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1. Introduction

The classical Brunn-Minkowski inequality in Euclidean space asserts that, given A, B ⊂ Rd measurable 
sets such that A + B is also measurable, we have

|A + B|1/d ≥ |A|1/d + |B|1/d,

where | ·| indicates the volume of a set, and A +B = {a +b : a ∈ A, b ∈ B} is the classical Minkowski addition 
of sets. Taking λ ∈ [0, 1], and replacing A by λA and B by (1 − λ)B, we get the equivalent inequality

|λA + (1 − λ)B|1/d ≥ λ|A|1/d + (1 − λ)|B|1/d.

First connected to the isoperimetric theorem, this inequality is a cornerstone in convex geometry [21,9]. 
Through the equivalent functional formulation of the Brunn-Minkowski inequality, the Prékopa-Leindler in-
equality, we can see some of the implications in the preservation of logarithmic concavity under convolutions 
noticed by Brascamp and Lieb [5], as well as in the work of Bobkov and Ledoux [4] where it is derived the 
concentration of measure of Gaussian-like measures, Brascamp-Lieb and logarithmic Sobolev inequalities.
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There are several ways of generalizing the Brunn-Minkowski inequality. In Lie groups we can define the 
Minkowski addition of sets using the group product and take as volume the Haar measure of the group. 
The Brunn-Minkowski inequality obtained this way is called the multiplicative Brunn-Minkowski inequality. 
In general metric measure spaces the notion of s-intermediate points can be used to replace the convex 
combination of points in Euclidean space, see [20]. This leads to the geodesic Brunn-Minkowski inequality.

A large number of proofs for the Brunn-Minkowski inequality in Euclidean space are known, some of 
them can be found in [9,10,13]. Ritoré and Yepes [20] proved the geodesic Brunn-Minkowski inequality for 
products of metric measures spaces. For Riemannian manifolds with a lower bound on the Ricci curvature 
this inequality is proven in [6] employing techniques of optimal transport. These techniques were latter
applied to prove this inequality for CD spaces (see [8]). While Juillet [11] proved that no CD condition 
holds in sub-Riemannian Heisenberg groups Hn, the optimal transport approach was followed by Balogh, 
Kristály and Sipos [1] and by Barilary and Rizzi [2] to prove geodesic Brunn-Minkowski inequalities in the 
sub-Riemannian setting (see also [18]).

In 2003, Monti [19] observed that the multiplicative Brunn-Minkowski inequality in Hn cannot hold 
with exponent (2n + 2)−1, corresponding to the homogeneous dimension of Hn, since otherwise Carnot–
Carathéodory balls would be isoperimetric sets.

Leonardi and Masnou [16] proved in 2005 that this inequality holds with exponent (2n + 1)−1, corre-
sponding to the topological dimension of Hn. Their proof was based on Hadwiger-Ohmann’s proof of the 
classical Brunn-Minkowski inequality given in [10].

Later on, Tao [22,23] posted an entry in his blog in 2011 explaining how to produce a Prékopa-Leindler 
inequality in any nilpotent Lie group of topological dimension d, which provides a natural way to prove the 
multiplicative Brunn-Minkowski inequality with exponent d−1.

Juillet [11] gave examples of sets for which the multiplicative Brunn-Minkowski inequality in Hn does 
not hold with exponent smaller than (2n + 1)−1.

In this article we prove a generalization of the Brunn-Minkowski inequality in Euclidean space where the 
Minkowski addition of sets is replaced by any product ∗ : Rd ×Rd → Rd of the form

z ∗ w = z + w + (F1, F2(z, w), . . . , Fd(z, w)) = z + w + F (z, w), (*)

where F1 is a constant and Fi are continuous functions that depend only on z1, . . . , zi−1, w1, . . . , wi−1
∀i = 2, . . . , d. By a product here we mean a binary operation without assuming any further properties such 
as associativity.

Theorem 1.1 (Brunn-Minkowski inequality for (*) products). Let ∗ : Rd×Rd → Rd be a product of the form 
(*) and let A, B ⊂ Rd be measurable sets such that A ∗B is measurable. Then we have

|A ∗B|1/d ≥ |A|1/d + |B|1/d. (1.1)

Any nilpotent Lie group verifies the hypothesis of Theorem 1.1 because of the expression of the group 
product in exponential coordinates of the first kind. This theorem is an extension of the result obtained by 
Leonardi and Masnou [16] in Heisenberg groups. While the proof of Leonardi and Masnou only works in 
Heisenberg groups, this argument can be seen as the first step of an induction argument developed in this 
paper (see Remark 3.5 for more details). In this paper, we shall consider a product ∗ of the form (*), that not 
necessarily comes from a group product, and change ∗ for another one ∗z1,w1 of the form (*), depending on 
the sets A and B, that allows us to compare the volume of the Minkowski addition of sets for the products 
∗ and ∗z1,w1 , as a consequence of Lemma 3.1. When the product ∗ comes from a nilpotent group it is not 
true that ∗z1,w1 can define a group product. Then, by an induction argument, we will compare the volume 
of the Minkowski addition of sets A and B with the volume of the Euclidean Minkowski addition of A and 
B, and establish in Proposition 3.6 a sufficient condition in H1 for the strict inequality in (1.1).
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At the end of the paper, we state several classical variations of inequality (1.1) in the case of Carnot 
groups, where dilations can be defined.

