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By Molecular Dynamics simulations, we investigated the dynamics of isotropic fluids of colloidal
nanotrimers whose interactions are described by varying the strength of attractive and repulsive
terms of the Mie potential. To provide a consistent comparison between the systems described by
different force fields, we determined the phase diagram and critical points of each system, charac-
terised the morphology of high-density liquid phases at the same reduced temperature and density,
and finally investigated their long-time relaxation dynamics. In particular, we detected an especially
complex dynamics that unveils the existence of slow and fast nanotrimers and the resulting occur-
rence of non-Gaussianity, which develops at intermediate time scales. Deviations from Gaussianity
are temporary and vanish within the timescales of the system’s density fluctuations decay, when a
Fickian-like diffusion regime is eventually observed.

I. INTRODUCTION

Colloidal sols are two-phase systems comprising solid
particles evenly dispersed in a liquid. The size of these
particles is a crucial parameter as it determines the very
existence of sols, controls their thermodynamic stability
and avoids sedimentation by ensuring the dominance of
thermal forces over gravitational forces. The Interna-
tional Union of Pure and Applied Chemistry (IUPAC)
suggests that the dispersed particles should have at least
in one direction a dimension roughly between 1 nm and
1 µm, or that in a system discontinuities are found at
distances of that order [1]. This definition allows one to
distinguish colloids from solutions, where solute and sol-
vent are molecular species, and from suspensions, which
incorporate particles that are much larger than 1 µm and
eventually settle out. This property allows colloids to fill
a niche, that requires such properties, such as paints or
shampoos. Nevertheless, in the literature it is not rare
to find a very wide and perhaps confusing spectrum of
supposedly identical definitions, including colloidal solu-
tions and colloidal suspensions. In addition, there is a
confounding use of the term colloid to refer to particles,
rather than to the system in which these are dispersed.
In what follows, we employ the term colloid (or colloidal
sol) to refer to a system of nanoparticles (NPs) evenly
dispersed in a liquid.

NPs immersed in liquids exhibit ceaseless random
moves, which were first reported by the botanist Robert
Brown who, almost two centuries ago, investigated the
dynamics of pollen grains in water [2]. Thanks to the
later theoretical works by Einstein, Sutherland, Smolu-
chowski and Langevin [3–6] and the experiments by Per-
rin [7, 8], we now know that such erratic movements,
commonly referred to as Brownian motion, stem from
the thermal energy dissipated by the collision between
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colloidal particles and the molecules of the dispersing
medium. According to these works, the mean-square dis-
placement (MSD), which measures the ability of particles
to displace a distance ∆r with respect to a reference loca-
tion, grows linearly in time, whereas the particle displace-
ments follow a Gaussian distribution with zero mean. In
particular, the MSD in 3 dimensions reads as

⟨r2⟩ = 6Dt, (1)

where D is the particle long-time diffusion coefficient in
the fluid and t is the time. The linearity of the MSD
with t is usually referred to as Fickian diffusion and is
normally observed in most colloidal systems. Neverthe-
less, anomalous diffusive behaviours, where ∆r2 ∝ tγ

and γ is either lower (subdiffusion) or larger (superdif-
fusion) than 1, have been identified [9–15] and can be
accompanied by Gaussian or non-Gaussian distributions
of particle displacements. One might expect the occur-
rence of Gaussian deviations only in colloids displaying
anomalous diffusion as the central limit theorem applied
to random walks, which predicts Gaussianity and Fick-
ianity at sufficiently long time scales, indeed supports this
view [16]. However, there exist systems, whose dynamics
is Fickian, but the distribution of their particle displace-
ment is non-Gaussian, such as biological systems [17–
20], supercooled liquids [21–23] colloidal systems [24–27],
two-dimensional fluids [28–33] and fluids in porous media
[34, 35]. While this Fickian yet Non-Gaussian (FNG) be-
haviour is being increasingly identified in soft materials
and its origin is the topic of an intense research debate
[36–41], recent Brownian dynamics and dynamic Monte
Carlo simulations of colloidal liquid crystals suggest that
FNG dynamics might not be ubiquitous in soft matter
[42, 43].
In this work, we employ molecular dynamics (MD)

