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Abstract
We propose a general methodology to characterize a non-stationary random process that can be used for simulating random

realizations that keep the probabilistic behavior of the original time series. The probability distribution of the process is

assumed to be a piecewise function defined by several weighted parametric probability models. The weights are obtained

analytically by ensuring that the probability density function is well defined and that it is continuous at the common

endpoints. Any number of subintervals and continuous probability models can be chosen. The distribution is assumed to

vary periodically in time over a predefined time interval by defining the model parameters and the common endpoints as

truncated generalized Fourier series. The coefficients of the expansions are obtained with the maximum likelihood method.

Different sets of orthogonal basis functions are tested. The method is applied to three time series with different particu-

larities. Firstly, it is shown its good behavior to capture the high variability of the precipitation projected at a semiarid

location of Spain for the present century. Secondly, for the Wolf sunspot number time series, the Schwabe cycle and time

variations close to the 7.5 and 17 years are analyzed along a 22-year cycle. Finally, the method is applied to a bivariate time

series that contains (1) freshwater discharges at the last regulation point of a dam located in a semiarid zone in Andalucı́a

(Spain) which is influenced not only by the climate variability but also by management decisions and (2) the salinity at the

mouth of the river. For this case, the analysis, that was combined with a vectorial autoregressive model, focus on the

assessment of the goodness of the methodology to replicate the statistical features of the original series. In particular, it is

found that it reproduces the marginal and joint distributions and the duration of sojourns above/below given thresholds.

Keywords Generalized Fourier series of parameters � Non-stationary probability models � Piecewise continuous Probability
density functions � Stochastic characterization � Time series of environmental processes

1 Introduction

The long-term analysis of a natural phenomenon is usually

done from observations of multivariate time series whose

statistical properties are representative of the conditions

during regular time intervals known as states. For meteo-

rological and wave climate, the duration of a state usually

ranges from several minutes to a few hours. Those time

series, particularly if forced by climatic conditions, exhibit

different probabilistic behavior along time associated to

natural variations at different scales including daily, syn-

optic, seasonal and yearly. At longer temporal scales,

variations are related to climatic oscillations usually

described by indexes (Monbet et al. 2007) such as the

South Oscillation that was first identified by Hilde-

brandsson (1897), the North Atlantic Oscillation recog-

nized by (see Walker (1924)) and the North Pacific

Oscillation first noticed by Walker and Bliss (1932) and

ultimately to solar activity (see e.g. Zhai (2017); Le Mouël

et al. (2019)).

For the stochastic characterization of those vector ran-

dom processes, it is essential to take into account the time

variability for the whole range of values. This type of

analysis is usually aimed at simulating time series with the
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same probabilistic structure, so that they can be used to

infer the random response of a given system. Some

examples of applications are (i) the study of beach evolu-

tion (Payo et al. 2004; Baquerizo and Losada 2008; Cal-

laghan et al. 2008; Félix et al. 2012; Ranasinghe et al.

2012), (ii) the optimal design and management of an

oscillating water column system (Jalón et al. 2016; López-

Ruiz et al. 2018), (iii) the planning of maintenance

strategies of coastal structures (Lira-Loarca et al. 2020),

and (iv) the assessment of water quality management

strategies in an estuary according to density variations and

recovery time (Cobos 2020). It has also been used for the

analysis of observed wave climate variability in the pre-

ceding century and the expected changes in projections

under a climate change scenario (Loarca et al. 2021).

In environmental sciences, there are many proposals for

the simulation of time series that focus on the generation of

the values above a given threshold (known as storm con-

ditions for climate variables) or the full time series. Some

of them treat the series as stationary while more recent

approaches consider their non-stationarity. The earliest

attempts to reproduce stormy conditions in sea state wave

climate analysis treated the occurrence of storms as Pois-

son events with exponential interarrival times. Their per-

sistence was usually obtained by means of the joint

distribution of peaks and durations and they used idealized

storm shapes (e.g. (Callaghan et al. 2008; Boccotti 2000;

De Michele et al. 2007; Fedele and Arena 2009; Corbella

and Stretch 2012)). Payo et al. (2008) reproduced the

growth and decay of wave energy in the storms using

empirical orthogonal functions.

In the field of Geostatistics, a full theoretical framework

for spatiotemporal processes has been developed (Chris-

takos 2017; Wu et al. 2021; Christakos 2000). The analysis

of this type of random fields is based in the space-time

covariance and the bayesian maximum entropy. Several

examples can be found (He and Kolovos 2018; He et al.

2021; Cobos et al. 2019). Another approach is followed in

the present paper whose analysis is limited to time vari-

ability at a specific location. In this regard, several works

analyze the time variability in maxima attained during a

given time interval (De Leo et al. 2021; Izaguirre et al.

