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Abstract
Motivated by recent advances in neuroscience, in this work, we explore the emergent behaviour of
quantum systems with a dynamical biologically-inspired qubits interaction. We use a minimal
model of two interacting qubits with an activity-dependent dynamic interplay as in classical
dynamic synapses that induces the so-called synaptic depression, that is, synapses that present
synaptic fatigue after heavy presynaptic stimulation. Our study shows that in absence of synaptic
depression the two-qubits quantum system shows typical Rabi oscillations whose frequency
decreases when synaptic depression is introduced, so one can trap excitations for a large period of
time. This creates a population imbalance between the qubits even though the Hamiltonian is
Hermitian. This imbalance can be sustained in time by introducing a small energy shift between
the qubits. In addition, we report that long time entanglement between the two qubits raises
naturally in the presence of synaptic depression. Moreover, we propose and analyse a plausible
experimental setup of our two-qubits system which demonstrates that these results are robust and
can be experimentally obtained in a laboratory.

1. Introduction

Learning and information processing are key topics of science that have recently been pushed to the
quantum domain. In the last years, thanks to the development of quantum computers, there is an
increasing interest in the design of autonomous devices to perform certain tasks with quantum
improvement. This has lead to the developing of the fields of quantum machine learning and quantum
artificial intelligence [1, 2]. In this direction, there have been proposal for autonomous machines that can
estimate a state or a quantum unitary [3, 4], as well as algorithms of quantum reinforcement learning
[5–10], and quantum neuronal networks (QNNs) [11, 12]. Besides, the most used framework for quantum
machine learning is based on variational quantum algorithms [13–16].

In the field of QNN there have been theoretical proposals of models of single quantum neurons
[17–19], as well as networks such as the perceptron [20–22] and Hopfield’s [23, 24]. The main interest here
has been to see if such quantum versions of neural networks are able to improve the properties of
classification and pattern recognition compared with classical ones, but there is also a biological motivation
[25]. All these approaches use versions of binary neurons that are substituted by qubits, with very simple
interactions between the units. However, classical neural networks and biological inspired neural
population models include other important element that has been shown to have a prominent role on
neural computation, i.e., the synapses [26]. The transmission of the information encoded in firing patterns
of the neurons is performed by the synapses to postsynaptic neurons through highly non-linear processes.
These include, among others, the biophysical processes that control the trafficking and recycling of
neurotransmitter molecules at the synapses and which are responsible for the transmission of the electrical
signals among interconnected neurons. During the last decades, neuroscientists have extensively studied the
role that synaptic processes can have on the processing of information in the brain. In particular, it has been
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reported in different neural media that due to the incoming presynaptic activity, synapses can reduce
(synaptic depression) or increase (synaptic facilitation) their capability to transmit the incoming electrical
signals [27]. This clearly shows that actual synapses are dynamical or activity-dependent entities. Moreover,
such dynamic synapses have strong computational implications [28] in the behaviour of classical neural
networks, including a strong effect on storage capacity [29, 30], the appearance of dynamical memories [31,
32] and the emergence of stochastic multiresonances during the processing of weak stimuli [33], to name a
few.

With this motivation, in this work, we explore the emergent behaviour of quantum systems with a
dynamical biologically-inspired qubits interaction. We use a minimal model of two interacting qubits with
an activity-dependent dynamic interplay as in classical dynamic synapses. Although our study can be easily
generalised for dynamic synapses which include both synaptic depression and synaptic facilitation, we here
only report results concerning the case of depressing synapses, that is, synapses that present synaptic fatigue
after heavy presynaptic stimulation. We observe that in absence of synaptic depression our two-qubits
quantum system shows typical Rabi oscillations. However, when synaptic depression is introduced such
Rabi oscillations decrease their frequencies so one can maintain a given qubit active for long periods of
time. This creates an asymmetry between the qubits even though the Hamiltonian is Hermitian. This
asymmetry can be sustained in time by introducing a small energy shift between the qubits. We also study
the effect of dynamic interaction depression in the creation of entanglement between the two qubits,
probing that long time entanglement raises naturally. Moreover, by analysing the behaviour of a plausible
experimental setup of our two-qubits system, we demonstrate that these results are robust and can be
experimentally tested in a laboratory.

