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Determining the cause and nature of the postmortem processes that living organisms experience is one 

of the main common issues faced by forensic experts, zooarchaeologists, palaeontologists, and other 

specialists. Carnivores are among the most destructive agents that can interact with a corpse, since 

their feeding behaviour can lead to very extensive alterations, complicating the diagnostic 

identification of which carnivore species was responsible for the death of an individual, a livestock 

unit, or the formation of a fossil assemblage. Even though some currently available techniques enable 

forensic experts to undertake a differential diagnosis of carnivore agency from corpse examination, 

these are very difficult to apply when skeletal parts are all that remains. Nevertheless, a computational 

taphonomic approach can help identify which carnivore could have generated the tooth marks present 

on bone surfaces, and thus aid in the reconstruction of their forensic biography. 

Recent studies [1] have successfully classified the tooth marks generated by 8 different carnivores—

wolf, fox, lycaon, hyaena, tiger, jaguar, lion—with over 90% accuracy, thus achieving a 

methodological innovation that enables us to identify a carnivore from tooth mark data. Nonetheless, 

these studies only focused on extant carnivores, and questions remain as to whether they can be used 

to successfully characterise extinct carnivores in fossil assemblages. 

To extend the usefulness of these methodological solutions, we have selected as a case-study the 

palaeontological site of Venta Micena 3 (VM3; Orce, Granada, Spain), a fossil assemblage believed to 

have been primarily generated by the large extinct hyaena Pachycrocuta brevirostris [2], a species that 
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lived in Eurasia during the Early and Middle Pleistocene (Supp. File 1 online). There are several other 

Eurasian localities with faunal assemblages accumulated by this extinct carnivore, such as Dmanisi 

(Georgia) Le Vallonet (France) or Zhoukoudian (China). 

The VM3 sample used for this paper involves 28 tooth marks from 10 different long bone diaphyses of 

medium- and large-sized ungulates, randomly selected from the collection hosted at the Museum of 

Granada and the local Museum of Orce. Carnivores generate several types of tooth marks, and 

previous studies have demonstrated that pits tend to be the more reliable for diagnosis [3]. Our 

comparative reference framework includes a sample of 483 tooth pits caused by different carnivores, 

described in (see Supp. File 2 from Ref. [1]).  

Our methodological approach is based on the analysis of three-dimensional digital models of the tooth 

marks, generated using the Structured Light Surface Scanning DAVID SLS-3. Following the 

construction of 3D models of the bones, tooth pits were digitized using a landmark configuration 

consisting of 25 landmarks. 5 fixed Type II landmarks located on the exterior and interior of each pit, 

and a 5×5 semilandmark patch [4]. Of the 5 fixed landmarks, LM1 and LM2 mark the maximal length 

(l) of each pit. For the correct orientation of the pit, LM1 is placed farthest away from the 

perpendicular axis marking the maximal width, and LM2 is thus placed on the opposite extremity. 

LM3 and LM4 are then placed along this perpendicular axis marking the left (LM3) and right (LM4) 

maximum extremities, while LM5 is placed at the deepest point of the pit. The semilandmark patch is 

then positioned over the entirety of the pit, so as to capture the internal morphology of the mark and its 

walls. Landmarks produced by the semilandmark patch that overlap with the 5 fixed landmarks are 

then deleted leaving a final 25 landmark model (Fig. S1 online). Finally landmarks are slid across the 

surface of the model using the R (v.4.0.4.) programming language, so as to minimize bending energy 

[5]. Once digitized, landmarks were formatted as a morphologika file and imported into an R 

environment (v.4.0.4). Landmarks were first subjected to a Generalized Procrustes Analysis (GPA), so 

as to normalize data and project landmarks into a new superimposed feature space [5]. This procedure 

was performed excluding the scaling procedure, so as to analyze pits in form space. The use of form, 

as opposed to shape, was chosen considering prior observations on the weight that size has on 

morphological variability [1,3,4]. Once superimposed, landmark configurations were analysed in 

terms of the Procrustes distances between each other, and Centroid Size (CS) distributions. 

For Procrustes distances and CS, distributions were first analysed for homogeneity using Shapiro-Wilk 

tests. All following statistical tests were then conditioned by these results, using traditional statistical 

approaches where homogeneity was found to be present and robust statistical approaches otherwise 

[4]. From this perspective, descriptive statistics were either performed using the mean or median 

measurement for central tendency (for Gaussian and non-Gaussian data respectively), while 

distribution variability was measured in terms of the standard deviation or the Median Absolute 

Deviation (MAD). From a different perspective, univariate statistical tests were either performed using 

a linear ANOVA model, or the Kruskal-Wallis test.  

