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Abstract: Concrete-filled steel tubes (CFSTs) are structural elements that, as a consequence of an
incorrect elaboration, can exhibit internal defects that cannot be visualized, being usually air voids.
In this work, the detection of internal damage in CFST samples elaborated with a percentage of
contained air voids in concrete, was carried out by performing a complete ultrasound scan using
an immersion tank. The analysis of the ultrasound signals shows the differences presented in the
amplitude of the fundamental frequency of the signal, and in the Broadband Ultrasound Attenuation
(BUA), in comparison with a sample without defects. The main contribution of this study is the
application of the BUA technique in CFST samples for the location of air voids. The results present
a linear relationship between BUA averages over the window of the CFSTs and the percentage of
air voids contained (Pearson’s correlation coefficient r = 0.9873), the higher percentage of air voids,
the higher values of BUA. The BUA algorithm could be applied effectively to distinguish areas with
defects inside the CFSTs. Similar to the BUA results, the analysis in the frequency domain using the
FFT and the STFT was sensitive in the detection of internal damage (Pearson’s correlation coefficient
r = −0.9799, and r = −0.9672, respectively). The results establish an improvement in the evaluation of
CFST elements for the detection of internal defects.

Keywords: nondestructive evaluation; ultrasound; Broadband Ultrasound Attenuation; concrete-filled
steel tubes

1. Introduction

The use of Concrete-Filled Steel Tubular (CFST) columns is a popular solution for high
rise buildings, in modern bridges, sports stadia, towers, and offshore structures [1]. A CFST
column is formed by infilling concrete into a hollow steel tube. The steel tube confines the
concrete core and provides a permanent formwork, and the concrete core avoids or delays
the local buckling of the steel tube. This combination enhances the structural behaviour of
both materials increasing the strength capacity, ductility, and fire resistance of the column
which leads to reduced sections and more usable floor area and thus the economic benefit
of the building [2]. In addition, CFSTs are fast to erect, and it is possible to work in different
levels at the same time due to concrete can be infilled pumping from the bottom. In addition,
B.K. Oh et al. [3] demonstrated that CFSTs are more sustainable, in terms of CO2 emissions
than other traditional solutions. Many studies were carried out on CFST columns subjected
to concentric load, eccentric load, impact load [4], stiffened with V-shaped grooves [5], with
internal stiffeners [6], or with outer annular stiffener [7], and the behavior of this type of
structural elements are well-known. In contrast, a reduced number of studies were carried
out to measure the importance of the imperfections in CFST columns.
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Two materials are used in CFST columns, and both are prone to imperfections. Imper-
fections in steel tubes due to the manufacturing process affect the local and global buckling
of the columns. In CFST columns, the influence of the concrete core reduces these effects [2].
In concrete, the main problems are related to the influence of concrete compaction during
execution, corrosion of steel, working loads, and changes in temperature. Two recent works
studied the detection of cracks due to steel corrosion in reinforced cement mortar, one by
means of a correlation of the nonlinear elastic features of ultrasonic waves with the critical
events of the corrosion [8], and another through intermodulation generation of ultrasonic
waves [9]. Some of the typical defects in CFSTs are internal voids and separations between
steel and concrete that can be regional or complete. Main defects in the form of spherical
gaps between concrete core and steel tube make a negative effect on the confinement
contribution causing a decrease of compressive strength of CFSTs by almost 2–14% [10–13]
compared with a healthy specimen, creating a partially confined effect between concrete
and steel, that the compressive strength of the CFST is similar to the one of concrete without
steel. Air voids located through the matrix of concrete in CFSTs minimize the mechanical
contribution of concrete and affect it similarly as the percentage of porosity does, making a
decrease of compressive strength when the percentage of porosity increases [12]. Experi-
ments in CFSTs with simulated air voids [14] show an increase in buckling deformation
compared to a healthy specimen, and a reduction in its ultimate compressive load and
ductility. For this reason, the prevention of failures through the detection of defects is of
great importance in the elaboration of CFST elements, and existing structures using CFSTs.
A new ultrasonic index were proposed by Chao G. et al. [15,16] to determine the influence
of air-void on the final strength of the arch bridge rib of CFST; however, the work did not
study the presence of air voids inside the concrete.

