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Abstract: Crithidia acanthocephali is a trypanosomatid species that was initially described in the
digestive tract of Hemiptera. However, this parasite was recently detected in honey bee colonies in
Spain, raising the question as to whether bees can act as true hosts for this species. To address this
issue, worker bees were experimentally infected with choanomastigotes from the early stationary
growth phase and after 12 days, their hindgut was extracted for analysis by light microscopy and
TEM. Although no cellular lesions were observed in the honey bee’s tissue, trypanosomatids had
differentiated and adopted a haptomonad morphology, transforming their flagella into an attachment
pad. This structure allows the protozoa to remain attached to the gut walls via hemidesmosomes-such
as junctions. The impact of this species on honey bee health, as well as the pathogenic mechanisms
involved, remains unknown. Nevertheless, these results suggest that insect trypanosomatids may
have a broader range of hosts than initially thought.
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1. Introduction

Trypanosomatids are a large group of parasitic protozoa that can infect a wide range
of organisms, including plants, insects, and vertebrates. Indeed, some of these species can
cause important medical and veterinary diseases, such as Leishmania and Trypanosoma, and
consequently, they have been widely studied [1]. While some of these trypanosomatid
species can be transmitted by insect vectors (dixenous), the lifecycle of others may be
restricted to only one type of organism, known as monoxenous. Despite representing
most diversity of the Trypanosomatidae family, these latter species have received less
attention [2,3]. Most monoxenous species infect insects, and while the majority do not
appear to harm the host’s health, there are some exceptions that include species that infect
honey bees and bumble bees [4]. Moreover, it is significant that insect trypanosomatids
have also been found to colonize other host groups, including plants, rats, dogs, bats, or
even humans [2,5].

The comparative lack of information about insect trypanosomatids has had a strong
impact on the establishment of phylogenetic relationships within the family, which in turn
has driven constant modifications in their taxonomy and systematics [6]. This is indeed
the case of Crithidia acanthocephali and Crithidia flexonema: The former was described and
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isolated from the hindgut of the hemipteran Acanthocephala femorata in 1961 [7], while
C. flexonema was described in 1960 in water strider Aquarius remiges (formerly known as
Gerris remiges) [8]. Following the “one host-one parasite” paradigm that governed the
classification of trypanosomatids for many years, these were both considered as different
species. However, a recent taxonomic revision based on DNA barcoding [9] showed
the sequences of both these species to be identical, leading to the proposal to unify the
nomenclature under the name of the first chronological described species, C. flexonema.
However, to the best of our knowledge there has been no consensus on this proposal and
most of the bibliography consulted refers to C. acanthocephali. Indeed, the cultures obtained
from ATCC are named after this species; thus, from now on this name will be used here to
refer to both these species.

Crithidia acanthocephali is quite widespread geographically [9], and as previous works
have proved, it can proliferate inside insects from different orders, such as Diptera,
Coleoptera, or Orthoptera, increasing their mortality [10,11]. Although to date there is little
information available regarding this trypanosomatid in honey bees, a recent study detected
C. acanthocephali for the first time in honey bee colonies in the center of Spain via Ion PGM
sequencing, along with other species commonly found in honey bee colonies (e.g., Lotmaria
passim and Crithidia mellificae) [12]. Other trypanosomatid species also detected in this study
(such as Crithidia bombi or Crithidia expoeki) are commonly detected in other hymenopteran
hosts such as bumble bees, but they are not usually found in honey bee colonies.

Both L. passim and C. mellificae have been recently found to modify their promastigote
and choanomastigote morphology into an haptomonad form, remodeling their flagella into
an attachment pad that allows them to remain attached to the gut walls of their host and
cover the epithelial cells [13]. This haptomonad stage and its morphogenesis have been
described in other trypanosomatid species, such as Leishmania, and it is regarded as an
influential factor for parasite survival and transmission [14–16]. Those are key features for
monoxenous parasites, but acquisition is also crucial for considering an insect as a true
host. In this regard, the presence of C. acanthocephali in honey bees implies that honey bees
acquire this parasite naturally, but how this happens, as well as what occurs inside this
host, is still unknown. Here, we report that under experimental conditions, C. acanthocephali
can establish, thrive, and differentiate into the haptomonad morphotype inside a honey
bee’s gut.