2010; De Luca and Galasso 2018), in peaks over threshold

(Méndez et al. 2006, 2008; Jonathan and Ewans 2013) and

frequencies of exceedances (Luceño et al. 2006; Razmi

et al. 2017) in different climatic time series.

Solari and Losada (2011) proposed a non-stationary

parametric distribution to characterize the whole range of

values with a piecewise distribution that uses a log-normal

distribution for the central body and two generalized Pareto

distributions for the lower and upper tails. Based on this

work, Solari and Van Gelder (2011) proposed a similar

approach to deal with wave periods and mean incoming

wave direction in addition to the simulation of multivariate

time series with a vectorial autoregressive model (VAR). In

them, they use specific combinations of probability models

that do not necessarily work for other type of data. Also,

the non-stationary character of the random variables is

considered by expressing the free parameters of the dis-

tribution and the percentiles of the common endpoints as a

truncated trigonometric expansion taking the year as the

largest cyclic periodicity.

In relation to this last aspect, the expansion in trigono-

metric series may give inaccurate results when the

derivatives at the limits of the interval do not coincide. In

addition, the existence of a discontinuity produces the so-

called Gibbs phenomenon that brings unwanted oscillations

and, at the same time, lowers the convergence rate of the

series, not only at the discontinuity point but also over the

entire interval. In general, any singularity affects the

approach. This aspect has been studied for the trigono-

metric expansion by Lighthill et al. (1958) and is also

applicable to other basis functions by virtue of the Darboux

(1878) which allows to state that the rate of convergence in

a real domain of the series expansion of a function depends

on the location on the complex plane of the singularities

and their gravity (Boyd 2000).

Certain times series, such as river discharges and pre-

cipitation in semiarid basins show strong time variations

that reflect themselves as sudden changes on the time

dependent empirical distribution. Also, the slopes of the

trends of the percentiles at the extremes of the interval are

usually not equal. Under these conditions it is expected that

the trigonometric basis functions fail to reproduce the

overall behavior. In this context it seems important to

choose a suitable set of basis functions to minimize this

inconvenience. Moreover, when the statistical characteri-

zation of several time series needs to be done (for example

as a first step to characterize a spatial temporal random

field), the choice also needs to attend for the dimension of

the optimization problem. Intuitively, the similarity

between a function and its best approach, depends on the

shape of the functions of the basis (Mead and Delves

1973). In fact, the behavior of the basis functions at the

boundaries of the interval determines the rate of conver-

gence of the series expansion. Apart from this fact, there is

a lack of knowledge that might serve as a guide for the

choice of the basis for which a good approximation is faster

and, accordingly, the dimension of the optimization prob-

lem is smaller.

In this work we propose a general procedure that is

based on the research line initiated by Solari and Losada

(2011). It uses non-stationary piecewise functions for the

marginal distributions of the vector components. The the-

oretical probability models are fitted to data by solving a

constrained optimization problem where the negative log-
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likelihood function (NLLF) is used as the objective func-

tion. We explore with three different environmental time

series the adequacy of probability models and basis func-

tions to reproduce the statistical behavior of the data.

The novelties of the present formulation with respect to

the abovementioned contributions are:

• Previous works (see e.g. Solari and Losada (2011);

Solari and Van Gelder (2011)) use 2 or 3 intervals with

specific probability models (e.g. a lognormal or a

Weibull for the central part and two generalized Pareto

for the tails), and the expression of the probability

density function (pdf) is given in terms of the relation-

ships between the parameters of those particular

models, obtained from the continuity conditions

imposed on the pdf and a restriction on the support of

the model selected for the lower tail. The proposed

procedure is a general formulation, valid for any

number of intervals and any combination of continuous

probability models. The restrictions on the sample

space, if required, are imposed as constrictions in the

optimization problem. The model is capable to detect

whether a smaller number of intervals (or probability

models) are needed as it gives a partition of the real axis

with very close, almost indistinguishable values.

• In regard to the non-stationary characterization, existing

works (see e.g. Solari and Losada (2011, 2014)) use the

trigonometric expansion while we propose the use of

the best approach in any subspace spanned by a set of a

orthogonal basis functions (generalized Fourier expan-

sion). This set can be, among others, the functions that

arise in the periodic Sturm Liouville problem (SLP) as

in Solari and Losada (2011) and the eigenfunctions of

SLPs. Moreover, instead of taking the year as the

reference time interval, the expansion can be done over

an arbitrary integer number of years.

