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Abstract
In this paper we pursue the use of information measures (in particular, information
diagrams) for the study of entanglement in symmetric multi-quDit systems. We use
generalizations to U (D) of spin U (2) coherent states and their adaptation to par-
ity (multicomponent Schrödinger cats), and we analyse one- and two-quDit reduced
density matrices. We use these correlation measures to characterize quantum phase
transitions occurring in Lipkin–Meshkov–Glick models of D = 3-level identical
atoms, and we propose the rank of the corresponding reduced density matrix as a
discrete order parameter.
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1 Introduction

Information diagrams were introduced to discuss the relation between two different
information measures, like von Neumann entropy and error probability [1], or von
Neumann and linear entropies [2]. In the particular case of linear (L) and von Neu-
mann (S) entropies, pairs (L(ρ),S(ρ)) are usually plotted for any valid probability
distribution ρ. Here, ρ can also represent the density matrix of a quantum system (or
rather a vector with its eigenvalues), and this is our main interest in this paper. Spe-
cial attention is paid to the boundaries of the resulting information diagram region,
where the associated probability distributions (or density matrices) will be denoted
as “extremal”. In Ref. [3], a comparison is made between both entropies in the case
of two qubits (see also [4] for the case of the ion-laser interaction). In [5], a detailed
study of information diagrams is carried out for arbitrary pairs of entropies. There
it is proved that, for certain conditions (satisfied by linear, von Neumann and Rényi
entropies), the extremal density matrices are always the same. Counterexamples are
given but, in general, the deviation will be very small and we can safely assume that
these extremal density matrices have universal character.

In this paper we shall use information diagrams to obtain global qualitative infor-
mation of particle entanglement in symmetric multi-quDit systems described by
generalized “Schrödinger cat” (multicomponent DCAT) states (first introduced in [6] as
two-component, even and odd, states for an oscillator). These DCAT states turn out to
be a ZD−1

2 parity adaptation of U (D)-spin coherent (quasi-classical) states, and they
have the structure of a quantum superposition of weakly overlapping (macroscopi-
cally distinguishable) coherent wave packets with interesting quantum properties. For
that purpose we make use of one- and two-quDit reduced density matrices (RDM),
obtained by extracting one or two particles/atoms from a composite system of N
identical quDits described by a cat state, and tracing out the remaining system. It is
well known (see [3] and references therein) that the entropy of these RDMs provides
information about the entanglement of the system. We shall plot the information dia-
grams associated with these RDMs and extract qualitative information about one- and
two-quDit entanglement, and also about the rank of the corresponding RDM, which
also provides information on the entanglement of the original system [7].

We shall apply these results to the characterization of quantum phase transitions
(QPT) occurring in Lipkin–Meshkov–Glick models of 3-level identical atoms, com-
plementing the results of [8]. In particular, we have seen that the rank of the one- and
two-quDit RDMs can be considered as a discrete order parameter precursor detecting
the existence of QPTs.

The paper is organized as follows. Section 2 reviews the notion of information
diagram, describing its main properties, particularly with respect to the rank. Section
3 reviews the concept of U (D)-spin coherent states and their ZD−1

2 parity adapted
version, the DCAT. In Sect. 4 we compute one- and two-quDit RDMs for the 2CAT and
the 3CAT, their Linear and von Neumann entropies, plotting them and constructing
the associated information diagrams. In Sect. 5 we use information diagrams to pro-
vide qualitative information about QPTs in Lipkin–Meshkov–Glick (LMG) models.
Section 6 is devoted to conclusions.
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2 Information diagrams

To determine the boundaries in information diagrams [2] we need to show that, for
two different measures of entropy (or information) E1 and E2, there are maximum
and minimum possible values of E1 (resp. E2) for a given value of E2 (resp. E1)
[5]. That is, the region � given by the image of the map ρ �→ (E1(ρ), E2(ρ)) is a
bounded set in the plane, where ρ denotes all possible probability distributions (or
density matrices) for a given dimension d.

Since usual measures of entropy for density matrices are based on the trace, they
are invariant under changes of basis. Hence, the only relevant information of a density
matrix is contained in its eigenvalues; thus, in this paper we shall identify density
matrices ρ with their eigenvalues (λ1, λ2, . . . , λd), the order being irrelevant. There-
fore, for our purposes, we can identify probability distributions and density matrices
using a vector notation in terms of eigenvalues, referring to both of them as density
matrices for short. Notwithstanding, we shall continue to treat density matrices as
matrices in some situations.

In [5] it was proved that, under rather general assumptions on the convex-
ity/concavity of the entropy measures, the maximum and minimum values are always
attained in two standard forms of density matrices

ρmax(λ) = (λ, λ̄, (d−1). . . , λ̄) , λ̄ = 1 − λ

d − 1
≤ λ , λ ∈

[
1

d
, 1

)
, (1)

ρ
(k)
min(λ) = (λ, (k). . ., λ, λ̄, 0, . . . , 0) , λ̄ = 1 − kλ < λ, λ ∈

[
1

k + 1
,
1

k

)
, (2)

respectively, where k = 1, . . . , d − 1. Let us write the previous equations as (con-
vex) sums of density matrices, that in turn can be seen as lower dimensional density
matrices. For that purpose denote by ρk the maximally mixed density matrix (or equal
probabilities distribution) in dimension k, ρk = ( 1k ,

(k). . ., 1
k ) = 1

k Ik , where Ik is the
identity matrix in dimension k. Then we have:

ρmax(ε) = (1 − ε) ρd + ε ρ1 ⊕ 0d−1 , ε ∈ [0, 1) (3)

ρ
(k)
min(ε) = (1 − ε) ρk ⊕ 0d−k + ε 0k ⊕ ρ1 ⊕ 0d−1−k , ε ∈

(
0,

1

1 + k

]
(4)

where 0k is the null matrix (or vector) in dimension k and k = 1, . . . , d − 1. The
relation between ε and λ is λ = 1

d − (
1 − 1

d

)
ε for Eqs. (1, 3) and λ = 1−ε

k for
Eqs. (2, 4).

