting in R

2\Σ. This leads to
the following observation.

Lemma 5.2. For almost every (x̃, ṽ) ∈ R
2, there exists a global solution x(t) =

x(t; x̃, ṽ) of (5.1) with initial condition x(0) = x̃, ẋ(0) = ṽ.

Proof. Let Ωr ⊂ (R\{0})×R be the set of initial condition leading to solutions
x(t) = x(t; x̃, ṽ) such that x(t) �= 0 for t > 0. Then, x ∈ C2([0,∞[) since it
solves the linear problem. Similar to S±, we define

S̃± : (R± × R)\Ωr → R × (R∓ ∪ {0}), S̃±(x̃, ṽ) = (τ̂ , v̂),

where again τ̂ > 0 denotes the first zero of x(t; x̃, ṽ) to the right and v̂ is
the corresponding velocity. Let Σ̃± = {(x̃, ṽ) ∈ R± × R : v̂ = 0}. These set-
s have measure zero since we have Σ̃± ⊂ γ±(R) for the C1-map γ±(τ̂) =
(y±(0; τ̂ , 0), ẏ±(0; τ̂ , 0)). Moreover, S̃± ∈ C1

(
(R± × R)\(Ωr ∪ Σ̃±)

)
are diffeo-

morphisms with respect to their images and thus also the sets S̃−1
± (Σ) have

measure zero. Therefore, x ∈ C1([0,∞[) is a solution in the sense of Definition
5.1 for almost all (x̃, ṽ), since almost every (τ̂0, v̂0) ∈ R

2\Σ leads to a complete
forward orbit (τ̂j , v̂j)j∈N0 such that ˆτj →∞, x(τ̂j) = 0 and ẋ(τ̂j) = v̂j �= 0.
Now, the assertion follows by repeating the whole argument for the set Ωl of
initial condition producing solutions such that x(t) �= 0 for t < 0. �
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We have shown that there is a set Γ of measure zero such that all initial
condition in R

2\Γ lead to global solutions of (5.1). In particular, the time-2π
map Π : R2\Γ → R

2\Γ is well-defined. We will demonstrate that this map is
also measure-preserving. To this end, we keep the notation introduced in the
proof of Lemma 5.2. Given (x̃, ṽ) ∈ (R± ×R)\(Ωr ∪ Γ), let S̃±(x̃, ṽ) = (τ̂0, v̂0),
then there is an infinite series of non-degenerate consecutive zeros (τ̂j)j∈N0 of
x(t; x̃, ṽ). Moreover, let τ̂0 = ∞ if (x̃, ṽ) ∈ Ωr. We define the sets

A±
j =

{
(x̃, ṽ) ∈ (R± × R)\Γ : j = min{i ∈ N0 : τ̂i ≥ 2π}},

where the index j counts the number of zeros in the interval [0, 2π]. Clearly,
R

2\Γ =
⋃

j∈N0
(A+

j ∪ A−
j ). Moreover, the sets Ωr and A±

j are measurable. For
Ωr, this follows from the fact that (R± × R)\(Ωr ∪ Σ̃±) is open, so that Ωr

differs from a Borel set only by a set of measure zero. In the case of A±
j with

j ∈ N, consider the maps gj(x̃, ṽ) = (τ̂j , v̂j). These maps are well-defined and
continuous almost everywhere on R

2\Ωr and hence measurable. Thus also

A±
j = (R± × R) ∩ g−1

j ([2π,∞[×R)\g−1
j−1([2π,∞[×R)

is measurable. The argument for j = 0 is similar. On A±
0 the map Π is just

the time-2π map of a linear oscillator and thus it preserves the 2-dimensional
Lebesgue measure λ. For A±

j with j ∈ N we again consider the maps gj .
Without loss of generality, let (x̃, ṽ) ∈ A+

j , where j = 2k with k ∈ N. Then

(τ̂j , v̂j) = (S+ ◦ S−)k(S̃+(x̃, ṽ)).

S̃+ restricted to (R+ × R)\(Ωr ∪ Σ̃+) is a diffeomorphism with respect to its
image and the inverse is given by S̃−1

+ (τ̂ , v̂) = (y+(0; τ̂ , v̂), ẏ+(0; τ̂ , v̂)). Consid-
ering formula (5.2), one easily derives det DS̃−1

+ (τ̂ , v̂) = −v̂ for the Jacobian
determinant. This implies that we have λ(B) = μ(S̃+(B)) for any measurable
set B ⊂ (R+ ×R)\(Ωr ∪ Σ̃+), where μ = v dτ ⊗dv. Furthermore, the maps S±
are exact symplectic in the sense of (3.1) on the relevant domain and therefore
preserve the measure μ. It follows that the sets

B+
j = {(x̃, ṽ) ∈ A+

j : τ̂j = 2π}
have measure zero. Finally, note that for (x̃, ṽ) ∈ A+

j \B+
j we have

Π(x̃, ṽ) = S̃−1
+ (τ̂j − 2π, v̂j).

In view of the argument above, the latter identity shows that Π preserves the
two-dimensional Lebesgue measure also on A±

j with j ≥ 1 and hence on all of
R

2\Γ. Analogously to the continuous case, it now follows that Π is recurrent
and that almost every solution x(t; x̃, ṽ) is Poisson stable.
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