For multivariate analyses, dimensionality reduction via Principal Component Analysis (PCA) was 

performed [1,5]. The PC scores representing up to 99% of morphological variance were then selected, 

and used for further statistical processing. Multivariate Analyses of Variance (MANOVA) were used 

to assess for differences in form feature space, using either the Hotelling-Lawley or Wilk’s Lambda 

test statistic. Similarly, the Mahalanobis distances from each fossil individual to the multivariate 

distribution for each modern day carnivore were calculated. Finally, Thin Plate Splines (TPS) were 

also calculated [6], using a Delauney 2.5D Triangulation algorithm to facilitate the visualization of 

landmark configuration patterns. All statistics were performed in the R (v.4.0.4) programming 

language. 

To support the observations made using statistical approaches in geometric morphometrics, 

computational learning algorithms were also trained, following the procedures recommended by Ref. 



[1]. This methodological approach consists first in the augmentation of data via unsupervised 

algorithms [1], followed by the training of supervised classification algorithms that can then be used to 

predict class labels for each of the fossil tooth pits [1]. For data augmentation, a multivariate Monte 

Carlo Markov Chain was used to simulate the morphological characteristics of 100 tooth marks per 

sample. This was performed so as to balance data set sizes, as well as provide enough information for 

the supervised algorithms to learn from Ref. [1]. The quality of augmented data was then evaluated by 

calculating the statistical similarities with the original data [4, with the final augmented dataset being 

calculated to be highly equivalent to the original data (|d| = 0.01, P = 3.6 × 10–62). 

Once augmented, Support Vector Machines (SVM) and Neural Support Vector Machines (NSVM) 

were trained [1,7]. SVMs were trained using a k-fold cross-validated approach (k = 10), and a Radial 

Basis Function kernel. Optimal configuration of the kernel was computed using Bayesian 

Optimisation algorithms [8]. NSVMs were trained using typical deep learning approaches [9], first by 

training a Laplacian Random Fourier Function based neural network [10], and then replacing the final 

activation layer with a linear SVM [1]. NSVM was trained in batches of 32 for 1000 epochs, using a 

triangular cyclic learning rate, and the adam optimizer. Additional tuning of the SVM activation layer 

was also performed using Bayesian approaches [8]. 

Both SVM and NSVM were trained on 80:20% train: test sets, and then used to predict labels and 

label probabilities for each of the fossil individuals. The summary of the two trained algorithm 

performance on test sets is provided in Table S1 (online). SVMs were programmed in the R 

programming language (v.4.0.4), while NSVMs were programmed in Python (v.3.7.4). For more 

details see Ref. [1]. 

As mentioned above, P. brevirostris has been considered the main accumulating and modifying agent 

in the VM3 site. For this reason, once marks had been classified, the VM3 marks observed to be 

produced by hyaenids were separated to perform a more in depth characterisation of P. brevirostris. 

This characterization was performed using the same methodological procedure as the geometric 

morphometric analyses described above. Nevertheless, these analyses were complemented with two 

one-sided equivalency tests (TOST), according to Cohen’s d, so as to calculate the magnitude of 

similarities between samples [7]. For homogeneous distributions, Welch’s t-statistic was used, while 

non-parametric approaches employed the use of Yuen’s trimmed robust t-statistic. Finally, TPS were 

used to warp mean configurations of hyena and Pachycrocuta to a 3D model [6], so as to calculate the 

distance between the faces of each mesh and quantify differences between the mean configurations. 

Distance calculations were computed using the nearest neighbor distance from a reference mesh to a 

warped mesh, using as a reference mesh the 3D model corresponding to the median individual of one 

of the groups [11]. 

All hypothesis tests were evaluated using Bayesian calibrations of P-values. Under this premise, the 

false positive risk (FPR) was calculated for each P-value [12], using the Sellke-Berger approach [13], 

for the definition of null hypothesis (H0) and alternative hypothesis (Ha) ratios. Where necessary, FPR 

was also used to derive probability of H0 values (p(H0)), providing a means to calibrate P values over 

0.3681 [1,3]. Unless specified otherwise, prior probabilities in support of Ha were set at 0.5, indicating 

complete randomness, as recommended by Ref. [12]. In light of these calibrations, P-values were thus 

evaluated using a robust value of 0.003 (3σ) as a threshold for more conclusive results. This P-value 

can be considered to have and FPR of 4.5 +/− [1.2, 15.9] %, using priors of 0.5 +/−  [0.2, 0.8] [1]. 

