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Abstract 

The efforts in this doctoral thesis have been focused on the characterization and modeling of 

memristive devices fabricated using different technologies. Among all the memristive devices, we will 

focus on resistive random access memories (RRAM), also known as resistive memories. To do so, 

devices based on metal-insulator-metal and metal-insulator-semiconductor structures have been 

studied in depth. A simulator based on circuit breakers has also been developed and tested to analyse 

RRAM variability and operation. 

This PhD dissertation (a compilation work) includes 7 publications in scientific journals indexed in 

the Journal Citation Report of Science Citation Index, one proceeding published in IEEE Xplore 

digital library and one contribution to an International Conference. I have also contributed to other 

publications outside this work, including a book chapter and a video explaining the operation of the 

simulator. The outline of this work is the following: 

Chapter 1 exposes the state of the art of resistive memories; in particular, we will focus on 

the resistive switching operation and its modeling and simulation. To begin with, the fundamentals 

of this technology are presented along the main applications. The current situation of flash devices 

and their limitations is also exposed as these new devices are emerging to replace them. Therefore, 

the most important features to describe in RRAM devices such as structure, fabrication process and 

materials employed are tackled. In addition, the main hurdles to address in order to reach a full 

development of this technology and a massive commercial fabrication are explained. Compact 

modeling and simulation tools are also described in the last section of the chapter since they are of 

great interest in these devices because they are still in their infancy. 

Chapter 2 deals with the electrical characterization of RRAMs. Additional effects like the 

magnetic field are included during conventional measurements processes. Besides, statistical 

techniques are applied to the extracted experimental RS parameters to be analyzed in the context of 

the charge and flux domain. 

The chapter includes the following contributions: 

• [Maldonado2019] Maldonado, D., Roldán, A. M., González, M. B., Jiménez-Molinos, F., 

Campabadal, F., & Roldán, J. B. (2019). Influence of magnetic field on the operation of 

TiN/Ti/HfO2/W resistive memories. Microelectronic Engineering, 215(April). DOI: 

10.1016/j.mee.2019.110983. 

• [Maldonado2019b] Maldonado, D., Acal, C., González, M. B., Ruiz-Castro, J.E., Aguilera, 

A.M., Picos, R., Jiménez-Molinos, F., Campabadal, F., & Roldán, J.B. (2019). An in-depth 

statistical study of resistive switching energies in unipolar RRAMs. 21th Conference on 

“Insulating Films on Semiconductors”, Cambridge (UK). 
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Chapter 3 introduces the time series analysis for studying variability in resistive memories. By 

using this versatile and advanced technique, different kind of devices based on traditional 3D stacks 

such as Ni/HfO2/Si-n+, Cu/HfO2/Si-n+ and Au/Ti/TiO2/SiOx/Si-n+ are tackled. Furthermore, novel 

memristors based on 2D materials, namely h-BN, are also considered. 

 The chapter includes the following contributions: 

• [Roldán2019] Roldán, J. B., Alonso, F. J., Aguilera, A. M., Maldonado, D., & Lanza, M. 

(2019). Time series statistical analysis: A powerful tool to evaluate the variability of resistive 

switching memories. Journal of Applied Physics, 125(17), 174504. DOI: 10.1063/1.5079409. 

• [Rodríguez2019] N. Rodriguez, D. Maldonado, F.J. Romero, F.J. Alonso, A.M. Aguilera, A. 

Godoy, F. Jimenez-Molinos, F.G. Ruiz, J.B. Roldan, "Resistive switching and charge 

transport in laser-fabricated graphene oxide memristors: a Time Series and Quantum Point 

Contact modelling approach”, Materials, 12, 3734, 2019. 

• [Roldán2021b] Roldán, J. B., Maldonado, D., Alonso, F. J., Roldán, A. M., Hui, F., Shi, 

Y., ... & Lanza, M. (2021, March). Time series modeling of the cycle-to-cycle variability in h-

BN based memristors. In 2021 IEEE International Reliability Physics Symposium (IRPS) 

(pp. 1-5). IEEE. 