After this article was completed, the author was informed that Theorem 1.1 was also proven by Bobkov 
[3] in 2011, where he used Knothe’s map to get the Brunn-Minkowski inequality for convex sets and ob-
tained the general result after proving the equivalent analytic version of the theorem, the Prékopa-Leindler 
inequality.

2. Preliminaries

For the convenience of the reader, we introduce some notation on Lie groups following the one in [25]. 
Given a Lie group G we shall denote 0 and lσ the neutral element and the left-translation respectively. Its 
tangent plane at 0 is the Lie algebra g and we write [·, ·] for the Lie bracket of vector fields. The exponential 
map of left-invariant vector field X will be denoted by exp(X), writing expG if specifying the group is 
needed. A left-invariant or Haar measure in G will be denoted by μ. In Rn it is the Lebesgue measure | · |n. 
We will drop the subscript when n is the topological dimension of G.

We recall some results on nilpotent and stratifiable groups. For a quite complete description of nilpotent 
Lie groups the reader is referred to [12], and to [14] for stratifiable and Carnot groups.

Let G be a Lie group with Lie algebra g. We define recursively g0 = g, gi+1 = [g, gi] = span{[X, Y ] : X ∈
g, Y ∈ gi}. The decreasing series

g = g0 ⊇ g1 ⊇ g2 ⊇ . . .

is called the lower central series of g. If gr = 0 and gr−1 	= 0 for some r, we say that g is nilpotent, and the 
number r is called the step of g. A connected Lie group is said to be nilpotent if its Lie algebra is nilpotent.

Notice that each gi is an ideal in g. We shall write ni for the dimension of gi.

Lemma 2.1. Let g be a nilpotent Lie algebra. Then there exists a basis {X1, . . . , Xd} of g such that

i) for each 1 ≤ n ≤ d, hn = span{Xd−n+1, . . . , Xd} is an ideal of g,
ii) for each 0 ≤ i ≤ r − 1, hni

= gi,

where ni denotes the dimension of gi.

A basis verifying this is called a strong Malcev basis. This construction is adapted from [7].
Fixed a strong Malcev basis in a simply connected nilpotent group, the exponential is a diffeomorphism 

between Rd and G, and is given by the map

x = (x1, . . . , xd) �→ exp(x1X1 + ... + xdXd).

This result can be found as Theorem 1.127 in [12]. By abuse of notation we shall denote exp(x1X1 + ... +
xdXd) = exp(x). The inverse of this map provides coordinates called canonical coordinates of the first kind, 
and we denote it as log : G → Rd.

We define a multiplication map associated to the exponential in a simply connected nilpotent group by

z ∗ w = log(exp(z) · exp(w)).

The structure of this product is given by the following theorem. It was first proved by Malcev in 1949 
[17], and a proof can be found as Theorem 4.1 in [24], or with some modification as Proposition 1.2.7 in [7].
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Theorem 2.2. Let G be a simply connected nilpotent group. Then the multiplication map takes the following 
form:

z ∗ w = z + w + (P1(z, w), . . . , Pd(z, w)), (2.1)

where z = (z1, . . . , zd), w = (w1, . . . , wd), P1 is a constant and Pi is a polynomial in the variables 
z1, . . . , zi−1, w1, . . . , wi−1 ∀ i = d − n1 + 1, . . . , d.

In the next result we show that, slightly refining Theorem 2.2, the multiplication map acts as a sum in 
the coordinates corresponding to the complement of g1. This argument can be seen also in [15], Proposition 
6.0.16.

Theorem 2.3. Let G be a simply connected nilpotent group. Then the multiplication map takes the following 
form:

z ∗ w = z + w + (0, . . . , 0, Pd−n1+1(z, w), . . . , Pd(z, w))

where z = (z1, . . . , zd), w = (w1, . . . , wd) and Pi is a polynomial in the variables z1, . . . , zi−1, w1, . . . , wi−1
∀ i = d − n1 + 1, . . . , d.

Proof. Let Z =
∑d

i=1 ziXi, W =
∑d

i=1 wiXi. Since g1 is an ideal in g, there is a normal Lie subgroup 
G1 ⊆ G whose Lie algebra is g1. Let π : G → G/G1 denote the projection over the quotient, z̃ = π(z), 
w̃ = π(w), Z̃ = (dπ)0(Z), W̃ = (dπ)0(W ). Notice that ker(dπ)0 = hn1 and g/g1 is a trivial Lie algebra with 
the induced product. Therefore, by the Baker-Campbell-Hausdorff formula,

z̃ ∗ w̃ = z̃ + w̃. (2.2)

On the other hand, by Theorem 2.2 it holds that

expG/G1
(Z̃) expG/G1

(W̃ ) = π(expG(Z) expG(W )) =

π
(
expG

(
Z + W +

d∑
i=1

Pi(z, w)Xi

))
= expG/G1

(
Z̃ + W̃ +

d−n1∑
i=1

Pi(z, w)Xi

)
.

