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Abstract: Modelling is a tool used to decipher the biochemical mechanisms involved in transcrip-
tional control. Experimental evidence in genetics is usually supported by theoretical models in order
to evaluate the effects of all the possible interactions that can occur in these complicated processes.
Models derived from the thermodynamic method are critical in this labour because they are able
to take into account multiple mechanisms operating simultaneously at the molecular micro-scale
and relate them to transcriptional initiation at the tissular macro-scale. This work is devoted to
adapting computational techniques to this context in order to theoretically evaluate the role played
by several biochemical mechanisms. The interest of this theoretical analysis relies on the fact that
it can be contrasted against those biological experiments where the response to perturbations in
the transcriptional machinery environment is evaluated in terms of genetically activated/repressed
regions. The theoretical reproduction of these experiments leads to a sensitivity analysis whose results
are expressed in terms of the elasticity of a threshold function determining those activated/repressed
regions. The study of this elasticity function in thermodynamic models already proposed in the
literature reveals that certain modelling approaches can alter the balance between the biochemi-
cal mechanisms considered, and this can cause false/misleading outcomes. The reevaluation of
classical thermodynamic models gives us a more accurate and complete picture of the interactions
involved in gene regulation and transcriptional control, which enables more specific predictions. This
sensitivity approach provides a definite advantage in the interpretation of a wide range of genetic
experimental results.

Keywords: gene regulation; transcriptional control; statistical thermodynamic modelling; sensitivity
analysis; elasticity function

MSC: 92D10

1. Introduction

Fundamental biological processes, such as morphogenesis and tumor development,
are the consequence of complex signalling pathways that provoke cell responses [1–4]. This
work focuses on the modelling of one of the key mechanisms mediating these responses:
the transcriptional gene regulation by protein binding to the cis-regulatory region. The
RNA polymerases (RNAP) bind to a DNA sequence called a promoter, and its transcrip-
tional activity is directly promoted or repressed by other DNA-binding proteins called
transcription factors (TFs) [1,4]. The linkage of both RNAP in the promoter and the TFs
in the transcription factors binding sites (TFBSs) or enhancers is a complex process that
depends on several factors: different families of binding proteins (characterised in general
as activators, repressors and RNAP), the relative concentration of these proteins in each
cell of the tissue, natural tendency of the proteins to be bound to the cis-regulatory region
(affinity), and the rules that drive their binding process, among others. This process in
itself can be compounded, where the binding can involve competition for the same TFBSs,
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or assistance of other already bound elements (binding cooperativity) [5–8]. Transcriptional
control results in the gene (protein) production rates being controlled by the bound tran-
scription factors which in turn use several biochemical mechanisms [9–11]. These rates can
also depend on post-transcriptional regulation mechanisms [12–14].

This process is quite widespread and takes place in many prototypical systems, for in-
stance the morphogens Hedgehog (Hh) and Sonic Hedgehog (Shh). In particular, we will
use as a reference the experimental evidence in Drosophila’s wing imaginal disc obtained in
reference [15]. In the imaginal disc, composed of the Anterior and Posterior compartments,
the secretion of Hh from the Posterior compartment cells induces the expression of several
target genes inside the cells in the Anterior compartment. Among them are decapentaplegic
(dpp) and patched (ptc). Both give rise to the synthesis of their corresponding proteins,
Dpp and Ptc, which are essential for the wing central domain development [16,17]. The
morphogens spreading give rise to a gradient in the receptor cells which causes opposing
gradients of activator and repressor forms of the transcription factor Cubitus (Ci). Under
opposing activators/repressors gradients, we get a simple picture of gene expression where
the tissue can be divided into regions of gene activation and repression according to the
abundance of activators and repressors.

However, it is known that the same signal of Hh produces different spatial expression
of these genes. That is to say, the expression of ptc is only limited to disc zones close to
the Anterior/Posterior (A/P) border with high Hh concentrations, while dpp expresses in
a broader disc range under low Hh concentrations. In order to understand how the same
signal and the same TFs can produce different responses, the authors of [15] performed
specific alterations of TFBS of these genes located in the vicinity of their corresponding
promoters. By electrophoretic mobility shift assays, it was found that Ci binding sites in
the ptc TFBS have considerably higher affinity than dpp sites. Indeed, the same authors
constructed transgenic fly lines that allow them to compare the transcriptional activity of
reporter genes: (a) containing different variants of these sites modifying their affinity and
(b) reducing from 3 to 1 the number of TFGS in order to detect cooperativity effects.

The aim of this work is to develop accurate theoretical tools to achieve a deeper
understanding of these experiments. Indeed, the numerous variables mentioned above
make it difficult solely by using experimental procedures. For this reason, experimental
discussions in literature are frequently supported by theoretical models in order to decipher
how these mechanisms interact [15,18]. The modelling of transcriptional processes has
been tackled from different mathematical perspectives [19–23], such as Bayesian [24–28]
and Boolean [29], among others. In this work, we will focus on models based on the
statistical thermodynamic equilibrium approach [30–34]. This methodology, introduced in
the pioneering works of Ackers–Shea and coworkers [30,31], is also known as the BEWARE
method (Binding Equilibrium Weighted Average Rate Expression) because transcription,
and thus expression, is considered to be proportional to the probability of transcript
initiation [35]. This modelling considers transcript initiation an average of all the possible
micro-state configurations where the system (proteins/binding sites) can be present.