2. Model: two interacting qubits Hamiltonian with short-term depression

Our model is based on two qubits with an XY interaction in the form

H(t) = ε1σ
z
1 + ε2σ

z
2 +

Ω

2
r(t)

(
σ+

1 σ−
2 + σ−

1 σ
+
2

)
, (1)

where σz
i are Pauli matrices for the ith qubit, εi are the one-site energies, σ±

i are the creation/annihilation
spin operators acting on site i, Ω is a parameter characterising the qubits interaction strength, and r(t) is the
time-dependent parameter we will use to model the synaptic depression mechanism. By tuning the
time-dependent parameter r(t) the interaction between the spins can be switched on and off. This kind of
XY Hamiltonians have been broadly studied in different fields as quantum transport [34–36] and quantum
biology [37, 38].

To tune the variable r(t), we use a biologically-inspired dynamics. From the neuroscience perspective, it
is now well known that the postsynaptic response of chemical synapses can vary in scales from milliseconds
to minutes, in addition to more familiar long-term plastic effects due to the incoming presynaptic activity
[27, 39–42]. Thus, synaptic efficacy can decrease due to the depletion of neurotransmitters inside the
synaptic button after heavy presynaptic activity, inducing the so called short-term depression (STD).
Additionally, the postsynaptic response can be enhanced due to the growth of residual intracellular calcium
concentration after the opening of the voltage gated calcium channels due to successive arrival of
presynaptic action potentials to the synaptic button [43, 44]. This effect is well known that increases the
neurotransmitter release probability and the postsynaptic response, inducing the so called short-term
synaptic facilitation (STF). Both synaptic processes, i.e. STD and STF, can coexist and compete in actual
synapses inducing complex emergent behaviour [30, 32, 33, 45] and resulting in strong computational
implications [28]. As a first step, we are going to consider here synapses including only STD, which can be
described by classically monitoring the time dependence of the fraction r(t) of neurotransmitters which are
ready to be released after the arrival of an action potential (in the present quantum model this fraction will
modulate the interaction between both qubits, that is why it is named as the time-dependent variable of the
Hamiltonian), and which follows the dynamics

dr(t)

dt
=

1 − r(t)

τ
− Ur(t)δ(t − tsp), (2)

where the parameter U is the release probability, τ is the neurotransmitter recovering time, and tsp is the
time at which the presynaptic spike arrives at the synapse (note that this is defined for classical systems).
The presence of the Dirac delta function δ(t) in the second right-hand term of (2) indicates that this term is
only present at t = tsp. The dynamics (2) implies that each time a presynaptic spike occurs, a constant
portion Ur(tsp) of the resources is released into the synaptic cleft, and the remaining fraction (1 − r(t))
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Figure 1. Sketch of the neuron–neuron interaction through an excitatory chemical synapse (left) which induces synaptic
depression in the postsynaptic response (right). This occurs since the presynaptic neuron needs a time τ to move the
neurotransmitter vesicles from a reserve pool of vesicles to the ready-releasable pool near the cell membrane. For large τ the
number of vesicles in the ready-releasable pool are hardly replaced at the time a presynaptic action potential arrives to the
synapse, which causes a decrease or depression of the postsynaptic response. This effect is stronger for large frequency of the
incoming action potentials. The variable r(t) in equation (2) is related with the amount of neurotransmitters released in the
synaptic cleft and determines the amplitude of the postsynaptic potentials.

becomes available again at rate 1/τ . In figure 1 a sketch of the neuron–neuron interaction with synaptic
depression is illustrated.

It is straightforward to see that when τ is small the level of synaptic depression is also low since the
variable r(t) quickly recover to its maximum value rmax = 1 from the lower values originated by the release
of neurotransmitter due to the arrival of a presynaptic spike. When τ is enlarged such recovering becomes
slow and r(t) takes a long time to recover. The synaptic response which is proportional to r(t) will be more
depressed the larger the τ . Therefore, we can use τ as a parameter to control the level of STD. In classical
neural networks including STD, the variable r(t) modulates the synaptic strength, namely ωij, between the
presynaptic j neuron and the postsynaptic i neuron. The postsynaptic neuron receives an input
hi(t) = ωijr(t)sj, where sj = 1, 0 is the neuron state variable of the input neuron, and which can be seen as
an energy term per neuron [26].