CFSTs have the inconvenient that internal defects in concrete cannot be visualized. An
approach to detect internal defects is the analysis of ultrasound signals in the time-frequency
domain, using several methods such as Fast Fourier Transform [17–19], Short-Time Fourier
Transform [20,21] or Wavelet Transform [22,23]. Analyzing the spectra of frequencies of
ultrasound signals helps in the detection of internal flaws and composition of materials since it
is difficult to make a good comparison and a characterization of the ultrasound signals in the
time domain in highly attenuated materials, such as concrete. The evaluation of ultrasound
signals in the frequency domain to detect damage in concrete is mainly applied since there is
a more sensitive change in amplitudes of the signals, attenuation, and energy of harmonics
than in the ultrasonic pulse velocity method (UPV), when internal damage (small inclusions,
internal voids and cracks) is presented in concrete [22,24]. Evaluation in the frequency domain
using the Fast Fourier Transform of ultrasound signals in concrete with internal cracks
made by induced damage shows in [19] that a decrease in the energy of the fundamental
harmonics appears to be compared to the analysis of ultrasound signals in locations of the
same specimen without damage. In addition, in [18] showed that the energy spectra of
the fundamental frequency of signals in damaged concrete induced by compression tests
decreased significantly compared to the healthy elements, although UPV remained with
almost the same values. In experimentations evaluating concrete with induced porosity
by freeze-thaw cycling and salt-scaling in [17], UPV decreased just 3–9% compared to a
healthy specimen, and values of the amplitude of the fundamental harmonic, evaluating
the spectrum of the Fourier Transform, resulted in a more sensitive parameter than a change
of UPV, presenting higher values of energy of the fundamental frequency of ultrasound
signals through healthy concrete specimens than in damaged ones.

Analysis of ultrasound signals through the Wavelet Transform decomposes the signal
into a specific wave-like oscillation (wavelet), different from the Fourier Transform that
makes a decomposition of the signal into sine waves of different frequencies. Short-Time
Fourier Transform and Wavelet Transform are usually applied in pulse-echo technique,
since the detection of echoes caused by internal flaws, when ultrasound signals are sub-
merged in noise, can be done evaluating the signals in the time-frequency domain [25].
Even though, an investigation of interest [23] of a concrete structure with holes located in
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different depths, demonstrated that the UPV, using the through-transmission technique,
does not have a linear relation of the size of the internal hole, since the time of flight of
the ultrasonic pulse of the signals traveling through an internal hole were similar to the
ones in the intact concrete, but there was a clear difference in the location in time and
amplitude of the energy of the fundamental frequency evaluating the received signal in the
time-frequency domain using a combination of the Short-Time Fourier Transform and the
Wavelet Transform, called S Transform. Similar results were obtained in a simulation study
carried out by Nadom K. et al. [26]. The detection of damage and its size is subject to the
change in the colour scheme of the STFT spectrogram. The resultant images show that the
increase in the frequency of the excitation signal gives better results.

Broadband Ultrasound Attenuation (BUA) is a physically meaningful way of obtain-
ing attenuation of material as the slope of the linear regression over a certain range of
frequencies. BUA was introduced initially by Langton et al [27], applied in medical experi-
mentations to determine the effects of attenuation, scattering, and porosity of cancellous
bones. The BUA is obtained by measuring the difference of the spectra of an ultrasonic
wave transmitted through reference material, such as water, and through the material
to be analyzed [28]. The difference of both spectra results in an attenuation versus fre-
quency curve, being the BUA the slope of this curve in a certain range of frequency. As R.
Strelitzki et al. [29] mentioned, a certain range of frequencies could be selected for the BUA
regression slope, usually a range between 200 kHz to 1MHz, depending on the fundamental
resonant frequency of the transducer used, being in most of the case the selected range of
frequencies the one that best fits a linear regression. Even though it is possible that different
materials have similar BUA values, this parameter can be used to do a comparison between
healthy and unhealthy samples.