As already mentioned in [36], the thermodynamic models follow one of two dif-
ferent biological control processes: the “recruitment” or “stimulated” transcription mod-
els [10,11,37]. In the recruitment approach, all the configurations with a bound RNAP have
the same transcriptional efficiency, but the TFs control the RNA polymerase recruitment
by TFs-RNAP cooperative/anti-cooperative interactions. That is, the TFs are able to alter
the RNA polymerase affinity for the promoter both positively (activators) and negatively
(repressors) [32,38,39]. Alternatively, in the stimulated transcription approach, the RNA
polymerase binding affinity is assumed to be fixed, but the translational strength of any
configuration is modulated in terms of the bound activators/inhibitors [18,40,41]. In this
work, we also consider Hill-type models since they can be justified from thermodynamic
models [42–47]. See [48] for a comprehensive introduction to these kinds of modelling
and [19,36,49,50] and references therein for a review of case-study scenarios implemented
in different areas. Although recruitment is considered to be the main way of controlling
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gene transcription by Ci/Gli factors [51,52], Hh/Shh pathways have been modelled in
either using the recruitment [15,53–58], the stimulated [18,41,59,60] or Hill approaches [46].
One of the main goals of this work is to show that modelling is sensitive to the choice of
one of these approaches.

It is important to note that the averaging procedure performed in the thermodynamic
methodology reveals one of its main drawbacks: the complexity of the deduced mathemat-
ical expressions when the model takes into consideration the wide variety of biochemical
mechanisms that can be involved in the original process (competition of multiple ligands
for multiple TFBSs [61], affinities, roles played by each ligand, signal strength, and co-
operativity [62–64], among others). The large number of micro-states produce entangled
mathematical expressions, so the only way to extract valid information from the models is
to go through a multiple-parameter non-trivial calibration process [19,65].

In this regard, in [53], the authors were able to analyse the variations of the sizes
of the activated/repressed regions determined by a recruitment thermodynamic model
(involving different biochemical mechanisms) under analogous perturbations to the ex-
periments performed in [15]. The authors establish there that, if cooperativity between
some of the TFs exists, this would suppose a competitive advantage for such TFs in the
linking process. In that case, a theoretical emulation of the experiments developed in [15]
predicted the alteration of such a competitive advantage which explains variations in net
activated/repressed tissular regions, in concordance with the results in [15]. However, it
was not clear if the results obtained in [53], or even the results in [15], could be different
using alternative BEWARE operators (stimulated, Hill).

In order to answer these questions, in the present work, we have developed a brand
new tool based on sensitivity analysis [66,67]. This allows a deep theoretical analysis of
the role of affinity, cooperativity and enhancers in all the BEWARE operators considered.
This tool also allows for extracting relevant biological information in a straightforward way.
Indeed, we have used it to detect specific parameter relations in the models that lead to
unexpected results. That is, the models predictions are sensitive to the election of one of
these versions of the BEWARE operators.

The paper is structured in the following sections: In Section 2, the guidelines for the
deduction of the BEWARE operators with respect to the stimulated, recruitment and Hill
approaches (see details in Supplementary Materials Sections S1 and S2) will be reviewed.
Although some particular cases of these expressions are well known in the basic literature,
the general simplified expressions deduced in Supplementary Materials Section S1 (valid for
an undetermined number of TFs) are new and necessary for the subsequent development.
In certain circumstances, one can unify all the activators/repressors to get a global activator
variable and a global repressor variable as has been justified in Supplementary Materials
Section S3. In Section 2.1, the activation/repression thresholds that can subsequently be
deduced from the BEWARE operators are introduced. The approach employed in this
work to justify the existence of these thresholds, based on the analysis of ‘inverse logic’ in
Supplementary Materials Section S4, is new and quite convenient in order to analyse all the
considered models. By using them, an activated/repressed tissular region in the presence of
(global) activator/repressor opposing gradients can be established. The sensitivity analysis
of the activation/repression thresholds with respect to the analogous variations to the
experiments performed in [15] are proved to be determined by the elasticity function in
Section 2.2. A comparative analysis for recruitment, stimulated and Hill thresholds will be
performed based on their elasticity estimates presented in Section 2.3. In addition, finally,
in Section 3, we explore the origin of the differences obtained in Section 2.3. In Section 4,
we summarise all the conclusions we have made from the performed analysis.

2. Materials and Methods

In this work, we have computed brand-new expressions of the BEWARE operators
integrating a variety of already proposed models. We have worked in a general framework,
where we assumed that the gene expression was controlled by any number of cooperative
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transcription factors. However, for the sake of simplicity, we will present the results in
this manuscript for only two transcription factors, A and R (see Supplementary Materials
Section S1 for more general expressions). The goal of the statistical thermodynamic model
is to describe the synthesis rate of a protein P in terms of the activator, repressor and RNA
polymerase concentrations ([A], [R], [RNAP]), and the cooperativity interactions between
them (C). That is,

d[P]
dt

= BEWAREm([A], [R], [RNAP]; C)− β[P] (1)

where BEWAREm() is the function specifying the dependence on the TFs, and −β[P] is
a degradation contribution [68]. Thus, stationary states for Equation (1) are essentially
determined by the BEWARE operator, which is subjected to the biochemical mechanisms
involved in all these binding processes (see Figure 1). The model takes into account
these inputs:

• Variable number of TFBSs (enhancers): In general, a regulatory machinery is governed
by specific cis-regulatory regions, bound by transcription factors and RNAP. In our
model, we will work with n transcription factor enhancers, and one binding site for
the RNAP (promoter).

• Binding affinities: The binding process of both transcription factors and RNA poly-
merase is defined by the binding energy (affinity). This affinity will be described
by dissociation constants KA, KR and KRP, for the Activator, Repressor and RNAP
proteins, respectively. Please note that in our description the higher the value of Ki,
the lower the binding affinity of the protein i for their corresponding cis-regulatory
region, with i = A, R, RP.