2. Materials and Methods

The C. acanthocephali reference strain (ATCC 30251, American Type Culture Collection)
was cultured in vitro to generate the inoculum, establishing serial cultures to infect honey
bees with trypanosomatids at the same developmental stage on consecutive days. Starting
from an initial concentration of 105 cells/mL, the cells were cultured as described previ-
ously for C. mellificae and L. passim [13], maintaining them at 27 ◦C in 25 cm2 flasks (Corning,
New York, NY, USA) in Brain Heart Infusion broth (BHI; Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany) supplemented with 10% heat-inactivated fetal bovine serum (HIFBS,
Gibco, Thermo-Fisher Scientific, Waltham, MA, USA) and 1% penicillin/streptomycin
(Lonza, Basel, Switzerland) [13]. After 96–168 h, the cultures had reached the early station-
ary phase, and the choanomastigote forms of C. acanthocephali were obtained to be used
as an inoculum [13]. The cells were counted in a Neubauer chamber and the inoculum
concentration was adjusted with Phosphate Buffered Saline (PBS) to 5 × 104 cells/µL.

Brood frames from experimental and control honey bee colonies were kept in the
laboratory at 34 ± 1 ◦C to randomly cage the workers upon their emergence in two experi-
mental groups, infected and non-infected control bees, each with 3 cages of 10 workers per
cage (N = 30 workers/group). The bees were maintained for two days at 27 ◦C in separate
incubators (Memmert® IPP500, 0.1 ◦C, Memmert GmH + Co.KG, Schwabach, Germany)
to avoid cross-contamination, and they were fed with 50% sucrose syrup + 2% Promo-
tor L (Laboratorios Calier SA, Barcelona, Spain), which was renewed daily as described
elsewhere [13].
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To stimulate their appetite, two-day-old bees were starved for two hours. Each bee
was then manually inoculated orally with 2 µL of either PBS or the inoculum [17], the latter
resulting in a final dose of 105 cells per bee. Worker bees were inoculated twice daily for
12 consecutive days (daily dose/bee: 2 × 105 cells), each dose separated by 6 h, to ensure
obtaining images of the trypanosomatids inside the bee’s hindgut (ileum and rectum) [13].
After the second dose each day, they were fed ad libitum as indicated above.

After the 12th day of infection, the bees were sedated with CO2 to extract their di-
gestive tract by pulling from the last abdominal segment [17]. Their gut was washed in
PBS and placed on 45 µm cellulose nitrate filters (Sartorius, Gotinga, Germany) to keep
them stretched during the fixation process [13]. Half of the bees from each cage and
group were fixed for 24 h in buffered formalin (10%: Merck KGaA, Darmstadt, Germany)
for light microscopy and then they were embedded in paraffin. The microtome sections
obtained (4 µm: Leica® 2155, Leica Biosystems, Wetzlar, Germany) were stained with
Haematoxylin-Eosin (H&E) [13]. The remaining guts were processed for TEM analysis:
first fixing them with Karnovsky fixative at 4 ◦C to be later stained with 1% osmium
tetroxide (Sigma-Aldrich) and dehydrated in a graded acetone series (Panreac Química
S.L.U., © ITW Reagents Division, Castellar del Vallès, Spain) and finally embedding them
in a graded Spurr resin-acetone series (Sigma-Aldrich). The ileum and rectum were sepa-
rated and placed in different resin blocks, obtaining semi-thin sections to locate the areas
of interest (0.5 µm: Reichert-Jung Ultracut E microtome, Leica microsystems, Wetzlar,
Germany®), which were then trimmed to obtain ultra-thin sections (60 nm). After perform-
ing dual-contrast with 2% uranyl acetate (Thermo-Fisher Scientific) in water and lead citrate
Reynolds solution (Merck), the sections were analyzed and photographed (Jeol 1010 and
Jeol JEM-1400 Electron Microscope, Tokyo, Japan). Further details of the fixation process
can be found elsewhere [13].