BUA parameter is commonly used in experimentations in the field of bioengineering
applied to identify properties of bones [30] as differences between healthy bones and cancel-
lous bones [31–33], and relationships between BUA parameter and porosity of bones [34],
but there are some references of experimentations done in other materials. J.B Hull et al. [35]
made an important approach of BUA applied in the identification of polymer materials and
porosity of ceramics. In this experimentation, they performed a relation of the attenuation
versus frequency regression slope (BUA) with the time of flight of the ultrasound signal
through the material to obtain Hull/Langton index (HL), used to make a comparison with
porosity in ceramics measured with hydration test, resulting in a linear relationship of HL
index increasing as the percentage of porosity in ceramics does. BUA is shown in [36] that
can be applied in the same way for detection of defects (as drill holes) in aluminum bars
making an interesting approach on how BUA has higher values when a material is analyzed
in a fully drilled area than in an area with smaller drill holes, applied with both pulse-echo
and through-transmission methods. A comparative result [37] in mortars with different
degrees of porosity demonstrated that mortars with a higher percentage of porosity have
higher regression slope values (BUA) in the attenuation versus frequency curve for a certain
range of frequencies (between 1.5 to 1.7 MHz) than mortars with less percentage of porosity.
Although the degree of porosity cannot be obtained from BUA results, there is an approach
about how BUA values allow differentiating between an element that has a percentage
of damage.

Based on the studies presented, there is a knowledge gap about the effectiveness of
the different analysis methods that can be applied to the existing ultrasound techniques
for the detection of damage, specifically air voids inside the concrete matrix of CFSTs. The
objective of this study is to measure possible internal defects in the concrete. In this line,
CFST stub columns with internal defects were manufactured including random inclusions.

The remainder of this paper is organized as follows. Section 2 describes the preparation
of samples, the experimental setup, and the algorithms employed to detect internal damage
in CFSTs. Section 3 describes the results and the discussion. Finally, Section 4 offers the
conclusions of this research and suggestions for the future.
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2. Materials and Methods
2.1. Preparation of Samples

In this work, a total of 5 CFST stub columns were tested to detect internal imperfections.
All these columns were manufactured in the laboratory of the Department of Mechanical
Engineering and Construction of the Universitat Jaume I in Castellón, Spain. The columns
were 300 mm in length with a nominal cross-section of the tubes (height (h) × width (b)
× steel thickness (t)) 100 × 100 × 4 mm (see Figure 1). The steel tubes were cold-formed
carbon steel and supplied by the same manufacturer. The nominal yield strength of the
tubes was S275JR.

Figure 1. CFST stub columns.

Air voids were simulated using a certain amount of expanded polystyrene beads with
a volume of 25 mm in diameter. This material is conformed to 98% of air, for this reason,
expanded polystyrene pieces in the concrete can be simulated as internal air voids. The
percentage of voids for each CFST is 0%, 1%, 2%, 3% and 4%. The approximate number of
air voids can be estimated with the previous information, as seen in Table 1.

Table 1. Approximate number of added polystyrene beads.

Percentage of Air Voids Polystyrene Beads

0% 0

1% 3

2% 6

3% 9

4% 12

Elaboration of concrete, fully described in [38] (proportions, Table 2), was done using a
planetary mixer to prepare the concrete mix. Concrete and polystyrene pieces were poured
in steel tubes by stages using a vibrator rod to compact concrete correctly. A concrete
specimen was used to obtain the values of the characteristic resistance. Concrete and CFSTs
were standardly cured for 28 days covered with wet clothes, then external surfaces were
treated to have a proportional dimension.