In our quantum case we cannot define the time of spike arrival tsp so we rely on an approximation. In a
steady state condition, we can consider that the presynaptic neuron is firing at a given average frequency f.
In such situation, the second right-hand term of (2), after time averaging in such steady state, can be
approximated by Urstatf with rstat = 1/(1 + τUf), since one has f = 〈

∑
tsp
δ(t − tsp)〉 = (1/T)

∫ t0+T
t0

dt
∑

tsp

δ(t − tsp), being T the temporal window to compute the time average. On the other hand, the presynaptic
firing rate f can be interpreted as a measure of the probability for the presynaptic neuron to be firing, in
such a way that if f is low the neuron is hardly firing and if f is large the neuron is continuously firing.
Hence, we can consider the population of a qubit 〈σ+σ−〉 as an appropriate quantum analog to f since it is
near to one (i.e. large), when the qubit in the up state and zero (low) when the qubit is in the down state.
Therefore, in order to find a quantum analog to the dynamics (2) the term including the Dirac delta
function in equation (2) can be approximated by

Urstat〈σ+σ−〉.

In the steady state condition one has

rstat =
1

1 + τ U 〈σ+σ−〉 ,

which is identical to the classical expression (see above) replacing f by 〈σ+σ−〉.
Then, for each qubit, one can hypothesise a quantum version of equation (2) as follow

dri(t)

dt
=

1 − ri(t)

τ
− Uri(t)〈σ+

i σ−
i 〉 i = 1, 2. (3)

In a general system there are as many values of ri as neurons. In our two qubit case we will work with only
one depression variable. We focus our study to see how the population of qubit 1 depresses the interaction
Hamiltonian and then substitute in (1) r = r1(t) so the final dynamics of our system is given by a set of
equations

dρ(t)

dt
= −i[H(t), ρ(t)],

dr(t)

dt
=

1 − r(t)

τ
− Ur(t)〈σ+

1 σ−
1 〉(t).

(4)
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Figure 2. The figure illustrates the input–output non-linear features of our system. Renormalized value of the minimum of r(t)
reached during its evolution, namely rmin, as a function of the Hamiltonian parameter Ω controlling the frequency of the
emerging Rabi oscillations of the qubits populations, for different values of the neurotransmitter recovering time τ . Here
r0 = rmin (Ω = 0). Other Hamiltonian parameters considered are: U = 0.5, ε1 = ε2 = 0. This clearly illustrates that the
non-linear effects are more important when τ is large (strong depression) and they disappear for τ → 0 (non-depressed case).
The value of r0 = rmin (Ω = 0) has been calculated after several epochs to avoid transient behaviour. The initial state chosen is
ρI = |10〉 〈10|.

As it is clear from this set of equations the time-dependent parameter r(t) influences the interaction
dynamics of the qubits and it is affected by this dynamics as well. This interaction is non-linear as it is
characteristic in classical neuronal systems. To illustrate the emergence of this non-linear effect in our
quantum neuron system we have displayed in figure 2 the minimum value rmin that the time-dependent
parameter r(t) reaches during its evolution as a function of the parameter Ω of the Hamiltonian. This is
shown for different values of the neurotransmitter recovering time τ . In the figure, such minimum value
has been renormalised by dividing it by the corresponding minimum value when Ω = 0, namely
r0 = rmin (Ω = 0), in order to make a proper comparison of the non-linear effects induced by different
values of τ . As when Ω = 0 the oscillations of the systems are suppressed we select the initial state
ρI = |10〉 〈10| to ensure a finite population 〈σ+σ−〉 = 1. It is clear from the plot that the introduction of
the synaptic depression variable r(t) induces a strong non-linear effect in the system for large values of τ .
We use the Hamiltonian parameter Ω as a relevant parameter to tune the input characteristic of our system
since it controls the frequency of the Rabi oscillations of the qubits population.

One difficulty in the design of quantum systems with STD is that the mean value of the excitation of a
qubit cannot be estimated by a single measurement, and also the measurement of the population would
affect the system state giving rise to a different dynamics. Hence, it is difficult to engineer non-linear
dynamics as the one given in equation (4). Because of that we have also explored the possibility of
implementing STD by a measurement-based protocol that could be easily implemented in realistic systems
as cold atoms [46, 47] and trapped ions [48, 49]. As the main difficulty of the original model is to design a
system with a dynamics that depends on the average population 〈σ+σ−〉 an easier way to proceed would be
to evolve the system according to its Hamiltonian and perform a measurement of the first qubit population.
The variable r(t) of the Hamiltonian now follows the dynamics

dr(t)

dt
=

1 − r(t)

τ
− Ur(t)sc , (5)

where sc is a binary variable which can be 1 or 0 depending on the outcome of the measurement. The
algorithm that gives the evolution is now the following:

(a) At the beginning we select sc = 1.