Figure 1. Representation of the biochemical mechanisms involved in transcriptional control. Com-
petitive binding process of the TFs (red and purple circles) to n identical enhancers (green). RNA
Polymerase (brown oval) binds to the promoter (brown rectangle). Affinities are indicated by black
arrows. Alternative biochemical mechanisms are represented with discontinuous arrows: total vs.
partial binding cooperativity between TFs (red) and recruitment vs. stimulated approaches for
transcriptional control exerted by the TFs (blue). See assumption H2, HS4 and HR4 in Supplementary
Materials Section S1 for details.

In (1), the subindex m is used to denote what version of model is used:

• m = r stands for “Recruitment” model,
• m = s stands for “Stimulated” model,
• m = Hr or m = Hs stands for “Hill” model deduced either from the recruitment or

the stimulated model.

These versions conform to different model hypotheses:

• Recruitment model: the synthesis of P depends on the total probability of finding RNA
polymerase in the promoter. This probability is obtained from a combination of all
the enhancer micro-states where the promoter is occupied by the RNAP. Each micro-
state takes into account the number of activators and repressors, jA and jR, and their
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TFs-RNAP cooperative/anti-cooperative effect modifies the RNA polymerase binding
affinity by the promoter

K̄RP =
KRP

ajA rjR
, (2)

with a ≥ 1, 0 ≤ r ≤ 1, and KRP-K̄RP being the “TF empty-occupied” binding affinity of
the RNA polymerase. That is, activators/repressors facilitate/impede RNAP binding,
and therefore transcription.

• Stimulated model: the synthesis of P depends on a weighted combination of proba-
bilities of finding the enhancers occupied. These weights are determined for each
configuration in terms of the constants, rbas, ν

(n)
max, and r̃ ≤ 1 being rbas, rbas + ν

(n)
max,

r̃nrbas the basal, maximal and minimal transcription rates corresponding to either
empty or filled with n activators/repressors. The superscript in ν

(n)
max denotes the

dependence of this maximal rate on the number of enhancers n in the same manner
that the minimal rate does. This dependence is a point not considered in standard
modelling of the stimulated BEWARE operator that we will discuss in Supplementary
Materials Section S1.

• Hill versions of both Recruitment and Stimulated operator have been obtained with
any number of transcription factors (see specific results in Supplementary Materi-
als Section S2). In order to do this, we have adopted the “extreme cooperativity ap-
proach” [48] according to several cooperativity regimes explained in the next paragraphs.

Furthermore, in Equation (1), the set C arranges the transcription factors in subsets
of proteins. That is, depending on how the transcription factors interact (from now on,
‘cooperate’) between them, we will aggregate these in different sets:

• Total cooperativity: C ≡ {[A], [R]}c, where both activators and repressors cooperate
with a cooperativity constant c ≥ 1.

• Partial cooperativity: C ≡ {{[A]}cA , {[R]}cR}, where the activators cooperate only
between other activators with a cooperativity constant cA ≥ 1, and the repressors
cooperate only with other repressors with a cooperativity constant cR ≥ 1.

This means that, in the presence of jA-jR already bound activators-repressors, the affin-
ity of a new cooperating i protein for an empty enhancer would be Ki/cjA+jR in the case
of total cooperativity and Ki/cji

i in the case of partial cooperativity, where i = A, R. That
is, as soon as the cooperativity coefficients are greater than 1, the already bound proteins
assist in the binding of any other future binding protein that cooperates with the already
bound protein.

It is important to note that, by using different versions of modelling and different
cooperativities, we get different explicit BEWARE operators:

BEWAREr([A], [R], [RNAP]; C) = CB

1 + KRP
[RNAP]Freg([A],[R];C)

, (3)

BEWAREs([A], [R], [RNAP]; C)

=
rbas

1 + KRP
[RNAP]

Basal([A], [R]; C) + ν
(n)
max

1 + KRP
[RNAP]

Promoter([A], [R]; C) , (4)

where Freg(), Basal() and Promoter() are functions that only depend on the concentrations

of transcription factors, and CB, rbas and ν
(n)
max are scale factors. Please note also that

Equations (3) and (4) will have a total of four explicit expressions depending on what kind
of cooperativity C applies between the TFs: Two for the total cooperative case, two for
the partial cooperative case. Another four Hill models can be deduced by the extreme
cooperative approach (see Supplementary Materials Sections S1–S3 for their derivation).
That is,
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Recruitment (BEWAREr(·, ·, · ; C)) Hill (BEWAREHr(·, ·, · ; C))

Stimulated (BEWAREs(·, ·, · ; C)) Hill (BEWAREHs(·, ·, · ; C))

Ext. Coop. Appr.

Ext. Coop. Appr.

where C refers to total or partial cooperativity.
Binding cooperativity is not the only way the proteins can interact. With the stimulated

approach, TFs can take into account the situation where two adjacent activators or repres-
sors function more effectively together than separately. This sort of functional cooperativity
has been considered in some models in the literature [40]. In addition, indeed, this will be
reflected in the differences found in this work between stimulated and recruitment models
as can be seen in Section 3.

Usually, Expressions (3) and (4) are so complex that it is impossible to perform (non-
numeric) mathematical analysis, even in the case of just two transcription factors. However,
in Supplementary Materials Section S1.5, we have been able to reformulate these expres-
sions, obtaining simpler polynomial expressions that can be treated theoretically. In those
cases when this is not possible, the numerical approach can always be be considered.