Table 2. Concrete mix proportions.

Infill Proportions

Cement (kg/m3) 348

Water (l/m3) 220

Sand (kg/m3) 1065

Gravel (kg/m3) 666
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2.2. Experimental Setup

The through-transmission technique was used to perform a 2D scan of the specimens
in an immersion tank. Figure 2 shows a controlled arm used to correct alignment between
the transducers and the specimens and to scan them without changing the distance emitter-
receiver. Taking into account the compromise of the attenuation of waves with the frequency,
immersion transducers with a central frequency of 1 MHz (0.5”-V303) were selected. The
transducer with a smaller diameter was used to increase the resolution in the 2D scan.
The maximum voltage registered by the receiver was obtained by rotating the transducers
on their vertical and horizontal axis. The distance from the emitter transducer to the
CFST samples was set to avoid near-field effects. In this case, the separation was 30 mm.
The receiver was positioned at 50 mm from the CFST sample to prevent reflections from
interfering with the recorded signal. The edge of the transducer was aligned to the lateral
edge of the CFST samples, as shown in Figure 3. The ultrasonic device was programmed to
perform measurements every 2 mm in the two dimensions of the movement.

An ultrasonic testing device with integrated pulser and receiver was employed (OP-
BOX 2.1). A maximum voltage of 360 V was set and the gain pre-amplifier of +24 dB was
used. An analog filter of 0.5–25 MHz was applied. Signals were acquired with a sampling
frequency of 100 MHz, and an averaging of 64 samples was set.

 

Transducer Receiver

Ultrasonic Generator
and Receiver

Computer

CNC Robotic
Scanning
System

Immersion Tank

CFST Sample

Figure 2. Experimental setup.

Figure 3. Schematic path of transducers during the scanning process. The gray circles represent the
diameter of the transducers. The arrows show the directions of movement of the same.
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2.3. Computational Algorithms
2.3.1. Fast Fourier Transform and Short-Time Fourier Transform

Transformation of the signals in the frequency domain was done using the Fast Fourier
Transform (FFT) algorithm in Matlab (R2018b, The MathWorks Inc., Natick, MA, USA). To
prevent leakage and aliasing, 8192 signal points were employed.

Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a windowed
signal. STFT provides the time-localized frequency information for situations in which
frequency components of a signal vary over time. STFT algorithm of an ultrasound wave
signal s(t) can be written as,

S(τ, ω) =
∫ +∞

−∞
s(t)θ(t− τ)e−iωt dt (1)

where θ(t− τ) is the window function with time and duration, τ is the time resolution,
and ω is the radial frequency. Here, a 512-point Hamming window with 50% overlap was
employed. The spectrogram allows to represent the signal in the time-frequency domain
and evaluate the evolution of the frequencies of the signal over time to detect, in a more
precise way, differences between ultrasound signals as its phase velocity and the energy
spectrum of the fundamental frequency emitted by the transducer.

In STFT analysis, there exists a tradeoff between time and frequency resolution when
determining the window size. In other words, although a narrow-width window results
in a better resolution in the time domain, it generates a poor resolution in the frequency
domain, and vice versa.

2.3.2. Broadband Ultrasound Attenuation Analysis

The attenuation parameter to compare intact and damaged structures was obtained by
comparing the frequency spectrum of the transmitted signal through a reference material
that does not contain defects or has low attenuation and the spectrum of the analyzed
specimen to be characterized (Figure 4). In this work, degassed water was used for
reference signal.

0.2 0.4 0.6 0.8 1 1.2

Frequency, f, (MHz)

10

20

30

40

50

60

A
m

p
li

tu
d
e

CFSTs

Water

Figure 4. Representation of frequency spectra of reference material (degassed water) and CFST
sample (dashed line).