Chapter 4 describes the extraction of the series resistance in HfO2 based RRAMs and the 

inclusion of this parameter in an enhanced version of the Stanford model (implemented in Verilog-A) 

to ease the fitting of some type of experimental curves. Besides, the quantum point contact model 

has been modified to account for thermal effects to determine their role. 

 The chapter includes the following contributions: 

• [Maldonado2021] Maldonado, D., Aguirre, F., González-Cordero, G., Roldán, A. M., 

González, M. B., Jiménez-Molinos, F., ... & Roldán, J. B. (2021). Experimental study of the 

series resistance effect and its impact on the compact modeling of the conduction 

characteristics of HfO2-based resistive switching memories. Journal of Applied Physics, 

130(5), 054503., doi: 10.1063/5.0055982. 

• [Calixto2020] Calixto, M., Maldonado, D., Miranda, E., & Roldan, J. B. (2020). Modeling 

of the temperature effects in filamentary-type resistive switching memories using quantum 

point-contact theory. Journal of Physics D: Applied Physics. 

Chapter 5 exposes the Dynamic Route Map as a powerful tool to study the temporal behavior 

of reset transitions in TiN/Ti/HfO2 devices. Different inputs have been employed to show that a 

unique surface is created to define the operation regime of a device supported with experimental data. 

 The chapter includes the following contribution: 

• [Maldonado2020] Maldonado, D., Gonzalez, M. B., Campabadal, F., Jimenez-Molinos, F., 

Al Chawa, M. M., Stavrinides, S. G., ... & Chua, L. O. (2020). Experimental evaluation of 

the dynamic route map in the reset transition of memristive ReRAMs. Chaos, Solitons & 

Fractals, 139, 110288, doi: 10.1016/j.chaos.2020.110288. 
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Chapter 6 focuses on the simulation of resistive memories. In particular, a simulator tool based 

on circuit breakers has been developed from scratch in order to analyze variability and the stochastic 

behavior of these devices to explain the physics behind RS. 

 The chapter includes the following contribution: 

• [Maldonado2022] Maldonado, D., Gómez-Campos, F. M., González, M. B., Roldán, A. M., 

Jiménez-Molinos, F., Campabadal, F., & Roldán, J. B. (2022). Comprehensive study on 

unipolar RRAM charge conduction and stochastic features: a simulation approach. Journal 

of Physics D: Applied Physics, 55(15), 155104.  

Chapter 7 compiles the main conclusions of this doctoral thesis and the future improvements. 
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Introduction 

Nowadays, the electronics industry is increasing its interest for volatile (temporary) and non-

volatile (permanent) data storage. This fact arrives from the needs connected to 5G circuits, solid-

state drives (SSD), artificial intelligence, data mining, internet of things (IoT) devices and cloud 

storage apart from laptops and smartphones [Gupta2019]. Resistive memories or Resistive Random 

Access Memories (RRAM) technology is thought to fit well for these needs. RRAM devices are one 

of the most promising emerging technologies due to its outstanding features such as low operation 

voltage, low power consumption, CMOS compatibility in the Back-End-of-Line (BEOL), non-

volatility, good endurance [Lanza2021] and retention and the capability to be fabricated in 3D stacks 

since its architecture is quite simple [Lanza2019, Gupta2019, Munjal2019, Pan2014, Ielmini2016, 

Xie2013, Lee2015, Spiga2020, Waser2010, Waser2012]. These properties make RRAM devices the 

perfect candidate so substitute the dominant technology in the current non-volatile realm: flash 

memories. The latter ones are part of the Non-Volatile Memories family (NVM), devices that store 

information without the need of an external power system to keep the information. Flash technology 

has advantages such as low cost, high density and reliability, but also some important constraints 

which might affect its future: low durability, leakage, low operation speed and the need of high 

operation voltages that results in high power consumption. 

In the realm of NVM memories there are also other candidates to compete with RRAMs, the 

most relevant are Spin-Transfer Torque RAMs (STT-RAMs, a type of magnetic memories) and Phase 

Change Memories (PCM), both of them being thoroughly studied by the international electronic 

community due to the increasingly need for storage of the information all around the world [Xie2013]. 