Please note that, in this section, we have shown the basic notation and concepts
needed in order to follow the main work, in the case of two transcription factors. The two-
transcription factor case is a relevant biological case which is involved, for instance, in the
control of the target genes of the Hedgehog morphogen in Drosophila. However, there
are other biological systems, where more than two transcription factors are involved in
the control of the same genes, for instance, in control of the Shh target genes in vertebrates
executed by the Gli proteins family. In previous literature [18], the functional grouping of
several TFs was proposed. The expressions obtained allow us to reconsider the same ques-
tion. In Supplementary Materials Section S3, there is a discussion on what the conditions of
the system should be to be treated, in general, as a system governed by what we call global
Activation/Repression variables. This is a possible reduction in the system’s degrees of
freedom that resembles the two-transcription factors case. Indeed, these extra hypotheses
are not so demanding that in some works they have been already considered [41,59,60]. The
results stated in our next section are only valid when these global Activation/Repression
variables can be assumed.

Although we can simplify the stimulated and recruitment BEWARE operators origi-
nally deduced, these simplifications do not in any way modify them since they have only
been rewritten in a more accessible way. This is not the case of the Hill approach, as we will
see in our conclusions, because we have noticed that applying the “extreme cooperativity
hypothesis”, which is used in this approach, seriously alters the sensitivity of the stimulated
and recruitment BEWARE operators.

2.1. Activation/Repression Threshold

Most of the genetic experiments presented in previous literature basically analyse
the gene expression that results in the segregation of a protein P. The experiments work
with either wild-type expression and/or expressions measured in mutants where some
of the biochemical conditions have been modified. Examples are: Shh/Hh target genes
in [15,18,46,51,69–71], other Drosophila’s target genes [72,73] and prototypical biological
systems, such as the λ phage [74,75]. Of all these experimental approaches, of particular
interest are those that compare transcription rates against basal levels. Correctly defining
the basal transcription level is quite important because it depends on which part of the
transcriptional control system you are considering. Since in our case we are focusing on
the transcriptional effects due to signalling in the specific module of n enhancers, the basal
level is the expression of P observed when these enhancers are disabled from receiving that
signalling [15,70]. These basal levels can still be signal-dependent since they could collect
the signalling effects coming from other modules of enhancers or TFs.

The deduced models allow us to predict when, and hopefully where, cells can be
relatively activated or repressed with respect to the basal (net activated-repressed), in the
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presence of two opposing signals (activators vs. repressors). Our study reveals that this
can be easily done by using a threshold level between the transcription factors. In Sup-
plementary Materials Section S5, we have proved that each BEWARE operator defines
a curve (function) in the [A] − [R] plane which separates that plane in two regions. If
the BEWARE is evaluated on concentrations of TFs that are below this curve, then it will
predict an expression of P higher than the basal rate (and lower for concentrations above the
curve). We have called these concentrations of transcription factors “Activation/Repression
regions”, and they are depicted in Figure 2C. It is important to note that the thresholds
(i.e., the interphase between the Activation/Repression regions) depend strongly on the
biochemical mechanisms involved in the transcriptional binding process by means of the
BEWARE operator used in their determination. We have, in fact, defined the threshold
function with n enhancers, fm,l([A]; n), as the function where the corresponding BEWARE
operator fulfils this equation:

BEWAREm([A], fm,l([A]; n), [RNAP]; C) = BEWAREm(0, 0, [RNAP]; C) (5)

where C = {[A], [R]}c in the case of total cooperativity (l = t) and C = {{[A]}cA , {[R]}cR}
in the case of partial cooperativity (l = p). That is, the thresholds are the BEWARE
operator level curves corresponding to the absence of signalling in the enhancers module,
the basal level.

Figure 2. Activation-repression threshold and net activated/repressed tissular regions. (A) BEWARE
operator representation. Blue, green and red correspond to values of the BEWARE operator, lower
than, close to or higher than the basal level. (B) Triangles represent the tissular activator/repressor
gradients governing gene transcription. Lower circles show net activated/repressed tissular regions
determined by the upper gradients and the BEWARE operator in (A). The limiting position, x0

corresponds to cells that have TF concentrations determined by the white circled in figure (C); (C)
representation of (A,B) in the [A]–[R] plane. The blue region is concentrations leading to BEWARE
values below the basal level. The red region is concentrations leading to BEWARE values above the
basal level. The green curve is the activation/repression threshold, that is, concentrations leading
to the basal level. The grey curve shows the TF concentrations represented by the triangles in (B).
The intersection between the green and grey curves, i.e., white circle, determines tissular regions
where cells are net activated or repressed according to the BEWARE operator. Parameter values can
be found in Supplementary Materials Table S3.
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This curve can be used to extrapolate several pieces of transcriptional information
from the molecular to the tissular level. fm,l predicts if a cell is activated or repressed by
simply checking if the concentration of repressors inside of the cell is higher or lower than
the threshold corresponding to its activators concentration—or, in other words, a cell with
levels [A] and [R] of activators and repressors will be

• relatively activated if [R] < fm,l([A], n);
• or relatively repressed if [R] > fm,l([A], n).