Attenuation at a certain frequency is the difference between the amplitudes of both
spectra, the reference material, and the characterized material [29]. Therefore, to obtain the
attenuation parameter, the subtraction of the absolute values of the spectra of the reference
material (VR), obtained from the FFT, and the absolute values of the spectra of the material
to be characterized (VS) should be obtained as,

α = 20 · Log10|VR| − 20 · Log10|VS| (2)
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where α is the attenuation.
The BUA parameter was determined by fitting the attenuation values within a selected

frequency range to a straight line (Figure 5) as follows,

α = a + BUA · f (3)

where f is the frequency in MHz and a is the intersection value of the curve with the
vertical axis. The range of frequencies to obtain BUA regression slope highly depends on
the fundamental resonant frequency of the transducers used, in this case, the transducers
used were 1 MHz. The range of frequencies to obtain BUA rate was from 0.95 MHz to
1.1 MHz (see Figure 5) because it is the range of frequencies around the fundamental
frequency of the transducer and that the variation of the attenuation as a function of
frequency has a linear behavior.

0.1 0.4 0.6 0.8 1 1.2
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Figure 5. Example of the attenuation versus frequency curve (black solid line) with regression slope
(red solid line).

3. Results and Discussion
3.1. FFT and STFT C-Scan Results

The FFT algorithm was applied to the received signals of the 5 CFST samples, and
a C-Scan was obtained evaluating the amplitude of the fundamental harmonic of every
signal. Results in Figure 6 present a clear difference of the energy spectrum of the signals
in the CFST samples according to the percentage of air voids contained.

As shown in Figure 6, a decrease in the amplitude of the fundamental frequency is
exhibited on the sides of the CFST samples, compared with values at the center of the CFST.
This drop in energy is given due to the high attenuation of the signals in this area since
part of the energy from the transducer travels through the water. As the transducer moves
away from the edges this effect disappears.

Average of the fundamental harmonic amplitudes, excluding the lateral part of the
CFST sample (30 mm on each side) (see Figure 7) shows a decrease of the amplitude
of the fundamental harmonic energy as the percentage of air voids contained in the
CFSTs increments.

From the obtained result of the fundamental harmonic amplitude averages over the
window of the CFST samples, it is shown that the average energy value decreases as the
percentage of polystyrene beads increases.

Similarly, the algorithm of STFT was applied to the signals of the 5 CFST samples
using the parameters described previously. The C-Scan was performed evaluating the
highest value of the energy spectrum, close to 1 MHz.
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Figure 6. C-Scan of fundamental harmonic amplitudes using FFT for the five CFST samples.
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Figure 7. Fundamental harmonic amplitude averages over the window of the CFST samples using
the FFT algorithm. The solid black line is a linear fit of the data. Pearson correlation coefficient
r = −0.9799.

Although similar results are presented in Figure 8, in comparison with the use of the
FFT algorithm, they present some differences. As seen in the C-Scan, in the top and bottom
of the CFST, there is an increment in the amplitude of the fundamental frequency due to
the signals transmitted through steel. In addition, the range of the energy spectrum is
considerably less than the obtained using the FFT algorithm.

The results of the STFT analysis show, as with the FFT algorithm, a reduction in the
average value over the analyzed window as the percentage of gaps increases (Figure 9),
motivated by the fact that the ultrasounds when traveling through the polystyrene beads
reduce the amplitude considerably due to the difference in impedance between two media.

Assumptions of the areas of damaged concrete, due to air voids contained, could be
done. The air voids that are contained in the lateral parts of the CFST cannot be visualized,
since at these positions the wave travels through the CFTS sample and part through
the water.

