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Designing grazing susceptibility 
to land degradation index (GSLDI) 
in hilly areas
Gabriel Minea1*, Nicu Ciobotaru1,2*, Gabriela Ioana‑Toroimac3, Oana Mititelu‑Ionuș4, 
Gianina Neculau1,2, Yeboah Gyasi‑Agyei5 & Jesús Rodrigo‑Comino6

Evaluation of grazing impacts on land degradation processes is a difficult task due to the 
heterogeneity and complex interacting factors involved. In this paper, we designed a new 
methodology based on a predictive index of grazing susceptibility to land degradation index 
(GSLDI) built on artificial intelligence to assess land degradation susceptibility in areas affected 
by small ruminants (SRs) of sheep and goats grazing. The data for model training, validation, and 
testing consisted of sampling points (erosion and no‑erosion) taken from aerial imagery. Seventeen 
environmental factors (e.g., derivatives of the digital elevation model, small ruminants’ stock), and 55 
subsequent attributes (e.g., classes/features) were assigned to each sampling point. The impact of SRs 
stock density on the land degradation process has been evaluated and estimated with two extreme 
SRs’ density scenarios: absence (no stock), and double density (overstocking). We applied the GSLDI 
methodology to the Curvature Subcarpathians, a region that experiences the highest erosion rates in 
Romania, and found that SRs grazing is not the major contributor to land degradation, accounting for 
only 4.6%. This methodology could be replicated in other steep slope grazing areas as a tool to assess 
and predict susceptible to land degradation, and to establish common strategies for sustainable land‑
use practices.

Unsustainable grazing is a millennial activity that can trigger land degradation processes if appropriate soil 
management practice is not put in  place1–3. However, it is a vital activity that ensures food  security4 and eco-
system  health5.

Pastoral land activities are some of the most common farming practices in many parts of the world such as 
central and southeastern Europe. Some representative areas are located in Poland and  Romania6,7 and along 
the Pyrenees in  Spain8. Livestock is in many countries the largest agricultural sector and occupies about 37% 
of the global ice-free land surface (130.4 M  km2)9. Across the world, the domestic stock was estimated as 1,238 
billion sheep and 1094 billion goats in  201910, which delivered 1/3 of all protein consumed by  humanity11. Small 
ruminants (SRs) stock (sheep and goats) can be considered a major contributor to the global economy account-
ing for about 2% (1995–2005) of the global gross domestic  product12,13. In the context of increasing demand 
for food due to the growing human population, the environmental impact of various sectors of agriculture will 
also  increase14. The increasing combined pressure of agricultural and livestock productions (e.g., unsustainable 
grazing) is assumed as one of the main factors expected to accelerate land degradation in the twentieth and 
twenty first  centuries15. Soil erosion in agricultural  areas16–19 and intensive grazing are recognized as global 
environmental  issues20–22.

Grazing, as a component of land use, is associated with certain patterns in hydrosedimentary conditions 
from event-scale to the catchment scale (e.g.,23,24 and several studies have analyzed the relationship between 
unsustainable grazing, grassland status, and animal types (e.g.,25–32. Unsustainable and prolonged grazing may 
trigger hydrological changes such as soil water content, but also the activation of runoff with an impact on the 
streamflow regime (e.g., maximum and minimum flow) affecting runoff  coefficients33–37, even with modifications 
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of the terrestrial  water38. For example, Meyles et al.39 assessed flood frequency with a higher occurrence of erosion 
in large areas under intensive grazing process in a small Dartmoor catchment, in southwest England.  Poesen40 
stressed the need for more research attention on the hydrological and erosional response of rangelands. Hancock 
et al.41 quantified erosion in a grazing environment typical of the east coast of Australia and discovery that under 
current management practices soil loss is relatively low (< 5 t  ha−1  y−1).

Most hydrological studies have underlined the role that vegetation plays in grazing lands in controlling 
 erosion42 and the  biocrust43,44. Some authors pointed out that about 20% of the world’s pasture areas are con-
sidered degraded as a consequence of overgrazing and associated erosion and compaction among other main 
 factors13. Nowadays, scholars have highlighted that this relationship is complicated and not well understood. One 
of the most complex mechanisms is related to the SRs where they can influence organic matter and facilitate the 
adherence of aggregated clay and the formed colluvial layer that serves as a substrate to the expanded vegetation 
 growth45,46. Moreover, satellite-derived data such as normalized difference vegetation index (NDVI) can be used 
in land degradation assessments, but without distinguishing specific signs of degradation/conservation from 
impacts of adverse/beneficial natural  processes5,47. In the last few years, in the temperate climate of Europe, the 
analysis of SRs grazing influence on soil and runoff processes has received minimal interest but a few devoted 
field works have been carried out at the hillslope scales under grazing (e.g.,28,48–51.

Some previous methods and tools used for the quantification of grazing as part of land degradation and ero-
sion have shown several drawbacks. For example, field-based monitoring has to be planned for very long-term 
periods to foresee future changes, which may become expensive and time-consuming52. Therefore, the lack of 
monitoring and observational data is hampering the assessment of land degradation by grazing. Nowadays, 
remote sensing techniques and modeling approaches based on landscape unit and vegetation indexes are becom-
ing useful tools. Riva et al.47 showed that grazing is a significant cause of land degradation even in partially 
abandoned areas, and the effectiveness of responses to land degradation is substantially affected by land cover 
and topography.

Given the spatial and temporal variability of various grazing practices that complicates the interpretation 
within mechanistic models, Ma et al.53 highlighted that efforts are needed to reduce inconsistencies among 
grazing land models in simulated grazing management effects by carefully examining the underlying processes 
interacting in each model. Also, interesting results were obtained by Kosmas et al.54 using geographical informa-
tion systems (GIS) at the local scale, concluding that rapid growth in the livestock density increased soil erosion 
rates. Currently, management of natural environmental hazards (e.g., floods, landslides, gully can be assessed, 
mapped and predicted using machine learning (ML, a branch of artificial intelligence, algorithms and tools. 
More devoted literature using ML combined with diverse statistical methods (e.g., random forest—RF; boosted 
regression tree—BRT can be found in valuable scientific works focused on vulnerable territories (e.g., Himala-
yan regions, for example by Roy et al.55, Chowdhuri et al.56,57 Pal et al.58, Costache et al.59,60 and Vojtek et al.61.

Thus, the relationship between land degradation and unsustainable grazing in Europe is still poorly under-
stood and should be further  assessed40,51,62,63. Degraded land occupies over 2% of Romania due to corroboration 
of natural and anthropogenic  causes64. Recent studies confirmed land degradation by soil  erosion65, gullying 
and  landslides66, and reservoir  sedimentation67, and the statistics of stocking rate and grazing deviate from the 
 optimum68. For the Southern Carpathian Mts., Romanian, transhumance of sheep prevents the development of 
serious erosion in otherwise erosion-prone areas that can support little beyond livestock  raising69. Surprisingly, 
 Nicu70 found that overgrazing is not influencing or accelerating soil erosion on gullies in the Bahluiet River catch-
ment in the northeastern part of Romania. In this context, land degradation under grazing activities is a serious 
problem in hilly areas of Romania and effective soil conservation is urgently needed. Yet, it remains a knowledge 
gap in the quantification of the role of grazing among numerous factors on erosion and land degradation in past 
interdisciplinary investigations at the regional scale. Filling the gap of quantifying the complexity of land degrada-
tion drivers could help decision-makers in spatial planning and agriculture to set guidelines for land-use policy.

Therefore, this paper starts from the hypothesis that land degradation and grazing can be assessed using 
multiple environmental factors, and even at larger scales. The main aim of this research is to quantify the rela-
tion between grazing impacts of SRs on land degradation processes using the Grazing Susceptibility to Land 
Degradation Index (GSLDI). The specific objectives are:

(1) To develop a novel model using a qualitative assessment of the evidence-support of a hypothesis that inte-
grates weight/partitive factors of land degradation at a regional scale; and

(2) To investigate a hilly region in Romania (the Curvature Subcarpathians) that is characterized by the highest 
rates of erosion and SRs density with GSLDI.

Geographic background of the surveyed area. We adopted for the survey of GSLDI a geomorphologi-
cal unit for 3 reasons; relative geomorphological  homogeneity71, being one of the largest areas with historical 
land degradation (badlands) in  Romania72,73, and having the highest value of sediment  yield74–76. However, this 
research starts from the premise that land degradation processes are also due to other local and regional factors 
(e.g., lithology, morphology, land use). Land-use changes should be considered, as well as agricultural practices 
such as grazing. Therefore, it was necessary to apply an integrated analysis of the possible determinant factors’ 
assembly to understand and manage the land degradation in the Curvature Subcarpathians.

The Curvature Subcarpathians (6792 km sq km) is a geomorphologic region in the central part of Roma-
nia that lies between latitudes 44°47′01.77″ to 46°09′58.43″N and longitudes 24°11′13.00″ to 27°59′34.82″E 
(Stereographic 1970 projection), having a southern border with the Curvature Carpathians Mts (Fig. 1). The 
study area is prone to land degradation, mainly erosion, due to both natural and socio-economic drivers (e.g., 
historical deforestation). The estimated peak erosion in Romania occurs in the Curvature Subcarpathians with 
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rates between 30 and 45 t  ha−1  y−175,76. Besides denudation, the Curvature Subcarpathians are characterized by 
various types of slope processes such as landslides, earth flows, and  falls77, and also by an intense vertical erosion 
mirrored by incised river valleys (Buzău, Ialomiţa and Teleajen Rivers)78. The lithology and seismicity explain 
the susceptibility to  landslides79, the predominance of low cohesive rocks, sandy clay loam and clay soils, and 
active neotectonic  movements80,73,77. Persistent deforestation may also trigger gravitational processes. The natural 
vegetation (e.g., broad-leaved forests) has been replaced by human activities with secondary grasses, orchards, 
vineyards, and croplands. The road network has amplified the disequilibrium of slopes.