The article is organized as follows. Section 2 presents the

theoretical foundations of the methodology. Section 3

illustrates its application to three time series with different

particularities. In Section 3.1 is analyzed the daily mean

precipitation projected over the period 2006-2100 in a

location of a semiarid basin with a clear time variability

with two main seasons. Section 3.2 shows the results of the

analysis of Wolf or Zurich sunspot number time series

where time variability expands over several years. Further

on, Section 3.3 also shows the goodness of the methodol-

ogy for simulation purposes with data from a bivariate

vector random process. This series includes the freshwater

river discharges at the last regulation point of a river and

the salinity at the river mouth. In Section 4 some of the key

points of the methodology are discussed, including its

advantages regarding existing methods and, finally, Sec-

tion 5 concludes the study.

2 Theoretical background

We consider a vector random process,

X~ ¼
�
X1ðtÞ; :::;XiðtÞ; :::;XNðtÞ

�
, that can be multivariate or

univariate (for N=1), where t belongs to a certain set of

index, and a matrix that contains No observations made at

discrete values tj: xo~ðtjÞ ¼ ðxo1ðtjÞ; :::; xoi ðtjÞ; :::; xoNðtjÞÞ.
Because t is usually time, for the sake of simplicity, from

now on we will speak about time series, and we will

assume that the random process is observed at equally

spaced instants.

The characterization of X includes the fit of the marginal

NS distribution functions of each random variable Xi. This

information can be used to simulate NS multivariate time

series. In this work, we used a vectorial autoregressive

model (VAR) as described in Lütkepohl (2005) to obtain

realizations and to assess with them the goodness of fit of

VRPs.

2.1 Fit of data to marginal NS distributions

We assume that each variable Xi (i ¼ 1; :::;N), from now

on denoted by X, is a continuous random variable whose

probability density function fXðxÞ can be expressed as a

piecewise function where a finite number, NI , of weighted

probability models (PMs) fit within a partition of the real

axis into intervals: fIa : a ¼ 1; :::;NIg where Ia ¼
ua�1; uað � for j ¼ 2; :::;NI � 1, I1 ¼ ð�1; u1� and

INI
¼ ðuNI�1;þ1Þ. That is:

fXðxÞ ¼

x1f1ðxÞ x� u1
x2f2ðxÞ u1\x� u2
. . . . . .
xafaðxÞ ua�1\x� ua
. . . . . .
xNI

fNI
ðxÞ uNI�1 � x

8
>>>>>><

>>>>>>:

ð1Þ

where fa denotes the probability density function of the

model selected for Ia. The function defined in eq. (1) is

required to be continuous at the common matching points

of the intervals by imposing the following conditions:

xafaðuaÞ ¼ xaþ1faþ1ðuaÞ; a ¼ 1; . . .;NI � 1 ð2Þ

Also, in order to guarantee that eq. (1) is well defined, the

parameters are required to fulfil the following condition:

x1F1ðu1Þ þ . . .þ xa FaðuaÞ � Faðua�1Þð Þ þ . . .
þ xNI

1� FNI
ðuNI�1Þð Þ

¼ 1 ð3Þ

where Fa denotes the corresponding probability distribu-

tion function.

The solution to eqs. (2) and (3) is:
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xa ¼
a1
b1

. . .
aa�1

ba�1

c1 þ c2
b1
a1

þ c3
b1
a1

b2
a2

þ . . .

�

þ ca
b1
a1

b2
a2

:::
ba�1

aa�1

þ . . .þ cNI

b1
a1

b2
a2

. . .
bNI�1

aNI�1

��1 ð4Þ

where aa ¼ faðuaÞ, ba ¼ faþ1ðuaÞ and

ca ¼ FaðuaÞ � Faðua�1Þ, provided that aa and ba and the

denominator in eq. (4) are both different from zero.

In eq. (1), the parameters of the distributions are

assumed to be unknown time dependent functions which

largest periodic variation is Ny years. Any of these func-

tions, generically denoted by a(t), can be expanded into a

Generalized Fourier series over the interval ½0;Ny� which
expression, truncated to NF terms, is:

aðtÞ �
XNF

n¼1

an/nðtÞ

t 2 ½0;Ny�;
ð5Þ

where an are the coefficients of the best approach in the

subspace spanned by a set of orthogonal functions,
�
/nðtÞ

�NF

n¼1
. This set may be, among others, the set of

eigenfunctions of a Sturm Liouville problem (SLP) with

ordinary differential equation:

d

dt
pðtÞ d/

dt

� �
þ kwðtÞ � qðtÞð Þ/ðtÞ ¼ 0; ð6Þ

where p(t), xðtÞ[ 0 and p(t), dp/dt, w(t) and q(t) are

continuous functions over the interval [0, Ny].

The orthogonality is interpreted in regards to the inner

product \f ðtÞ; gðtÞ[ =
R b
a xðtÞf ðtÞgðtÞ dt. Table 1 pre-

sents some plausible sets for series expansion that can be

used with the appropriate linear transformation of the

domain into [0, Ny].