The analysis in the frequency domain using the FFT and the STFT was sensitive in
the detection of internal damage. When transforming the signals in the frequency domain
using the FFT a decrease in the amplitude of the fundamental frequency was presented
if the signal travels through an air void. Similar results were displayed evaluating the
time-frequency energy spectrum using the STFT where a reduction of the level of energy
of the fundamental frequency was presented. C-Scan using previous algorithms allowed
to identify damaged areas in the CFST samples. Results were validated since the average
values of both C-Scan presented a decrease in the energy of the fundamental frequency as
the percentage of air voids increased. Several works presented in the literature to detect
internal defects in the time-frequency domain showed similar results, such as Fast Fourier
Transform [17–19], and Short-Time Fourier Transform [20,21]. Analyzing the frequency
spectrum helps in the detection of internal flaws and composition of materials since it is
difficult to make a good comparison and a characterization of the ultrasound signals in the
time domain in highly attenuated materials, such as concrete.
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Figure 8. C-Scan of the fundamental harmonic amplitudes using STFT for the five CFST samples.
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Figure 9. Fundamental harmonic amplitude averages over the window of the CFST samples using
the STFT algorithm. The solid black line is a linear fit of the data. Pearson correlation coefficient
r = −0.9672.

3.2. BUA C-Scan Results

First, from the obtained signals in the five different CFST samples, a comparison
between the attenuation versus frequency curves obtained from signals taken at the center
of the CFST sample was done. As shown in Figure 10, the linear regression can be applied
in the same range of frequencies (950 kHz to 1.1 MHz) to obtain a difference in the BUA
values that allow making a distinction between signals that pass through an air void, and
from signals passing through an intact area of the CFST.
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Figure 10. Attenuation versus frequency curve from ultrasound signals measured in the 5 CFST
samples. The square bracket indicates the frequency range in which the linear regression is performed.

From the previous result, it can be distinguished that, in the attenuation versus
frequency curves a higher slope (BUA) is presented in signals that travel through air voids
than in those that travel through the concrete. Therefore, a C-Scan of the BUA values was
performed to detect the damaged areas.

Results from the BUA C-Scan are presented in Figure 11. Quantification of results was
obtained with averages of the BUA parameter over the window of the CFST samples, and
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results were plotted against the percentage of air voids, as shown in Figure 12. Results,
although affected by the lateral parts of the CFSTs, present a linear relationship between
BUA and the percentage of air voids contained, the higher percentage of air voids, the
higher values of BUA.

Figure 11. C-Scan of BUA values in dB/MHz for the five CFST samples.
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Figure 12. BUA averages over the window of the CFST samples. The solid black line is a linear fit of
the data. Pearson correlation coefficient r = 0.9873.

Similar to frequency domain analysis results from the lateral parts of the CFST are
different from the values at the center of the CFST samples. For a better comparison of the
C-Scan, results excluding the lateral and upperparts that affect the range of BUA values
were analyzed (15 mm on each side, and 10 mm top and bottom were excluded), as seen in
Figure 13.

Damage can be detected in a more accurate way area in the CFSTs samples (Figure 13),
allowing to do an estimation of the location of the expanded polystyrene beads included in
the elaboration of the CFST samples. For that purpose, a damage detection algorithm was
programmed in Matlab environment. The algorithm performs a sweep over the entire C-
scan. In each of the positions, a circle of the diameter of the polystyrene beads is positioned.
A BUA threshold is established and if the average of the values inside the circle is greater
than the determined threshold, that zone is identified with an inclusion. The set threshold
was 240 dB/MHz, obtained through iteration to capture the estimated approximate number
of voids in each CFST sample (see Table 1). Figure 13 shows the reconstruction of the air
voids, which, in general, are aligned with the longitudinal direction of the samples, which
makes sense due to the introduction of a vibrator rod for sample compaction.