3. Results
3.1. Light Microscopy Analysis

Crithidia acanthocephali had colonized the hindguts of infected bees 12 days after
infection, whereas no trypanosomatid forms were observed in the control bees. These
trypanosomatids were observed to cover the surface of the digestive tract in all the infected
bees analyzed, and images were obtained from both the ileum and rectum (Figure 1). The
trypanosomatid cells were observed to form clusters and to also organize as monolayers.
While the former clusters were more often observed in the ileum, in the rectum, the
monolayer arrangement seemed to predominate. No histological changes were observed
in the host’s epithelial cells, which suggests that the trypanosomatids cause no evident
damage to the intestinal cells.
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Figure 1. Light microscopy images of the ileum (A) and rectum (B) of workers infected with C.
acanthocephali: (A) longitudinal section (40×) of the ileum stained with hematoxylin and eosin
(H&E), in which trypanosomatid clusters could be observed (arrowheads); (B) methylene blue-
stained longitudinal semi-thin section (20×) of the rectum, covered by a layer of trypanosomatid
cells (arrowheads).
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3.2. Transmission Electron Microscopy

Although samples from both the ileum and rectum were processed for TEM, we could
only obtain images of C. acanthocephali from the latter (Figures 2 and 3). Trypanosomatid
cells were found lining the digestive tract surface, and their morphology differed from
the choanomastigotes observed in cultures. Instead, they adopted a haptomonad-like
form, with their flagella remodeled into an attachment pad. This modification allowed
trypanosomatids to attach to the epithelial cells and remain inside the host’s hindgut.
Moreover, in accordance with the light microscopy images, these protozoa did not appear
to damage host cells.
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Figure 2. Transmission electron microscopy (TEM) images obtained from the rectum of C. acantho-
cephali infected bees: (A) longitudinal section of an adherent haptomonad form, with the elongated
nucleus (n) visible on the central part of the cell body, with condensed heterochromatin both centrally
and around the nuclear membrane, as well as some organelles as acidocalcisomes (ac) and glycosomes
(g). A network of fibers of unknown nature can be observed around the trypanosomatid, especially in
the posterior part of the cell (black arrows). (B) Haptomonad cell attached to the host cell (hc). Some
flagellapodia (fd) that remain attached could also be observed, even though their cell bodies seem to
be lost or are not in the same section. (C) Cross-section of a haptomonad cell undergoing division,
in which two flagella axonemes (ax) can be observed inside both flagellar pockets. (D) Detailed
longitudinal section of a haptomonad cell. The flagellar body (f), with the axoneme visible (ax), is
located within half of the length of the cell body, right before the kinetoplast (k). Some vesicles (v) are
observed inside the flagellar pocket, while other organelles, such as the mitochondria (m), are also
observed in the cell body.
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Figure 3. Transmission electron microscopy (TEM) images obtained from the rectum of C. acantho-
cephali infected bees: (A) longitudinal section that shows different phases of the attachment process,
including haptomonads adhered to the host cell (hc) and non-attached trypanosomatids with their
flagella (f) oriented to the host surface (black arrowheads). (B,C) Details of the haptomonad cells and
its flagellopodium (fd), which is surrounded by the flagellar pocket (fp) and is held together with the
cell body through the type A desmosomes (white arrowheads). Hemidesmosome-like complexes
are observed between the flagellopodium and the host surface (electron-dense material underneath
the attachment pad: red arrowheads), while an array of filaments reinforce the entire complex (as-
terisk). Some organelles could be observed inside the trypanosomatids, such as the nucleus (n) and
the mitochondria (m). (D) Haptomonad attached to the cuticular layer of the honey bee epithelial
cells (hc), with the axoneme (ax) visible at the base of the flagellopodium (fd). (E,F) Details of the
flagellopodium (fd), where type A desmosomes (white arrowheads) and the hemidesmosome-like
complexes (red arrowheads) could be observed.