The Curvature Subcarpathians receive approximately 600–700 mm of precipitation per year, the maximum 
occurring in summer (up to 100 mm/month), and the lowest in autumn and  winter81. Summer months are 
characterized by heavy rains that transform into overland flow causing aggressive erosion, especially on the bare 
 soil78. The study area appears to be among the regions with the national highest maximum rainfall intensity of 
5 min duration and 1:10 years return period (e.g., 1.48–1.86 mm/min reported  by82.

Rivers draining the Curvature Subcarpathians transport large amounts of suspended sediment  load83. As a 
consequence, the largest rivers form sandy braided patterns, laterally  unstable84. Also, the study area is charac-
terized by the highest suspended sediment yield in  Romania74,81. The mean specific suspended sediment yield 
is about 20–25 t  ha−1  yr−1, while the sediment concentration exceeds 25,000 g  m−385. The highest suspended 
sediment load occurs in spring and summer during the high-water phase of the hydrological regime, or during 
floods, when the fluvial erosion, or erosion processes, on the slopes are more intense. It is observed that the 
variability of the suspended sediment load is higher than the variability of the mean annual water  discharge86.

Methods and data
Methodological steps. Based on the recent approach by Costacheetal.59,60 and Vojtek et al.61, we developed 
a new advanced GSLDI and the SRs grazing pressure using ML algorithms. The proposed modeling framework 
consists of: (1) land erosion inventory (manually identifying erosion and no-erosion sampling points based on 
aerial imagery); (2) developing geographical characteristics (17 parameters, e.g., lithological structure, altitude) 

Figure 1.  The location of Curvature Subcarpathians and the border of Local Administrative Units level 2. The 
geographic data vector comes from the https:// geo- spati al. org; map created by G. Minea using ArcGIS Pro 
version 2.8.6, https:// pro. arcgis. com/ en/ pro- app/2. 8/ get- start ed/ get- start ed. htm.

https://geo-spatial.org
https://pro.arcgis.com/en/pro-app/2.8/get-started/get-started.htm
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for each sampling point, (3) standardizing the dataset (55 subsequent attributes e.g., classes/features), and (4) 
ML model training process.

Data processing. The database for land erosion inventory requires compulsory sampling points (vec-
tor data) exhibiting erosion or no-erosion processes detected using open-source imagery (e.g., Google Earth, 
Bing) for the study area. Manual collection of sampling points data time consuming and should be harmonized 
(checks, validation) with the laboratory staff. Moreover, the density of the sampling points can be varied between 
low (e.g., forest sites) and high (land-use fragmentation) and should be agreed upon in accordance with the 
land-use characteristics.

A database consisting of 17 geographical parameters (e.g., curvature, slope terrain) converted into thematic 
layers was extracted from a digital elevation model (DEM); lithology and soil  maps87; vegetation features (e.g., 
Corine Land Cover); rainfall  erosivity88, and SRs parameters (stock and densities), as presented in Fig. 2. These 
datasets were used to train and validate the proposed model. In accordance with Brock et al.89, we used in this 
study the Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global DEM product. Available vector (e.g., 
boundary shapefile for the geomorphologic region and the Local Administrative Units—LAU) and raster format 
data (e.g., at medium-precision, the scale of 1:25,000) and large maps (e.g., lithological and pedological maps 
1:200,000) were required in the database. We chose a regional geographical approach combined with the stock 
density data of SRs mainly because SRs rank as land degradation significant variables.

To implement this analysis, several spreadsheet calculations were required, followed by geospatial processing 
(e.g., vector to raster format; union/merge, reclassify). A horizontal spatial grid resolution of 30 m × 30 m was 
used, and also resamples were necessary (Fig. 2).

The model training procedure involved evaluation of the two ML classification models of random forest (RF) 
and gradient boosted machine (GBM) using some performance statistics.

The GIS environment of the modeling process requires an association of the 17 geographical features (e.g., lithologi-
cal structure, altitude) with subsequent attributes (e.g., classes/features) for each sampling point (Figs. 2, 3). The classes 
of the geographical features (e.g., elevation range) were determined based on a statistical approach (e.g., Natural breaks 
classification).

Figure 2.  The proposed hierarchy predictors and their geographical use to develop the Grazing Susceptibility to 
Land Degradation Index. (GRAVIPA = Grassland Vegetation Probability Index; LULC = Land Use Land Cover). 
The figure was shaped by G. Minea using Microsoft 365 PowerPoint (https:// www. micro soft. com/ en- us/ micro 
soft- 365/ power point).

https://www.microsoft.com/en-us/microsoft-365/powerpoint
https://www.microsoft.com/en-us/microsoft-365/powerpoint
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To calculate the GSLDI, the ML models were trained to predict erosion exposure by using the 17 attributes 
and their classes as predictors, resulting in the probability of having erosion process on each pixel of the study 
area. The model set-up consists of randomly splitting the data (erosion and no-erosion points) into two catego-
ries: training dataset (80%) and the test dataset. The test dataset was used to evaluate the model performance 
independently as it was not part of the training phase (Fig. 3). The validation set was drawn from the training 
dataset by means of tenfold cross-validation procedure.

To evaluate and estimate the impact of SRs stock density over the land degradation process, we propose two 
SRs’ density scenarios: one considered 0 (absence), and another one with double density (overstocking).

Figure 3.  Workflow for designing Grazing Susceptibility to Land Degradation Index. The figure was designed 
by N. Ciobotaru in Microsoft 365 PowerPoint (https:// www. micro soft. com/ en- us/ micro soft- 365/ power point).

https://www.microsoft.com/en-us/microsoft-365/powerpoint
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The outcomes were presented in a probabilistic map of a chance between 0–100 per cent to have exposure 
to the land degradation process concerning SRs, that resulted in a map of land degradation (Fig. 3). The results 
of the analysis were plotted in a GIS environment, using the QGIS version 3.20 and ArcGIS Pro version 2.8.6 
software, and R programming language with RF, caret, GBM, and other auxiliary packages.

The classification algorithms. Numerous studies have used random forest (RF) models to evaluate ero-
sion process (e.g.,90–92, gully erosion susceptibility (e.g.,56–58,93, floods mapping (e.g.,55,94) and groundwater nitrate 
concentration  susceptibility95. Random decision forests were first introduced by  Ho96 who added randomness in 
the decision trees with increased accuracy for both training and unseen datasets. This method builds multiple 
trees in “randomly selected subspaces of the feature space” and generates the final output by averaging results from 
all created decision trees. In this way, bias is reduced and accuracy improves. RF is a method of ensemble learn-
ing by combining multiple decision trees over the same classification task. The output of the RF algorithm is the 
class that is selected by most trees in the forest.

Given t trees created in random subspaces, a discriminant function is used to combine the classification result 
by assigning x to class c and optimising the function gc(x) defined  as96:

In Eq. (1) P̂ is the optimum posterior probability that a point x belongs to class c (c = 1,2…n) and is computed 
as the fraction of class c that points to the overall number of points that are assigned to vj(x) given as:

where vj(x) is the terminal node of point x when it descends down tree Tj (j = 1,2, …t).
Gradient boosted machine (GBM) has also been used in soil degradation/erosion susceptibility studies in 

different  forms97–99 and was first introduced by Friedman et al.100. It is also an ensemble model of decision trees. 
Also, various innovative validation methods such as Nash–Sutcliffe  Criteria101, Seed Cell Area  Index102–104 and 
the K-fold cross-validation95 can be used to evaluate the performance of models. The difference between RF 
algorithms and GBM is that the combining process is done at the beginning of the tree in the case of GBM while 
for RF it is done at the end. Also, while RF builds each tree independently, GBM works by building one tree at a 
time, introducing a weak learner to improve the shortcomings of existing weak learners.

Let 
{(

xi , yi
)}n

i=1
 be the training dataset and L

(
y, F(x)

)
 the loss function, where ŷ = F(x) is the model pre-

dicted values, y represents the observed values, x the predictors and n the number samples. First, the algorithm 
initializes with a constant value as:

Next, for m = 1 to M:

1. Compute the pseudo-residuals as:

2. Fit a weak learner by training it on the training set as:

3. Solve optimization problems as:

4. Update the model as:

Thus, a gradient boosting machine involves combining multiple weak classifiers in order to obtain a stronger 
one of the ensemble models.

Model efficiency and accuracy evaluation. To train the ML models, it was necessary to standardize 
the different measurements and the qualitative attributes of points (e.g., soil texture) to the same scale with the 
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help of the “scale” function of the “dummies package”105 of the R programming language. The cross-validation 
technique was used in the caret package in  R106 to randomly select the training and validation datasets in 10 folds 
for both models.

The training was conducted using cross-validation, which randomly partitions the dataset into complemen-
tary subsets of training and testing to test the model’s ability to predict new data that was not used for training. 
Evaluation of model performance is a critical step toward the classification model selection criteria. The model 
results were evaluated using a confusion matrix and testing of the accuracy, specificity, sensitivity, ROC curve, 
and AUC curve efficiency  metrics102,106. The criteria used to evaluate the models are presented below:

where TP = true positive, TN = true negative, FP = false positive, FN = false negative, P = all positives, and N = all 
negatives.

Results and analysis
Parameters selection and development. Firstly, we mapped 4187 sampling points on the Curva-
ture Subcarpathians, indicating whether there is erosion or no-erosion processes, from Google, Esri, and Bing 
imagery that were available for August 2021, using the HCMGIS plugin from QGIS 3.20. Even though the 
images have been taken at different periods, using three sources allowed the observers to check whether a sam-
pling point has been erroneously classified as an erosion or no-erosion point. within the end, 61% of the sam-
pling points were classified as erosion points and the rest as no-erosion points.