(2.3)

Taking logG/G1
in (2.3), we obtain

z̃ ∗ w̃ = z̃ + w̃ + (P1(z, w), . . . , Pd−n1(z, w), 0, . . . , 0). (2.4)

From (2.2) and (2.4), we obtain that Pi = 0 ∀i = 1, . . . , d − n1. �
From Theorem 2.3 it can be proved that right translations are maps whose Jacobian determinant is equal 

to 1 at any point, and the change of variables gives us the following theorem. The interested reader can find 
the details as Theorem 1.2.9 and Theorem 1.2.10 in [7].

Proposition 2.4. Let G be a simply connected nilpotent group. Then, after having chosen a strong Malcev 
basis on g, the exponential takes the Lebesgue measure on Rd to a Haar measure μ on G, that is, for any 
A ⊂ G measurable and any f : G → R integrable, one has

μ(A) = | log(A)| and
∫

fdμ =
∫

(f ◦ exp)(x)dx.

G Rd
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We refer the reader to [14] for the details on the rest of this section.
A stratification of a Lie algebra g is a direct-sum decomposition

g = V1 ⊕ . . .⊕ Vr,

for some integer r ≥ 1, where Vr 	= {0}, [V1, Vi] = Vi+1 for all i ∈ {1, . . . , r} and Vr+1 = {0}. We say that a 
Lie algebra is stratifiable if there exists a stratification on it. We say that a Lie algebra is stratified when it is 
stratifiable and endowed with a fixed stratification. We say that a Lie group is stratifiable if it is connected 
and simply connected and its Lie algebra is stratifiable.

The following lemma assures that any stratifiable group is a nilpotent group.

Lemma 2.5. Let g = V1 ⊕ . . .⊕ Vr be a stratified Lie algebra. Then

gk−1 = Vk ⊕ . . .⊕ Vr.

In particular, g is a nilpotent Lie algebra of step r, and g = V1 ⊕ g1.

It is worth checking that Theorem 2.3 manifests that the multiplication map acts as a sum in the 
coordinates corresponding to V1. The reader can find the following proposition and an example of a nilpotent 
group which is not stratifiable in [14].

Proposition 2.6. Let g be a stratifiable Lie algebra with stratifications

g = V1 ⊕ . . .⊕ Vr = W1 ⊕ . . .⊕Ws.

Then r = s and there exists a Lie algebra automorphism A : g → g such that A(Vi) = Wi for i = 1, . . . , r.

Proposition 2.6 guarantees that for a stratifiable group G, the natural number

Q =
r∑

i=1
idim(Vi),

does not depend on the particular stratification. Q is called the homogeneous dimension of G.
For λ > 0 we define the dilation on g of factor λ as the unique linear map δλ : g → g such that

δλ(X) = λtX ∀X ∈ Vt ∀t ∈ {1, . . . , r}.

Remark 2.7. Dilations δλ : g → g are Lie algebra isomorphisms.

The fact that G is simply connected certifies that there exists a unique Lie groups automorphism δλ :
G → G (denoted as the dilation on the Lie algebra) whose differential at 0 is the dilation on g of factor λ. 
This automorphism is called dilation on G of factor λ.

Proposition 2.8. Let G be a stratified group with Haar measure μ and let λ > 0. Then
∫
G

fdμ = λQ

∫
G

(f ◦ δλ)dμ,

where Q is the homogeneous dimension of G.



6 J. Pozuelo / J. Math. Anal. Appl. 515 (2022) 126427
Let G be a stratified group, with the stratification g = V1 ⊕ V2 ⊕ . . .⊕ Vr, and fix a norm ‖ · ‖ on V1. We 
can construct a distance d homogeneous with respect to δλ, that is,

d(δλ(p), δλ(q)) = λd(p, q) ∀λ > 0 ∀p, q ∈ G.

First we extend V1 and ‖ · ‖ to a left-invariant subbundle Δ of the tangent bundle and a left-invariant norm 
on Δ by left translations:

{
Δσ = (dlσ)0V1 ∀σ ∈ G

‖(dlσ)0(v)‖ = ‖v‖ ∀v ∈ V1.

Now we define the Carnot-Carathéodory distance or CC-distance associated with Δ and ‖ ·‖ via piecewise 
smooth paths γ ∈ C∞

pw([0, 1], G) as

d(p, q) = inf

⎧⎨
⎩

1∫
0

‖γ′(t)‖dt : γ ∈ C∞
pw([0, 1], G), γ(0) = p, γ(1) = q, γ′(t) ∈ Δ

⎫⎬
⎭ .

We call the data (G, δλ, Δ, ‖ · ‖, d) a Carnot group or, more explicitly, subFinsler Carnot group. Usually, the 
term Carnot group is used when the norm comes from a scalar product, but in this paper we shall make no 
distinction.