(b) For a time tm the system evolves following the equations

dρ(t)

dt
= −i[H(t), ρ(t)],

dr(t)

dt
=

1 − r(t)

τ
− Ur(t)sc.

(6)
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Figure 3. Effect of dynamic synapses in an ideal two interacting qubits system. From top to bottom the level of synaptic
depression in the system is decreased using, respectively, τ = 500, 100, 10, 0.001. Other parameter values are U = 0.5,Ω = 0.05.
In the left panel it is shown the time dependence of the population (green line) of the first qubit as well as the Hamiltonian
time-dependent parameter r(t) (purple line) for a symmetric Hamiltonian ε1 = 0, ε2 = 0. In the right panel the same parameters
are displayed for ε1 = 0 and ε2 = 0.1. The complex interplay among these two variable modulated the shape and frequency of
the emergent Rabi oscillations in a nontrivial way. Time given in natural units. Be aware of the different time scales of the plots.
The dynamics have been calculated by solving the set of equation (4) with a fourth order Runge Kutta algorithm with time step
δt = 0.001 for this and the next plots.

(c) After a time tm the measurement is done, the system collapses and the variable sc is adjusted to the
outcome. From a simulation perspective this is done in the following way: we choose an uniform
random number xrand and then make the choice

sc =

{
1 if xrand <

〈
σ+σ−〉

0 if xrand >
〈
σ+σ−〉

(d) Go to (b). Note that in the simulation we have included a new parameter, tm, that has no
correspondence in the continuous evolution.

3. Results

We have first analysed how the level of STD in the qubits interaction term affects the behaviour of our two
qubits system. The results are summarised in figure 3 where the occupation probability of qubit one,
p↑1(t) = 〈σ+

i σ−
i 〉(t) (green line), is displayed as a function of time as well as r(t) (purple line). We have

considered a relatively low interaction strength (Ω = 0.05) and an initial state in the form ρI = |01〉 〈01|. In
the left panel we observe the case of a balanced system with ε1 = ε2 = 0. Due to the interchange form of the
interaction Hamiltonian both qubits will oscillate between their ground and excited states. In the case of no
depression, τ � 1, these oscillations are equivalent between both qubits but when the depression time
increases a difference between the qubits arises. Qubit one starts being exited for a longer time than qubit
two because when it is excited the depression time-dependent parameter r(t) is reduced. This difference
increases with τ and can be used to create a population imbalance between the qubits. Furthermore, if the
energy of the qubits is not equal this population imbalance becomes more important, as it is shown in the
right panel of figure 3. In this case, the qubit responsible of the STD increases its population until reaching
a value close to 1. Interestingly, this behaviour happens for any energy difference, even very small ones. The
population imbalance growths faster for medium values of τ . This happens because for small values of τ the
time-dependent parameter r(t) recovers very quickly giving raise to normal Rabi oscillations. On the other
hand, when τ � 1 the value of r is always close to zero meaning that there is a very weak connection
between the qubits, making the growth of the imbalance very slow. In all cases, once the qubit 1 is at a
population close to one the variable r drops to zero avoiding the qubit–qubit interaction. Because of that,
the system never recovers the Rabi oscillations. We have checked this numerically for times as long as 107

time steps for values of τ = 10, 100, 500.
The complex interplay between the qubits dynamics and the depression can be used to create long time

entanglement in the system (cf figure 4). In the case with no depression the entanglement between the
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Figure 4. Negativity of the system as a function of time. From top to bottom the level of synaptic depression in the system is
decreased using, respectively, τ = 500, 100, 10, 0.001. In the left panel it is shown for a symmetric Hamiltonian ε1 = 0, ε2 = 0. In
the right panel there is an energy imbalance ε1 = 0 and ε2 = 0.1. Other parameter values are U = 0.5,Ω = 0.05. Time given in
natural units. Be aware of the different time scales of the plots.