In most cases, the pair of entropies (L,S) is considered, where L and S denote
linear and von Neumann entropies, respectively. We shall consider here normalized
linear and von Neumann entropies, i.e.

L(ρ) = d

d − 1

(
1 − Tr(ρ2)

)
, S(ρ) = −Tr(ρ logd ρ), (5)
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Fig. 1 a Information diagram for linear and von Neumann entropies in dimension d = 5, where the region
� is bounded by the curves associated with the density matrices given by Eqs. (3) (above) and (4) (below).
All curves except ρmax are traced from left to right when ε increases. b Curves associated with density

matrices ρ̄
(k)
min(ε) for k = 1, . . . , d − 1, which are traced from right to left. Note that in the case k = 1

the associated curve is the same as in a, but traced backwards. Also, for k = d − 1 the associated curve
coincides with that of ρmax. c Plot of the asymptotic curves (8, 9) for density matrices near a pure state
(bottom-left, red and pink, respectively) and the asymptotic curve (10) near the maximally mixed state
(upper-right, green) (Color figure online)

in such a way that both entropies range from 0 (pure states) to 1 (maximally mixed
states). The values of both entropies for each family of curves are:

L(ρmax(ε)) = 1 − ε2,

S(ρmax(ε)) = −(d − 1)
1 − ε

d
logd

(
1 − ε

d

)
−

(
1 + (d − 1)ε

d

)

× logd

(
1 + (d − 1)ε

d

)
, (6)

and

L(ρ
(k)
min(ε)) = d

d − 1

(
1 − ε2 − (1 − ε)2

k

)
,

S(ρ
(k)
min(ε)) = −(1 − ε) logd(1 − ε) − ε logd(ε) + (1 − ε) logd(k). (7)

In Fig. 1a the curves ρ �→ (L(ρ),S(ρ)) are shown for ρ equal to ρmax(ε) and
ρ

(k)
min(ε), delimiting the corresponding region � (we are setting d = 5).

Note that the density matrices (3) can be seen (for small ε) as the maximally mixed
density matrix ρd perturbed by a rank-1 density matrix, while those of (4) can be seen
as maximally mixed density matrix of dimension k, ρk , perturbed by a (orthogonal)
rank-1 density matrix, for k = 1, . . . , d − 1.

It should be stressed that the range of the parameter ε in the curves ρ
(k)
min(ε) can be

extended to the interval [0, 1]. Let us denote by ρ̄
(k)
min(ε) the family of density matrices

(4) for the range ε ∈ ( 1
1+k , 1]. Their corresponding curves in the information diagram

are shown in Fig. 1b.
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Fig. 2 Coloured plot of a sample of 1000 densitymatrices of dimension d = 5 randomly generated following
a χ2 distribution for the eigenvalues in an information diagram where the different colours represent the
rank of the density matrix (warmer colours represent higher ranks) (Color figure online)

2.1 Information diagrams and rank of density matrices

As it can be seen in Fig. 1b, there are only d−3 distinct ρ̄(k)
min curves, for k = 2, . . . , d−

2. These curves divide the region � into d − 2 subregions, �k , k = 2, . . . , d − 1,
bounded by the curves ρ

(k)
min, ρ̄

(k)
min and ρ̄

(k−1)
min . Each subregion �k contains density

matrices of rank greater than k. Density matrices of rank 1 (pure states) lie on the
origin, while density matrices of rank 2 lie on the curve ρ

(1)
min = ρ̄

(1)
min. See Fig. 2 for a

plot of a sample of 20000 density matrices of dimension d = 5 randomly generated
following a χ2 distribution for the eigenvalues where the colour of the corresponding
point in the information diagram is associatedwith its rank (warmer colours correspond
to higher rank).

From the expression of the extremal density matrices (1,2), or their alternative
expressions (3,4), and the expression of the inner curves ρ̄

(k)
min(ε), it is clear that, for a

given value of the linear entropy and a fixed rank k + 1, the extreme values of the von
Neumann entropy are reached for k identical eigenvalues. If the remaining eigenvalue
is larger than the rest (i.e. we are in ρ̄

(k)
min), then there is a maximum, and if it is smaller

than the rest (in ρ
(k)
min), then it is a minimum of von Neumann entropy.

2.2 Asymptotic curves

It is interesting to obtain approximate expressions for the function S(L) in some
regions of the information diagram. Near a pure state (bottom left of the information
diagram), we have the following asymptotic expressions for the curves ρmax and ρ

(1)
min:

S(L) = d − 1

2d log(d)

[
(1 + log(2d))L − L log(L)

]
, (8)

S(L) = d − 1

2d log(d)

[
(1 + log(2d) − log(d − 1))L − L log(L)

]
, (9)
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respectively. Near the maximally mixed density matrix (upper right of the informa-
tion diagram), both ρmax and ρ

(d−1)
min collapse into the same curve, with asymptotic

expression:

S(L) = 1 − d − 1

2 log(d)
(1 − L). (10)

See Fig. 1c for a plot of these asymptotic curves in an information diagramwith d = 5.
Oncewe have explainedwhat the information diagrams are, and theirmain features,

we shall use them in the study of one- and two-quDit entanglement of generalized
Schrödinger cat states, which arise as a parity adaptation of U (D)-spin (symmetric
multi-quDit) coherent states.

3 U(D)-spin coherent states and their adaptation to parity in
symmetric multi-quDit systems

In this section we introduce the main ingredients and notation required to define parity
adaptedU (D)-spin coherent states in symmetric multi-quDit systems. These kinds of
states were introduced long ago in [6] as nonclassical (even and odd) states of light.
We shall particularize to D = 2 and D = 3 for practical cases. See [8] for a more
detailed study of the general case.