Results of analyzing the signal through BUA indicate that this method could be used
to detect defects inside CFSTs. The selected range of frequencies to analyze BUA was from
950 kHz to 1.1 MHz, which has a relation with the central frequency of the transducers used.
As mentioned by R. Strelitzki et al. [29] there is certain range of frequencies that could be
selected for the BUA regression slope, depending on the fundamental resonant frequency
of the transducer used, being in most of the case the selected range of frequencies the one
that best fits a linear regression. This frequency range was analyzed since more differences
were presented in the regression slope of the attenuation versus frequency curve if an
ultrasound signal travels through an area with defects. BUA averages over the window of
the CFST samples presented a linear increase with the percentage of air voids contained in
the sample. Similar results were found in mortars with different degrees of porosity [37],
mortars with a higher percentage of porosity have higher regression slope values (BUA) in
the attenuation versus frequency curve for a certain range of frequencies than mortars with
less percentage of porosity. Although the degree of porosity cannot be obtained from BUA
results, there is an approach about how BUA values allow differentiating between elements
with different percentage of damage. In addition, the work performed by Rosalba et al. [36]
showed that BUA has higher values when aluminum bars are analyzed in a fully drilled
area than in an area with smaller drill holes, applied with through-transmission methods.
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Figure 13. C-Scan of BUA values in dB/MHz at the center of the five CFST samples. The circles
represent the position of the air voids calculated by the proposed algorithm.

Results from Pearson’s correlation study were shown in Figures 7, 9, and 12. Pearson’s
correlation coefficient r = −0.9799 for the FFT study, r = −0.9672 for the STFT study,
and r = 0.9873 for the BUA study. Despite that the three studies show high correlation
coefficients, the BUA study is the one that shows the highest value (r = 0.9873). Despite
this higher correlation, the edge effects of the C-scans (left and right areas) in both the
FFT and STFT methods (Figures 6 and 8) mask information related to possible concrete
imperfections; however, with the BUA method (Figure 11) these edge effects are reduced,
obtaining more information in the mentioned areas.
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4. Conclusions

Concrete-filled steel tubes (CFSTs), formed by infilling concrete into a hollow steel tube,
are structural elements that can present internal defects such as air voids. In this work, the
nondestructive evaluation using the analysis of ultrasound signals in the frequency domain
was presented. The Fast Fourier Transform, Short-Time Fourier Transform, and Broadband
Ultrasound Frequency techniques were employed. The detection of internal damage was
carried out by doing a complete ultrasound C-Scan in the CFST samples using an immersion
tank. Five CFST stub columns were tested, which have a certain percentage of failure being
this 0%, 1%, 2%, 3% and 4%, based on the percentage of expanded polystyrene beads added
to the concrete specimen, simulating air voids, in comparison with the volume of concrete.
For the three proposed techniques, fundamental harmonic amplitude (FFT and STFT
techniques) or BUA averages over the window of the CFST samples were performed. The
results present a linear relationship between BUA averages over the window of the CFSTs
and the percentage of air voids contained (Pearson’s correlation coefficient r = 0.9873), the
higher percentage of air voids, the higher values of BUA. The BUA algorithm could be
applied effectively to distinguish areas with defects inside the CFSTs. Similar to the BUA
results, the analysis in the frequency domain using the FFT and the STFT was sensitive
in the detection of internal damage (Pearson’s correlation coefficient r = −0.9799, and
r = −0.9672, respectively). When transforming the signals in the frequency domain using
the FFT a decrease in the amplitude of the fundamental frequency, corresponding to the
central frequency of the transducer (1 MHz), was presented if the signal travels through an
air void. Similar results were displayed evaluating the time-frequency energy spectrum
using the STFT where a reduction of the level of energy of the fundamental frequency
was presented. In summary, the results of this investigation establish an improvement in
the evaluation of CFST elements for the detection of internal defects. As future research
works, based on the limitations of this work, a study of the samples is proposed using the
pulse-echo technique, to solve the inspection difficulties by requiring two accessible faces;
as well as 2D scanning with smaller diameter transducers to achieve higher resolution and
to be able to inspect defects at the edges between the concrete and the steel.
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Abbreviations
The following abbreviations are used in this manuscript:

CFSTs Concrete-filled steel tubes
BUA Broadband Ultrasound Attenuation
CFST Concrete-Filled Steel Tubular
UPV Ultrasonic pulse velocity method
HL Hull/Langton index
FFT Fast Fourier Transform
STFT Short-time Fourier transform
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