Hence, if we know the distribution of TF concentration across the developing tissue,
we can deduce the position of cells that will be activated or repressed. The information
given by the activation and repression regions, added to the knowledge of the distribution
of the transcription factors across the tissue, allows the analysis of how the activation
profile is distributed spatially. We have shown in Proposition 2, Supplementary Mate-
rials Section S5, that fm,l([A]; n) is a strictly increasing function. This assures that the
transcriptional control of an opposing-gradient is enough to establish two simple (and
connected) regions in the tissue, where the cells are either activated or repressed (see
Figure 2). This pattern of activated-or-repressed cells is essential in the development of
several biological systems—for instance, Drosophila’s wing development by the target genes
dpp and ptc [17,53], among others. The study of the tissular activation/repression patterns
has been extensively studied by experimental methods, using modifications of several
biochemical properties of the development system. Variations such as modification of
TFBSs affinities, or even the number of enhancers, have been shown to have important
effects in the formation of these patterns [15]. Motivated by this line of experiments, we
have used the threshold definition in order to theoretically reproduce these variations. Our
study has been able to extract specific information of how these biochemical variations
alter the regions of activated cells (see Sections 2.2 and 2.3 for more details). This proves
the potential of the threshold function as an analytic tool in the modelling of transcription
processes. The information, given in terms of concentrations of transcription factors in-
side of the cell, now can be decoded at a tissular level outside the cell via the analysis of
fm,l([A]; n). We will explore the importance of this detail in the next section, comparing
with the experimental evidence obtained in [15].

It is important to mention that the monotonicity of fm,l does not necessarily correspond
to the monotonicity of the BEWARE operator with respect to the TFs. Our analysis predicts
concentration regions where the BEWARE operators involving total cooperation can exhibit
behaviours of “inverse logic” such as increases in the transcription rate where there is
an increase in the concentration of repressors (or decreases where there is an increase in
the concentration of activators). We refer to this effect as the “pull-effect”, and it takes
place when total cooperativity is very strong. Indeed, the analysis performed allows us
to describe in great detail when these effects can be found (see Supplementary Materials
Section S4 for mathematical analysis and graphical explanation of these effects).

2.2. Sensitivity Analysis of the Threshold Functions: Elasticity

In order to test out the change in the activation/repression regions, we have analysed
the behaviour of the threshold function fm,l under the following perturbations:

1. proportional reduction in affinity for the enhancers:

KA → ηKA and KR → ηKR being η ≥ 1 , (6)

2. decrease in the number of available enhancers:

n→ n− 1 , (7)

Equation (6) represents the fact that an increase in the perturbation parameter η
corresponds to lower affinities between the TFs and the enhancers, remembering that K∗ are
dissociation constants. Our study predicts that the response obtained by these perturbations
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are closely related in the case of stimulated and recruitment operators. Although both
alterations interfere with the action of activators and repressors in the same way, it is
surprising that, in all these models, the response to perturbations (6) and (7) is qualitatively
predicted by the elasticity of the function fm,l ,

εm,l([A]; n) =
[A] f ′m,l([A]; n)

fm,l([A]; n)
≈

∆ fm,l([A]; n)/ fm,l([A]; n)
∆[A]/[A]

, (8)

where ∆ fm,l([A]; n) = fm,l([A] + ∆[A]; n) − fm,l([A]; n). ε is a quantity usually used in
Economics in order to measure a system’s responses to proportional perturbations [76]. It
is also known as a condition number in Numerical Analysis [77]. This index has also been
introduced in biological contexts, for instance in Ecology [66].

In Supplementary Materials Lemma S4 and Corollary S1, Section S6, we have proven
the direct relationship between elasticity and the threshold response to perturbations (6)
and (7). These results are resumed in the following expression:

sign

{
δ fm,l

δη
([A]; n)

∣∣∣∣
η=1

}
= sign

{
fm,l([A]; n− 1)− fm,l([A]; n)

}
= sign

{
1− εm,l([A]; n)

}
. (9)

This is applicable to recruitment and stimulated operators (m = r, s) in their total and
partial cooperativity versions (l = t, p). Please note that both identities in (9) show that
the Activation/Repression thresholds under signalling interferences (6) and (7) react in the
same qualitative manner. For example, the thresholds:

• will decrease in the elastic regime, that is, if εm,l([A]; n) > 1;
• will not be modified in the unit elastic regime, that is, if εm,l([A]; n) = 1;
• will increase in the inelastic regime, that is, if εm,l([A]; n) < 1.

We can interpret this result in terms of a loss of competitive advantage between the
transcription factors. Binding cooperativity mechanisms between TFs are the clearest
example of this competitive advantage. If TFs cooperate in their binding process, this
cooperation constitutes an advantage for such TFs, and this advantage is clearly amplified
in the presence of

• high affinity enhancers because the first binding required for cooperativity is more
likely to occur,

• a high number of enhancers because they allow improvement of TF’s affinity by
cooperativity.

Thus, perturbations (6) and (7) are clearly limiting the advantage given by coopera-
tivity. This is more obvious in the case of (7) since, in the limit case, n = 1, cooperativity
can not operate at all. As we will see in next section, binding cooperativity is not the only
advantage we can detect by means of the elasticity.

The inelastic case is interpreted as a situation where repressors “lose their advantage”
over the activators, since a global decrease in affinity or number of enhancers gives rise to
an increase in the threshold, as seen in (9), and consequently an increase of the activation
region (see Figure 2). Remember that, given a fixed activator concentration, an increase of
the threshold function implies that an increase of the repressor concentration is needed in
order to get the same transcription rate as the basal. That is to say, the cells will enter in
the activated state (i.e., transcription rates higher than the basal) “more easily” in the new
situation because the repressors’ advantage is not as effective as before. The same goes
for the elastic case. In this case, the activators seem to lose the benefit of the advantage.
Here, (9) shows that the thresholds decrease, so the activation region decreases because of
perturbations (6) and (7). The unit elastic regime can be seen as a stable situation, where
none of the perturbations modify the threshold (i.e., both activators and repressors have
the same transcriptional advantage and perturbations affect both in the same way). Please
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note also that the same reasoning can be applied to proportional decrease in activator and
repressor concentrations because of definition (8). In Figure 3, these qualitative behaviours
have been illustrated using a stimulated BEWARE operator where three sets of parameters
have been chosen to represent all these situations.