We consider a system of N identical (indistinguishable) quDits, namely, D-level
identical atoms. Denoting by a†i (resp. ai ) the creation (resp. annihilation) operator of
an atom in the i-th level (namely, i = 1, 2 for ground and excited—or spin up and
down—in the case D = 2, or i = 1, 2, 3 for a 3-level atom in the case of D = 3),
the collective U (D)-spin operators can be expressed (in the fully symmetric repre-
sentation) as bilinear products of creation and annihilation operators as (Schwinger
representation)

Si j = a†i a j , i, j = 1, . . . , D, (11)

which generate the unitary symmetry U (D). The operator Sii represents the number
of quDits in the level i , whereas Si j , i �= j are raising and lowering (tunnelling)
operators. The fully symmetric representation space of U (D) is embedded into Fock
space, with Bose–Einstein–Fock basis (|�0〉 denotes the Fock vacuum)

|�n〉 = |n1, . . . , nD〉 = (a†1)
n1 . . . (a†D)nD√
n1! . . . nD! |�0〉, (12)

when fixing n1 + · · · + nD = N (the linear Casimir C1 = S11 + · · · + SDD) to the
total number N of quDits. Collective U (D)-spin operator (11) matrix elements are
given by
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〈 �m|Sii |�n〉 = niδ �m,�n,

〈 �m|Si j |�n〉 =
√

(ni + 1)n jδmi ,ni+1δm j ,n j−1

∏
k �=i, j

δmk ,nk , ∀i �= j . (13)

The expansion of a general symmetric N -particle state ψ in the Fock basis will be
written as

|ψ〉 =
∑

�n
′ c�n|�n〉 =

∑
n1+···+nD=N

cn1,...,nD |n1, . . . , nD〉, (14)

where
∑′ is a shorthand for the restricted sum. Among all symmetric multi-quDit

states, we shall pay special attention toU (D)-spin coherent states (DSCSs for short),
which adopt the multinomial form1

|z〉 = |z2, . . . , zD〉 = 1√
N !

(
a†1 + z2a

†
2 + · · · + zDa

†
D√

1 + |z2|2 + · · · + |zD|2
)N

|�0〉, (15)

and are labelled by complex points z = (z2, . . . , zD) ∈ CD−1. These DSCSs can be
seen as Bose–Einstein condensates (BECs) of D modes, generalizing the spin U (2)
(binomial) coherent states of two modes introduced by [9, 10] long ago. If we order
levels i = 1, . . . , D from lower to higher energies, the state |z = 0〉 would be the
ground state, whereas general |z〉 could be seen as coherent excitations. Coherent states
are sometimes called “quasi-classical” states, and we shall see in Sect. 5 that |z〉 turns
out to be a good variational state that reproduces the energy and wave function of the
ground state of multilevel LMG atom models in the thermodynamic (classical) limit
N → ∞.

Expanding the multinomial (15), we identify the coefficients c�n of the expansion
(14) of the DSCS |z〉 in the Fock basis as

c�n(z) =
√

N !∏D
i=1 ni !

∏D
i=2 z

ni
i

|z|N , (16)

where we have written |z| ≡ (z · z)1/2 = (1 + ∑D
i=2 |zi |2)1/2 for the “length” of z.

Note that DSCS are not orthogonal (in general) since

〈z′|z〉 = (z′ · z)N
(z′ · z′)N/2(z · z)N/2 , z′ · z ≡ 1 + z̄′2z2 + · · · + z̄′DzD, (17)

is not zero, in general. However, contrary to the standard (canonical, harmonic oscil-
lator) CSs, they can be orthogonal when z′ · z = 0.

1 In Eq. (15) and the following ones we have put z1 = 1, where z1 is the parameter multiplying a†1 , see
[8]. Consequently, it has been removed from the expression of |z〉.
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In [8] we have shown that DSCSs are separable and exhibit no quDit entanglement
(although they do exhibit interlevel entanglement). In fact they can be written as a
tensor product of 1-quDit coherent states:

|z〉(N ) = |z〉1 ⊗ |z〉2 ⊗ · · · ⊗ |z〉N , (18)

where we added the superscript (N ) to the N -particle coherent state (15) and |z〉i
denotes the one-particle coherent state for the i-th quDit.Note that this state is explicitly
symmetric under the interchange of quDits and therefore there is no need to symmetrize
it.

The situation changes when we deal with parity adapted DSCSs, sometimes called
“Schrödinger cat states”, since they are a quantum superposition ofweakly overlapping
(macroscopically distinguishable) quasi-classical coherent wave packets. These kind
of cat states arise in several physical situations and display interesting nonclassical
properties. The case of even parity cat states is particularly important since they turn
out to be good variational states [10], reproducing the energy of the ground state of
quantum critical models in the thermodynamic limit N → ∞. In [8], the even parity
multi-quDit cat state DCAT have been constructed for general D, and here we shall
reproduce the construction to fix notation.

The parity operators are defined as

	 j = exp(iπ S j j ), j = 1, . . . , D. (19)

Note that 	−1
i = 	i and 	1 . . . 	D = (−1)N , a constraint that says that the parity

group for symmetric quDits is not Z2× D. . . ×Z2 but Z2× D−1. . . ×Z2 = ZD−1
2 instead.

Therefore, we can discard in our discussion one of the parity operators, and we select
	1 (since we will use level 1 as reference level in Sect. 5).