From geo-spatial.org, we extracted datasets containing vector geospatial information such as LAUs Boundary 
dataset, localities dataset, and hydrography features dataset, and DEM of 30 m × 30 m spatial resolution as raster 
format. Some datasets were resampled to conform to the 30 m × 30 m grid resolution (e.g., Tree Cover Density). 
More relevant morphometric parameters/factors (e.g., slope; profile curvature) was derived from the DEM. 
Lithological and soil features were extracted from the Geological Map of Romania (scale of 1:200,000), and the 
Soil Map of Romania (scale of 1:200,000) respectively. LAUs (formerly NUTS level 5) was used as the smallest 
territorial subdivision by the Nomenclature of Territorial Units for Statistics (NUTS) for statistical purposes (see 
Supplementary 1). Therefore, each sampling point has 17 geographical attributes as presented in Table 1. In Fig. 4 
is displayed maps of some predictors (such as lithology, soil properties, and land use land cover).

Some particularities of geographical attributes associated with erosion and no-erosion sampling points in the 
Curvature Subcarpathians are briefly debated. The lithological  structure107 of the study region is dominated by 
Clays, Sands, and Conglomerates, indicating that the under-soil layer is unstable. Altitude, Slope, and Aspect were 
extracted from the Digital Elevation Model with the resolution of 30 m = 108. The classes and percentage shares 
of the total area are presented in Table 1. The altitudes are generally moderate (300–500 m), slopes are moderate 
(10–15%) to steep (15–25%) in 45% of the total area, while mild slopes (5–10%) dominate the landscape of the 
region, especially in the Plains and at the foothills. Aspect favors the exposure to the sun in general, the slopes 
being east, south-east, south, and southwest facing in over 57% of the area. Thus, the Curvature Subcarpathians 
region has a high insolation value which favors evapotranspiration, which in turn reduces water availability, 
and encourages the presence of thermophile vegetation such as vineyards, oak, Tilia forest, or common lilac.

Curvature is the second derivative of the land surface, indicating exposure to erosion of the landform  area109. 
Profile curvature influences the acceleration/deceleration of flow while plan curvature indicates the concentra-
tion of flow on the land surface. Both profile and plan curvatures are indicators of the rate at which erosion and 
accumulation take place. These two characteristic values ranging between − 0.5 and 0.5 are not considered very 
active regarding the erosion process, while values above or below these thresholds represent areas most exposed 
to the erosion process. The total curvature combines these two indicators, and more than 8% of the territory is 
very exposed to the erosion process, compared with less than 3% when using profile and plan curvature.

Topographical positioning index (TPI) classifies the relief in different topographical units based on a change 
in altitude compared with the mean altitude of the transect with a radius of 1  km110. TPI describe the main 
landforms of the Subcarpathians region, resulting in over 52% of the relief occupied by flood plains combined 
with the base of the hills (basin) landforms, while the torrential valleys, most exposed to the erosion process, 
have a share of 13% of the total area.

Distance to Streams can be related to the erosive action of the river channels as the closer to the river channel 
the greater the chance to encounter land degradation processes. Therefore, this indicator allows us to create a 
relation between the observed soil degradation areas and the distance to the stream channel. This indicator has 
been extracted from a drainage network of support threshold of 1  km2 catchment area.

Corine LULC layer has been used in the study area as the main nomenclature for land use, and the spatial 
resolution of 1 ha was resampled to 30 m. It has been divided into 9 classes (label 3), of which 18% are covered by 
agricultural land, 7% are built areas and almost 6% are represented by vineyards and trees. The most important 
two classes are forests (47%) and pastures and grasslands (20%).

(8)Sensitivity =
TP

TP + FN

(9)Specificity =
TN

TN + FP

(10)AUC =

∑i
n TP +

∑i
n TN

(P + N)
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Predictor Parameter Data source
Attributes
(classes/features)

Area
(km2) Share of the total area (%)

Geology Lithological structure Geological Map of Romania (1:200,000)

Gravel 1608.8 23.6

Clays 1201.3 17.6

Sands 1161 17

Conglomerates 903.5 13.3

Flysch 438 6.4

Sandstone 400.1 5.9

Chalk–limestone 292.9 4.3

Loess 296.4 4.3

Marl 286.5 4.2

Breccias 126.5 1.9

Shale rock 92.9 1.4

Diapir deposits 7.2 0.1

Morphometry

Altitude
[m]

Digital Elevation  Model108

0–300 1388.3 20.3

300–500 3240.4 47.3

500–800 2110.7 30.8

800–1205 108.8 1.6

Aspect

Flat 16.5 0.2

North 623.8 9.1

North-East 888.3 13

East 1055.9 15.5

South-East 1020.4 15

South 924.6 13.6

South West 901.9 13.2

West 768.4 11.3

North West 614 9

Slope
[%]

 < 5 1473 21.6

5–10 2268.7 33.3

10–15 1986.6 29.1

15–25 1038.7 15.3

 > 25 48.9 0.7

Plan curvature

 <  − 0.5 74 1.1

 − 1 6646.1 97.5

 > 0.5 95.8 1.4

Profile curvature

 <  − 0.5 68.6 1

 − 1 6670.4 97.9

 > 0.5 76.8 1.1

Total curvature

 <  − 0.5 265.7 3.9

 − 1 6258.7 91.8

 > 0.5 291.4 4.3

Topographic
Positioning
Index

Large valleys 756.1 11

Hill top 967.2 14.1

Mid slope 640.6 9.4

Torrential valleys 889.2 13

Plain or hil base 3594.8 52.5

Distance to streams
[m]

0–500 3971.9 59.4

500–1000 2282.2 34.1

1000–1500 421.1 6.3

1500–2000 9.35 0.1

Soil Texture Soil Map of Romania (1:200,000)

Clay loam 5576.7 81.8

Clay 1165.3 17.1

Silty clay loam 42.9 0.6

Loam 21 0.3

Silty Clay 10 0.1

Continued
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Grassland vegetation probability index (GRAVPI) constitutes an expert product estimation from the Coper-
nicus Land Monitoring  Service111,112 and is used to represent the spatial distribution of grassland areas within 
the study zone in a raster with the spatial resolution of 30 m. From this layer, it was observed that almost 87% 
of the area is covered with LULC types other than grassland areas. This is caused by the fact that the herbaceous 
zones are mixed with trees or bare land and agricultural land, making it difficult to identify this type of LULC, 
and in general, is underestimated compared with corine land cover (CLC) 2018.

Tree Cover Density from Copernicus Land Monitoring  Service113 represents the density of trees (between 0 
and 100%) in forested and non-forested areas in 2018, spatial resolution being 20 m. This dataset was resampled 
to 30 m to conform to the same resolution of the other layers used in the analysis.

The survey area has a forest cover of over 63%, of which 47% is in patches with densities above 80%, thus 
considered a compact forest. The overall cover of 63% is an overestimation of the forest cover, compared with 
the CLC layer, whereas only 47% of the study zone is classified as forest. This difference is explained by the fact 
that tree cover density is evaluated in all patches of trees, without considering the mixture of pastures, or agri-
cultural areas, with the trees.

Hydrologic Soil Groups represent the rate at which water infiltrates into the soil, Soil Group A being the 
most porous (with over 7.6 mm/h infiltration rate) while Group D corresponds to soils with lower permeability 

Predictor Parameter Data source
Attributes
(classes/features)

Area
(km2) Share of the total area (%)

Land use

Tree cover density
[%]

Copernicus Land Monitoring service; URL:
https:// land. coper nicus. eu/ pan- europ ean/ high- 
resol ution- layers/ fores ts/ tree- cover- densi ty/ 
status- maps/ tree- cover- densi ty- 2018

 < 0.99 2499 36.7

1–20 0.68 0.01

21–40 8.05 0.1

41–60 79.5 1.2

61–80 993 14.6

 > 80 3232.7 47.4

GRAVPI
[%]

Copernicus Land Monitoring service; URL: 
https:// land. coper nicus. eu/ looki ng- for- natio 
nal- produ cts

 < 0.99 5913.2 86.8

1–20 47 0.7

21–40 111.8 1.6

41–60 247.9 3.6

61–80 258.3 3.8

 > 80 237.1 3.5

LULC
Land Use Land Cover (2018); URL: https:// 
land. coper nicus. eu/ pan- europ ean/ corine- land- 
cover/ clc20 18

Forest and trees 3212.6 47.1

Pastures and natural grasslands 1400.4 20.5

Agricultural land 1226.7 18

Built 481.8 7.1

Vineyards and trees 392.6 5.8

Marshes and water courses 78.3 1.1

Bare land 22.2 0.3

Green urban areas 0.4 0.01

Road and rail networks and associated land 0.3 0.01

Hydrological

Hydrologic soil groups Derived from Soil Map of Romania (1:200,000)

A 963 14.1

B 2166.8 31.8

C 1657.1 24.3

D 2028.7 29.8

Curve number Derived from Soil Map of Romania (1:200,000) 
and LULC (2018)

 > 34 65.8 0.99

34–50 753.6 11.3

51–70 1848.7 27.8

70–85 2767.9 41.6

85–95 1214.4 18.3

Rainfall Erosivity
[(MJ mm)/(ha h yr)]

European Soil Data Center; URL: https:// esdac. 
jrc. ec. europa. eu/ resou rce- type/ datas ets

600–700 2.4 0.03

700–800 1998.1 29.1

800–900 4603.1 67.1

900–1000 255.4 3.7

Small ruminants Density
[heads/ha]

General Agricultural  Census118; URL: http:// 
www. rga20 10. djsct. ro/ incep ut. php? cod= 58& 
codj= 10)
Land fund area by usage, counties and locali-
ties; URL: http:// stati stici. insse. ro: 8077/ tempo- 
onlin e/#/ pages/ tables/ insse- table)

 < 1 771 11.3

1–2 1503.1 22.1

2–3 1710.7 25.1

3–5 1576.3 23.1

 > 5 1254.6 18.4

Table 1.  Parameters used for training the sampling points. GRAVPI grassland vegetation probability index, 
LULC land use land cover.