After applying this method, the first step in the corroboration of carnivore agency at VM3 is to 

compare the tooth pits from VM3 with the reference dataset. Initial comparisons find the VM3 tooth 

sample to consist of relatively large tooth pits (CS = 8.32 mm), slightly larger than those of the 

modern day spotted hyena (CS = 8.16 mm), but lower than those of larger felids such as the lion (CS = 

12.29 mm) [1,3]. Statistically, these similarities are reflected with the greatest approximations 

appearing when comparing VM3 with hyaenids (χ2 = 0.02, P = 0.88, p(H0) = 76.6%), while 



differences are present from all other samples (χ2 > 7.5, P < 0.006, p(H0) = 7.7%). Procrustes 

distances, on the other hand, reveal VM3 to be similar to large felids (P = 0.80, p(H0) = 67.3%), and 

hyaenids (P = 0.60, p(H0) = 54.6%), while presenting vague similarities with ursids (P = 0.04, p(H0) = 

25.9%). On all accounts, the VM3 sample appears to remain separate from canids (P = 0.004, p(H0) = 

5.7%). Finally, multivariate analyses of both size and shape (Fig. 1a) confirm VM3 to be notably 

different from both ursids and canids (P > 0.001, p(H0) = 1.8%), while similarities are still clear when 

compared with hyaenids and large felids (P > 0.123, p(H0) = 41.2%). 

When using SVM and NSVM algorithms to classify these traces, both algorithms confirm with an 

average confidence of 94%, the presence of 20 hyaenid tooth marks, 6 large felid tooth marks, and a 

single tooth mark associated with the genus Canis (Table S2 and Fig. S2 online). When analyzing 

SVM and NSVM performance, both algorithms produce similar classification results, with NSVM 

proving the most confident classifier in the majority of cases. Additionally, CL produced labels 

coincide in the majority of Procrustes distance associations, with only two pits presenting Procrustes 

distances that contradict CL class labels. In each of these cases, the large Procrustes distances can be 

attributed to abnormally high CS values for a Hyaenidae, however, in form feature space, CL 

algorithms are still confident in attributing these marks to that of a large hyena. The final 

indeterminable pit, however, is found to have an abnormally large Procrustes distance that does not 

reveal a conclusive association to any of the carnivores used in the present comparative sample. 

Visualization of the corresponding feature space (Fig. 1a) effectively reveal the proximity of the 6 

classified pits to the large felid sample (Procrustes D = 2.65, Mahlanobis d = 0.33), as opposed to their 

association with hyaenids (Procrustes D = 5.16, Mahlanobis d = 3.25). While the hyaenids from VM3 

are observed to present a large spread across form feature space, their association with Hyaenids can 

also be confirmed (Procrustes D = 3.67, Mahlanobis d = 1.15), as opposed to their association with 

felids (Procrustes D = 5.78, Mahlanobis d = 1.36). Thin plate splines derived from this data 

additionally reveal the VM3 felids to produce deeper more elongated pits, like those of lions, while the 

VM3 hyaenids can be characterized by producing a wide range of tooth mark morphologies, from 

superficial small pits to large deeper pits, as will be explained in detail in continuation. 

Exploration of form feature space in more dimensions reveals PC3 (3.81% variation) to be represented 

mostly by the asymmetry of pit morphologies (Fig. S2 online), with constrictions in the lateral edges 

of each pit between LM1 and LM3. This characteristic is mostly observed in felids, with hyaenids 

present a generally more ovular and symmetric pit morphology. 

When considering the alterations per bone specimen (Table S2 online), it can be observed that only a 

single bone presents the intervention of both large felids and hyaenids (Sp. Nº 10). Similarly, the 

single Canis tooth mark is associated to a hyaenid tooth mark on the same bone (Sp. Nº 3) (Table S2 

online). 

The tooth pits produced by Pachycrocuta, as seen through the present sample, can be described as 

morphologically similar to the tooth pits produced by modern day Crocuta crocuta. This is apparent 

both in terms of morphology and size. 

As would be expected [5], allometry is revealed to be a variable of great importance when considering 

hyaenid tooth pit morphology (F = 325.6, residuals2 = 0.758, effect size = 5.08, P = 0.001, FPR = 

1.8%). Nevertheless, shape-size relationships according to groups reveal the present sample of 

Pachycrocuta and hyaenid tooth marks to be of similar size and shape (F = 1.5985, residuals2 = 0.003, 

effect size = 1.06, P = 0.149, FPR = 43.5%). From this perspective, the present sample reveals P. 

brevirostris to have a CS of 6.4 +/−  2.2 mm (Mean +/−  1st Std. Dev.; Shapiro-Wilk w = 0.9, P = 0.1). 