Parity operators are conserved when the Hamiltonian scatters pairs of particles
conserving the parity of the population n j in each level j = 1, . . . , D, like in the
D-level LMG model considered in Sect. 5. Using the multinomial expansion (15), it
is easy to see that the effect of parity operators on symmetric DSCSs |z〉 is then

	i |z〉 = 	i |z2, . . . , zi , . . . , zD〉 = |z2, . . . ,−zi , . . . , zD〉 , i = 2, . . . , D . (20)

The projector onto the even parity subspace is given by:

	even = 21−D
∑

b∈{0,1}D−1

	
b2
2 	

b3
3 . . . 	

bD
D , (21)

where the binary string b = (b2, . . . , bD) ∈ {0, 1}D−1 labels the elements of the
parity group ZD−1

2 . We shall also denote the symbol 0 for the string (0, . . . , 0).
Let us define the even parity generalized Schrödinger cat state

|DCAT〉 = 1

N (DCAT)
	even|z〉 = 21−D

N (DCAT)

∑
b

|zb〉, (22)
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where |zb〉 ≡ |(−1)b2 z2, . . . , (−1)bD zD〉 and we are using
∑

b as a shorthand for∑
b∈{0,1}D−1 . The DCAT is just the projection of a DSCS onto the even parity subspace.

The normalization factor is given by

N (DCAT)2 = 21−D

∑
b LN

b

LN
0

(23)

where Lb = 1 + (−1)b2 |z2|2 + · · · + (−1)bD |zD|2. We shall also use the alternative
notation Lσ ≡ Lb for σ = (−1)b = ((−1)b2 , . . . , (−1)bD ) for convenience.

As an illustration, let us provide the particular expressions of |DCAT〉 for D = 2
and D = 3. Denoting by |z〉 = |z2〉 = |α〉 the coherent state (15) for D = 2, the
corresponding even parity 2CAT state is given by

|2CAT〉 = 1

2N (2CAT)

(|α〉 + | − α〉), (24)

with normalization factor

N (2CAT)2 = 1

2

[
1 +

(
1 − |α|2
1 + |α|2

)N
]

= 1

2

LN+ + LN−
LN+

, (25)

with L± = 1± |α|2. Note that the overlap 〈α| − α〉 = (L−/L+)N
N→∞−→ 0 for α �= 0,

which means that |α〉 and |−α〉 are macroscopically distinguishable wave packets for
any α �= 0 (they are orthogonal for |α| = 1).

Likewise, denoting by |z〉 = |z2, z3〉 = |α, β〉 the coherent state (15) for D = 3,
the corresponding even parity 3CATs state is explicitly given by

|3CAT〉 = 1

4N (3CAT)

(|α, β〉 + | − α, β〉 + |α,−β〉 + | − α,−β〉), (26)

where

N (3CAT)2 = 1

4

[
1 + (1 − |α|2 + |β|2)N + (1 + |α|2 − |β|2)N + (1 − |α|2 − |β|2)N

(1 + |α|2 + |β|2)N
]

= 1

4

LN++ + LN−+ + LN+− + LN−−
LN++

, (27)

with Lσ1σ2 = 1 + σ1|α|2 + σ2|β|2, for σ1, σ2 = ±. We shall use (26) and (27) in
Sect. 5, when discussing a LMG model of atoms with D = 3 levels. The 3CAT state
has also been used in U (3) vibron models of molecules [11, 12] and Dicke models of
3-level atoms interacting with a polychromatic radiation field [13, 14].
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4 Entropic measures on reduced density matrices to quantify
entanglement

One of themost important applications of entropymeasures is to quantify the entangle-
ment of the state of a system. For that purpose, we define several types of bipartition of
thewhole system, computing the correspondingRDMs and entanglementmeasures for
symmetricmulti-quDit statesψ in terms of linearL and vonNeumannS entropies.We
shall focus on one- and two-quDit entanglement, computing the one- and two-particle
RDMs (ρ1 and ρ2) for a single and a pair of particles extracted at random from a
symmetric N -quDit state ψ . The procedure is straightforwardly extended to ρM for
an arbitrary number M ≤ N/2 of quDits. However, as we shall see, it is not necessary
to go beyond two particles since the two-particle RDMs provides enough information
for small values of D. Actually, in the particular case of D = 2, the one-particle RDM
contains all necessary information about the entanglement of the system.

In [8] we gave the general expression of the one-quDit RDM of any normalized
symmetric N -quDit state ψ like (14), expressed in terms of expectation values of
U (D)-spin operators Si j as

ρN
1 (ψ) = 1

N

D∑
i, j=1

〈ψ |S ji |ψ〉Ei j , (28)

where Ei j represent D2, D × D-matrices with entries (Ei j )lk = δilδ jk (1 in row i ,
column j , and 0 elsewhere). Likewise, the two-particle RDM of a symmetric state ψ

of N > 2 quDits is written as [8]

ρN
2 (ψ) = 1

N (N − 1)

D∑
i, j,k,l=1

(〈ψ |S ji Slk |ψ〉 − δil〈ψ |S jk |ψ〉)Ei j ⊗ Ekl . (29)

The matrices Ei j are the generalization to arbitrary D of standard Pauli matrices for
qubits (D = 2), namely E12 = σ+, E21 = σ−, E11 − E22 = σ3 and E11 + E22 = σ0
(the 2 × 2 identity matrix). Actually, the one- and two-qubit RDMs for D = 2 were
already considered time ago by Wang and Mølmer in [15]. Here we shall consider
both cases, D = 2 (qubits) and D = 3 (qutrits), in order to discuss the similitudes and
differences.