Figure 5. Population of the first qubit as a function of time for single trajectories (left) and for the average value over 10 000
trajectories (right). From top to bottom the level of synaptic depression in the system is decreased using, respectively,
τ = 10, 1, 0.01. Other parameter values are U = 0.5,Ω = 0.05, ε1 = 0 and ε2 = 0.1. Time given in natural units and the time
between measurements is tm = 30 in that units.

qubits, measured by the negativity [50, 51], oscillates between 0 and the maximum value 0.5 within a time
window of Δt ≈ 40. For the energy symmetric case, when the value of the parameter τ increases the
negativity presents a similar behaviour that the first qubit population, increasing the time the system is
entangled. This effect, for both the symmetric and asymmetric cases, is displayed in figure 4. In the left
panel it is shown the balanced case and we can observe that the system still presents oscillations but it is
entangled for a longer time than in the non-depression limit (see the plotted time scale in all panels). In the
right panel, we observe the case with energy imbalance. In this case, there is a fast increase of negativity
from a separable state to a maximum-entangled one followed by a slow decay of entanglement. The
entanglement life is proportional to the STD variable τ , being very long for τ � 1. For all asymmetric cases
the entanglement vanishes in the long time limit as in this limit the populations of the qubits reach a steady
state. This method to create entanglement using the present biological inspired synaptic mechanism, is
deterministic, autonomous, and very long-lived.

Finally, we have also studied the dynamics of the system under the measurement-based scenario
described in the previous section. In this case, as we cannot know the value of the average population, we
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perform a measurement of qubit 1 in the {|0〉, |1〉} basis. This measurement makes the system collapse, and
depending on its output, we associate to a variable sc, the value 0 or 1. This variable determines the
dynamics of the time-dependent depression variable ri(t). The behaviour of the system is shown in figure 5.
In the left panel the population of the first qubit is displayed for three different trajectories for different
values of the time-dependent depression parameter (τ = 10, 1, 0.01), while the right panel shows the
average behaviour. For small values of the depression parameter τ both qubits perform small oscillations
and the measurement process makes stochastic random jumps. In this case the average population of both
qubits is 0.5 as it is expectable because in the limit τ � 1 the system recovers its original quantum
Hamiltonian dynamics and the qubits oscillates between the |0〉 and |1〉 states. When τ increases the
oscillations when the first qubit is excited are depressed. This makes this configuration more expectable and
there are more jumps up than down. The result is a population imbalance that can be appreciated in the
average behaviour (right panel). Interestingly, in this measurement-based approach the effect is more
relevant for smaller values of τ than in the previous scenario. This happens because of the binary value of
the collapse state variable sc in this case.

4. Conclusions

In this paper we have proposed a novel model of quantum neurons which are interacting via a synaptic
depression mechanism. This model is inspired by the synaptic plasticity that happens in biological neuronal
networks and it is based in a non-linear interaction of the qubits. This complex interaction allows the
emergence of interesting behaviours such as population imbalance between the qubits and long-lasting
entanglement generation. These behaviours are more appealing if an energy shift between the qubits is
introduced, even if it is small. Furthermore, we have proposed a measurement-based protocol that can be
implemented in real experimental devices.

This work opens the door to the study of complex QNNs with dynamical synapses. Several questions are
still open as what is the effect of synapse facilitation, and if quantum dynamics can improve the retrieval
capacity of neuronal networks. Furthermore, our two-interacting quantum neurons model can be applied
for both feed-forward networks and recurrent networks. It is direct to expand the current study to a
perceptron like network since such network is constituted by modules of two-interacting quantum neurons,
as the ones considered here, which are integrated in the postsynaptic layer. Moreover, in such a feed forward
perceptron architecture the information flows only in one direction, without interactions between neurons
at the same layer. It is natural then to model the synaptic depression as an effect between layers. In this
direction, there are some network models [20–22] and the extension of them with more complicated
quantum neuron–neuron interaction would be a very interesting field of research. Besides, recurrent
networks, as Hopfield’s, are also very interesting and have been recently extended to the quantum regime
[23, 24]. Again, the extension of these models to include synaptic depression is straightforward and it would
give a more complex, and interesting, behaviour. Finally, the effect of synaptic depression in machine
learning problems has already been explored in the classical regime [52, 53]. The possibility of multipartite
entanglement generation by this kind of model is also interesting to study.
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