simulations to mimic the equilibrium dynamics of dense
colloidal sols of triangular nanotrimers, made of three
tangent spheres interacting via different potentials of the
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Mie family. Our goal is exploring their long-time dif-
fusion and identifying the key elements determining the
system’s structural relaxation at long times. Investigat-
ing such Mie-like nanotrimers has been motivated by a
few considerations. First of all, the Mie potential, which
offers the option of independently tuning repulsive and
attractive energy terms, guarantees a better accuracy
in the analysis of the phase behaviour as compared to
the more popular Lennard-Jones potential. This flexi-
bility allows one to better reproduce the tendencies ob-
served experimentally in specific systems of interest. Sec-
ondly, nanotrimers are anisotropic particles without axial
symmetry that are expected to exhibit a very rich self-
assembly behaviour, where positional and orientational
ordering have the potential to generate very intriguing
crystal phases. We have so far only explored the stabil-
ity domain of the low-density and high-density isotropic
phases, as this knowledge is instrumental to examine the
dynamics, and we are currently investigating the forma-
tion of ordered nanostructures. The kinetics of formation
of these nanostructures would depend on the diffusion of
the high-density isotropic phase of the nanotrimers, thus
knowing the diffusive properties of the nanotrimers allows
for further research into the structures formed. Finally,
the complex geometry of nanotrimers, coupled to the pos-
sibility of tuning the degree of hardness of their interac-
tions, provides an excellent model system to study the
equilibrium dynamics over time and ponder the occur-
rence of FNG behaviour at sufficiently long times, when
a full structural relaxation decay is expected.

This paper is organised as follows. In Sec. II, we discuss
the particle model and the simulation methods employed
to investigate equilibrium and dynamics of isotropic sols
of nanotrimers. Since MD simulation is a standard tech-
nique, we will only highlight those elements that are in-
strumental for the interested reader to reproduce our re-
sults. In this section, we also introduce the main dynam-
ical properties that have been estimated to characterise
the behaviour of our systems. In Sec. III, we first report
on the phase behaviour of colloidal nanotrimers as a func-
tion of the hardness of the Mie potential explored here.
Then we focus on the long-time dynamics by assessing
the ability of nanotrimers to diffuse and the existence of
slow and fast particles that, together, determine the sys-
tem’s structural relaxation decay. Finally, in Sec. IV, we
wrap up with conclusions.

II. METHODS

We performed MD simulations of rigid nanotrimers
made of three identical spherical beads of diameter σ,
the system unit length. The solvent is not explicitly
modelled, but included in the effective interactions estab-
lished between particles. We stress that implicit-solvent
MD simulations create ballistic trajectories at very short
times, when stochastic trajectories are rather expected.
This artificial scenario extends only up to the so-called

cage regime, when each particle starts to interact with its
neighbours, and does not affect the long-time dynamics,
which is governed by particle-particle collisions [44–46].
The beads comprising a nanotrimer are tangential to one
another and at a mutual distance given by σ, as schemat-
ically shown in the inset of Fig. 1. The interactions es-
tablished between non-bonded beads, namely by beads
belonging to distinct nanotrimers, are described by the
Mie potential, which reads [47]

U(r) = Cϵ
[(σ

r

)n

−
(σ
r

)m]
(2)

where ϵ is the depth of the potential well, whereas the
exponents n and m set the range of repulsive and attrac-
tive contributions, respectively. The coefficient C in Eq. 2
is given by