The negative log-likelihood function (NLLF) is used as

the objective function in the optimization algorithm. It

reads:

NLLFðf~Þ ¼ �
XNo

j¼1

log f xoðtjÞ; f~
	 


; ð7Þ

where f~ is a vector of dimension Nd that contains the

Fourier coefficients of the expansion of the parameters and

the percentiles of the common matching points, and xoðtjÞ
for j ¼ 1; :::;No are the observations.

The optimization problem is defined as the search for

values of f that minimize the NLLF. When necessary, the

optimization problem will be subject to conditions imposed

on the sign of certain parameters of the distributions

involved. An approximation of the solution is found by

means of the Sequential Least SQuares Programming

(SLSQP) (Von Stryk 1993), and by using as initial solution

a first guess of the values of the coefficients obtained from

stationary conditions and also a guess of the percentiles of

the common endpoints of the intervals.

The resulting distributions where the parameters are

those obtained from the optimization problem, are NS and,

therefore, hereinafter denoted by FXi
ðxoðtÞ; tÞ for each Xi.

3 Application to climate time series

In the following subsections, the results of the application

of the method to different time series is presented. Two

univariate time series and a multivariate one is analyzed.

The first one shows a significant yearly cycle and a strong

variability of the range of values along the year. The sec-

ond one presents marked 22- and 11-year periodicities and

rather clear shorter terms. Finally, the analysis focus on a

Table 1 Sets of basis expansion solutions (first column) that solves the differential eq. (6) with the functions (second column) and conditions

(third column) given

Orthogonal set of eigenfunctions Differential equation and domain Conditions imposed

Trigonometric series expansion Periodic SLP:

f1g [ fcosð2ptÞ; sinð2ptÞ : n ¼ 1; 2; :::g pðtÞ ¼ qðtÞ ¼ wðtÞ ¼ 1; t 2 ½�1; 1� /ð�1Þ ¼ /ð1Þ and /0ð�1Þ ¼ /0ð1Þ
Modified Fourier series expansion Regular SLP:

f1g [ fcosðnptÞ; sin
��
n� 1

2

�
pt
�
: n ¼ 1; 2; :::g pðtÞ ¼ qðtÞ ¼ 1; t 2 ½�1; 1� /0ð�1Þ ¼ /0ð1Þ ¼ 0

Sinusoidal series expansion Regular SLP:

fsinðnpt
�
: n ¼ 1; 2; :::g pðtÞ ¼ qðtÞ ¼ wðtÞ ¼ 1; t 2 ½0; 1� /ð0Þ ¼ /ð1Þ ¼ 0

Legendre polynomials Regular SLP:

fP0 ¼ 1g [ fP1 ¼ tg[ pðtÞ ¼ wðtÞ ¼ 1; /ð�1Þ and /ð1Þ are finite

fPn : nPn ¼ ð2n� 1ÞtPn�1 � ðn� 1ÞPn�2; n ¼ 2; 3:::g qðtÞ ¼ �1=4 tan2ðpt=2Þ � 1=2; t 2 ½�1; 1�
Chebyshev polynomials Regular SLP:

fP0 ¼ 1g [ fP1 ¼ tg[ pðtÞ ¼ wðtÞ ¼ 1; /ð�1Þ and /ð1Þ are finite

fPn : Pn ¼ 2tPn�1 � Pn�2; n ¼ 2; 3:::g qðtÞ ¼ �1=4 tan2ðpt=2Þ
�3=4 sec2ðpt=2Þ sin2ðpt=2Þ � 1; t 2 ½�1; 1�
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bivariate time series that links a variable with a strong

variability along the year due to climate variations and

management decisions with a time series that is also

influenced by other physical processes.

3.1 Precipitation at Sierra Nevada mountain
(Andalusia, Spain)

This first application is devoted to an univariate time series,

hereinafter denoted by P(t), which stands for the daily

mean precipitation projected at the position (3.546�W -

36.706�N) in Sierra Nevada (Andalusia, Spain) from 2006

to 2100. Data comes from EUROCORDEX project and has

been obtained with the climate model SMHI-CNRM-

CERFACS-CNRM-CM5 for a Representative Concentra-

tion Pathway RCP4.5 scenario. The point is located at the

Guadalfeo river watershed, an area of semiarid Mediter-

ranean climate where precipitation events are scarce and

usually torrential, mainly concentrated during the period

ranging from October to April. Due to this behavior, the

empirical distribution function obtained by taking the year

as the reference period (see dots in Figure 2), shows steep

changes close to the end of April and at the end of

September. The curves also have marked peaks at the

beginning and at the end of the year and, therefore, the

trends at the limits of the intervals have different slopes. To

deal with this high variability, a Box-Cox data transfor-

mation with k ¼ �0:1186 parameter was used.