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/tree-cover-density-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/tree-cover-density-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/tree-cover-density-2018
https://land.copernicus.eu/looking-for-national-products
https://land.copernicus.eu/looking-for-national-products
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://esdac.jrc.ec.europa.eu/resource-type/datasets
https://esdac.jrc.ec.europa.eu/resource-type/datasets
http://www.rga2010.djsct.ro/inceput.php?cod=58&codj=10
http://www.rga2010.djsct.ro/inceput.php?cod=58&codj=10
http://www.rga2010.djsct.ro/inceput.php?cod=58&codj=10
http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table
http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table
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Figure 4.  Curvature Subcarpathians geographic factors: (a) Lithology; (b) Slope angle; (c) Aspect; (d) Profile 
Curvature; (e) Forest and Trees Patches Cover Density; (f) GRAVPI; (g) Hydrologic Soil Groups; (h) Curve 
number; (i) SRs Density. The map was created by N. Ciobotaru using the QGIS version 3.20 (https:// www. qgis. 
org).

https://www.qgis.org
https://www.qgis.org
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(0–1.3 mm/h)114. This dataset has been derived from soil texture classes of the Romanian Soil dataset 1:200,000115, 
using the method developed by  Drobot116. The areas with low permeability (Group D) are the most exposed to 
soil erosion, favoring surface and rill erosion in the Curvature Subcarpatians. These soils cover almost 30% of 
the study area while Group B soil has a similar share with almost 32% of the study area.

Curve number (CN)117 is an indicator of the land’s capacity to absorb water into the soil, and the higher its 
value the lower the infiltration rate. For the Curvature Subcarpathian region, the soils having low infiltration 
rates (CN > 70) covers almost 60% of the area, a situation that favors runoff and surface erosion.

Rainfall Erosivity, known as R-factor88, is another indicator of soil exposure to erosion caused by rainfall 
drops. This indicator was taken from the “European Soil Data Center—ESDAC”, and represents the multi-annual 
erosion capacity of rain. For the study region, over 70% of the land has an average rainfall erosivity of over 800 
(Mj mm/ha h yr), which can be considered as medium to high value compared with values across the country. 
Soil  Texture115 in the study region is dominated by the Clay Loam class (> 81%), which corresponds to soils with 
low permeability, favoring runoff and erosion.

The SRs density data were derived by considering the number of goats and sheep in each  LAU118 to the official 
area of land used as pastures in the cadastral evidence (AGR 101B, 2021). The 2010 share of SRs has been trans-
ferred to the 2019 counts at the county level per each LAU, thus, a more recent and accurate density is  acquired119. 
This data has been prepared into a raster of the densities per each LAU, and it shows high variability in space 
making it a good explanatory variable. It is spatially non-homogeneous and exhibits a bell curve distribution.

Pasture surfaces data were obtained from the National Institute of Statistics of Romania by considering the 
land fund corresponding to “pastures’ of each Local Administrative Unit at level 2 (LAUs) within the Subcar-
pathians  region120. Curvature Subcarpathians region shows a high national average stocking density of SRs (sheep 
and goats) of about 4.7 units per ha, with uneven territorial distribution (SD = 9.26) (see Supplementary 1).

The spatial distribution of the factors described above (Fig. 4) highlights, on the one hand, the importance of 
their selection in applying the final index, and anticipates that grazing activity is one of the factors that control 
erosion activation in the Curvature Subcarpathians region.

GSLDI application. The relative influence of the predictors as identified by GBM is presented in Fig. 5. 
It indicates that grazing of SRs plays a low role in the exposure to land degradation process, being the sixth 
important parameter among the 17 geographical variables, and contributes to only 4.55% of the whole exposure 
in the Curvature Subcarpathians region. The ranking of the relative influence shows the highest values for forest 
(43.7%) and terrain variables (e.g., slope 18.7%; profile curvature 7.19%) in the Curvature Subcarpathians region 
(Fig. 5).

In order to assess the grazing impact of SRs and build the GSLDI over the study region, we work with two 
extreme scenarios of absence (0%) and overstocking of 100% (Fig. 6). The absence of grazing pressure signals 
a decrease of erosion likelihood exposure in the GBM model, while the RF model signals an increase in expo-
sure. An increase of 100% of the grazing pressure indicates an increase in erosion likelihood exposure in both 
models, suggesting that grazing activity is one of the factors that control erosion exposure in the Curvature 
Subcarpathians region (Fig. 6).

Model training with RF and GBM algorithms performed very well, having the same accuracy of over 90%, 
and suitable for the mapping of land degradation in the Curvature Subcarpathian region. The ROC curve given 
in Fig. 7 was generated from the test dataset, containing 20% (830 points) of the points used to indicate the pres-
ence or absence of the erosion processes. This set of points has not been used in the training of the models and 
were randomly selected. Model prediction performance for RF and GBM algorithms was accurate, with an area 

Figure 5.  Conditional factors and their relative influence (%) / share/rank (%) to land degradation in the 
Curvature Subcarpathians region under GBM.
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Figure 6.  GSLDI probabilistic maps (0–100%) in CS region with Random Forest (top 3 images) and Gradient 
Boosted Machine (bottom 3 images) under initial (a), zero (b), and 100% overstocking (c) scenarios. The map 
was generated by N. Ciobotaru using the QGIS version 3.20 (https:// www. qgis. org).

https://www.qgis.org
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under the curve (AUC) covering more than 90% of the ROC graph for both models. Therefore, the performance 
of the models was good enough to be used for prediction the of land degradation exposures in the Curvature 
Subcarpathian region (Table 2, Fig. 7).

Discussion
The potential value of GSLDI is the ability to connect environmental and human factors. It can be considered as 
a predictive index encompassing derivatives from the DEM, lithology, vegetation features, and small ruminants’ 
stock, all being dependent on the soil erosion rates.

The modeling framework involves sampling of erosion and no-erosion points (4187 sampling points), assign-
ing the physical and geographical characteristics (17 attributes) to each sampling point, standardizing the dataset 
(55 final attributes), and using them in the training of ML models of RF and GBM. The GSLDI indicates that 
SRs grazing plays an important role, but is not the major factor in the exposure to erosion process, contributing 
to only 4.6% of the whole exposure to land degradation, according to GMB model parameter rank classifica-
tion. However, this low percentage agrees with the findings of  Nicu70 who reported, for a gully assessment in 
the northeastern part of Romania, that overgrazing does not considerably change the erosion rates. Another 
explanation of land degradation and the high value of erosion rates could be the lithology and neo-tectonic 
movements (uplift rates of 3–4 m/year)121.

The results have some uncertainty stemming from (1) the low-quality resolution of the biophysical predictors 
and (2) the required field monitoring for evidence in agricultural catchments for quantitative evidence of erosion 
rates. Now a critical question here is why the results are different and which one is the truth?

We found for the areas covered by pastures, natural grasslands, or other grasslands (Sclerophyllous vegetation, 
sparsely vegetated areas), the scenario with the absence of grazing pressure signals a small decrease of erosion 

Figure 7.  ROC curves with associated AUC values computed from Gradient Boosted Machine and Random 
Forest.

Table 2.  Model efficiency (%) according to multiple efficiency criteria. RF random forest, GBM gradient 
boosted machine, AUC  area under the curve, ROC receiver operator characteristic.

Parameter

Model

RF GBM

Accuracy 0.91 0.94

Sensitivity 0.94 0.93

Specificity 0.88 0.94

Balanced accuracy 0.90 0.94

AUC 0.90 0.91

ROC 0.96 0.98
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likelihood exposure with the GBM model, while the RF model signals an increase in exposure (Table 3). This 
may indicate that the model sensitivity to this factor is low and not enough to observe the impact of the grazing 
pressure for the RF model. An overstocking of 100% of the grazing pressure indicates a small increase in erosion 
likelihood exposure for the GBM model, which may indicate again the grazing activity does not play a major 
role in the erosion exposure in the Curvature Subcarpathians area (Table 3).

The forest plays a crucial role in land degradation through erosion. More precisely, the forest vegetation 
density has a relative influence share of approximately 33% in explaining the susceptibility to land degradation. 
Approximately 11% of the results is explained by the simple presence of forest, without regard to any other par-
ticular features. This is a very important result confirming that it is not necessarily the presence of the forest that is 
important, but the presence of tall vegetation with high density that counts. This might explain why authors such 
as Broeckx et al.79 show a very weak correlation with sediment yield in the agricultural catchment with strongly 
contrasting land uses in their work about sheet and rill erosion rates in Romania. Therefore, for future studies 
on erosion susceptibility or land degradation we also recommend the use of forest vegetation density instead of 
simply forest. In the long term, a more adapted classification of grazing range/scale would be necessary to avoid 
the risk of overestimating potential land degradation areas.

Table 3.  GSLDI mean values (%) for pastures and grassland areas.

Model

Land use/land cover (sq km)

Pastures
(1229)

Natural grasslands vegetation
(163)

Other grasslands
(1.74)

RF—0 pressure 0.92 0.94 0.89

RF—base scenario 0.92 0.94 0.9

RF—2 × pressure scenario 0.91 0.93 0.9

GBM—0 pressure 0.87 0.89 0.86

GBM—base scenario 0.94 0.95 0.93

GBM—2 × pressure scenario 0.95 0.96 0.93

Figure 8.  Sheet and linear grazing impact of SRs photos—near paddock (up/left) and trails (down/right) in the 
Curvature Subcarpathians (Romania); photograph taken by Gabriel MINEA on August 18th, 2021.
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We did not exclude or minimize the role of grazing impact of SRs, especially at the local scale (Fig. 8), but 
over time it will result in complex interactions depending on the environmental factors. However, a quantitative 
assessment of grazing impact of SRs needs observation and empirical survey (e.g., sediment traps and chemical 
fingerprinting) to understand the hillslope process and the extent of rates of  erosion40,62,122.