The magnification of the images allowed us to observe the ultrastructure of the try-
panosomatid cells in the magnified images. The nucleus elongated and is centrally located
in some cells (Figure 2A) and it moved toward the posterior part of the cell as it approaches
the host’s surface (Figure 3A), in which heterochromatin accumulated visibly beneath the
membrane (Figure 2A). A prominent disc-shaped kinetoplast could be observed imme-
diately posterior to the start of the flagellum (Figure 2D). A single, large mitochondria
can be observed at the peripheral zones of the cells (Figure 2A) and the flagellar pocket
seemed to insert up to approximately half the length of the cell body (Figures 2D and 3B,D).
This structure (also referred to as the reservoir by some authors [18–20]) surrounded the
flagellum from its start and throughout its trajectory inside the cell body until it finally
emerged at the anterior part of the cell as a modified structure that formed an attachment
pad: the flagellopodium (Figure 2A,B and Figure 3B,C,E,F). Doublets of microtubules, not
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seen in the flagellar pocket, ran along the entire length of the modified flagellum, adopting
the typical (9 × 2) + 2 axonemal conformation (Figure 2C,D).

The distal part of this modified flagellum was the point of contact between the try-
panosomatid cell and the host’s intestinal surface, forming hemidesmosome-like junction
complexes evident as electron-dense areas in the images immediately beneath the flagel-
lopodium membrane (Figure 3B–F). Other junction complexes, such as type A desmosomes,
strengthened the entire trypanosomatid cell structure. These desmosomes are responsible
for holding the cell body and the flagellopodium together, and they can be seen in the
images as dark zones between the membrane of the latter and that of the flagellar pocket
(Figure 3C,E,F). To reinforce the entire cell complex, an array of filaments can be seen and
they are connected to the axoneme with both types of junctions: hemidesmosome-like
complexes and type A desmosomes (Figure 3C,E,F).

Other organelles and cell structures can be observed in the cytoplasm (Figure 2D),
including typical trypanosomatid structures such as glycosomes and acidocalcisomes, with
different electron densities (Figure 2A). Some vesicles were observed inside the flagellar
pocket (Figure 2D) that serve to expand the surface of the reservoir and adapt it to the
modifications of the flagellum. A single layer of subpellicular microtubules was found
beneath the cell membrane (not shown in the images). In addition, the cells seem to be
surrounded by a fiber network of electron-dense particles of unknown nature that seemed
to be secreted by the cells themselves (Figures 2 and 3). This fiber network appeared to be
more intense at the posterior part of the cell (black arrows). In some cells two axonemes
could be observed in two different flagellar pockets (Figure 2C), a clear indicator that events
that are part of the multiplication cycle of these haptomonad forms of the organism were
underway inside the bee’s rectum.

4. Discussion

For the first time, this study describes the presence of the haptomonad morphotype of
the C. acanthocephali trypanosomatid in the hindgut of A. mellifera attached to the intestinal
surface through the transformation of the flagellum into an attachment pad. Haptomonad
morphology has been observed in the intestinal tract of several insect hosts, such as Anophe-
les gambiae [21], Phlebotomus papatasi [22], or Lutzomyia longipalpis [23]. This stage was also
observed in vitro in culture, since haptomonad cells can attach to synthetic materials [24,25].
Furthermore, a recent study found that Paratrypanosoma confusum, a species that infects
mosquitoes and that is phylogenetically located between the parasitic trypanosomatids
branch and the bodonids (free-living kinetoplastids), had a similar sedentary stage [26].
Thus, the haptomonad morphotype can be considered a common feature of the Trypanoso-
matidae family.

In terms of honey bees, previous research described both “spheroid” and “flagellated”
trypanosomatid forms colonizing the hindgut of worker bees experimentally infected with
the species C. mellificae or L. passim [17,27,28]. A detailed description of the haptomonad
form of these two species recently appeared in the honey bee [13], apparently with the
aforementioned spheroid morphotype. Crithidia acanthocephali adopts a similar morphology,
and it was found to colonize both the ileum and rectum. Although trypanosomatids were
observed here at both these sites, the latter seems to be the preferred location since it was
where the haptomonad forms were observed by TEM. One hypothesis is that the union
between the trypanosomatids and the epithelial cells could be thicker in this region than
in the ileum such that they might better resist the fixation process when they are in this
part of the gut. However, it could also be due to the rectum containing more parasites than
the ileum or the nutritional requirements of this trypanosomatid. Sugars and amino acids
are thought to be absorbed by rectal cells [29] in what would be an ideal environment for
trypanosomatids to grow. The minimal nutritional requirements of these species have been
investigated previously by the omission of individual components [30]. It was discovered
that this species can use D-ribose as a carbon source, free or as adenosine, although many
other carbohydrates enhanced its growth, especially glucose, fructose, and sucrose. These
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are precisely the major components of the bees’ diet; therefore, they are commonly found
in the honey bee’s gut [31]. Another interesting factor is that purine was found to be vital
for this species to grow. According to the metabolomics analysis of different honey bee gut
regions [31], the highest concentrations of purines can be found in the rectum, followed by
the ileum, whereas in the midgut they are barely found at all. Moreover, the cuticle layer
that covers the ileum and the rectum seems to play an important role in trypanosomatid
adhesion and the formation of junctions [21,28].