3. The Brunn-Minkowski inequality

We have seen that any simply connected nilpotent group is isomorphic to Rd with a product of the form 
(2.1). Now we prove the Brunn-Minkowski inequality for any product ∗ : Rd × Rd → Rd of the form (*). 
This product does not necessarily define a group structure in Rd. Given such a map F and z′1, w

′
1 ∈ R, we 

can define another product ∗z′
1,w

′
1

: Rd ×Rd → Rd, by

z ∗z′
1,w

′
1
w = z + w + F ((z′1, z̃), (w′

1, w̃)),

where z̃ = (z2, . . . , zd), w̃ = (w2, . . . , wd). We define the map F(z′
1,w

′
1) : Rd−1 ×Rd−1 → Rd−1 by

F(z′
1,w

′
1)(z̃, w̃) := (F2, . . . , Fd)((z′1, z̃), (w′

1, w̃)). (3.1)

Notice that Fi((z′1, ̃z), (w′
1, w̃)) only depends on the first i −2 variables of z̃ and w̃ and so F2((z′1, ̃z), (w′

1, w̃))
is constant. Thus the product ∗̃ : Rd−1 ×Rd−1 → Rd−1 given by

z̃ ∗̃ w̃ = z̃ + w̃ + F(z′
1,w

′
1)(z̃, w̃), (3.2)

has the form (*). Notice that the product ∗̃ depends on the choice of z′1, w′
1.

Lemma 3.1. Let ∗ : Rd × Rd → Rd be a product of the form (*) and let A, B ⊂ Rd be A = I × Ã, and 
B = J × B̃, where I, J are compact intervals in R and Ã, B̃ ⊂ Rd−1 are compact. Then

|A ∗B| ≥ |I + J |1|Ã ∗̃ B̃|d−1, (3.3)

where ∗̃ is the product described in (3.2) for certain z′1 ∈ I and w′
1 ∈ J . Moreover, if F does not depend on

z1, w1, then equality holds in (3.3).
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Proof. Notice that A ∗B and Ã ∗̃ B̃ are compact, and so measurable. Let I = [a, b], J = [a′, b′] and l = b −a, 
l′ = b′ − a′. The product is

A ∗B =
{
z + w + F (z, w) : z1 ∈ I, w1 ∈ J, z̃ ∈ Ã, w̃ ∈ B̃

}
.

We define a diffeomorphism φ : R2 → R2 by (s, z) �→ (z, s − z). The inverse φ−1(z, w) = (z + w, z) is a 
diffeomorphism between the sets I × J and {(s1, z1) : s1 ∈ I + J, z1 ∈ I ∩ (s1 − J) = K(s1)}. Hence, we 
clearly have

A ∗B =
{

(s1, z̃ + w̃) + (F1, Fφ(s1,z1))(z̃, w̃) : s1 ∈ I + J, z̃ ∈ Ã, z1 ∈ K(s1), w̃ ∈ B̃
}
.

Now we use Fubini’s theorem and we obtain

|A ∗B| =
∫

I+J

h(s1)ds1, (3.4)

where h : I + J → R+
0 is the function

h(s1) =
∣∣{p̃ ∈ Rd−1 : (s1 + F1, p̃) ∈ A ∗B}

∣∣
d−1 =

∣∣∣∣∣
⋃

z1∈K(s1)

D(s1,z1)

∣∣∣∣∣
d−1

, (3.5)

and

D(s1,z1) = {z̃ + w̃ + Fφ(s1,z1)(z̃, w̃) : z̃ ∈ Ã, w̃ ∈ B̃}. (3.6)

Now we compare h(s1) with the measure of D(s1,z1) for some z1. Let z1 : I + J → R be the function

z1(s1) = tl + a,

where t = s1−(a+a′)
l+l′ . It is clear that 0 ≤ t ≤ 1, hence z1(s1) ∈ I. Moreover,

tl + a = s1 − tl′ − a′,

and therefore z1(s1) ∈ s1 − J . Then z1(s1) ∈ K(s1).
Let f : I+J → R+

0 be the map given by f(s1) =
∣∣D(s1,z1(s1))

∣∣
d−1. It is easy to check that f is continuous, 

and hence f reaches its minimum at a certain value s′1. Thus, we get
∫

I+J

h(s1)ds1 ≥
∫

I+J

f(s1)ds1 ≥
∫

I+J

f(s′1)ds1 = |I + J |1f(s′1). (3.7)

Denoting by z′1 := z1(s′1) and w′
1 := s′1 − z′1, we can write Fφ(s′1,z′

1) = F(z′
1,w

′
1). Hence we have that 

D(s′1,z′
1) = Ã ∗̃ B̃ and

f(s′1) = |Ã ∗̃ B̃|d−1. (3.8)

From (3.4), (3.7) and (3.8) we obtain (3.3).
Suppose that F does not depend on z1, w1, let us prove that equality holds in (3.3). It is enough to prove 

equality in (3.7). For any s1 ∈ I + J and z1 ∈ K(s1), we have that

Fφ(s′ ,z′ ) = Fz′ ,w′ = Fz1,w1 = Fφ(s1,z1),
1 1 1 1
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where w1 = s1 − z1. Therefore

D(s′1,z′
1) = D(s1,z1) =

⋃
z1∈K(s1)

D(s1,z1). (3.9)

Hence, from (3.5) and (3.9) we get that f(s′1) = h(s1) for all s1 ∈ I + J . Thus equality holds in (3.7) and 
the result follows. �
Remark 3.2. The product ∗z′

1,w
′
1

does not depend on z1, w1 and Lemma 3.1 guarantees

|A ∗B| ≥ |I + J |1|Ã ∗̃ B̃|d−1 = |A ∗z′
1,w

′
1
B|. (3.10)

Recall that ∗z′
1,w

′
1

acts as a sum in the first two coordinates, and someway (3.10) allows us to compare the 
measure of A ∗B with the measure of a set more similar to the Euclidean Minkowski addition of A and B.