This comes from the fact that current electronic devices for NVM are required to show retention 

times greater than a few years, to have low energy consumption and also offer low latency times. 

The target on NVM is focused on two main issues: 

1. Reasonably low operation speed in relation to DRAM and SRAM. If this hurdle is 

overcome, they could easily replace them in the future for some purposes, and in doing so, 

take leadership on part of the market [Xie2014]. 

2. Low power operation [Xie2014]. 

NVM are commonly employed in daily applications such as laptops, smartphones, videogames, 

scientific equipment, robotic components, etc. Nevertheless, flash technology, the current market 

leader, will come to an end sooner or later and some action is required [Gupta2019, Xie2013, Xie2014, 

Waser2007, Waser2010, Waser2012]. In this context, RRAM memories, which are based on a 

hysteretic operation called resistive switching (RS), rise as one of the most suitable replacements in 

contrast to another emerging technologies as PCM memories, Magnetic RAMs (MRAMs) or 

STT-RAM memories [Lanza2019, Xie2014, Waser2007, Waser2010]. 
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If the upcoming devices are based on RRAMs instead on other technologies, the electronics 

paradigm is expected to lead to a breath-taking revolution: there would be applications never seen 

before due to the possibility to build and develop new computer architectures much powerful than 

the most commonly fabricated today following the von Neumann architecture [Wang2019]. RRAM 

fabrication is mainly based on two structures, Metal-Insulator-Metal (MIM), and 

Metal-Insulator-Semiconductor (MIS). The insulating material in between the electrodes consists of 

a dielectric whose properties allow its resistance to be changed, a mechanism known as resistive 

switching [Lanza2019, Gupta2019, Waser2012, Munjal2019, Carboni2019]. Among the materials 

employed are the following: 

1. Transition metal oxides (TMO) as HfO2 or TiO2. 

2. Perovskite family showing paraelectric, ferroelectric, multiferroelectric and magnetic behavior. 

3. Graphene oxides as hexagonal boron nitride (h-BN) along with another two-dimensional 

materials. 

In the past years, great results have been obtained both at device and circuit level, allowing to 

design and fabricate a 16 GBs integrated RRAM memory circuit [Zahurak2014] or a 4 GBs memory 

device in 24 nm CMOS technology [Liu2013]. The foundry TSMC has recently planned to offer 

embedded RRAM at both 40 nm and 22 nm nodes, this technology is capable of 10-year retention at 

125ºC and over 10000 cycles of endurance (suggesting using TiO2 as dielectric [TSMC2020]). These 

facts allow to consider this technology a real candidate in the near future for massive NVM industrial 

manufacturing, granting embedded storage class memory in processors and microcontrollers. 

Even so, there are still some impediments to surpass before reaching the massive market 

regime for this technology: to begin with, the variability linked to the fabrication process which makes 

differences between two identical devices (device-to-device) along with the inherent variability during 

cycling in the same device (cycle-to-cycle). The latter is associated to the physics behind the RS 

process [Lanza2019, Pan2014]. For the characterization of RS and the study of the physics behind, 

both device simulators and compact models are needed. In particular, in the physical simulator 

context, there can be found the kinetic Monte Carlo (KMC) simulators, where the device operation 

is described in detail, according to the physical mechanisms involved at the atomic level [Aldana2020, 

Padovani2015, Dirkmann2018, Guy2015]. At the modeling level, advanced statistical modeling 

[Pérez2019, Mikhaylov2021, Alonso2021, Roldán2019] and the compact modeling approach for circuit 

simulation, where the device description is faster and compact [Huang2013, Chen2015, Bocquet2014, 

Picos2015, Maldonado2019, Guan2012, Jiang2016, Roldán2021, González-Cordero2017], can be found.  