The GSLDI enters the category of GIS tools based on artificial intelligence employed to solve complex issues. 
Therefore, it suits the analysis of land degradation processes such as soil erosion that integrates numerous 
 factors123,124. When compared to similar models focused on land degradation, the GSLDI integrates a pastoral 
activity (i.e., small ruminants grazing) that is the most common farming practice in certain parts of the world. 
Therefore, GSLDI is recommended for its use and application for common land management issues.

We encourage managers to use the GSLDI tool for better planning at the local administrative unit scale. As 
an example, simulations could be conducted by changing the land cover land use or stock/densities of small 
ruminants in order to identify solutions to mitigate erosion adapted to the morphological features of the studied 
area. The GSLDI could be a tool employed to find small solutions to a bigger problem, which corresponds to the 
current non-invasive trend in environmental management and land-use policies.

Conclusions
In this work, we developed a model, the Grazing Susceptibility to Land Degradation Index, to assess land deg-
radation susceptibility in areas affected by small ruminants grazing. The GSLDI integrates into a GIS environ-
ment several factors such as derivatives of topography, lithology, soil characteristics, vegetation features, rainfall 
erosivity, as well as stock densities of small ruminants. All these variables were associated with sampling points 
with or without erosion process. The GSLDI was applied in a hilly region that experiences the highest erosion 
rates in Romania. We found that small ruminants grazing contributes only 4.6% to the erosion of the whole 
studied area. Overall, we consider that a better knowledge of the relationship between SRs and land use can 
be beneficial to society and the environment (e.g., soil conservation, hazard management, subsidy, mitigation 
measures), and the GSLDI can be used efficiently to assess land degradation concerning small ruminant grazing 
in other land degraded regions.

Data availability
Supplementary Material S1.

Received: 5 February 2022; Accepted: 25 May 2022

References
 1. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 

76(3), 327–352 (2016).
 2. Papanastasis, V. P. & Peter, D. Ecological basis of livestock grazing in mediterranean ecosystems. Proceedings of the International 

Workshop held in Thessaloniki, October 23–25, 1997. Brussels: European Comission, 350 pp. Part 630 Hydrology, edited by 
USDA, 1–13. (USDA, Washington, 1998).

 3. Pulido, M., Barrena-González, J., Badgery, W., Rodrigo-Comino, J. & Cerdà, A. Sustainable grazing. Curr. Opin. Environ. Sci. 
Health Sustain. Soil Manag. Land Restor. 5, 42–46. https:// doi. org/ 10. 1016/j. coesh. 2018. 04. 004 (2018).

 4. Staddon, P. L. & Faghihinia, M. Grazing intensity is key to global grassland carbon sequestration potential. Sustain. Environ. 
7(1), 1895474. https:// doi. org/ 10. 1080/ 27658 511. 2021. 18954 74 (2021).

 5. Gibbs, H. K. & Salmon, J. M. Mapping the world’s degraded lands. Appl. Geogr. 57, 12–21 (2015).
 6. Morales, F. D. A. R., Genís, J. M. C. & Guerrero, Y. M. Current status, challenges and the way forward for dairy goat production 

in Europe. Asian-Australas J. Anim. Sci. 32(8), 1256–1265. https:// doi. org/ 10. 5713/ ajas. 19. 0327 (2019).
 7. Wolański, P. et al. The importance of livestock grazing at woodland-grassland interface in the conservation of rich oakwood 

plant communities in temperate Europe. Biodivers. Conserv. 30(3), 741–760 (2021).
 8. Nadal-Romero, E., Lasanta, T. & Cerdà, A. Integrating extensive livestock and soil conservation policies in Mediterranean 

Mountain areas for recovery of abandoned lands in the Central Spanish Pyrenees. A long-term research assessment. Land 
Degrad. Develop. 29(2), 262–273. https:// doi. org/ 10. 1002/ ldr. 2542 (2018).

 9. IPCC. Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, 
land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, 
J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. 
Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. 
Malley, (eds.)] (2019) (accessed 10 June 2021). In press. https:// www. ipcc. ch/ srccl/

 10. FAOSTAT (2021). http:// faost at. fao. org/ [Online Database].
 11. FAO. Livestock Systems Key facts | Livestock Systems | Food and Agriculture Organization of the United Nations (fao.org) 

(accessed 10 June 2021).
 12. Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food produc-

tion systems. Food Res. Int. 134, 109256. https:// doi. org/ 10. 1016/j. foodr es. 2020. 109256 (2020).
 13. Steinfeld, H., Gerber, P., Wassenaar, T.D., Castel, V., Rosales, M., Rosales, M., de Haan, C. (2006). Livestock’s long shadow: 

environmental issues and options. Food & Agriculture Org., Rome, Italy.
 14. Ritchie, H. & Roser, M. (2017). Meat and dairy production. Published online at OurWorldInData.org. Retrieved from: https:// 

ourwo rldin data. org/ meat- produ ction# citat ion,% 20acc essed% 2010. 06. 2021
 15. WHO. Climate change: Land degradation and desertification (2020, accessed 21 June 2021); https:// www. who. int/ news- room/q- 

a- detail/ clima te- change- land- degra dation- and- deser tific ation
 16. Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. https:// doi. 

org/ 10. 1038/ s41467- 017- 02142-7 (2017).
 17. Niu, Y. H. et al. A systematic review of soil erosion in citrus orchards worldwide. CATENA 206, 105558. https:// doi. org/ 10. 

1016/j. catena. 2021. 105558 (2021).
 18. Rodrigo-Comino, J. Five decades of soil erosion research in “terroir” The State-of-the-Art. Earth-Sci. Rev. 179, 436–447. https:// 

doi. org/ 10. 1016/j. earsc irev. 2018. 02. 014 (2018).

https://doi.org/10.1016/j.coesh.2018.04.004
https://doi.org/10.1080/27658511.2021.1895474
https://doi.org/10.5713/ajas.19.0327
https://doi.org/10.1002/ldr.2542
https://www.ipcc.ch/srccl/
http://faostat.fao.org/
https://doi.org/10.1016/j.foodres.2020.109256
https://ourworldindata.org/meat-production#citation,%20accessed%2010.06.2021
https://ourworldindata.org/meat-production#citation,%20accessed%2010.06.2021
https://www.who.int/news-room/q-a-detail/climate-change-land-degradation-and-desertification
https://www.who.int/news-room/q-a-detail/climate-change-land-degradation-and-desertification
https://doi.org/10.1038/s41467-017-02142-7
https://doi.org/10.1038/s41467-017-02142-7
https://doi.org/10.1016/j.catena.2021.105558
https://doi.org/10.1016/j.catena.2021.105558
https://doi.org/10.1016/j.earscirev.2018.02.014
https://doi.org/10.1016/j.earscirev.2018.02.014


16

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9393  | https://doi.org/10.1038/s41598-022-13596-1

www.nature.com/scientificreports/

 19. Zamfir, A. & Crişu, L. Estimating soil erosion exerted by water in the lower sector of the Jiu river floodplain and Băilești Plain. 
Forum Geogr. 1(1), 24–33. https:// doi. org/ 10. 5775/ fg. 2021. 112.i (2021).

 20. Butler, D. R. Grazing influences on geomorphic systems. In Treatise on geomorphology. Geomorphology of human disturbances, 
climate change, and natural hazards Vol. 13 (eds Shroder, J. et al.) 68–73 (Academic Press, San Diego, 2013).

 21. Goodarzi, M. et al. Evaluación del índice de pobreza hídrica (WPI) en la cuenca de Borujerd-Dorood (Irán) para reforzar los 
planes de gestión del territorio. Pirineos 176, e064. https:// doi. org/ 10. 3989/ pirin eos. 2021. 176002 (2021).

 22. Turnbull, L., Wainwright, J. & Brazier, R. E. Changes in hydrology and erosion over a transition from grassland to shrubland. 
Hydrol. Process. 24(4), 393–414. https:// doi. org/ 10. 1002/ hyp. 7491 (2010).

 23. Bartley, R., Hawdon, A., Post, D. A. & Roth, C. H. A sediment budget for a grazed semi-arid catchment in the Burdekin basin, 
Australia. Geomorphology 87(4), 302–321. https:// doi. org/ 10. 1016/j. geomo rph. 2006. 10. 001 (2007).

 24. Rodriguez-Lloveras, X. et al. Patterns of runoff and sediment production in response to land-use changes in an ungauged 
Mediterranean catchment. J. Hydrol. 531, 1054–1066. https:// doi. org/ 10. 1016/j. jhydr ol. 2015. 11. 014 (2015).

 25. Heathwaite, A. L., Burt, T. P. & Trudgill, S. T. Runoff, sediment, and solute delivery in agricultural drainage basins: a scale-
dependent approach. IAHS. 182, 175–191. http:// www. rga20 10. djsct. ro/ incep ut. php? cod= 58& codj= 10 (1989).

 26. Kidron, G. J. Goat trampling affects plant establishment, runoff and sediment yields over crusted dunes. Hydrol. Process. 30(13), 
2237–2246. https:// doi. org/ 10. 1002/ hyp. 10794 (2016).

 27. Lai, L. & Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 15(8), e0236638. https:// 
doi. org/ 10. 1371/ journ al. pone. 02366 38 (2020).

 28. Meyles, E., Williams, A., Ternan, L. & Dowd, J. Runoff generation in relation to soil moisture patterns in a small Dartmoor 
catchment, Southwest England. Hydrol. Process. 17(2), 251–264. https:// doi. org/ 10. 1002/ hyp. 1122 (2003).

 29. Mwendera, E. J. & Saleem, M. M. Hydrologic response to cattle grazing in the Ethiopian highlands. Agric. Ecosyst. Environ. 
64(1), 33–41. https:// doi. org/ 10. 1016/ S0167- 8809(96) 01127-9 (1997).