C ≡
(

n

n−m

)( n

m

) m
n−m

(3)

and is defined such that the minimum of the potential is
−ϵ. In this work, the potential is cut and shifted at the
cut-off distance of rc = 3σ to allow the whole nanotrimer
to interact with its nearest neighbours. The Mie potential
is a more flexible version of the standard Lennard-Jones
(LJ) potential, which can be recovered by setting n = 12
and m = 6. By separately modifying m and n, one can
de facto fine tune the chemistry of the nanotrimers and
ultimately the effective interactions between them and
the implicit dispersing solvent. For instance, by increas-
ing the attractive or repulsive exponents in Eq. 2, the
critical temperature of the fluid-fluid phase coexistence
decreases and, in the limit of very large values of at-
tractive or repulsive exponents, this coexistence becomes
metastable and embedded within the fluid-solid coexis-
tence. The specific (n,m) pairs explored in this work are
(24, 6), (24, 12), (48, 6) and (48, 12), and the resulting po-
tentials will be referred to as Mie(n,m) in the following.
The functional form of these four potentials is reported
in Fig. 1 and compared to the standard LJ or Mie(12, 6)
potential.
All simulations were performed using the Large-

scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package [48]. To determine the fluid-fluid
phase coexistence of each Mie potential, we arranged
N = 2458 nanotrimers in elongated orthogonal boxes
of sides Lx = Ly = 16σ, and Lz = 80σ with peri-
odic boundary conditions at different reduced temper-
atures. In particular, the reduced temperature is defined
as T ∗ ≡ kBT/ϵ, with T the absolute temperature and kB
the Boltzmann constant, whereas the reduced density is
ρ∗ ≡ ρσ3, where ρ is the number density of the nan-
otrimers in the system. At equilibrium, systems phase
separated into a low-density (ld) isotropic phase and a
high-density (hd) isotropic phase, the densities of which
may be obtained. The critical properties of each system
were determined using the following expressions [49]:
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Figure 1. Mie potentials employed in this study as a function
of the distance between the center of mass of non-bonded
beads and their comparison with the Lennard-Jones potential.
The inset shows the tangent-sphere model used to mimic a
nanotrimer.

ρhd − ρld = C1(Tc − T )βc , (4)

ρhd + ρld
2

= ρc − C2(Tc − T ), (5)

where Tc is the critical temperature, ρc the critical den-
sity, ρld and ρhd are the densities of the low-density and
high-density fluid phases, respectively, βc = 0.325 is the
critical exponent obtained from renormalisation group
theory, and C1 and C2 are fitting parameters. Locat-
ing Tc and ρc was especially important to consistently
compare the dynamics of the four different sets of Mie
potentials.

To study the dynamics, we then selected high-density
fluid states in the one-phase region of existence of high-
density fluids. In this case, we arranged N = 2000 nan-
otrimers in cubic boxes of varying sizes, depending on
the required density, with periodic boundary conditions
and equilibrated them in the canonical (NV T ) ensemble.
More specifically, equilibration runs took approximately
2 × 105 time steps, with an elementary time step set to
t = 10−4τ , where τ =

√
Mσ2/ϵ is the system time unit.

Systems were considered at equilibrium when their total
energy achieved a steady state value within statistical
fluctuations. Subsequently, 300 independent time trajec-
tories, each consisting of 4×106 time steps, were used to
calculate the dynamical properties of interest. To keep
the temperature constant, we applied the Nosé-Hoover
thermostat.

To compare the behaviour of systems exhibiting dif-
ferent phase diagrams, we opted to assess structural
and dynamical properties at the same reduced tempera-
ture and density, respectively defined as Tr ≡ T/Tc and

ρr ≡ ρhd/ρc. At Tr = 0.95 and ρr = 2.5, all systems are
dense fluids with no evidence of crystallisation, which is
expected to be observed at larger densities and further-
more, the high temperature of the fluids ensures that the
systems do not get arrested or enter glass-like dynamical
regimes. Therefore, the selected values of reduced tem-
perature and density are indeed suitable to coherently
compare structure and dynamics of the systems studied
here. We have also explored other state points for these
systems and found no relevant differences in the dynam-
ics, apart from the expected variations due to changes in
temperature and density in the high density fluid phase.
The specific sets of temperature and density of the high-
density fluid phases for each Mie potential are reported
in Table I.

Table I. State points used in the simulations for each potential
to study dynamical properties.