4.1 One-quDit reduced density matrices

For the case of a DSCS |z〉, the linear and von Neumann entropies of ρ1(z) are zero,
i.e. there is no entanglement between quDits in a DSCS. This is because a DSCS is
eventually obtained by rotating each quDit individually. The situation changes when
we deal with parity adapted DSCSs or “Schrödinger cat states” like (25)–(26). Indeed,
the one-quDit RDM ρ1(DCAT) does not correspond now to a pure state since it has the
expression (we provide its eigenvalues)
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ρN
1 (2CAT) = 1

2LN+N (2CAT)2

(
LN−1+ + LN−1− , |α|2

(
LN−1+ − LN−1−

))
, (30)

for an N -qubit system and

ρN
1 (3CAT) = 1

4LN++N (3CAT)2

(
LN−1++ + LN−1−+ + LN−1+− + LN−1−− ,

|α|2
(
LN−1++ − LN−1−+ + LN−1+− − LN−1−−

)
,

|β|2
(
LN−1++ + LN−1−+ − LN−1+− − LN−1−−

))
, (31)

for an N -qutrit system. Note that, for α �= 0 in the case of ρN
1 (2CAT), and α �= 0 or

β �= 0 in the case ρN
1 (3CAT), the corresponding one-quDit RDM has rank greater than

1. That is, unlike |z〉, the Schrödinger cat |DCAT〉 is not separable in the tensor product
Hilbert space [CD]⊗N . In addition, ρN

1 (3CAT) has rank 2 if α �= 0 or β �= 0 and has
rank 3 if both are different from zero. See below for a more detailed discussion on this
point.

Since the main features of these density matrices are captured in the N → ∞
(thermodynamic) limit (infinite number of quDits), we shall restrict ourselves to this
limit, where the expression of the (diagonalized) density matrices are simpler:

ρ∞
1 (2CAT) = 1

1 + |α|2
(
1, |α|2

)
, (32)

ρ∞
1 (3CAT) = 1

1 + |α|2 + |β|2
(
1, |α|2, |β|2

)
. (33)

It will be interesting to discuss also the case |α| = 1, for qubits, and (|α|, |β|) = (1, 1),
for qutrits, since these values will appear as limiting points of the stationary curve

(α0(λ), β0(λ)) in Eq. (49) for high λ, i.e. (α0(λ), β0(λ))
λ→∞−→ (1, 1), where λ is the

strength of two-body (two-quDit) interactions in a D-level atom LMG model (see
later in Sect. 5 for more information). Therefore, we are also interested in the “high
coupling limit”

lim|α|→1
ρ∞
1 (2CAT) =

(
1

2
,
1

2

)
, (34)

lim
(|α|,|β|)→(1,1)

ρ∞
1 (3CAT) =

(
1

3
,
1

3
,
1

3

)
. (35)

Hence, in this high coupling limit, the 1-quDit RDM ismaximallymixed and therefore
the entanglement is maximum.

For D = 2, the asymptotic behaviour of ρ∞
1 for large |α| is:

ρ∞
1 (2CAT) = (0, 1) + O

(
1

|α|2
)

(1, 1), |α|2 � 1, (36)
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while for D = 3 the limit (|α|, |β|) → (∞,∞)does not exist.Actually, the asymptotic
behaviour of ρ∞

1 (3CAT) along the lines |α| = r cos θ, |β| = r sin θ , for large r , is:

ρ∞
1 (3CAT) =

(
0, sin2 θ, cos2 θ

)
+ O

(
1

r2

)
(1, 1, 1) , r � 1, (37)

implying that, in this limit, the 1-quDit RDMs have in general lower ranks, exhibiting
no entanglement for D = 2 and D = 3 for vertical (θ = π/2) and horizontal (θ = 0)
directional limits.

In Fig. 3a, b we represent contour plots of linear and von Neumann

L∞
1 = D

D − 1
(1 − tr((ρ∞

1 )2)), S∞
1 = −tr(ρ∞

1 logD ρ∞
1 ) (38)

entanglement entropies in the limit N → ∞ of the one-qutrit RDM, ρ∞
1 (3CAT), of the

3CAT in Eq. (26), as a function of the phase-space CP2 coordinates (α, β) [actually,
they just depend on the moduli]. Both entropies are again normalized to 1. They attain
their maximum value of 1 at the phase-space point (α, β) = (1, 1) corresponding to a
maximallymixedRDM.This behaviour of the entropies, and therefore of entanglement
(together with squeezing, see [8]) parallels that of the standard harmonic oscillator cat
states where themaximum entanglement and squeezing takes place for relatively small
values of the coherent state parameter [16]. The difference here in the D = 3 case is
that for large values of the parameter there can still be entanglement (and squeezing),
depending on the angle of the directional limit (see Eq. 37). These figures also show (in
magenta colour) the values of the entropies along the stationary curve (α(λ), β(λ)) in
Eq. (49), that we already mentioned before Eq. (34). For high interactions λ → ∞ we
have (α(λ), β(λ)) → (1, 1), which means that highly coupled quDits are maximally
entangled in a cat-like ground state (we shall come back again to this discussion later
in Sect. 5). In Fig. 3c, d the asymptotic behaviour for large |α| and β| is shown, where
contours of linear and von Neumann entropies coincide with the (isentropic) lines
θ =constant, according to the asymptotic behaviour of ρ∞

1 (3CAT) in (37).
In Fig. 4a we plot the information diagram for the family of 1-qutrit RDMs for a

3CAT (31) in the limit N → ∞, for all values of |α| and |β|. It can be seen that they
fill completely the region �. Also, the stationary curve (49) is shown, starting at the
origin (zero entropy and therefore no entanglement), moving on the curve ρ

(1)
min and

through the region �2, to finish at the maximally mixed state, indicating that this state
is maximally entangled.