 30. Pande, T. N. & Yamamoto, H. Cattle treading effects on plant growth and soil stability in the mountain grassland of Japan. Land 
Degrad. Dev. 17(4), 419–428. https:// doi. org/ 10. 1002/ ldr. 747 (2006).

 31. Pulley, S. & Collins, A. L. Field-based determination of controls on runoff and fine sediment generation from lowland grazing 
livestock fields. J. Environ. Manag. 249, 109365. https:// doi. org/ 10. 1016/j. jenvm an. 2019. 109365 (2019).

 32. Warren, S. D., Thurow, T. L., Blackburn, W. H. & Garza, N. E. The influence of livestock trampling under intensive rotation 
grazing on soil hydrologic characteristics. J. Range Manag. 39(6), 491–495. https:// doi. org/ 10. 2307/ 38987 55 (1986).

 33. Gifford, G. F. & Hawkins, R. H. Hydrologic impact of grazing on infiltration: A critical review. Water Resour. Res. 14(2), 305–313. 
https:// doi. org/ 10. 1029/ WR014 i002p 00305 (1978).

 34. Gifford, G. F., Provenza, F. D. & Malechek, J. C. Impact of range goats on infiltration rates in southwestern Utah. J. Range Manag. 
36(2), 152–153 (1983).

 35. Markart, G. et al. Surface runoff in a torrent catchment area in Middle Europe and its prevention. Geotech. Geol. Eng. 24(5), 
1403–1424. https:// doi. org/ 10. 1007/ s10706- 005- 2633-5 (2006).

 36. Ruggenthaler, R. et al. Quantification of soil moisture effects on runoff formation at the hillslope scale. J. Irrig. Drain. Eng. 141(9), 
05015001. https:// doi. org/ 10. 1061/ (ASCE) IR. 1943- 4774. 00008 80 (2015).

 37. Sadeghi, S. H. R., Vangah, B. G. & Safaeeian, N. A. Comparison between effects of open grazing and manual harvesting of 
cultivated summer rangelands of northern Iran on infiltration, runoff and sediment yield. Land Degrad. Dev. 18(6), 608–620. 
https:// doi. org/ 10. 1002/ ldr. 799 (2007).

 38. Vörösmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50(9), 753–765. https:// 
doi. org/ 10. 1641/ 0006- 3568(2000) 050[0753: ADOTTW] 2.0. CO;2 (2000).

 39. Meyles, E. W., Williams, A. G., Ternan, J. L., Anderson, J. M. & Dowd, J. F. The influence of grazing on vegetation, soil proper-
ties and stream discharge in a small Dartmoor catchment, southwest England, UK. Earth Surf. Process. Landf. 31(5), 622–631. 
https:// doi. org/ 10. 1002/ esp. 1352 (2006).

 40. Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 43(1), 64–84. https:// doi. org/ 10. 1002/ 
esp. 4250 (2018).

 41. Hancock, G. R. et al. Soil erosion—The impact of grazing and regrowth trees. Geoderma 361(1), 114102. https:// doi. org/ 10. 
1016/j. geode rma. 2019. 114102 (2020).

 42. Blanco-Canqui, H. & Lal, R. Erosion and Grazing Lands. In Principles of Soil Conservation and Management (eds Blanco-Canqui, 
H. & Lal, R.) 345–398 (Springer, Dordrecht, 2008). https:// doi. org/ 10. 1007/ 978-1- 4020- 8709-7.

 43. Kidron, G. J., Veste, M. & Lichner, Ľ. Biological factors impacting hydrological processes: Pecularities of plants and biological 
soil crusts. J Hydrol Hydromech 69(4), 357–359. https:// doi. org/ 10. 2478/ johh- 2021- 0031 (2021).

 44. Lázaro, R. et al. Defining minimum runoff length allows for discriminating biocrusts and rainfall events. J Hydrol Hydromech 
69(4), 387–399. https:// doi. org/ 10. 2478/ johh- 2021- 0029 (2021).

 45. Kulik, M., Warda, M. & Leśniewska, P. Monitoring the diversity of psammophilous grassland communities in the Kózki Nature 
Reserve under grazing and non-grazing conditions. J Water Land Dev 19, 59–67 (2013).

 46. Mor-Mussery, A., Abu-Glion, H., Shuker, S. & Zaady, E. Small ruminants grazing as a rehabilitative land management tool in 
the Negev Highland. Soil Geomorphol. Topogr. Perspect. Agron. 11, 1730. https:// doi. org/ 10. 3390/ agron omy11 091730 (2021).

 47. Riva, M. J., Daliakopoulos, I. N., Eckert, S., Hodel, E. & Liniger, H. Assessment of land degradation in Mediterranean forests and 
grazing lands using a landscape unit approach and the normalized difference vegetation index. Appl. Geogr. 86, 8–21 (2017).

 48. Bond, S., Kirkby, M. J., Johnston, J., Crowle, A. & Holden, J. Seasonal vegetation and management influence overland flow 
velocity and roughness in upland grasslands. Hydrol. Process. 34(18), 3777–3791. https:// doi. org/ 10. 1002/ hyp. 13842 (2020).

 49. Cerdà, A., Schnabel, S., Ceballos, A. & Gomez-Amelia, D. Soil hydrological response under simulated rainfall in the Dehesa 
land system (Extremadura, SW Spain) under drought conditions. Earth Surf. Process. Landf. 23(3), 195–209. https:// doi. org/ 
10. 1002/ (SICI) 1096- 9837(199803) 23:3% 3c195:: AID- ESP830% 3e3.0. CO;2-I (1998).

 50. Heathwaite, A. L., Burt, T. P. & Trudgill, S. T. Land-use controls on sediment production in a lowland catchment, south-west 
England, in Soil erosion on agricultural land. Proceedings of a workshop sponsored by the British Geomorphological Research 
Group, Coventry, UK, January 1989. 69–86 (Wiley, 1990)

 51. Ries, J. B. et al. Sheep and goat erosion–experimental geomorphology as an approach for the quantification of underestimated 
processes. Z. Geomorphol. 58(3), 023–045. https:// doi. org/ 10. 1127/ 0372- 8854/ 2014/S- 00158 (2014).

 52. Peppler, M. C. & Fitzpatrick, F. A. Methods for Monitoring the Effects of Grazing Management on Bank Erosion and Channel 
Morphology, Fever River, Pioneer Farm, Wisconsin (2004, accessed 24 October 2021). https:// pubs. usgs. gov/ fs/ 2005/ 3134/ pdf/ 
FS_ 2005- 3134. pdf

 53. Ma, L. et al. Application of grazing land models in ecosystem management: Current status and next frontiers. Adv. Agron. 158, 
173–215 (2019).

 54. Kosmas, C. et al. Exploring long-term impact of grazing management on land degradation in the socio-ecological system of 
Asteroussia Mountains, Greece. Land 4, 541–559. https:// doi. org/ 10. 3390/ land4 030541 (2015).

 55. Roy, P. et al. Threats of climate and land use change on future flood susceptibility. J. Clean. Prod. https:// doi. org/ 10. 1016/j. jclep 
ro. 2020. 122757 (2020).

 56. Chowdhuri, I. et al. Implementation of artificial intelligence based ensemble models for gully erosion susceptibility assessment. 
Remote Sens. 12(21), 3620 (2020).

https://doi.org/10.5775/fg.2021.112.i
https://doi.org/10.3989/pirineos.2021.176002
https://doi.org/10.1002/hyp.7491
https://doi.org/10.1016/j.geomorph.2006.10.001
https://doi.org/10.1016/j.jhydrol.2015.11.014
http://www.rga2010.djsct.ro/inceput.php?cod=58&codj=10
https://doi.org/10.1002/hyp.10794
https://doi.org/10.1371/journal.pone.0236638
https://doi.org/10.1371/journal.pone.0236638
https://doi.org/10.1002/hyp.1122
https://doi.org/10.1016/S0167-8809(96)01127-9
https://doi.org/10.1002/ldr.747
https://doi.org/10.1016/j.jenvman.2019.109365
https://doi.org/10.2307/3898755
https://doi.org/10.1029/WR014i002p00305
https://doi.org/10.1007/s10706-005-2633-5
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000880
https://doi.org/10.1002/ldr.799
https://doi.org/10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2
https://doi.org/10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2
https://doi.org/10.1002/esp.1352
https://doi.org/10.1002/esp.4250
https://doi.org/10.1002/esp.4250
https://doi.org/10.1016/j.geoderma.2019.114102
https://doi.org/10.1016/j.geoderma.2019.114102
https://doi.org/10.1007/978-1-4020-8709-7
https://doi.org/10.2478/johh-2021-0031
https://doi.org/10.2478/johh-2021-0029
https://doi.org/10.3390/agronomy11091730
https://doi.org/10.1002/hyp.13842
https://doi.org/10.1002/(SICI)1096-9837(199803)23:3%3c195::AID-ESP830%3e3.0.CO;2-I
https://doi.org/10.1002/(SICI)1096-9837(199803)23:3%3c195::AID-ESP830%3e3.0.CO;2-I
https://doi.org/10.1127/0372-8854/2014/S-00158
https://pubs.usgs.gov/fs/2005/3134/pdf/FS_2005-3134.pdf
https://pubs.usgs.gov/fs/2005/3134/pdf/FS_2005-3134.pdf
https://doi.org/10.3390/land4030541
https://doi.org/10.1016/j.jclepro.2020.122757
https://doi.org/10.1016/j.jclepro.2020.122757


17

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9393  | https://doi.org/10.1038/s41598-022-13596-1

www.nature.com/scientificreports/

 57. Chowdhuri, I. et al. Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods 
of eastern Himalaya. Nat. Hazards 107(1), 697–722. https:// doi. org/ 10. 1007/ s11069- 021- 04601-3 (2021).

 58. Pal, S. C. et al. Ensemble of machine-learning methods for predicting gully erosion susceptibility. Remote Sens. 12(22), 3675 
(2020).