U(r) T ∗ ρ∗hd T ∗
c ρ∗c Tr ρr

Mie(24, 6) 1.270 0.253 1.337 0.101 0.95 2.5
Mie(48, 6) 1.027 0.263 1.081 0.105 0.95 2.5
Mie(24, 12) 0.725 0.290 0.764 0.116 0.95 2.5
Mie(48, 12) 0.577 0.315 0.607 0.126 0.95 2.5

To investigate the long-time relaxation dynamics of
nanotrimers in dense fluids, we calculated a number of
dynamical properties. More specifically, the MSD, which
can be used to determine the self-diffusion coefficients,
reads

⟨r2(t)⟩ = 1

N

〈 N∑
j=1

[rj(t)− rj(0)]
2
〉
, (6)

where ⟨...⟩ indicates ensemble average and rj(t) indicates
the location of the centre of mass of nanotrimer j at
time t. The distribution of displacements over time and
hence the occurrence of fast and slow nanotrimers was
investigated by computing the self-van Hove correlation
function given by

Gs(r, t) =
1

N

〈 N∑
j=1

δ(r − |rj(t)− rj(0)|)
〉
, (7)

where δ is the Dirac delta function. Gs(r, t) was nor-
malised such that

∫∞
0

4πr2Gsdr = 1 [42]. Deviations
from Gaussian dynamics were assessed by using the non-
Gaussian parameter α2 defined as

α2(t) =

〈
∆r4(t)

〉
(1 + 2/d) ⟨∆r2(t)⟩2

− 1 (8)

where d is the dimensionality of the system studied. The
non-Gaussian parameter is obtained from the first term
of the Hermite polynomial expansion of the Gs(r, t) [50].
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Finally, to provide a quantitative measure of the time
needed to observe the structural relaxation of the systems
and to quantify the decay of their density fluctuations,
we calculate the self-intermediate scattering function (s-
ISF), which reads

Fs(q, t) =
1

N

〈
N∑
j=i

exp{iq · [rj(t)− rj(0)]}

〉
(9)

where q is the wave vector defined at the main peak of
the static structure factor [27].

III. RESULTS

Before discussing the details of the long-time relaxation
dynamics of our colloidal nanotrimers, we first report on
their phase behaviour, limiting our attention to the fluid
phases. In particular, the temperature vs density phase
diagrams of nanotrimers interacting via the potentials
Mie(24,6), Mie(48,6), Mie(24,12) and Mie(48,12) are pre-
sented in Fig. 2.
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Figure 2. Fluid-fluid phase coexistence diagrams of colloidal
suspensions comprised of nanotrimers interacting via the Mie
potentials listed in the legend. Filled symbols are simulation
results, empty symbols are the critical points estimated using
Eqs. 4 and 5, while solid lines are guides for the eye. The inset
shows a typical equilibrium configuration with one nanotrimer
highlighted in blue.

The coexistence between the low-density and high-
density fluid phases has been investigated in elongated
boxes of the type shown in the inset of the same fig-
ure. Following equilibration, the density of each phase
was estimated by calculating the number of nanotrimers
in volume elements Lxx̂ · Lyŷ · δz ẑ, with δz = Lz/500,
located far enough from the interface, where fluctua-
tions are larger, and averaged over multiple uncorre-
lated configurations to reduce statistical noise. The cal-
culated fluid phase coexistence diagrams are shown in
Fig. 2. One can observe that critical temperature and

critical density have an opposite dependence on the na-
ture of the Mie potential as the former monotonically
decreases from Mie(24,6) to Mie(48,12), whereas the lat-
ter increases. These tendencies agree well with findings
that highlighted the dependence of the critical point on
the potential hardness [51]. In particular, the potential
hardness can be estimated by computing the following
parameter

H(n,m) = C
[(

1

m− 3

)
−

(
1

n− 3

)]
, (10)

which has been obtained from the mean-field approxima-
tion of the first-order term of the Barker and Henderson
perturbation theory [51]. The values of H for each po-
tential are indicated in Table II, with lower values of H
indicating harder potentials. The table, in conjuction
with Table I, shows a clear correlation of the decrease in
H to the decreases in critical temperature and increases
in critical density in the systems of nanotrimers.

Table II. Diffusion coefficient D∗ evaluated at Tr = 0.95 and
ρr = 2.5 for different Mie potentials. Their corresponding
hardness H is also presented.