4.2 Two-quDit reduced density matrices

As for the one-quDit RDM, the linear and von Neumann entropies for a two-quDit
RDM of a DSCS |z〉 are zero, i.e. there is no pairwise quDit entanglement in a DSCS.
The situation changes for parity adaptedDSCSs or “Schrödinger cat states” |DCAT〉 like
the ones in (25)–(26), where the two-quDit RDM ρ2(DCAT) in (29) has the expression
(once diagonalized) for D = 2 and D = 3 and N particles:
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(a) (b)

(c) (d)

Fig. 3 Contour plots of a linear L∞
1 and b von Neumann S∞

1 entanglement entropies of the one-qutrit
RDM ρ∞

1 (3CAT) of a U (3) Schrödinger cat (26) in the limit of an infinite number of qutrits, as a function
of the phase-space coordinates α, β (they just depend on moduli). The asymptotic behaviour of c L∞

1 and
d S∞

1 for large values of |α| and |β| displays isentropic curves θ =constant, according to the expression
of ρ∞

2 (3CAT) in Eq. (37) (Color figure online)

Fig. 4 Information diagram for the family of a 1-qutrit RDMs and b 2-qutrit RDMs for 3CAT in the limit
N → ∞, for all values of |α| and |β|. See the main text for explanation
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ρN
2 (2CAT) = 1

2LN+N (2CAT)2

(
(1 + |α|4)

(
LN−2+ + LN−2−

)
, 2|α|2

(
LN−2+ − LN−2−

)
, 0, 0

)
,

ρN
2 (3CAT) = 1

4LN++N (3CAT)2

(
(1 + |α|4 + |β|4)

(
LN−2++ + LN−2−+ + LN−2+− + LN−2−−

)
,

2|α|2
(
LN−2++ − LN−2−+ + LN−2+− − LN−2−−

)
,

2|β|2
(
LN−2++ + LN−2−+ − LN−2+− − LN−2−−

)
,

2 |α|2|β|2
(
LN−2++ − LN−2−+ − LN−2+− + LN−2−−

)
, 0, 0, 0, 0, 0

)
(39)

As it is deduced from the previous expressions, the 2-qudit RDM has rank 1 for α = 0
in the case of the 2CAT, or α = β = 0 for the case of the 3CAT. For α �= 0 (or β �= 0
for the 3CAT) the rank is two, and for α �= 0 and β �= 0 the rank of ρ2(3CAT) is 4.

As for the one-quDit RDM case, it is convenient to consider the thermodynamic
limit N → ∞ to obtain simpler expressions without losing important qualitative
information:

ρ∞
2 (2CAT) = 1(

1 + |α|2)2
(
1 + |α|4, 2|α|2, 0, 0) ,

ρ∞
2 (3CAT) = 1(

1 + |α|2 + |β|2)2
(
1 + |α|4 + |β|4, 2|α|2, 2|β|2, 2|α|2|β|2, 0, 0, 0, 0, 0) .

(40)

The high coupling limit, |α| → 1 or (|α|, |β|) → (1, 1), discussed before (34) for
1-quDit RDMs, looks like this now for 2-quDit RDMs:

lim|α|→1
ρ∞
2 (2CAT) =

(
1

2
,
1

2
, 0, 0

)
, (41)

lim
(|α|,|β|)→(1,1)

ρ∞
2 (3CAT) =

(
1

3
,
2

9
,
2

9
,
2

9
, 0, 0, 0, 0, 0

)
, (42)

thus implying that, in the high coupling limit, the 2-qubit (D = 2) RDM is maximally
mixed of rank 2, but it doesn’t attain the maximum value of the entropies. For D = 3,
the 2-qutrit RDM is not even maximally mixed of rank 4 (in fact it lies on the curve
ρ̄

(3)
min), although the value of the entropies is very similar to that of ρ4 (see Fig. 1).
For D = 2 the asymptotic behaviour of ρ∞

2 for large |α| is:

ρ∞
2 (2CAT) = (0, 1, 0, 0) + O

(
1

|α|2
)

(1, 1, 0, 0), |α| � 1, (43)
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while for D = 3 the limit (|α|, |β|) → (∞,∞) does not exist. The asymptotic
behaviour, for large r , along the lines |α| = r cos θ, |β| = r sin θ , is:

ρ∞
2 (3CAT) =

(
1

4
(cos(4θ) + 3), 0, 0, 2 cos2(θ) sin2(θ), 0, 0, 0, 0, 0

)

+O

(
1

r2

)
(1, 1, 1, 1, 0, 0, 0, 0, 0), r � 1, (44)

implying that, in this limit, the 2-quDit RDMs have in general lower ranks, exhibiting
no pairwise entanglement for D = 2 and D = 3 for vertical (θ = π/2) and horizontal
(θ = 0) directional limits.

In Fig. 5a, b, we represent contour plots of normalized linear and von Neumann

L∞
2 = D2

D2 − 1
(1 − tr((ρ∞

2 )2)), S∞
2 = −tr(ρ∞

2 logD2 ρ∞
2 ), (45)

pairwise entanglement entropies in the thermodynamic limit N → ∞ for the two-
qutrit RDM,ρ∞

2 (3CAT), of aU (3)Schrödinger cat (26), as a function of the phase-space
CP2 complex coordinates (α, β) [they just depend on the moduli]. As for the one-
qutrit case, they attain their maximum value at the phase-space point (α, β) = (1, 1)
(“high coupling limit”); however, unlike the one-qutrit case, pairwise entanglement
entropies do not attain the maximum value of 1 at this point, but L2 = 5/6 � 0.833
and S2 � 0.623 for large N . As already commented, variational (parity adapted
spin coherent) approximations to the ground state of the LMG 3-level atom model
[discussed later in Sect. 5] recover this maximum entanglement point (α, β) = (1, 1)
at high interactions λ → ∞, as can be seen in the already discussed stationary curve
(49). In Fig. 5c, d, the asymptotic behaviour for large |α| and β| is shown, where
contours of linear and von Neumann entropies coincide with the lines θ =constant,
according to the asymptotic behaviour of ρ∞

2 (3CAT) in (44).
We also plot in Fig. 4b the information diagram for the 2-qutrit RDM of the 3CAT

in the thermodynamic limit N → ∞. It is clear that the � region is not com-
pletely filled; only the subregions �2 and �3 are partially filled, the reason being
that ρ2(3CAT) has rank 1, 2 or 4. The stationary curve (α0(λ), β0(λ)) in Eq. (49) is also
shown, with a behaviour similar to the case of the 1-qutrit RDM, with the difference
that it ends near the maximally mixed RDM of rank 4, more precisely, at the point( 1
3 ,