Several combinations of PMs such as Normal - Weibull

of maxima, Log-normal - Normal, Normal - Generalized

Pareto, with different initial guess of the percentiles of the

threshold, as well as single models like Weibull of maxima,

Log-normal or Normal were used for testing. The best

visual fits were obtained for a Weibull of maxima distri-

bution. In addition, when trying the fit with more than one

distribution, for all those combinations where this distri-

bution was one of the PMs, the percentiles of the final

support of this PM were almost 0 or 1. This indicates that

the methodology is capable to distinguish when a single

PM works adequately for all the range of values and when

it is worth to skip needless PMs. The performance of dif-

ferent sets of basis functions is analyzed for all the

expansions included in Table 1 in terms of the dimension

of the optimization problem (Nd) and the BIC (Schwarz

1978) (see Figure 1), which is related to the optimum

value, NLLF� and Nd through the mathematical expression

BIC ¼ 2NLLF� þ logðNoÞNd.

It can be observed that for a small number of parame-

ters, the best approach in terms of the BIC is obtained with

the trigonometric expansion. As the number of terms in the

series increase, the differences between the approaches

become smaller. For larger dimensions of the optimization

problem, the other expansions show minima at values

ranging from 18 to 24 parameters.

Figure 1 compares the empirical distribution with some

of the theoretical ones obtained with the expansions of the

parameters of the distribution for four of the sets in

Table 1. For all of them the BIC is close to the minimum,

Nd ¼ 21. From panels a) to d), it includes the Legendre’s

polynomial approximation up to degree 7, the sinusoidal

with 7 terms, and ultimately the modified Fourier and the

trigonometric with 3 oscillatory components. A logarithmic

Fig. 1 Optimum value, BIC,

versus the number of parameters

for the marginal fit with

different choices for the time

expansions of the parameters of

the PMs for daily precipitation

projected at Sierra Nevada

location
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scale has been used for the vertical axis so that the good-

ness of the fits can be clearly visualised for all the per-

centiles. Despite they all have the same number of

parameters and the similarities in the BIC values, the

expansion that gives an overall better fit with smoother

curves is Legendre’s. All the basis are capable to give

rather accurate and similar descriptions of the behavior of

the lower, intermediate and upper percentiles. However, for

Fig. 2 Non-stationary empirical CDF of the precipitation and theoretical model fits for different choices of the basis functions for the time

expansion of the parameters of a Weibull of maxima. a) Legendre polynomials; b) Sinusoidal; c) Modified Fourier and d) Trigonometric
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the rapid changes happening between April and May and

between September and October, they show slightly dif-

ferent behaviours. On the one hand, for the largest per-

centiles and for the period between April and May, the

sudden change is better captured by the modified Fourier

one while the trigonometric one is not so good at this steep

transition. On the other hand, it is the trigonometric basis

which better reproduce the rapid variations in precipitation

from September to October. Regarding the infraestimation

/ overestimation at the upper percentiles, the Legendre

basis is the one that more fairly reproduce the magnitude of

the precipitation of these extreme events, while the

trigonometric and sinusoidal approaches overestimate this

magnitude.

3.2 Wolf sunspot number

In the second example, we analyze the monthly time series

of Wolf or Zurich sunspot number, available from 1749

(Source: WDC-SILSO, Royal Observatory of Belgium,

Brussels). The signal contains the well-known 11 years

Schwabe cycle and also the 22 years one described in

Usoskin and Mursula (2003).

In order to detect the time random variability up to the

seasonal scale, a basic period of Ny ¼ 22 years is taken for

the analysis. A piecewise function composed of two PMs, a

log-normal and a normal, were used in eq. (1). Several

initial guesses were tried as the percentiles of the common

matching points and the final values always were close to

0.85.

Figure 3 shows the fit with a sinusoidal expansion

retaining NF ¼ 44 terms (covering frequencies ranging

from 1/44 to 1 yr�1) that was the option that gave similar

values of the optimum NLLF and the BIC with a consid-

erable smaller number of parameters (442 versus more than

600). In this example, it is highlighted that the minimum

BIC is found for NF ¼ 6, which means that the minimum

oscillatory period included in the analysis would be 22/3

years. However, as it is known that the annual component

is significant, we force the analysis to optimize up to 1yr�1.

No Box-Cox transformation was required for the analysis.

As it is observed, all the percentiles show a peak associated

to the 11 years cycle which is asymmetric as pointed out by

Usoskin and Mursula (2003), who detected that it has a

shorter ascending phase and a longer descending phase.