 59. Costache, R. et al. Flash-flood potential mapping using deep learning, alternating decision trees and data provided by remote 
sensing sensors. Sensors 21(1), 280. https:// doi. org/ 10. 3390/ s2101 0280 (2021).

 60. Costache, R., Barbulescu, A. & Pham, Q. B. Integrated framework for detecting the areas prone to flooding generated by flash-
floods in small river catchments. Water 13(6), 758. https:// doi. org/ 10. 3390/ w1306 0758 (2021).

 61. Vojtek, M. et al. Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional 
flood susceptibility mapping: a case study from Slovakia. Geomat. Nat. Hazards Risk 12(1), 1153–1180. https:// doi. org/ 10. 1080/ 
19475 705. 2021. 19128 35 (2021).

 62. Boardman, J., Vandaele, K., Evans, R. & Foster, I. D. Off-site impacts of soil erosion and runoff: Why connectivity is more 
important than erosion rates. Soil Use Manag. 35(2), 245–256. https:// doi. org/ 10. 1111/ sum. 12496 (2019).

 63. Minea, G., Mititelu-Ionuș, O., Gyasi-Agyei, Y., Ciobotaru, N. & Rodrigo-Comino, J. Impacts of grazing by small ruminants 
on hillslope hydrological processes: A review of European current understanding. Water Resour. Res. 58(3), e2021WR030716. 
https:// doi. org/ 10. 1029/ 2021W R0307 16 (2022).

 64. Costea, M. Land degradation through erosion in Romania in the eco-economic development context. Int. Multidiscip. Sci. 
GeoConf. SGEM 1, 635 (2013).

 65. Prăvălie, R., Săvulescu, I., Patriche, C., Dumitraşcu, M. & Bandoc, G. Spatial assessment of land degradation sensitive areas in 
southwestern Romania using modified MEDALUS method. CATENA 153, 114–130 (2017).

 66. Bălteanu, D., Chendeş, V., Sima, M. & Enciu, P. A country-wide spatial assessment of landslide susceptibility in Romania. Geo-
morphology 124(3–4), 102–112. https:// doi. org/ 10. 1016/j. geomo rph. 2010. 03. 005 (2010).

 67. Niacsu, L., Ionita, I., Samoila, C., Grigoras, G. & Blebea-Apostu, A. M. Land degradation and soil conservation measures in the 
Moldavian Plateau, Eastern Romania: A case study from the Racova Catchment. Water 13(20), 2877. https:// doi. org/ 10. 3390/ 
w1320 2877 (2021).

 68. Roman, A., Ursu, T. M., Onțel, I., Marușca, T., Pop, O. G., Milanovici, S., Sin-Schneider, A., Gheorghe, C. A., Avram, S., Fărcaș, 
S. & Frink, J. P. (2019). Deviation from grazing optimum in the grassland habitats of Romania within and outside the natura 
2000 network, in Habitats of the World-Biodiversity and Threats. IntechOpen.

 69. Shirasaka, S. The transhumance of sheep in the southern Carpathians Mts., Romania. Geograph. Rev. Jpn. 80(5), 290–311. https:// 
doi. org/ 10. 4157/ grj. 80. 290 (2007).

 70. Nicu, I. C. Is overgrazing really influencing soil erosion?. Water 10(8), 1077. https:// doi. org/ 10. 3390/ w1008 1077 (2018).
 71. Posea, G. & Badea, L. România—unităţile de relief (Regionarea geomorfologică), Hartă, scara 1:750.000 Editura Ştiinţifică şi 

Enciclopedică, Bucureşti (1984).
 72. Ielenicz, M. Munţii Ciucaş—Buzău Studiu geomorfologic (Editura Academiei Române, 1984).
 73. Jurchescu, M., Kucsicsa, G., Micu, M., Sima, M. & Bălteanu, D. Landslide exposure assessment under environmental change in 

the Romanian Subcarpathians. Stud Geomorphol Carpatho-Balc LIII–LIV, 59–84 (2020).
 74. Diaconu, C. Probleme ale scurgerii aluviunilor pe râurile din România, Studii de Hidrologie, XXX, IsMH Bucureşti (1971).
 75. Ionita, I. Gully development in the Moldavian Plateau of Romania. CATENA 68(2–3), 133–140. https:// doi. org/ 10. 1016/j. catena. 

2006. 04. 008 (2006).
 76. Ionita, I., Radoane, M. & Mircea, S. Soil erosion in Europe. In Soil Erosion in Romania (eds John, B. J. & Poesen, J.) 155–167 

(Wiley, London, 2006).
 77. Micu, M. Landslide types and spatial pattern in the subcarpathian area. In Landform Dynamics and Evolution in Roma-

nia. Springer Geography (eds Radoane, M. & Vespremeanu-Stroe, A.) (Springer, Cham, 2017). https:// doi. org/ 10. 1007/ 
978-3- 319- 32589-7_1.

 78. Chendeş, V. Resursele de apă din Subcarpații de la Curbură 339 (Academy Publishing House, 2011).
 79. Broeckx, J. et al. Linking landslide susceptibility to sediment yield at regional scale: Application to Romania. Geomorphology 

268, 222–232. https:// doi. org/ 10. 1016/j. geomo rph. 2016. 06. 012 (2016).
 80. Armaş, I. Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat. Hazards 

60(3), 937–950. https:// doi. org/ 10. 1007/ s11069- 011- 9879-4 (2012).
 81. Zaharia, L., Grecu F., Ioana-Toroimac, G. & Neculau G. (2011). Sediment transport and river channel dynamics in Romania—

variability and control factors. In: Manning A. J., Sediment Transport in Aquatic Environments, Intechopen, Rijeka, 293–316. 
https:// doi. org/ 10. 5772/ 21416

 82. Cheval, S., Breza, T., Baciu, M. & Dumitrescu, A. Caracteristici ale precipitatiilor atmosferice extreme din România pe baza 
curbelor intensitate-durata-frecventa. Sesiunea de comunicari stiintifice, Administratia Naționala de Meteorologie, 8–9 (2012).

 83. Olariu, P., Cojoc, G. M., Tirnovan, A. & Obreja, F. The future of reservoirs in the Siret River Basin considering the sediment 
transport of rivers (Romania). Georeview https:// doi. org/ 10. 4316/ GEORE VIEW. 2014. 24.1. 169 (2014).

 84. Ioana-Toroimac, G. Inventory of long-term braiding activity at a regional scale as a tool for detecting alterations to a rivers’ 
hydromorphological state: A case study for Romania’s South-Eastern Subcarpathians. Environ. Manag. 58, 93–106. https:// doi. 
org/ 10. 1007/ s00267- 016- 0701-7 (2016).

 85. Zavoianu, I., Muica, C. & Alexandrescu, M. The critical environment of the Subcarpathian region of Romania (state-of-the-art). 
Geogr. Casopis Slovenskej Akad. Vied 48, 105–112 (1996).

 86. Zaharia, L. & Ioana-Toroimac, G. Erosion dynamics—precipitation relationship in the Carpathians Curvature region (Romania). 
Geogr. Fis. Din. Quat. 32(1), 95–102 (2009).

 87. Florea, N., Bălăceanu, V., Munteanu, I., Asvadurov, H., Conea, A., Oancea, C., Cernescu, N. & Popovăţ, M. (coord.). Soil Map 
of Romania, scale 1:200,000. Bucureşti, Inst. Geologic/ IGFCOT, 50 sheets (1963–1993).

 88. Panagos, P. et al. Rainfall erosivity in Europe. Sci. Total Environ. 511(801), 814. https:// doi. org/ 10. 1016/j. scito tenv. 2015. 01. 008 
(2015).

 89. Brock, J. et al. The performance of landslide susceptibility models critically depends on the quality of digital elevation models. 
Geomat. Nat. Haz. Risk 11(1), 1075–1092 (2020).

 90. Amare, S. et al. Susceptibility to gully erosion: Applying random forest (RF) and frequency ratio (FR) approaches to a small 
catchment in Ethiopia. Water 13(2), 216. https:// doi. org/ 10. 3390/ w1302 0216 (2021).

 91. Gayen, A., Haque, S. M. & Saha, S. Modeling of gully erosion based on random forest using GIS and R. In Gully Erosion Studies 
from India and Surrounding Regions Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable 
Development) (eds Shit, P. et al.) (Springer, Cham, 2020). https:// doi. org/ 10. 1007/ 978-3- 030- 23243-6_3.

 92. Mosavi, A. et al. Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: A priority assess-
ment of sub-basins. Geocarto Int. https:// doi. org/ 10. 1080/ 10106 049. 2020. 18291 01 (2020).

 93. Chowdhuri, I. et al. Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region 
India. Environ. Earth Sci. https:// doi. org/ 10. 1007/ s12665- 020- 09227-5 (2020).