Despite the valuable information about the development of this trypanosomatid
within the honey bee that is gained by detecting the haptomonad stage, its pathogenic
implications remain unclear, as this is also the case with C. mellificae, L. passim and other
insect trypanosomatids [4]. With the information obtained here, we can only hypothesize
about both the pathogenicity of this morphotype and its possible mechanisms of virulence.
Based on the lack of histological changes in the gut epithelial cells, it seems most probable
that these protozoa are active in the lumen. Indeed, their disposition covering the host
surface could hinder nutrient absorption [21,32] and the presence of the uncharacterized
secreted particles observed could be implicated in this effect. Thus, future research on
the relevance of establishing haptomonads, the biochemical mechanisms implicated, and
studies into mortality would be of great interest to determine the pathogenic mechanisms
induced by this trypanosomatid species. Nevertheless, remaining attached to the host’s
intestinal walls allows trypanosomatids to maintain infection of the host for a long time.
Although not much is known about the mechanisms of transmission of monoxenous
trypanosomatids, some species of Blastocrithidia and Leptomonas, among others, form
resistant cells or “cysts” that allow their survival under adverse conditions [33,34]. As far
as we know, C. acanthocephali does not form these resistant forms, so lengthening their
stay inside the host could increase the chances of transmission to another individual [35].
However, the establishment and attachment of this trypanosomatid will probably be
influenced by other factors. For example, the microbiota present in the honey bee’s gut has
been proposed as likely to have a protective role against microorganisms [36].

Based on the “one parasite-one host” paradigm, new trypanosomatid species have
traditionally been named according to the host in which they were first described [3]. The
molecular characterization of their associations and the specificity of several trypanoso-
matid species in different heteropteran hosts has proved that these interactions may not
be that stringent [35], suggesting more promiscuous host–parasite relationships than were
initially thought for monoxenous trypanosomatids. Several authors have used C. acantho-
cephali experimental infection (rectal or haematocele injections) to test this host-parasite
specificity in what a priori were considered to be foreign hosts [10,11]. In all cases, dense
populations of trypanosomatids were observed to colonize the gut and hemolymph of the
host insect, increasing host mortality. Trypanosomatid infection provoked a phagocytic
response and the formation of nodules, in which motile flagellates could be observed,
sometimes even in stages of division [11], which provides evidence that C. acanthocephali
can multiply in foreign hosts. Here, events characteristic of trypanosomatid division were
detected in the rectum of the honey bees, such as the presence of two flagella on the same
cell, suggesting that this trypanosomatid species can truly infect this insect host.

Crithidia acanthocephali was recently found for the first time in honey bee colonies
in Spain [12] and in bumble bees [37]. It was detected in honey bee colonies throughout
the year, at all seasons, and no differences were found between interior and forager bees,
indicating it is a common organism in bee colonies. Together with the apparent absence
of haplotype differentiation in L. passim, C. mellificae, or C. bombi between their hosts [38],
these data suggest that insect trypanosomatids may infect a wider range of species than
was previously thought.
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5. Conclusions

By obtaining the first microscopy images of C. acanthocephali in the honey bee hindgut,
this trypanosomatid species can apparently adopt the haptomonad stage in this host
in order to remain attached to honey bee hindgut cells. The impact of the presence of
trypanosomatids and more specifically of C. acanthocephali on honey bee health remains
unclear, making this an interesting area for further research. Nevertheless, the data pre-
sented here suggest that insect trypanosomatids have the potential to infect and multiply in
several insect species, which is evidence that these organisms have less strict parasite–host
specificity than previously thought.
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