Proof of Theorem 1.1. The proof is divided into three steps.
Step 1. We first claim that (1.1) holds for a pair of d-rectangles A and B, that is,

A =I1 × · · · × Id

B =J1 × · · · × Jd,

where Ii, Jj are compact intervals ∀ 1 ≤ i, j ≤ d. We shall see that

|A ∗B| ≥ |I1 + J1|1 . . . |Id + Jd|1 = |A + B|, (3.11)

and the classical Brunn-Minkowski inequality in Rd would imply (1.1).
In order to prove (3.11), we use Lemma 3.1 to obtain

|A ∗B| ≥ |I1 + J1|1|Ã ∗̃ B̃|d−1,

but now Ã = I2 × (I3 × . . . × Id), B̃ = J2 × (J3 × . . . × Jd) and ∗̃ has the form (*), and so we can apply 
Lemma 3.1 to the sets Ã and B̃. Iterating this process, we get (3.11).

Step 2. Now we consider the case where A and B are finite unions of dyadic d-rectangles, that is, 
A = A1 ∪ . . .∪An, B = B1 ∪ . . .∪Bm where Ai = Ii1 × . . .× Iid, Bj = Jj

1 × . . .×Jj
d and, for any k = 1, . . . , d

and r 	= s (p 	= q), it is satisfied that either int(Irk) ∩ int(Isk) = ∅ or Irk = Isk (either int(Jp
k ) ∩ int(Jq

k) = ∅ or 
Jp
k = Jq

k), where int(I) denotes the interior of I.
We proceed by induction on the total number n + m of d-rectangles. If n + m = 2, then A and B are 

d-rectangles and we can apply step 1. Suppose that the theorem holds for n + m − 1, where n + m ≥ 3. 
Then we can find a hyperplane P : {zi = ai} such that some Ar ⊂ {zi ≥ ai} and some As ⊂ {zi ≤ ai}.

If the hyperplane has as equation P : {z1 = a1}, the proof is the same as the classical proof of Hadwiger 
and Ohmann for the addition of sets in Rd. We include it for the sake of completeness. The sets

A+ = A ∩ {z1 ≥ a1}, A− = A ∩ {z1 ≤ a1}

are unions of d-rectangles whose sum is strictly less than n. We choose a parallel hyperplane Q : {z1 = b1}
verifying that

|B±| = |A±|
, (3.12)
|B| |A|
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where B+ and B− are the sets given by

B+ = B ∩ {z1 ≥ b1}, B− = B ∩ {z1 ≤ b1}.

Moreover, B+ and B− are disjoint unions of d-rectangles whose sum is at most m. We apply the induction 
hypothesis to the pairs A+, B+ and A−, B−, and we obtain

|A+ ∗B+| ≥ (|A+|1/d + |B+|1/d)d

|A− ∗B−| ≥ (|A−|1/d + |B−|1/d)d.
(3.13)

On the other hand, P ∗Q is contained in another vertical plane {z1 = a1 + b1} ⊂ Rd, A+ ∗B+ ⊂ (P ∗Q)+, 
and A− ∗ B− ⊂ (P ∗ Q)−. Therefore A+ ∗ B+ and A− ∗ B− are disjoint sets (up to a null set) in A ∗ B. 
Combining this with (3.12) and (3.13) we get the inequality

|A ∗B| ≥ |A+ ∗B+| + |A− ∗B−|
≥ (|A+|1/d + |B+|1/d)d + (|A−|1/d + |B−|1/d)d

= (|A+| + |A−|)
[
1 +

(
|B|
|A|

)1/d
]d

= (|A|1/d + |B|1/d)d,

and the theorem is proved for such A and B.
If there is no such hyperplane with equation P : {z1 = a1} but with equation P : {z2 = a2}, then for any 

u, v, p, q, Iu1 = Iv1 = I1, Jp
1 = Jq

1 = J1 and for some r 	= s, int(Ir2 ) ∩ int(Is2) = ∅, and we can write

A =
⋃
i

I1 × Ii2 × . . .× Iid = I1 ×
(⋃

i

Ii2 × . . .× Iid

)
= I1 × Ã

B =
⋃
j

J1 × Jj
2 × . . .× Jj

d = J1 ×

⎛
⎝⋃

j

Jj
2 × . . .× Jj

d

⎞
⎠ = J1 × B̃.

We have seen in (3.10) that

|A ∗B| ≥ |A ∗z′
1,w

′
1
B|.