Figure 3. Activation-repression threshold variations under TFs signalling interferences (6) and (7).
Thresholds determined by a stimulated BEWARE operator exhibiting different elasticities depending
on the values of the model parameters. Orange, green and purple continuous lines are used to repre-
sent thresholds with elasticity greater than, equal to or less than one, respectively. In (A) perturbation,
(6) has been applied with η = 10. In (B) perturbation, (7) is where the number of enhancers changes
from n = 2 to n = 1. The thresholds after perturbations are depicted in both cases as dotted lines.
Orange and purple arrows show the threshold variations in the elastic and inelastic cases, since in
the unit elastic case (green threshold) there is no change, in accordance with Equation (9). Parameter
values can be found in Table S4, Supplementary Materials Section S8 and the estimation of the
elasticities for these values are in Table 1.

Table 1. Analytical estimations of elasticity for thresholds deduced from the BEWARE operators
in the global activator/repressor framework. The values t1, h1, t2, h2 appearing in the case of the
stimulated operator with two enhancers are defined in terms of the rest of the model parameters (see
Section S6.2 in Supplementary Materials, for explicit definitions).

Act Coop. Null/Total Coop. Rep Coop.
Recr. ε > 1 ε = 1 ε < 1

Stim.
(n = 2)

ε < 1 if ẽ>t2

ε ≤ 1 if ẽ<t2 & [A]≤h2

ε > 1 if ẽ<t2 & [A]>h2

ε < 1 if ẽ>t1

ε = 1 if ẽ=t1

ε > 1 if ẽ<t1

ε < 1 if ẽ>cRt1 & [A]>h1

ε ≥ 1 if ẽ>cRt1 & [A]≤h1

ε > 1 if ẽ≤cRt1

Hill ε = 1 ε = 1 ε = 1

With the threshold definition (5), obviously fm,l([A] = 0; n) = 0 holds true. Thus,
the elasticity coefficient has a very simple geometrical interpretation: the comparison
between the slope of the tangent line at the point

(
[A], fm,l([A]; n)

)
and the slope of the

secant line intersecting the threshold curve at the origin (0, fm,l(0; n)) and at the point
([A], fm,l([A]; n)). That is,

εm,l([A]; n) > 1 ⇐⇒ f ′m,l([A]; n) >
fm,l([A]; n)− fm,l(0; n)

[A]− 0
.

This expression also tells us that, if fm,l is convex, then it is elastic. In the same way,
the concavity of fm,l implies being inelastic. Nevertheless, as we can see in Figure 3, this
geometrical interpretation of ε can not always be easily recognised at first glance.

Although Hill models have been deduced in this work from the stimulated and recruit-
ment BEWARE operators by an extreme cooperativity hypothesis, these types of models do not
inherit relationships (9). Thus, this conceptual streamlining loses the original relationship
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between perturbations (6) and (7) and the elasticity function. Indeed, in Supplementary
Materials Section S7, it is proven that Hill threshold functions exist, but they are always
straight lines whose slope can change with the number of enhancers.

2.3. Calculations: Recruitment, Stimulated and Hill BEWARE Operators: Comparative Analysis

This section is devoted to comparing the effects of the perturbations (6) and (7) on the
activation/repression regions in terms of the thresholds predicted by the different BEWARE
operators considered. This study shows the existence of two main factors that are seen to
determine the model’s response: the first one is the binding cooperativities involved in
the TF binding process and the second is how the transcriptional effects of activators and
repressors are modelled.

In order to understand the cooperativity effects between TFs in their binding process,
we have divided the partial cooperative case in two extreme scenarios: activator cooperative
(cA > 1, cR = 1) and repressor cooperative (cA = 1, cR > 1) cases. Then, we have included
the null and total cooperative case in the same scenario, since the only difference between
the operators is the value of c (i.e., c = 1 for the null cooperative case and c > 1 for the
total cooperative case). This allows us to identify more easily cases where the activators or
repressors should lose “competitive advantages” (discussed in Section 2.2) or not. Particular
cases with partial cooperativity between activators and repressors should be estimated
numerically.

We analysed stimulated and recruitment BEWARE operators with each kind of coop-
erativity, obtaining interesting (but unexpected) results which are summarised in Table 1
(detailed proofs can be found in Supplementary Materials Sections S6.1 and S6.2).

3. Results

From the modelling point of view, the expected behaviour in relation to perturbations
(6) and (7) should be:

• Null/Total cooperative case: The activators and repressors lose no competitive advantage
in the the null case or lose exactly the same amount of competitive advantage in
the total cooperativity case. Hence, the threshold function should not vary (unit
elastic case);

• Activator cooperative case: The activators lose that competitive advantage over the
repressors. Hence, the threshold function should decrease (elastic case).

• Repressor cooperative case: The repressors now lose the competitive advantage over the
activators. Hence, the threshold function should increase (inelastic case).

Estimations exhibited in Section 2.3 show that the Recruitment BEWARE operator
behaves as expected, that is, the elasticity of the thresholds determined by these operators
are proven to be εr,p > 1 in the Activator Cooperative case, εr,p < 1 in the Repressor
Cooperative case, and εr,t = 1 in the case of null/total cooperativity.

In the case of the Stimulated BEWARE operators, the analysis of the elasticity variable
(at n = 2) is more entangled as can be seen in Table 1. Here, the elasticity value is related
not only to the cooperativities but also to other parameters that determine each micro-state
transcription rate. In fact, we can observe that, regardless of the (binding) cooperativity
considered, we can get elastic, inelastic or unit-elastic situations depending on certain
relationships between the parameters involved in the modelling.