2
9 ,

2
9 ,

2
9 , 0, 0, 0, 0, 0

)
. It is important to notice that the stationary curve is most

of the time at the inferior boundary of the set of 2-qutrit RDMs. This means that,
from all 2-qutrit RDMs of the 3CAT with a given linear entropy, it has the minimum
allowed value of vonNeumann entropy.We conjecture that this is due to the variational
character of the ground state and the universality of the extremal states lying at the
boundaries of the region �.
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(a) (b)

(c) (d)

Fig. 5 Contour plots of a linearL∞
2 and b vonNeumannS∞

2 entanglement entropies of the two-qutrit RDM
ρ2(3CAT) of a U (3) Schrödinger cat (26) for N → ∞, as a function of the phase-space coordinates α, β

(they just depend on moduli). The meaning of the magenta curve is the same as in Fig. 3. The asymptotic
behaviour of c L∞

2 and d S∞
2 for large values of |α| and |β| displays isentropic curves θ =constant,

according to the expression of ρ∞
2 (3CAT) in Eq. (44) (Color figure online)

5 Information diagrams and quantum phase transitions in
Lipkin–Meshkov–Glick models of 3-level identical atoms

Now we apply the previous results to the study of QPTs of D-level Lipkin–Meshkov–
Glick atom models. The standard case of D = 2 level atoms has already been studied
in the literature (see e.g. [17]). We shall restrict ourselves to D = 3 level atoms for
practical calculations, although the procedure can be easily extended to general D. In
particular, we propose the following LMG-type Hamiltonian

H = ε

N
(S33 − S11) − λ

N (N − 1)

3∑
i �= j=1

S2i j , (46)

written in terms of collective U (3)-spin operators Si j . Hamiltonians of this kind have
already been proposed in the literature [18–22] [see also [23] for the role of mixed
symmetry sectors in QPTs of multi-quDit LMG systems]. We place levels symmet-
rically about i = 2, with intensive energy splitting per particle ε/N . For simplicity,
we consider equal interactions, with coupling constant λ, for atoms in different levels,
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and vanishing interactions for atoms in the same level (i.e. we discard interactions of
the form Si j S ji ). Therefore, H is invariant under parity transformations 	 j in (19),
since the interaction term scatters pairs of particles conserving the parity of the pop-
ulation n j in each level j = 1, . . . , D. Energy levels have good parity, the ground
state being an even state. We divide the two-body interaction in (46) by the number of
atom pairs N (N − 1) to make H an intensive quantity, since we are interested in the
thermodynamic limit N → ∞. We shall see that parity symmetry is spontaneously
broken in this limit.

As already pointed long ago by Gilmore and coworkers [10, 24], coherent states
constitute in general a powerful tool for rigorously studying the ground state and
critical properties of some physical systems in the thermodynamic limit. The energy
surface associated with a Hamiltonian density H is defined in general as the coherent
state expectation value of the Hamiltonian density in the thermodynamic limit. In our
case, the energy surface acquires the following form

E(α,β)(ε, λ) = lim
N→∞〈z|H |z〉

= ε
ββ̄ − 1

αᾱ + ββ̄ + 1
− λ

α2
(
β̄2 + 1

) + (
β2 + 1

)
ᾱ2 + β̄2 + β2

(
αᾱ + ββ̄ + 1

)2 , (47)

where we have used the parametrization z = (α, β), as in Eq. (26), for U (3)-spin
coherent states |z〉. Note that this energy surface is invariant under α → −α and
β → −β, which is a consequence of the inherent parity symmetry of the Hamiltonian
(46) and the transformation (20) of |z〉 under parity.

The minimum energy

E0(ε, λ) = minα,β∈CE(α,β)(ε, λ) (48)

is attained at the stationary (real) phase-space values α±
0 = ±α0 and β±

0 = ±β0 with

α0(ε, λ) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ λ ≤ ε
2 ,√

2λ−ε
2λ+ε

, ε
2 ≤ λ ≤ 3ε

2 ,√
2λ

2λ+3ε , λ ≥ 3ε
2 ,

β0(ε, λ) =
{
0, 0 ≤ λ ≤ 3ε

2 ,√
2λ−3ε
2λ+3ε , λ ≥ 3ε

2 .
(49)

In Figs. 3 and 5 we plot (in magenta colour) the stationary-point curve (α0(λ), β0(λ))

on top of one- and two-qutrit entanglement entropies, noting that (α0(λ), β0(λ)) →
(1, 1) for λ → ∞ (high interactions). Inserting (49) into (47) gives the ground state
energy density at the thermodynamic limit

E0(ε, λ) =

⎧⎪⎨
⎪⎩

−ε, 0 ≤ λ ≤ ε
2 , (I)

− (2λ+ε)2

8λ , ε
2 ≤ λ ≤ 3ε

2 , (II)

− 4λ2+3ε2
6λ , λ ≥ 3ε

2 . (III)

(50)
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(a) (b)

Fig. 6 Information diagram for the family of a 1-qutrit RDMs and b 2-qutrit RDMs for 3CAT in the limit
N → ∞, for all values of |α| and |β|, where the curves of numerical RDMs, as a function of λ for different
values of N , has been added, as well as the analytical stationary curve for N → ∞ (in magenta). Observe
that as N grows, the numerical (green) curves approach the (magenta) analytical one (Color figure online)

Here we clearly distinguish three different phases: I, II and III, and two second-

order QPTs at λ
(0)
I↔II = ε/2 and λ

(0)
II↔III = 3ε/2, respectively, where ∂2E0(ε,λ)

∂λ2
are

discontinuous. In the stationary (magenta) curve (α0(λ), β0(λ)) shown in Figs. 3a, b,
4, 5a, b and 6, the phase I corresponds to the origin (α0, β0) = (0, 0) (square point),
phase II corresponds to the horizontal part β0 = 0 up to the star point, and phase III
corresponds to β0 �= 0.