Now we repeat the above argument, where now we apply the induction hypothesis to the product ∗z′
1,w

′
1
, 

thus the sets A+ ∗z′
1,w

′
1
B+ and A− ∗z′

1,w
′
1
B− are disjoint (up to a null set). Hence, by (3.10) we obtain

|A ∗B| ≥ |A ∗z′
1,w

′
1
B| ≥ |A+ ∗z′

1,w
′
1
B+| + |A− ∗z′

1,w
′
1
B−| ≥ (|A|1/d + |B|1/d|)1/d

and the result is proved.
Repeating this reasoning we have covered the general case where P : {zi = ai}.
Step 3. Let us prove (1.1) for A and B are measurable sets such that A ∗B is measurable. We can suppose 

that A, B and A ∗B have finite measure, since otherwise the inequality is trivial. Fix ε > 0 and take an open 
set O such that A ∗B ⊂ O and |O \A ∗B| < ε. Take open sets OA ⊃ A and OB ⊃ B such that |OA \A| < ε

and |OB \ B| < ε. Since ∗ is continuous, we can assume also that OA ∗ OB ⊂ O. Now we approximate the 
open sets OA and OB from inside by dyadic d-rectangles, DA and DB so that |OA \DA| < ε, |OB \DB | < ε. 
Using step 2 for DA and DB, we obtain
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(|A ∗B| + ε)1/d ≥ |O|1/d ≥ |OA ∗OB |1/d ≥ |DA ∗DB |1/d

≥ |DA|1/d + |DB |1/d ≥ (|A| − 2ε)1/d + (|B| − 2ε)1/d.

Taking ε → 0 we obtain (1.1). �
As a particular case, we have the Brunn-Minkowski inequality in nilpotent groups.

Theorem 3.3 (Brunn-Minkowski inequality in nilpotent groups). Let G be a simply connected nilpotent group 
of topological dimension d with Haar measure μ and let A, B ⊂ G be measurable sets such that A · B is 
measurable. Then we have

μ(A ·B)1/d ≥ μ(A)1/d + μ(B)1/d. (3.14)

Proof. We denote a = log(A), b = log(B). Using Proposition 2.4 and Theorem 1.1, we have

μ(A ·B) = | log(A ·B)| = | log(exp(a) · exp(b))| = |a ∗ b| ≥ (|a|1/d + |b|1/d)d

= (μ(A)1/d + μ(B)1/d)d. �
Remark 3.4. Since the right-hand side of (3.14) is symmetric in A and B, it follows

min{μ(A ·B), μ(B ·A)}1/d ≥ μ(A)1/d + μ(B)1/d.

An example where μ(A ·B) and μ(B ·A) are different can be found in [16].

Remark 3.5. The arguments used by Leonardi and Masnou [16] can not be applied to this setting. They 
prove the theorem first for the case where A and B are cubes in R2n+1 of the form A1 × A2 where A1 is 
a dyadic cube in R2n and A2 is a measurable set in R, then when A and B are unions of a finite number 
of cubes, using then an approximation argument. This has the crucial property that either exists a vertical 
hyperplane that separates cubes or the union is a cube itself. We call a hyperplane vertical when is also a 
hyperplane after left multiplication. Then we can consider only vertical hyperplanes to separate cubes. In 
Rd with a product of the form (*) this property is not true, since the union of the cubes takes the form

⋃
i

I1 × . . .× In1 × Iin1+1 × . . .× Iid = I1 × . . .× In1 ×
(⋃

i

Iin1+1 × . . .× Iid

)
.

This set is not of the form A1 ×A2 and the argument fails.

3.1. A sufficient condition for strict inequality in the Heisenberg group

A set A in the Heisenberg group H1 of the form A = A1 × A2, where A1 is a measurable set in R2 and 
A2 is a measurable set in R is called a generalized cylinder.

In this subsection we prove in Proposition 3.6 that the Brunn-Minkowski inequality (3.14) is strict in H1

for a pair of generalized cylinders A and B such that the volumes of A1 and B1 are positive.
Recall that a point a in Rd is a density point of A if

lim
r→0+

|A ∩B(a, r)|
|B(a, r)| = 1,

where B(a, r) is the Euclidean ball of center a and radius r. The set of density points of a set A will be 
denoted as Ao. We can always normalize a set by including its density points in the set. The existence of a 
density point in A implies that the volume of A is positive.
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Proposition 3.6. Let A, B ⊂ H1 be generalized cylinders such that A ·B and A +B are measurable. Suppose 
that |A1| > 0 and |B1| > 0. Then

|A ·B| > |A + B|. (3.15)

Proof. By Fubini’s theorem, we have

|A ·B| =
∫

A1+B1

h(s1)ds1,

where h(s1) = |{t + t′ + Im(z(s1 − z)) : t ∈ A2, t′ ∈ B2, z ∈ K(s1)}|1 and K(s1) = I ∩ (s1 − J). Denoting 
s1 = (sx, sy), we can see that Im(z(s1 − z)) = Im(zs1) = ysx − xsy. We write

Is1 = {ysx − xsy : (x, y) ∈ K(s1)}.

By the Brunn-Minkowski inequality in R,

h(s1) = |{s2 + Im(zs1) : s2 ∈ A2 + B2, z ∈ K(s1)}|1
= |{s2 + a : s2 ∈ A2 + B2, a ∈ Is1}|1
≥ |A2 + B2|1 + |Is1 |1.