Let us explain this conclusion revealed by elasticity. Remembering that the basal
transcriptional level, corresponding to the transcriptional rate of an empty micro-state,
in this approach is tr∅,∅ = rbas. Here, ∅ represents an enhancer with non bound TFs. The
transcriptional rates associated with micro-states with a single bound activator/repressor,
as can be seen in Supplementary Materials Section S1, are trA,∅ = rbas + ẽν

(2)
max = rbas + ν

(1)
max

and trR,∅ = r̃rbas, respectively. If the linkage of a second TF of the same family occurs, then

the new transcription rates become trA,A = rbas + ν
(2)
max = rbas + ν

(1)
max/ẽ and trR,R = r̃2rbas.
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Let us observe that the ratio in the variation of the transcriptional rate due to the
binding of a repressor is constant regardless of the existence of other already bound
repressor, that is,

trR,∅

tr∅,∅
=

trR,∅

trR,R
= r̃ .

However, in the case of activators, the analogous rates depend on the values of ẽ, ν
(1)
max

and rbas

trA,∅

tr∅,∅
= 1 +

ν
(1)
max

rbas
and

trA,∅

trA,A
=

rbas +
ν
(1)
max
ẽ

rbas + ν
(1)
max

and can vary from the first to the second binding protein. Then, the existence of the second
enhancer implies

(i) a transcriptional advantage for repressors if trA,∅
tr∅,∅

>
trA,∅
trA,A

, since in that case compara-
tively the binding of a second activator is less effective than the binding of a second
repressor;

(ii) a transcriptional advantage for activators if trA,∅
tr∅,∅

<
trA,∅
trA,A

, since in that case compara-
tively the binding of a second activator is more effective than the binding of a second
repressor;

(iii) no advantage for any TF when trA,∅
tr∅,∅

=
trA,∅
trA,A

because in that case the binding of a
second TF is equally as effective as the first bound TF.

It is easy to check that (i), (ii) and (iii) directly correspond to the elastic, inelastic or
unit-elastic cases under null/total cooperativity determined in Table 1. That is, in the
absence of binding cooperativity, the advantage that elasticity demonstrates is related to
the possibility that the functioning of two adjacent activators can be more/less effective
together than separately. Indeed, this “functional (anti-)cooperativity” mechanism is not
new in literature; it was already proposed in [40]. However, with the elasticity, we are
able to analyse some specific cases of the models proposed in [40], and the values that the
elasticity function takes reveal inconsistencies with the modelling guidelines proposed in
that work.

In Table S4, we introduced some identifications/choices that can be made in order
to fit the model proposed in [40] into the expression of a stimulated BEWARE operator
such as the ones employed in this work. This allowed us to apply, in some specific cases,
the analytical tools we have developed to the model proposed in [40]. The results of this
analysis (Supplementary Materials Section S6.2) are summarised in the middle row of
Table 1, that is, the estimates of the elasticity corresponding to the thresholds deduced from
stimulated BEWARE operators with two enhancers (n = 2). This analysis shows that there
are acceptable parameter values for the model that give us inelastic threshold functions
that are fully compatible with the non-existence of “functional cooperativity” (εA = εR = 1
according to notation in [40]). In Figure 3, the inelastic threshold function (continuous
purple line) has been obtained using some of these parameters (see values in Table S4,
Supplementary Materials Section S8).

In the same figure, we can see how perturbed thresholds vary according to the elasticity
being less than one. On the other hand, this model was deduced without considering
binding or functional cooperativity.

Thus, our analysis shows that the model in [40], deduced from non “functional”
and non “binding” affinity assumptions, can have an inelastic threshold. In addition, it
reacts as it has been proven to do under perturbations (6) and (7). This can be seen in
Figure 3. Our argument supports the notion that the asymmetric approach that has been
adopted in stimulated operators for modelling the activators and repressors functionalities
is causing this effect. The elasticity can also be estimated in the presence of partial binding
cooperativity, and we have seen that, in both cases, elasticity is able to balance the effects of
both cooperativities.
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This unexpected effect needs to be taken into account in analyses such as those
developed in [53] because, if used, it can seriously alter the conclusions. This example is
one reason why we were interested in performing sensitivity analysis in this work.

Regarding the Hill versions of the Recruitment and Stimulated operators, we can say
that εh = 1 for any kind of cooperativity and operator. However, it is important to note
that identities in (9) are not valid in this framework. That is, the extreme cooperativity
approach used to get the Hill type models is incompatible with the information that
elasticity provides.

4. Discussion

This work explores the applicability of classical thermodynamic modelling to the inter-
pretation of experimental results observed at a tissular level in terms of which biochemical
mechanisms are involved in transcriptional control. The thermodynamic approach allows
us to represent the transcriptional control exerted by opposing transcription factors (TFs)
over a particular set of TFBS (enhancers), considering alternative enhancer configurations
and biochemical mechanisms. Using these models, we are able to show that it is possible to
theoretically predict activated/repressed tissular regions, that is, cells which are relatively
activated/repressed.

One of the possible uses of this type of modelling is to theoretically reproduce exper-
imental procedures which compare the effects of given enhancer perturbations on those
activated/repressed celular regions. Specifically, we have considered two enhancer module
perturbations performed in [15]: one reduces the number of enhancers on the module and
the other modifies the enhancers’ affinity. In the theoretical framework, both of these
experiments are the equivalent of performing a sensitivity analysis because we are compar-
ing the effects of the analog enhancer perturbations on the activation/repression regions.
Testing the experimental results against this kind of theoretical predictions can give insights
into the mechanisms involved in the transcriptional control of the considered gene. This
has already been done in paradigmatic systems such as Hh target genes [53]. However,
the reliability of this comparison depends on how accurately the biochemical mechanisms
are represented by the thermodynamic model. In this work, we have analysed this question
in models involving two different TF transcriptional control mechanisms which have been
well established in previous literature: the recruitment and stimulated mechanisms.