Note that the ground state is fourfold degenerated in the thermodynamic limit since
the fourU (3)-spin coherent states |z±±

0 〉 = |±α0,±β0〉 have the same energy density
E0. These four coherent states are related by parity transformations and, therefore,
parity symmetry is spontaneously broken in the thermodynamic limit. In order to
have good variational states for finite N , to compare with numerical calculations, we
have two possibilities: 1) either we use the 3CAT (26) as an ansatz for the ground
state, minimizing 〈3CAT|H |3CAT〉, or 2) we restore the parity symmetry of the coherent
state |α0, β0〉 for finite N by projecting on the even parity sector. Although the first
possibility offers a more accurate variational approximation to the ground state, it
entails a more tedious numerical minimization than the one already obtained in (48)
for N → ∞. Therefore, we shall use the second possibility which, despite being less
accurate, it is straightforward and good enough for our purposes. That is, we shall use
the 3CAT (26), evaluated at α = α0 and β = β0, as a variational approximation |3CAT0〉
to the numerical (exact) ground state |ψ0〉 for finite N .

Let us apply the tools developed in previous sections to this model and draw the
main conclusions. Firstly, in Fig. 6a, b, we have added to the information diagrams for
1 and 2 qutrits RDMs already shown in Fig. 4, the curves (as a function of λ) of the
numerically computed ground states of the 3-level LMG model for different values
on N (in green colours), together with the already shown analytical variational curve
(in magenta) (α0(λ), β0(λ)) for N → ∞. We can conclude that they do not lie in
the inferior part of the region �, as the variational one, but as N grows the numerical
curves approach the analytical one.

Secondly, suggested by the results about the rank of 1 and 2 quDits RDMs of Sect. 4,
we plot in Fig. 7 the rank of the RDMs as a function of λ for both variational (N → ∞)
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Fig. 7 Plot of rank of 1-quDit and 2-quDit RDMs along the stationary curve both for analytical (variational,
N → ∞) and numerical (N = 50) solution of the 3-level LMG model as a function of λ (in ε = 1 units)

and numerical (N = 50) solutions for the ground state of Hamiltonian (46). The QPT
critical points λ

(0)
I↔II = ε/2 and λ

(0)
II↔III = 3ε/2, are clearly marked in the case of the

variational curve, with a jump from rank 1 to rank 2 at λ = ε/2 and another jump
from rank 2 to rank 4 (3 in the case of 1 qutrit RDMs) at λ = 3ε/2. In the case of
the numerical curve, where a small threshold has been applied to the eigenvalues to
suppress spurious oscillations, the first jump continues to be at λ � 0.5, whereas the
second jump takes place at slightly larges values of λ = 1.5 (in ε = 1 units). This
behaviour is the same as with other precursors of QPTs, like susceptibility of fidelity
in the 3-level LMG model [23].

From this, it is clear that the rank of the RDMs is a good precursor of a QPT, with
the advantage of being a discrete parameter.

6 Conclusions

In this paper we have used an information-theoretic tool like the information diagrams
to extract qualitative information about the quDit entanglement (and rank) of parity
adaptedU (D)-spin coherent states (DCATs) using one- and two-quDit reduced density
matrices, and we have applied it to the study of atom entanglement in the ground state
(both variational, in the N → ∞, and numerical, with finite N ) of the 3-level atom
LMG model.

We have shown how the allowed region � of information diagrams is completely
filled in the case of one-qutrit RDMs, while only the lower part of it is partially filled
in the case of two-qutrits RDMs. This indicates that the maximum pairwise (2-qutrit)
entanglement attained in a 3CAT state is smaller that the maximum one corresponding
to a maximally mixed RDM or order 32. We have already seen that this maximally
entangled 3CAT is attained for the values (α, β) = (1, 1) (or α = 1 for D = 2), and
these are precisely the values obtained for the variational analytical approximation to
the ground state of a 3-level LMG model in the high coupling regime.

In addition, we have shown that the variational curve (α0(λ), β0(λ)) practically all
the time lies in the inferior part of the information diagram subregion filled by all
3CAT states. We conjecture that this is due to the variational character of these states
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(minimum of the energy surface (47)) and the universality character of the extremal
states lying at the boundary of the region �.

Information diagrams also provide qualitative information about the rank of the
RDMs. This has motivated us to study with detail their rank for different values of
the parameters α and β of 3CAT states (see Sect. 4), indicating that the one- and
two-quDit RDMs have in general lower ranks than the maximal rank allowed by the
corresponding dimension. Focusing on the variational analytic curve (α0(λ), β0(λ)),
and in the numerical solution for the ground state for finite N , Fig. 7 shows that the
rank of one- and two-qutrit RDMs has jumps precisely at the points where QPTs
occurs (or near these values in the numerical finite N case). Therefore the rank can be
used as a discrete precursor of a QPT in the LMG model, but this conclusion can be
probably extended to other critical models.

All these resultsmotivate us to further study the application of information diagrams
and rank ofRDMs to other parity adaptedU (D)-spin coherent states, butwith different
parity character. Here we have restricted ourselves to the even case, but remember that
there are 2D−1 different parity adapted U (D)-spin coherent states, the even one just
being a particular case. For example, odd parity cat states (for D = 2) are known to
be well suited as variational states to approximate excited states in, for example, the
Dicke model of superradiance [25].

Since the rank of a RDM is equal to the Schmidt number, by the Schmidt decompo-
sition theorem (see, for instance, [26]), it would be interesting to study with detail the
Schmidt decomposition of parity adapted U (D)-spin coherent states (not only of the
even one, but for all 2D−1 parity invariant states) when we extract 1, 2, or in general
M quDits, and find the basis realizing the Schmidt decomposition in the larger factor.
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18. Gnutzmann, S., Kuś, M.: Coherent states and the classical limit on irreducible SU(3) representations.
J. Phys. A Math. Gen. 31, 9871 (1999). https://doi.org/10.1088/0305-4470/31/49/011
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