We assert that if |K(s1)|2 > 0, then |Is1 |1 > 0. To see that, we can take the diffeomorphism φ : R2 → R2

given by (x, y) �→
(
ysx − xsy, x

2sx − y
2sy

)
. Then |Jac(φ)| = 1 and applying the change of variables formula 

to φ−1, we have

0 < |K(s1)|2 =
∫
R2

χK(s1)(z)dz =
∫
R2

χφ(K(s1))(z)dz = |φ(K(s1))|2.

Now we use that, for any set O ⊆ R2 with |O|2 > 0, it holds that |π1(O)|1 > 0 where π1(x, y) = x, since 
|π1(O)|1 = 0 implies |O|2 ≤ |π1(O) ×R|2 = 0. Hence

|Is1 |1 = |π1(φ(K(s1)))|1 > 0.

To complete the proof it remains to show that {s1 ∈ A1 + B1 : |K(s1)|2 > 0} has positive measure. Let 
a ∈ Ao

1, b ∈ Bo
1 and s1 = a + b ∈ Ao

1 + Bo
1 . Then a = s1 − b is a density point in s1 −B1 and therefore a is 

a density point in A1 ∩ (s1 −B1) = K(s1) which implies that |K(s1)|2 > 0. Finally Ao
1 +Bo

1 ⊆ A1 +B1 has 
positive measure since |Ao

1 + Bo
1 |2 ≥ |Ao

1|2 = |A1|2 > 0, and

|{s1 ∈ A1 + B1 : |K(s1)|2 > 0}|2 ≥ |{s1 ∈ Ao
1 + Bo

1 : |K(s1)|2 > 0}|2 > 0. �
Remark 3.7. In order to characterize the equality in (3.14) for generalized cylinders, we can distinguish 
several cases. If A and B lie in parallel vertical hyperplanes, then |A · B| = 0 and we have equality in 
(3.14). If A and B are convex and homothetic then either |A1|2 > 0 and B1 is a point and the equality 
holds, or |A1|2 > 0 and |B1|2 > 0, and therefore, by Proposition 3.6 jointly with the (Euclidean) Brunn-
Minkowski inequality, equality does not hold in (3.14). The same argument works if A and B lie in horizontal 
hyperplanes with |A1|2 > 0 and |B1|2 > 0. The case in which A and B lie in horizontal hyperplanes with 
|A1|2 = 0 is not known in general.
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4. Consequences

Another equivalent version of the Brunn-Minkowski inequality in Euclidean space is the Prékopa-Leindler 
inequality. Now we show how the proof of the Prékopa-Leindler inequality from the Brunn-Minkowski 
inequality can be adapted to the case of nilpotent groups.

Theorem 4.1 (Prékopa-Leindler inequality in nilpotent groups). Let G be a simply connected nilpotent group 
of topological dimension d with Haar measure μ. Let f, g, h : G → R+

0 be measurable functions and 0 < α < 1
verifying

h(a · b) ≥ f(a)1−αg(b)α ∀a, b ∈ G. (4.1)

Then

∫
G

hdμ ≥ 1
(1 − α)d(1−α)αdα

⎛
⎝∫

G

fdμ

⎞
⎠

1−α ⎛
⎝∫

G

gdμ

⎞
⎠

α

. (4.2)

Proof. We proceed by induction on d.
Let d = 1 and a · b ∈ {f > λ} · {g > λ}. Then we have h(a · b) ≥ f(a)1−αg(b)α > λ, and as a consequence

{h > λ} ⊃ {f > λ} · {g > λ}.

Now we can apply Theorem 3.3 to get

μ({h > λ}) ≥ μ({f > λ}) + μ({g > λ}).

Integrating in λ and using Cavalieri’s Principle,

∫
G

hdμ =
∞∫
0

μ({h > λ})dλ ≥
∞∫
0

(
μ({f > λ}) + μ({g > λ})

)
dλ =

∫
G

fdμ +
∫
G

gdμ. (4.3)

Now we use the weighted inequality between the geometric and arithmetic means,

∫
G

fdμ +
∫
G

gdμ ≥
(∫

G
fdμ

1 − α

)1−α (∫
G
gdμ

α

)α

. (4.4)

From (4.3) and (4.4) we have (4.2).
Suppose that Theorem 4.1 holds for d − 1. We shall prove (4.4) for the functions f, g, h composed with 

exp and use Proposition 2.4. Let z′ = (z1, . . . , zd−1), w′ = (w1, . . . , wd−1) ∈ Rd−1. By (2.1), we can write 
(z′, zd) ∗ (w′, wd) = (z′ ∗′ w′, zd + wd + Pd(z′, w′)). Recall that Rd is isomorphic to g once we fix the strong 
Malcev basis {X1, . . . , Xd}, and Xd spans an ideal h1 in g. Thus g/h1 ∼= (Rd−1, ∗′) is a nilpotent group. 
Now we define the functions f̃ , ̃g, ̃h : R → R+

0 by

f̃(zd) = (f ◦ exp)(z′, zd),

g̃(wd) = (g ◦ exp)(w′, wd),

h̃(t) = (h ◦ exp)(z′ ∗′ w′, t + Pd(z′, w′)).