This asymmetry is particularly visible in the lower per-

centiles. The upper tails show two additional peaks that are

Fig. 3 a) Non-Stationary CDF of sunspots, and b) stationary cumulative distribution functions at sections given in panel a)
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related to the 7.5 to about 17 years also mentioned in

Usoskin and Mursula (2003).

In Figure 3.b it is shown the empirical and theoretical

stationary cumulative distribution functions at sections A

to D indicated in panel (a) of the same figure. This graph

allows to observe not only the goodness of fit of the the-

oretical model but also the capability of the theoretical

PMs to distinguish the behavior of the body and the upper

tail.

3.3 Fresh-water river discharge and salinity
at the Guadalquivir river estuary

The third example analyzes the bivariate time series of the

following variables: (a) the fresh-water mean daily river

discharge (Q(t)) at Alcalá del Rı́o dam (6.06�W - 37.29�N),
the last regulation point of the Guadalquivir river estuary,

and (b) the mean daily sea water salinity (S(t)) at its mouth

(6.5�W - 36.83�N) at 0.5 meters depth from SWL. The time

series of Q(t) is available from July 1st, 1931 to April 27th,

2016 (Source: Andalusian Water Agency, Junta de Anda-

lucı́a). At the mouth, the time series of S was obtained from

Marine Copernicus service, specifically, the IBI MULTI-

YEAR PHY 005 002 TDS ocean reanalysis service and

cmems_mod_ibi_phy_my_0.083deg-3D_P1D-m product.

In this case, it ranges from January 1st of 1993 to

December 31st of 2019. The regulation of this dam is

aimed not only at controlling floods but also at fulfilling,

among others, the following management objectives: i) the

maintenance of an ecological river discharge, ii) the

avoidance of unwanted turbidity conditions (Cobos et al.

2020; Dı́ez-Minguito and de Swart 2020), and iii) the

maintenance of S(t) below a given threshold for the irri-

gation of rice crops in the estuary (Cobos 2020). As a

result, Q(t) varies from very low values (usually in summer

Q\ 40 m3/s) to those that are almost squared in winter

(Q � 1000 m3/s) with sporadic sudden changes. Salinity

variations are also related to sun radiation and variations

associated to spring-neap tidal conditions.

The univariate analysis of Q and S were carried out with

a Generalized Extreme Value function. For Q and S, the

Chebyshev and Legendre expansions were performed,

respectively. In both cases, a basic period of one year

(Ny ¼ 1) with degree equal to twelve for Q and S were

used. A Box-Cox transformation (Box and Cox 1964) was

required for the analysis of Q with k ¼ �6:84 � 10�3 and a

Yeo-Johnson (Yeo and Johnson 2000) with k ¼ 20:869 to

S. Figure 4.a and .b shows the marginal fits of the two RPs.

Fig. 4 a) Non-Stationary Cumulative Distribution Function of river discharge at Alcalá del Rı́o and b) and the Yeo-Johnson transformation of

salinity at the river mouth
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As it observed, the models adequately reproduce the non-

stationary pattern.

A VAR(6) model (see Appendix) was fit to the data

from the common period between both series. With those

results and the marginal distributions, 100 simulations were

obtained in order to verify the goodness of the method with

the methodology proposed by Monbet et al. (2007).

The joint distribution of river discharge and salinity is

assessed in figure 5 where the joint density functions of

observations and one of the simulations are compared in

panel a). Panel b) shows the pdf of the normalized vari-

ables (eq. (8)) obtained with observations and a theoretical

gaussian bivariate fit. The pdf of the normalized data

resembles a standardized bivariate gaussian density func-

tion with a correlation coefficient q ¼ �0:75 indicating

that the VAR assumption regarding the gaussian behavior

is valid. The pdf of the simulated data shows a bump rather

similar to the original data but with smaller values for the

modal points. The correlation coefficient obtained with the

values of those functions is R2 ¼ 0:839, which shows that

there is a good agreement in bivariate distributions between

the simulation and the original time series.

Finally, in figure 6 the estimations of the distributions of

the sojourns durations below/above 40 m3=s and 100 m3=s

obtained for the original series and the simulations are

compared in panel a). These levels, according to Dı́ez-

Minguito et al. (2012, 2014), correspond to critical states

of the estuary. Indeed, under low-river flow conditions

(Q\40m3=s) the estuary is tidally dominated and turbidity

and hypoxia events occur. Discharges with Q[ 100m3=s

helps water renovation, promotes life in the estuary and

lowers the salinity values to acceptable levels for rice crops

Fig. 6 a) CDFs of sojourn durations below 40m3=s and above 100m3=s and b) Autocorrelation function

Fig. 5 Comparison of joint distribution. a) Joint distribution of of Q and S for observations (solid lines) and one of the random simulations