In this work we deal with several RRAM technologies. We perform different characterization 

techniques, including the electrical analysis of devices within magnetic fields. We have analysed the 

measurement data to obtain compact models and implement them in circuit simulators by means of 

SPICE macromodels and Verilog-A (including parameter extraction techniques). We have also 

developed a device simulator using circuit breakers. With all these measurements and software tools 

we have studied RS in all the devices analysed and their variability, among other issues.  
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Objectives 

The main objective of this work consists of the measurement of different types of RRAM 

devices including MIS and MIM structures under several situations (temperature, electric/magnetic 

field…) in order to analyse the obtained data and understand resistive switching operation. First of 

all, the laboratory was conditioned to carry out these measurements employing magnetic field 

generated by Helmholtz coils and a chiller to control and fix the temperature in the sample during 

the procedure. Additionally, the required software to control the instrumentation was programmed 

to allow a fully and correct automation of the process. To do so, different numerical algorithms were 

implemented to grant the parameter extraction of the data, in particular, the typical resistive 

switching parameters, such as the set and reset voltages and currents. Then, modeling and simulation 

of RRAMs was performed taking into consideration the measurements obtained in the laboratory.  

The objectives were subdivided into the following issues: 

1. Analysis of the experimental results applying advanced statistical techniques. 

 

2. Characterization and modeling of the experimental data employing the time series approach 

and the Quantum Point Contact model. 

 

3. Modeling of quantum effects considering multiple potential barriers. 

 

4. Development of compact models to reproduce experimental data and simulate circuits. 

 

5. Development of a circuit breaker-based RRAM simulator.  
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Methodology 

The following methodology and associated tasks were performed to accomplish the previous 

objectives, see the diagram below. 

1. Analysis of the experimental results applying advanced statistical techniques: 

a. Devices fabricated in the National Microelectronics Center at Barcelona (IMB-CNM 

(CSIC)) and the University of Shoochow (China), based in MIS and MIM structures, 

were measured in the laboratory including external effects: magnetic field and 

temperature variation. 

b. Study and evaluation of the magnetic field and temperature effects on the operation 

of these devices. The typical parameters are analysed: set/reset voltages and currents. 

c. Study of the device-to-device and cycle-to-cycle variability considering phase-type 

and Weibull statistical distributions. 

2. Characterization and modeling of the experimental measurements employing the time series 

approach and the Quantum Point Contact (QPC) model. Implementation of the time series 

analysis and forecasting: a mathematical tool to predict and evaluate variability on resistive 

memories. 

3. Modeling of quantum effects considering multiple potential barriers. Simple and double 

potential barriers are taken into consideration. 

4. Development of compact models to reproduce experimental data: 

a. Analysis of graphene-based devices using the Quantum Point Contact model. 

b. Modification of stablished models, as the Stanford model, to include additional effects 

like the series resistance using Verilog-A. 

5. Development of device simulator implemented by circuit breakers. Forming, set and reset 

processes were described in terms of the rupture and creation of conductive filaments by 

means of circuit breakers, including the stochastic component in the device operation.  

 

Diagram of the methodology and associated tasks 
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1. Introduction to RRAM 

technology. Overview and state 

of the art 

For several years now, flash technology has reigned in the non-volatile memory markets both in 

its NOR or NAND architecture. This technology, an upgrade of the EEPROM which was invented 

at Toshiba in 1984 essentially consisting in a metal-oxide-semiconductor field-effect-transistor 

(MOSFET) structure, in addition to a floating gate in each memory cell, is largely being used in 

embedded applications due to its excellent properties: high density and low cost. However, there are 

also some important drawbacks which limit its development [Pan2014, Ielmini2015]:  

1. Limited endurance (106 write/erase cycle). 

2. Low operation speed (write/erase time: 1 ms/0.1 ms). 

3. High write voltages that imply high consumption (> 10 V). 

Flash memories store the information using the floating gate of the transistor to store the charge (see 

the diagram in Figure 1.1) which implies an important challenge when scaling down to 10 nm or 

beyond. This is associated to the loss of the stored charge at a very low scale resulting in a reliability, 

noise margin and performance loss. Additionally, there are some physical mechanisms such as Random 

Telegraph Noise, threshold voltage shift, charge trapping and Stress Induced Leakage Current (SILC) 

posing important objections for the design and development of future memory hierarchy [Ielmini2009, 

Pan2014, Villena2015, Gupta2019, Wong2015, Xie2013]. 
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Figure 1.1. Diagram of a flash memory cell consisting of a storage transistor with a control gate and a floating gate. 