This value is 0.5 mm smaller than the comparative hyaenid sample used here, with Crocuta crocuta 

also presenting a larger spread; 6.9 +/−  4.0 mm (Median +/−  MAD; w = 0.9, P = 8.7×10− 6). This 

measurement groups P. brevirostris in the larger group of carnivore species alongside lion, jaguar, 



hyena and Lycaon [1]. Through this sample, P. brevirostris can also be described to produce similar 

sized pits to hyena [1], and much larger pits than other studied hyaenid species [14]. Nevertheless, it is 

important to note that the small sample size presented here (n = 20) is likely to exaggerate some 

similarities in tooth pit size (TOST t = −3.1, P = 0.002). This results in an 11.9% probability of this 

observation being a false positive (corrected prior probability = 0.2). 

Analysis of morphological traits in form space reveal both hyaenids to produce a large variety of 

different tooth pit morphologies, with a relatively large spread when compared with other carnivores 

(Fig. 1a). When comparing both hyaenids separately (Fig. 1b), notable overlap can be observed (t = 

3.076, P = 0.002, FPR = 2.8%). In this feature space, the majority of morphological information is 

explained by shifts in the position of LM5, and the sliding landmarks that mark the base of the tooth 

pit (PC1, 84.64% morphological variance). From this perspective, changes can be seen not in depth, 

but more in the point where the maximal depth of each tooth pit is located. Moreover, changes in the 

elongation of each pit can also be observed, with a combination of PC1 and PC2 (90.06% 

morphological variance) describing more elongated tooth marks. This can be seen in greater length: 

width ratios towards the positive portion of this region, and the variability in distance from LM2 and 

LM5. Nevertheless, as noted in other hyaenid samples [1,3], both modern day and fossil hyaenids 

present great morphological variance, with the ability to produce a combination of small, large, deep 

and superficial pits within the same sample. 

In light of each of these observations, and when considering the weight size has over the morphology, 

hyaenids can be considered close to three other species, including lions, jaguars and Lycaon [1,3]. 

Nevertheless, each of these species have been noted to produce much deeper pits (Fig. S2 online), with 

jaguars and Lycaon also creating more elongated pits along the LM1-LM2 axis. The pits observed in 

VM3 follow this trait, appearing much more superficial than those typically produced by other large 

carnivores (Fig. 1a, b). 

Finally, when projecting the mean configuration of hyena pits onto the median Pachycrocuta 3D 

model (Fig. 1c), warp analysis reveals a difference of as little as 0.02 +/−  0.04 mm between the 3D 

models (Fig. 1e). Visualizing these changes, it can be confirmed that depth is not necessarily a 

conditioning factor in tooth pit morphological variation, while the majority of deformations are 

concentrated as mild changes along the wall of each pit (Fig. 1d). These variations are likely resulting 

from Pachycrocuta’s hyperdeveloped mastication muscles—particularly the masseter and the 

pterygoid—in comparison to modern hyaenas, which enabled them to exert a greater premolar bite 

force despite having a similar cranial and dental configuration [15]. This study applies a series of 

recently-developed computational techniques for taphonomic research [1,3,4], and presents the first 

3D reconstruction and morphometric characterisation of tooth marks present in the Early Pleistocene 

site of VM3. Our investigation confirms that the faunal assemblage from this palaeontological locality 

was accumulated and modified by the extinct Eurasian giant hyaena Pachycrocuta brevirostris, 

confirming previous interpretations of the assemblage [2]. Our results also enable the creation of a 

reference framework that will allow the identification of the taphonomic impact of Pachycrocuta 

brevirostris in Eurasian bone assemblages from the three-dimensional analysis of tooth mark 

morphometrics. 
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Caption Figures and Tables 

 

Figure 1  (a) Mean principal component analysis in form feature space characterizing the central 

configuration of each modern carnivore sample with each of the VM3 tooth marks and their 

classification label. Predicted form deformations via thin plate splines are depicted on each extremity 

of their corresponding PC score. Visualization of form deformations are visualized using a 2.5D 

Triangulation algorithm. (b) Principal component analysis in form feature space characterizing the 

central configuration of Crocuta crocuta and the VM3 Pachycrocuta tooth mark sample. Predicted 

form deformations via thin plate splines are depicted on each extremity of the graph. Form 

deformations are visualized using a 2.5D Triangulation algorithm. (c) Results when warping 3D 

models in a comparison between hyena and Pachycrocuta samples. The median Pachycrocuta pit used 

for projecting the mean configuration of hyena onto the 3D model. (d) Colour map indicating areas of 

higher distances between the reference and the warped 3D model, with a histogram of these distances 

presented in (e).  
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