U(r) H D∗

Mie(24, 6) 0.605 0.0496
Mie(48, 6) 0.479 0.0340
Mie(24, 12) 0.254 0.0130
Mie(48, 12) 0.188 0.0052

Identifying the binodal line was a preliminary step to
locate the region where the high-density fluid, whose dy-
namical properties we wanted to investigate, is stable.
To ensure that these properties would not be calculated
in the crystal phases that are expected to form at suffi-
ciently large densities, we double-checked the fluid struc-
ture by calculating the radial distribution function, g(r),
of the nanotrimers’ centers of mass. These distribution
functions, which are reported in Fig. 3 for each of the four
state points listed in Table I, exhibit a primary peak at
approximately r/σ = 1.5 and then converge to unity at
the typically short distances detected in liquid-like sys-
tems. Having established that these are indeed fluid
phases, we can now discuss the main features of their
long-time relaxation dynamics.
To this end, we first estimated the MSD of nan-

otrimers, which is reported in Fig. 4(a). It can be ob-
served that different interaction potentials are not sig-
nificantly affecting the MSD, especially so at short-time
scales, when the system is still in the ballistic regime
and ⟨r2⟩ ∝ t2. It should be noticed that implicit-solvent
MD simulations cannot reproduce the Brownian motion
of colloids at short-time scales, where a diffusive regime
is expected [45, 46]. The fully deterministic nature of
MD produces an artificial ballistic regime at very short
times, when particles are still displacing within the cage
formed by their neighbours. Nevertheless, as soon as the
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Figure 3. Radial distribution functions of nanotrimers’ centre
of mass at ρr = 2.5 and Tr = 0.95 for the four Mie potentials
reported in the legend. The symbols show simulation data
and the lines are guides for the eye.

particle-particle collisions become the dominant element
controlling the system’s dynamics, these effects become
less and less relevant and eventually fade at sufficiently
long times, where the MSDs as obtained from MD and
BD simulations collapse onto each other [45, 46]. In our
specific case, the four systems studied enter the long-time
diffusive regime at approximately 1 < t/τ < 10 and, from
this time on, ⟨r2⟩ ∝ t as expected in Brownian systems.

The onset of the linearity of the MSD with time, also
referred to as Fickian diffusion, can be more accurately
located by calculating the dependence of the exponent γ
of the power-law ⟨r2⟩ ∝ tγ over time. We know that for
γ = 2 the dynamics are ballistic, whereas for γ = 1 the
dynamics are diffusive. In particular, γ = d ln⟨r2⟩/d ln t
is reported in Fig. 4(b) and exhibits a relatively fast de-
cay to 1, confirming the beginning of the long-time dif-
fusive regime at approximately t∗ = t/τ = 1, depend-
ing on the Mie potential. It is interesting to observe
that Mie(24,12) and Mie(48,12) nanotrimers experience
a slightly sub-diffusive dynamics between t/τ = 1 and
102, with 0.9 < γ < 1. It is an almost negligible effect
as γ is still rather large, but it is anyway not observed
with Mie(24,6) and Mie(48,6) nanotrimers, whose expo-
nent γ never falls below 1. We believe that this is most
likely due to the particle-particle attractive interactions
being dominant over the kinetic energy of the particles at
the temperatures of the simulations for n = 12 compared
to n = 6 and thus slowing particles down when these
are just about to diffuse through the cage of neighbours.
The cage-effect itself is expected to be stronger for more
attractive nanotrimers, but this is not especially evident
from the analysis of the MSD as the crossover from bal-
listic to diffusive regime appears to be equally smooth
for the four Mie potentials. Fickian diffusion allows for
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Figure 4. a) MSD as a function of time for the systems in-
teracting via the Mie potentials reported in the legend. The
state points of the systems correspond to a temperature of
Tr = 0.95 and a density of ρr = 2.5. b) Log-derivative of
the MSD, which corresponds to the slope of the MSDs pre-
sented in a). The dashed line corresponds to the value of
γ = 1, which indicates the onset of Fickian diffusion. c) Non-
Gaussian parameter (NGP) as a function of time. The dashed
line at α2 = 0 indicates when the systems exhibit Gaussian
dynamics.