(dashed lines). b) Joint distribution of normalised variables for observations (solid lines) and theoretical Gaussian distribution (dashed lines)
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(Cobos 2020). These plots give information about the

persistence of extreme events in this particular environ-

ment, and, as pointed out by Monbet et al. (2007), are

strongly related to the capability of the models to reproduce

the severity of the conditions. The figures include the

curves of the observations as well as an envelope band with

the minimum and maximum values of the simulations. It is

found that the model is capable to fairly reproduce the

duration of both types of events. The autocorrelation

function shown in panel b) shows a similar behavior con-

sisting in a decreasing trend with smaller lags than the

observations. This might be related to the influence of

management decisions on river discharges that are not only

related to climate conditions and that the VAR model is not

capable to capture. Conversely, the salinity shows a high

value (higher than 0.99) in both cases, which means that a

almost perfect correlation is found. This behavior is the

expected since the governing process that modify the

salinity is relate to short time variations, i.e., tidal fre-

quency M2 (12.42 hr). The strong water discharge also

modified the salinity pattern, however these strong events

are rare.

4 Discussion

The temporal description of the parameters (eq. 6) has been

done in terms of SLPs. However, the expansion may also

be the orthogonal projection of a(t) in a subspace of any

Hilbert function space of finite dimension. Among others,

it can be the best polynomial approach of degree NF � 1 by

virtue of the Weierstrass theorem, that can be obtained with

any set of orthogonal polynomials defined over bounded

intervals such as Jacobi and Gegenbauer (that generalize

Legendre and Chebyshev polynomials). In the examples

shown in this work, oscillatory functions were used

because climate forced time series have intrinsic oscilla-

tions that can be directly associated to the terms in the

expansion. The consideration of alternative functions to the

commonly used trigonometric basis is found to be partic-

ularly useful for the description of large dimension multi-

variate time series like those usually needed in coastal

engineering, as the number of coefficients used in the

approach can be significantly reduced. This is the case for

the analysis of time series measurement projections of joint

wave and wind climate conditions. It must be noticed that

the better the fit of the marginal NS distributions, the better

the temporal dependency obtained and, consequently, more

accurately representative new random realizations would

be obtained.

For some climate variables such as sea level, the oscil-

latory behavior is governed by some well-known periods

associated to the gravitational attraction on the Earth by the

Sun and the Moon. In these cases, it is also possible to use a

harmonic expansion of the time series with the identified

significant periods, in a similar way than for tidal analysis

(Pawlowicz et al. 2002; Codiga 2011).

The optimization problem increases its dimension with

the number of PMs chosen in eq. (1) in a geometric pro-

gression, making the analysis impractical. To the authors

experience, the selection of three PM’s is usually enough to

describe the central body as well as the lower and upper

tails. The use of Generalized Pareto PMs for modeling the

tails is highly recommended to properly simulate the higher

and lower values of the variables. In applications where the

interest is focused on the exceedances over a threshold, as

it is the case for many engineering studies, the discretiza-

tion in three regimes and the use of those PMs fairly

reproduces the body and the upper tail. In addition, and

following the suggestions given by Lira-Loarca et al.

(2020); Jäger et al. (2019), some physical conditions might

limit the event space, for example the wave height in

shallow waters due to breaking. In those cases, it should be

convenient to impose constrictions in the optimization

problem.

The selection of the basis period for the analysis

depends on the length of the available time series. The

choice of the year does not allow to capture the longer-term

variations described by climatic oscillations that have

indeed shown to be relevant in the solar activity that

strongly affects climate. It is important to note that when

the chosen base period is larger than one year, the initial

date for the simulation must be properly set-up so that the

phase of the larger scale variability obtained is coherent

with the original data.

A Python tool that guide users along all the steps

required for making the NS analysis for VRPs and the

simulation can be found in https://github.com/gdfa-ugr/

marinetools (Cobos et al. 2022).

5 Conclusions

We have proposed a general procedure for the NS analysis

of a random processes. It uses a NS piecewise function

whose parameters and common endpoints are allowed to

vary periodically in time over a certain number of years.

That time dependence is described with the best approach

in the subspace spanned by a subset containing a finite

amount of eigenfunctions of a SLP. The parameters of the

theoretical PMs are fitted to data by solving a constrained

optimization problem where the NLLF is the objective

function and, if needed, constrains are imposed on the sign

of the parameters due to the intrinsic nature of the

variables.
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The novelty of this procedure, brings up some advan-

tages with respect to previous works. First, from a math-

ematical point of view, the general formulation allows to

extend the definition of the piecewise density function to

any type of data sets. It is highlighted the importance of the

selection of the appropriate sets of basis functions which

might also significantly reduce the dimension of the opti-

mization problem. Finally, the treatment of an arbitrary

integer number of years makes possible to explore the

presence of pluriannual cycles of variation whenever a

large enough period of time is available for the analysis.