The first conclusion made from our analysis is that, despite the fact that the perturba-
tions proposed in [15] are quite different, the variations of the activation/repression regions
due to both perturbations are qualitatively the same. In both stimulated and recruitment
approaches, we have proven that the theoretical response of the activation/repression
regions depends on the same variable: the elasticity of the threshold function. At first, it
seems surprising that the same variable would determine the cause–effect behavioural
tendency of such different perturbations. Nevertheless, we must keep in mind that both
perturbations are interfering with the transcriptional control. More specifically, they in-
terfere with those mechanisms in which some bound transcription factors assist other
transcription factors, usually called cooperativity mechanisms. The elasticity variable is sig-
nificant in this framework because it is able to distill the effects of the multiple biochemical
hypotheses considered.

Although the enhancer perturbations affect all TFs in the same way, the activa-
tion/repression variations occur as a consequence of the loss of some functional advantage
that some of the TFs had originally. In this point, we have determined the advantages
involved in recruitment and stimulated models.

Through analysis of the recruitment operators, we find that, in this case, their elasticity
is mainly determined by the binding cooperativity relations between TFs. However, in the
case of the stimulated approach, in addition to the binding cooperativity, functional cooper-
ativity is included in the modelling. That is, TF proteins are also allowed to cooperate or
anti-cooperate in their transcriptional control function. Indeed, by using elasticity, we have
detected that the modelling can (artificially and accidentally) include this functional coop-
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erativity effect. Care must be taken with the parameters to avoid this unexpected inclusion
of functional cooperativity effects. This is a particular example where elasticity is capable
of balancing the effects of different mechanisms and funnel them into a single variable.

Although Hill type models can also be deduced from the stimulated/recruitment
BEWARE operators, we have proven that they alter the response to this sensitivity analysis.

It is important to remark that we can also discuss the applicability of stimulated or
Hill models in the interpretation of the results in [15]. That is, we know by Table 1 that:

• The Hill model fails to reproduce the experimental evidence. This is because the
strong cooperativity assumption leads to an elastic threshold, which is not compatible
with the results obtained in [15].

• The stimulated model could also fail, depending on the selection of the model parameters.

The last point notes another interesting use of the elasticity function. Given the
experimental evidence, it could be used to restrict the Stimulated model parameters space,
using the elasticity function as a helper in the parameter fitting process.

The possibility of performing sensitivity analysis gives new perspectives and opens
new opportunities for the use of thermodynamic modelling, especially in the study of the
mechanisms involved in signal interpretation. In addition, as new experimental procedures
become available, the reevaluation of classical models becomes possible. This is not
only relevant per se, but also because these basic models are intrinsically involved in the
interpretation of a wide range of phenomena such as in epigenetic control [78], protein
dispersion [60] or transcriptional bursting [79–81].
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Abbreviations
The following abbreviations and nomenclature are used in this manuscript:

BEWAREm

Binding Equilibrium Weighted Average Rate Expression. The
subindex m is used to denote what version of the model is used
(i.e., m = r denotes Recruitment model, m = s denotes Stimulated
model, m = Hr, m = Hs denote Hill models).

C
Set of transcription factors. Depending on the cooperativity
interactions between the TFs, this set can be arranged on subsets of
cooperativity, characterized by the cooperativity constant ci.

ci

Cooperativity constant of a protein i. Depending on the model, this
constant can be the same for all proteins (total cooperativity), in
which case ci = c, or extreme (Hill), in which case ci = c→ ∞.
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Ci
Cubitus Interruptus. Transcription factor involved in the regulation
of Hedgehog target genes.

cis (-regulatory regions)
Regions of non-coding DNA which regulate the transcription of
neighboring genes.

Dpp
Decapentaplegic. Protein synthesized from the transcription of the
gen dpp, one of the target genes of Hedgehog.

εm,l
Elasticity function of fm,l . It measures the system response to
proportional perturbations in the model parameters.

fm,l

Threshold function. It defines the concentration of TFs needed in
order to get a basal transcription in the a BEWAREm model. The
subindex l denotes what kind of cooperativity is applied between
the TFs (i.e., l = t denotes Total cooperativity and l = p denotes
partial cooperativity).

Hh
Hedgehog. Morphogen involved in the development of
Drosophila melanogaster.

ji
Occupation number of a protein i. It denotes the number of
cis-regulatory regions that are bound by the protein i.

Ki

Dissociation constant of a protein i. It is related to
the binding affinity of the protein i by its inverse (i.e., the larger Ki
is, the lower the binding affinity of the protein i is.)

mRNA
RNA messenger. Single-stranded segment of RNA that corresponds
to the genetic sequence of a gene.

n Number of TFBSs (enhancers).

RNAP
RNA Polymerase (Pol II). Protein that binds the DNA in a specific
cis-regulatory region (promoter) and starts genetic transcription.

Shh Sonic Hedgehog. Morphogen member of the Hh family in vertebrates.

TF
Transcription Factor. Protein that binds the DNA in a specific
cis-regulatory region (enhancers; TFBSs) and regulates genetic
transcription.

TFBSs
Transcription factor binding sites. Specific DNA cis-regulatory region
that transcription factors bind to in order to regulate the
genetic transcription.

Ptc
Patched. Transcription factor involved in the regulation of Hedgehog
target genes.
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