the calculation of the self-diffusion coefficient of the dif-
ferent nanotrimer systems using Eq. 1. The coefficients
are reported in table II and follow the pattern shown
by the hardness of the potentials, with the harder po-
tentials diffusing slower. This decrease in diffusivity is
most likely caused by the differences in particle-particle
interaction strength between the potentials, as stronger
particle-particle interactions will impede the ability of
nanotrimers to diffuse through the system.
Changing the form of the Mie potential has also a rele-

vant effect on the time associated to the structural relax-
ation of the system, which has been measured by comput-
ing the s-ISF’s, reported in Fig. 5. This time, referred to
as the α-relaxation time, is achieved when Fs(q, t) = 1/e.
Much denser systems, such as glasses, and subcooled liq-
uids, can also show a β-relaxation time, corresponding
to the short-time relaxation at the particle scale, occur-
ring over the so-called cage regime. Our systems, which
are not as dense, are characterised by a single structural
relaxation decay. In particular, tα/τ ranges between 0.6
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Figure 5. Self-intermediate scattering functions of the four
systems studied. Symbols are simulation results, while solid
lines are exponential fits of the type exp [(−t/tα)

a], with tα
and a fitting parameters. The dashed line represents the
value Fs = 1/e, at which structural relaxation is considered
achieved and defines the α-relaxation time for each potential.

for Mie(24,6) and 3.7 for Mie (48,12), as shown in Table
III. While quantitatively different, the four s-ISF’s show
a very similar qualitative behaviour, characterised by an
exponential decay of the type exp [(−t/tα)

a], with tα and
a ≈ 1 fitting parameters.

Table III. Values of α-relaxation time for different Mie poten-
tials.

U(r) qσ tα/τ
Mie(24, 6) 4.46 0.65
Mie(48, 6) 4.50 0.76
Mie(24, 12) 4.58 1.01
Mie(48, 12) 4.70 3.75

Deviations from Gaussian dynamics have been investi-
gated by analysing the non-Gaussian parameter, α2, de-
fined in Eq. 8 and reported in the bottom frame of Fig. 4.
As a general tendency, we notice that deviations are rela-
tively small compared to other soft-matter systems, such
as colloidal glasses, crystals and liquid crystals, where
α2 was found to be more than one order of magnitude
larger [52–58]. All systems exhibit a Gaussian dynamics
at short time scales with α2 = 0 up to t/τ ≈ 0.1, although
deviations are already noticeable for the Mie(48,12) po-
tential. At intermediate times, α2 increases and reaches
its maximum at 1 < t/τ < 2, corresponding to the onset
of the diffusive regime. We notice that the peak am-
plitude increases with the potential hardness, suggesting
that particle-particle attractions dominate over repulsive
forces in determining the extent of deviations from Gaus-
sian behaviour. This result is in line with the above-

mentioned sub-diffusive dynamics observed in Mie(48,12)
systems over the same time window where α2 is larger
than zero. In particular, the temporary non-Gaussian
dynamics of especially attractive nanotrimers is accom-
panied by an equally temporary non-Fickianity that is
completely negligible in systems interacting through the
Mie(24,6) and Mie(48,6) potentials. At sufficiently long
times, namely for t/τ ≥ 100, all systems recover a full
Gaussian and Fickian dynamics, with α2 ≈ 0 and γ ≈ 1.
The relatively modest magnitude of the non-Gaussian pa-
rameter suggests that the nanotrimers’ dynamics is essen-
tially Gaussian at short and long times, and slightly non-
Gaussian at intermediate times. In particular, at long-
time scales the dynamics is Fickian (⟨r2⟩ ∝ t) and Gaus-
sian (α = 0), confirming that Fickian yet non-Gaussian
(FNG) dynamics is not necessarily a distinctive feature
of soft materials, as recently observed in nematic liquid
crystals of uniaxial [42, 59, 60] and biaxial [61] particles.
The temporary deviations from Gaussianity can also