 94. Islam, A. R. M. T. et al. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 12(3), 
101075 (2021).

https://doi.org/10.1007/s11069-021-04601-3
https://doi.org/10.3390/s21010280
https://doi.org/10.3390/w13060758
https://doi.org/10.1080/19475705.2021.1912835
https://doi.org/10.1080/19475705.2021.1912835
https://doi.org/10.1111/sum.12496
https://doi.org/10.1029/2021WR030716
https://doi.org/10.1016/j.geomorph.2010.03.005
https://doi.org/10.3390/w13202877
https://doi.org/10.3390/w13202877
https://doi.org/10.4157/grj.80.290
https://doi.org/10.4157/grj.80.290
https://doi.org/10.3390/w10081077
https://doi.org/10.1016/j.catena.2006.04.008
https://doi.org/10.1016/j.catena.2006.04.008
https://doi.org/10.1007/978-3-319-32589-7_1
https://doi.org/10.1007/978-3-319-32589-7_1
https://doi.org/10.1016/j.geomorph.2016.06.012
https://doi.org/10.1007/s11069-011-9879-4
https://doi.org/10.5772/21416
https://doi.org/10.4316/GEOREVIEW.2014.24.1.169
https://doi.org/10.1007/s00267-016-0701-7
https://doi.org/10.1007/s00267-016-0701-7
https://doi.org/10.1016/j.scitotenv.2015.01.008
https://doi.org/10.3390/w13020216
https://doi.org/10.1007/978-3-030-23243-6_3
https://doi.org/10.1080/10106049.2020.1829101
https://doi.org/10.1007/s12665-020-09227-5


18

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9393  | https://doi.org/10.1038/s41598-022-13596-1

www.nature.com/scientificreports/

 95. Pal, S. C., Ruidas, D., Saha, A., Islam, A. R. M. T. & Chowdhuri, I. (2022). Application of novel data-mining technique-based 
nitrate concentration susceptibility prediction approach for coastal aquifers in India. J. Clean. Prod. 131205

 96. Ho, T. K. Random decision forests, in Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 
1, 278–282. (IEEE, 1995). https:// doi. org/ 10. 1109/ ICDAR. 1995. 598994

 97. Arabameri, A. et al. Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 11(5), 
1609–1620 (2020).

 98. Arabameri, A. et al. Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms. 
Geomat. Nat. Haz. Risk 12(1), 469–498 (2021).

 99. Sahin, E. K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, 
gradient boosting machine, and random forest. SN Appl. Sci. 2(7), 1–17 (2020).

 100. Friedman, J., Hastie, T. & Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder 
by the authors). Ann. Stat. 28(2), 337–407. https:// doi. org/ 10. 1214/ aos/ 10162 18223 (2000).

 101. Arabameri, A. et al. Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation. 
J. Environ. Manag. 284, 112067. https:// doi. org/ 10. 1016/j. jenvm an. 2021. 112067 (2021).

 102. Chowdhuri, I. et al. Spatial prediction of landslide susceptibility using projected storm rainfall and land use in Himalayan region. 
Bull. Eng. Geol. Environ. 80, 5237–5258. https:// doi. org/ 10. 1007/ s10064- 021- 02252-z (2021).

 103. Chowdhuri, I., Pal, S. C., Saha, A., Chakrabortty, R. & Roy, P. Evaluation of different DEMs for gully erosion susceptibility 
mapping using in-situ field measurement and validation. Eco. Inform. 65, 101425. https:// doi. org/ 10. 1016/j. ecoinf. 2021. 101425 
(2021).

 104. Saha, A. et al. Assessment of forest cover dynamics using forest canopy density model in Sali River Basin: A spill channel of 
Damodar River. Environ. Sci. Eng. https:// doi. org/ 10. 1007/ 978-3- 030- 56542-8_ 15 (2020).

 105. Brown, C. Dummies: Create dummy/indicator variables flexibly and efficiently. CRAN-R. https:// CRAN.R- proje ct. org/ packa 
ge= dummi es (2021).

 106. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008).
 107. IGR. Romanina Institue of Geology, 1968. Romanian Geological Map 1:2000000, Bucharest, retrieved from: http:// www. geo- 

spati al. org/ downl oad/ harta- geolo gica-a- roman iei- scara-1- 200- 000 (1968)
 108. ANCPI. National Agency for Cadastre and Land Registration. Digital Elevation Model of Romania (Geoportal ANCPI) (2021).
 109. Dehn, M., Gärtner, H. & Dikau, R. Principles of semantic modeling of landform structures. Comput. Geosci. 27(8), 1005–1010. 

https:// doi. org/ 10. 1016/ S0098- 3004(00) 00138-2 (2001).
 110. Weiss, A. D. Topographic position and landforms analysis—Poster (ESRI Users Conference, San Diego, 2001).
 111. Langanke, T. Copernicus Land Monitoring Service—High Resolution Layer Grassland. (EEA, Copenhagen, accessed 15 June 

2021). https:// land. coper nicus. eu/ user- corner/ techn ical- libra ry/ hrl- grass land- techn ical- docum ent- prod- 2015
 112. Zeug, G., Tumampos, S., Buchauer, M., Pennec, A. & Dufourmont. H. GMES Initial Operations/Copernicus Land monitoring 

services—Validation of products (EEA, Copenhagen, 2020, accessed 15 June 2021). https:// land. coper nicus. eu/ user- corner/ 
techn ical- libra ry/ clms_ hrl_ gra_ valid ation_ report_ sc04_ v1_5. pdf. http:// geo- spati al. org/

 113. EEA - European Environment Agency. Copernicus Land Monitoring Service - High Resolution land cover characteristics of 
Tree-cover/forest and change 2015–2018 (2018); https://land.copernicus.eu/user-corner/technical-library/grassland-2018-user-
manual.pdf, accessed 14 June 2021.

 114. Mockus, V. Hydrologic soil groups, in National Engineering Handbook—Part 630 Hydrology, edited by USDA, 1–13 (USDA, 
Washington, 2012).

 115. Vintilă, R., Munteanu, I., Cojocaru, G., Radnea, C., Turnea, D., Curelariu, G. & Vespremeanu, R.. Sistemul Informatic Geografic 
al Resurselor de Sol ale României “SIGSTAR-200”: Metodologie de realizare şi principalele tipuri de aplicaţii. Lucrările celei de 
a XVII-a Conferinţe Naţionale pentru Ştiinţa Solului, vol. 1, 439 (2004).

 116. Drobot, R. Methodology for Determining Torrential Catchments in Which Human Settlements are Exposed to Flash Floods (in 
Romanian) (Technical University of Civil Engineering, 2007).

 117. Mishra, S. K. & Singh, V. Soil Conservation Service Curve Number (SCS-CN) Methodology Vol. 42 (Springer, Berlin, 2003).
 118. GAC. General Agricultural Census. General Agricultural Census. Romania. Herds of goats (heads), according to the legal status 

of agricultural holdings, by localities, http:// www. rga20 10. djsct. ro/ incep ut. php? cod= 58& codj= 10 (2010, 2011).
 119. Neculau, G., Minea, G., Ciobotaru N., Ioana-Toroimac G., Mircea S., Mititelu-Ionuș, O. & Rodrigo-Comino, J. A survey of 

farmer perception about grazing: A case study of the curvature Subcarpathians, Romania. J. Water Land Dev., in press. (2021).
 120. National Institute of Statistics of Romania - INSSE. Land fund area by usage, counties and localities; AGR101B. Land fund area 

by usage, counties and localities. https:// insse. ro/ cms/ en (2021).
 121. Micu, M. & Balteanu, D. Landslide hazard assessment in the Curvature Carpathians and Subcarpathians, Romania. Z. Geomor-

phol. Suppl. Issues https:// doi. org/ 10. 1127/ 0372- 8854/ 2009/ 0053S3- 0031 (2009).
 122. Evans, R. Soil erosion in the UK initiated by grazing animals: A need for a national survey. Appl. Geogr. 17(2), 127–141. https:// 

doi. org/ 10. 1016/ S0143- 6228(97) 00002-7 (1997).
 123. Cerdà, A., Franch-Pardo, I., Novara, A., Sannigrahi, S. & Rodrigo-Comino, J. Examining the effectiveness of catch crops as a 

nature-based solution to mitigate surface soil and water losses as an environmental regional concern. Earth Syst. Environ. 6(1), 
29–44 (2022).

 124. Panagos, P. et al. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54, 438–447 (2015).

Author contributions
G.M. conceived the study and led the research team. All authors edited the paper. N.C. worked on conceptualiza-
tion of the study methodology and prepared figures. O.I. worked on drafting the manuscript. G.M., N.C., O.I. 
and J.RC. wrote the main manuscript text. G.N., Y.GA and G. IT helped with data verification, discussion and 
interpretation of the data. G.M., Y.GA and J.RC. reviewed the manuscript with critical academic input.

Funding
This work was supported by a grant of theRomanian Ministry of Education and Research, CNCS-UEFISCDI, 
project number PN-III-P1-1.1-TE-2019-1180,within PNCDI III.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 13596-1.

https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1016/j.jenvman.2021.112067
https://doi.org/10.1007/s10064-021-02252-z
https://doi.org/10.1016/j.ecoinf.2021.101425
https://doi.org/10.1007/978-3-030-56542-8_15
https://CRAN.R-project.org/package=dummies
https://CRAN.R-project.org/package=dummies
http://www.geo-spatial.org/download/harta-geologica-a-romaniei-scara-1-200-000
http://www.geo-spatial.org/download/harta-geologica-a-romaniei-scara-1-200-000
https://doi.org/10.1016/S0098-3004(00)00138-2
https://land.copernicus.eu/user-corner/technical-library/hrl-grassland-technical-document-prod-2015
https://land.copernicus.eu/user-corner/technical-library/clms_hrl_gra_validation_report_sc04_v1_5.pdf
https://land.copernicus.eu/user-corner/technical-library/clms_hrl_gra_validation_report_sc04_v1_5.pdf
http://geo-spatial.org/
http://www.rga2010.djsct.ro/inceput.php?cod=58&codj=10
https://insse.ro/cms/en
https://doi.org/10.1127/0372-8854/2009/0053S3-0031
https://doi.org/10.1016/S0143-6228(97)00002-7
https://doi.org/10.1016/S0143-6228(97)00002-7
https://doi.org/10.1038/s41598-022-13596-1
https://doi.org/10.1038/s41598-022-13596-1


19

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9393  | https://doi.org/10.1038/s41598-022-13596-1

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to G.M. or N.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Designing grazing susceptibility to land degradation index (GSLDI) in hilly areas
	Geographic background of the surveyed area. 
	Methods and data
	Methodological steps. 
	Data processing. 
	The classification algorithms. 
	Model efficiency and accuracy evaluation. 

	Results and analysis
	Parameters selection and development. 
	GSLDI application. 

	Discussion
	Conclusions
	References