The application of the method to three time series with

different particularities shows its goodness to reproduce the

stochastic features of the original data for processes of

different nature, being able to identify the appropriate

values of the partition of the real axis and whether any of

the models at the outer intervals is strictly necessary. More

precisely, it is shown that it is capable to capture the highly

variable precipitation projected at a mountainous environ-

ment with a semiarid climate where two main seasons are

clearly observed. It is also found that it can capture a wide

range of time scale variations already known along a 22

years cycle for the Wolf sunspot number time series, such

as the Schwabe cycle and oscillations that vary close to 7.5

and 17 years. Finally, the joint variation of river discharges

at the last point of regulation and the salinity at the river

mouth is analyzed. The dam is located in a semiarid zone in

Andalucı́a (Spain) and its regulatory activities depend not

only on seasonal and yearly time climate variability but

also on management decisions. The salinity at the mouth of

the estuary is strongly related to river discharges and also

to other processes such as tidal propagation and sun radi-

ation. The application of the method combined with a VAR

model to that bivariate data shows its capability to repro-

duce different statistical properties inferred from the orig-

inal series such as the autocorrelation, the marginal and

joint distributions and the duration of sojourns below/above

given thresholds.

A. Appendix

The following sections show some methods that are used in

this work in order to ease the analysis and simulate new

random realizations of the VRPs.

A.1. Pretreatment of time series with persistent
low values

Some climate related time series usually show very large

differences between the smaller and the larger values. This

is the case of river discharges at dams that regulate rivers in

semiarid zones where most of the time the flow is the

minimum ecological discharge. Those low values are

exceptionally exceeded when intense and persistent pre-

cipitation events occur and the dam releases for safety

purposes. Those differences are also not evenly distributed

along time due to, for example, to strong seasonal and

yearly climate variation. Under such circumstances, it is

convenient to transform the data into Gaussian distributed

values using a k-parameter Box-Cox transformation

(Box and Cox 1964). Other power transformations can also

be applied (Yeo and Johnson 2000).

A.2. Temporal dependence

The Vector Auto-regressive, VAR(q) model is applied to

the normalized series obtained from the observations as:

ZXi
ðtjÞ ¼ U�1 FXi

xoðtjÞ; tj
� �� �

ð8Þ

where U�1 is the inverse of the Gaussian cumulative dis-

tribution function with zero mean and unit standard devi-

ation and FXi
ðxoðtÞ; tÞ is the NS probability distribution

function of Xi.

We denote the values of the normalized series (eq. 8) at

time tj as y
i
j ¼ ZXi

ðtjÞ and Yj ¼ y1j ; :::; y
i
j; :::; y

N
j

	 
T

where T

stands for the vector transposition. The dependence in time

between variables in the VAR(q) model is given by:

Yj ¼ cþ A1Yj�1 þ A2Yj�2 þ ::::þ AqYj�q þ ej ð9Þ

where c ¼ c1; :::; c
i; :::; cNð ÞT contains the mean values of

the variables, Am, m ¼ 1; :::; q are the N 	 N coefficients

matrices and ej ¼ e1j ; :::; e
i
j; :::; e

N
j

	 
T
is the vector with the

white noise error terms. Using eq. (9) to relate data at an

instant tj to their previous q values, for j ¼ qþ 1; :::;No, we

obtain Y ¼ Avþ E, where Y ¼ ðYqþ1Yqþ2:::YNÞ,
v ¼ ðvqþ1vqþ2:::vNÞ, with vj ¼ ð1YT

j�1:::Y
T
j�qÞ

T
, A ¼

ðA1A2:::AqÞ and E ¼ ðeqþ1eqþ2:::eNÞ.
The solution is obtained by means of minimum least

square errors as A ¼ YvTðvvTÞ�1
, where E ¼ Y � Av and

Q ¼ covðEÞ is the covariance matrix of the error. A

detailed description can be found e.g. in Lütkepohl (2005).

A.3. Simulation

In order to obtain a realization of the vector random pro-

cess, the first q-values of the time series are obtained with a

Monte Carlo simulation using a Gaussian multivariate

distribution with mean vector c and the covariance matrix

Q given in section 1. Then, the VAR model is used to

generate a multivariate Gaussian stationary time series�
y1ðtÞ; :::; yiðtÞ; :::; yNðtÞ

�
at regular time instants. The
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corresponding non-stationary time series is then recovered

by using the following transformation:

XiðtÞ ¼ F�1
Xi

U yiðtÞ; tð Þ½ � ð10Þ
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