be detected by the analysis of the self-part of the van
Hove correlation functions, which are reported in Fig. 6
at short (t/τ = 0.1), intermediate (t/τ = 1) and long
(t/τ = 100) times. These functions offer an insight into
the probability distribution of particle displacements and
are especially convenient to ponder the existence of slow
and fast particles that, respectively, displace distances
that are much shorter or longer than the average. For
each curve, we include the Gaussian fits (dashed lines)
that quantify deviations from a normal distribution of
displacements. The Gaussian fits are generally very good
at short and long times, with an R2 between 0.95 and
0.99 across the three time scales reported in Fig. 6. A
more accurate analysis shows that these fits overesti-
mate the probability of short displacements and under-
estimate that of long displacements. In other words, at
short, intermediate and long time scales, the probabil-
ity of observing slow and fast particles is, respectively,
lower and higher than what a Gaussian distribution of
displacements would predict. This is especially evident
for systems of Mie(24,12) and Mie(48,12) nanotrimers,
which, due to the stronger particle-particle attractions,
are less mobile and thus less likely to displace much
longer distances than the average. By contrast, Mie(24,6)
and Mie(48,6) particles are significantly more mobile and
hence more likely to displace relatively long distances as
the tail of the self-van Hove functions in Fig. 6 shows.

IV. CONCLUSION

In summary, by MD simulations we have investi-
gated the long-time relaxation dynamics of colloidal nan-
otrimers that interact via a range of Mie potentials.
Tuning the strength of repulsive and attractive particle-
particle interactions sets the potential hardness, which
in turns determines the system phase behaviour and dy-
namics. The former was investigating by calculating the
region of coexistence between the low-density and high-
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Figure 6. Self-part of the van Hove correlation functions at t∗ = 0.1 (left), t∗ = 1 (middle) and t∗ = 100 (right) in systems of
nanotrimers interacting via the Mie potentials shown in the legend. Symbols represent simulation results, solid lines are guides
for the eye, and dashed lines are Gaussian approximations.

density fluid phases and the corresponding critical point.
Determining the location of the critical point was crucial
to set the reduced temperature and density at which all
systems existed as dense fluids and thus consistently com-
pare their dynamical properties. To this end, we calcu-
lated the mean-square displacements and their derivative
with respect to time, and found that a full long-time dif-
fusive regime is achieved at approximately t/τ ≈ 1, when
most nanotrimers have displaced a distance between 0.1σ
and 0.5σ. t/τ ≈ 1 is also the time the s-ISF shows the
systems undergo α relaxation and the non-Gaussian pa-
rameter, which quantifies the deviations from Gaussian
dynamics, reaches its maximum value and then decays
to zero at longer times. In general, these deviations are
not significant, with the R2 of the self-van Hove function
never having a value below 0.95. While the deviations are
small, especially if compared to those detected in col-
loidal liquid crystals, crystals and glasses [52–58], they
help one appreciate the impact of attractive interactions
on nanotrimers’ dynamics and on the onset of the diffu-
sive regime. In particular, the Mie(48,12) potential shows
a slight sub-diffusive behaviour, with 0.9 < γ < 1, that
extends over at least two time decades and is not observed
in systems of Mie(48,6) nanotrimers, which are signif-
icantly more repulsive and exhibit a more pronounced
mobility. The computation of the self-part of the van
Hove correlation functions unveils the essentially Gaus-
sian nature of distribution of displacements and indicates
that deviations from Gaussianity are observed at short,

intermediate and long times, but become less and less rel-
evant as soon as the diffusive regime fully develops. The
self-van Hove functions also highlight the occurrence of
slow and fast nanotrimers that are mostly observed in
Mie(48,12) and Mie(24,6) systems, respectively. The for-
mer comprise particles whose attractive interactions are
especially strong and are thus more prone to stick to-
gether and consequently less mobile. By contrast, weaker
attractive interactions enhance the mobility of particles,
which end up displacing significantly longer distances
than the average. Finally, the simultaneous occurrence of
Gaussianity and Fickianity at long times unambiguously
confirms the Brownian nature of the Mie nanotrimers’
dynamics and reinforces the idea that FNG dynamics is
not a universal signature of soft-matter systems.
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