Let us see that these functions verify (4.1):
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h̃(zd + wd) = (h ◦ exp)((z′, zd) ∗ (w′, wd)) = h(exp(z′, zd) · exp(w′, wd))

≥ (f ◦ exp)1−α(z′, zd)(g ◦ exp)α(w′, wd) = f̃1−α(zd)g̃α(wd). (4.5)

By induction hypothesis,

∫
R

h̃(t)dt ≥ 1
(1 − α)(1−α)αα

⎛
⎝∫

R

f̃(zd)dzd

⎞
⎠

1−α ⎛
⎝∫

R

g̃(wd)dwd

⎞
⎠

α

. (4.6)

By the invariance of the 1-dimensional Lebesgue measure by translations we get
∫
R

(h ◦ exp)(z′ ∗′ w′, t)dt =
∫
R

h̃(t)dt. (4.7)

Inequality (4.5) is valid for any z′, w′ ∈ Rd−1, and we can define the functions F, G, H : Rd−1 → R+
0 given 

by

F (z′) = 1
(1 − α)

∫
R

f̃(zd)dzd

G(w′) = 1
α

∫
R

g̃(wd)dwd

H(z′) =
∫
R

(h ◦ exp)(z′, t)dt.

(4.8)

Applying (4.7) we can rewrite (4.6) as

H(z′ ∗′ w′) =
∫
R

h̃(t)dt ≥ F (z′)1−αG(w′)α ∀z′, w′ ∈ Rd−1,

and again by the induction hypothesis, we get

∫
Rd−1

H(z′)dz′ ≥ 1
(1 − α)(d−1)(1−α)α(d−1)α

⎛
⎝ ∫

Rd−1

F (z′)dz′
⎞
⎠

1−α ⎛
⎝ ∫

Rd−1

G(w′)dw′

⎞
⎠

α

.

The result now follows from Fubini’s theorem. �
The Prékopa-Leindler inequality in Rd is usually stated using h((1 − α)x + αy) instead of h(x + y) in 

order to eliminate the factor ((1 −α)d(1−α)αdα)−1. This can be done when dilations are defined, and in this 
case, this inequality takes a more pleasant expression.

Corollary 4.2. Let G be a stratifiable group of topological dimension d with Haar measure μ and homogeneous 
dimension Q. Let f, g, h : G → R+

0 be measurable functions, and 0 < α < 1 verifying

h(δ(1−α)a · δαb) ≥ f(a)1−αg(b)α ∀a, b ∈ G.

Then
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∫
G

hdμ ≥ (1 − α)(Q−d)(1−α)α(Q−d)α

⎛
⎝∫

G

fdμ

⎞
⎠

1−α ⎛
⎝∫

G

gdμ

⎞
⎠

α

.

Proof. For the sake of simplicity, δλ(a) will be just written as λa for any λ > 0 and a ∈ G. We denote 
a′ = (1 − α)a, b′ = αb, f1−α(a) = f( a

1−α ) and gα(a) = g( a
α ). Then we have

h(a′ · b′) ≥ f(a)1−αg(b)α = f

(
a′

1 − α

)1−α

g

(
b′

α

)α

= f1−α(a′)1−αgα(b′)α.

By Theorem 4.1, we have

∫
G

hdμ ≥ 1
(1 − α)d(1−α)αdα

⎛
⎝∫

G

f1−αdμ

⎞
⎠

1−α ⎛
⎝∫

G

gαdμ

⎞
⎠

α

.

Using now Proposition 2.8,
∫
G

f1−α(a)dμ(a) =
∫
G

f

(
a

1 − α

)
dμ(a) = (1 − α)Q

∫
G

f(a′)dμ(a′),

and after using also Proposition 2.8 for the integral of gα, we obtain

∫
G

hdμ ≥ (1 − α)(Q−d)(1−α)α(Q−d)α

⎛
⎝∫

G

fdμ

⎞
⎠

1−α ⎛
⎝∫

G

gdμ

⎞
⎠

α

. �

As we can find in [21], there are several equivalent statements for the Brunn-Minkowski inequality in 
Euclidean space. Similarly, we have the following result.

Corollary 4.3 (Multiplicative Brunn-Minkowski inequalities in Carnot groups). Let G be a Carnot group of 
topological dimension d with Haar measure μ and homogeneous dimension Q. Let A, B ⊂ G be measurable 
sets such that A ·B is measurable, and 0 < α < 1. Then

μ(δ(1−α)A · δαB)1/d ≥ (1 − α)Q/dμ(A)1/d + αQ/dμ(B)1/d.

μ(δ(1−α)A · δαB) ≥ (1 − α)(Q−d)(1−α)α(Q−d)αμ(A)1−αμ(B)α.

Proof. We use Theorem 3.3 with the sets δ(1−α)A and δαB, and from Proposition 2.8 we get the first 
inequality.

For the second one, we take f = χA, g = χB and h = χδ(1−α)A·δαB and apply Corollary 4.2, obtaining 
the result. �
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