Some emerging NVM technologies are currently being investigated in order to clarify and solve the 

issues described above. The best placed candidates are the STT-MRAM [Zhu2008], the PCM 

[Wong2010], and the resistive memory [Wong2012a]. These technologies are non-volatile, two-terminal 

devices and differentiate two states by the switching between a high resistive state (HRS) and a low 

resistive state (LRS) triggered by an electric field [Yang2009]. The latter, which are the objective of 

this work, rely, in most cases, on the formation (corresponding to the LRS) and the rupture 

(corresponding to the HRS) of one or more conductive filaments in the dielectric layer between two 

electrodes (in case they show filamentary conduction). RRAMs are seen as a possible replacement of 

flash memories because of its lower programming voltage and faster read/write speed. Furthermore, 

some improvements offer a brilliant future for these devices [Lanza2019, Pan2014, Zahurak2014, 

Carboni2019, Nardi2011, Lim2015, Ielmini2016]: 

1. Outstanding scalability.  

2. Long data retention. 

3. Easy fabrication in a metal-insulator-metal or metal-insulator-semiconductor structure.  

4. Sub-ns operation speed. 

5. CMOS compatibility. 

Figure 1.2a depicts the classic MIM (or MIS) RRAM structure accounting for two electrodes, top 

and bottom, including a dielectric layer sandwiched in between. Depending on the internal physical 

and chemical mechanisms that take place to control the resistance of the devices, several classifications 

can be determined [Pan2014, Lee2015, Ielmini2015]. The switching event from HRS to LRS is called 

set process and, the switching event from LRS to HRS is called reset process. When the sample 

is in the pristine state1, a large voltage is needed to achieve the LRS state, this first cycle is known 

as forming process. There are two classifications depending on the switching operation: unipolar 

and bipolar. In Figure 1.2a, a diagram of the I-V characteristics is presented for both mechanisms. 

Figure 1.2b shows the unipolar mode, where the resistive switching calls on the amplitude of the 

external voltage instead of the polarity applied. This means that the set and reset processes arise in 

the same polarity (positive or negative). On the other hand, Figure 1.2c shows bipolar switching, 

switching directly depends on the polarity of the applied voltage. Consequently, the set process may 

 
1 Initial state of the device previous to the measurement 
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only result at one determined polarity and the reset process may only result at the opposite polarity. 

Both processes are limited to reach a certain current level called compliance current (CC) to prevent 

the device to get to a hard dielectric breakdown (a permanent damage that shorts the electrodes).  

 

Figure 1.2. a) Schematic of a metal-insulator-metal or metal-insulator-semiconductor RRAM device. Typical I-V 

curves showing b) unipolar mode, c) bipolar mode. A CC is stablished to prevent the device from reaching the electric 

breakdown [Pan2014]. 

One key-factor here is the election of the materials when fabricating the devices because of the impact 

they have in the performance. Resistive switching is the result of the mechanisms produced by the 

combination between both electrodes and the oxide. For unipolar devices, noble metals such as Pt 

and Cu can be used in both electrodes, while bipolar switching can be obtained by combining a noble 

metal in one electrode and an oxidizable material such as TiN in the other electrode. Some common 

structures are TiN/metal/oxide/TiN, eg., TiN/Ti/HfO2/W [Maldonado2019] where the 

electrode/oxide interface works as an oxygen reservoir. Typically, unipolar switching presents more 

variability and requires a higher current than bipolar switching during the reset process. In Table 

1.1 some examples of different RRAMs are presented. Note that the on/off ratio is the ratio between 

the value of the resistance measured in the HRS and in the LRS, and it is always recommended to 

be as high as possible; retention is the time a device can keep a certain resistance level and the 

operation speed is linked to the device read and write times. As could be seen, results are very 

promising. 
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Structure 
ON-OFF 

ratio 
Retention 

Operation 

speed 
Type Reference 

Al/Ti/Al2O3/s-CNT 100 106 50 ns VCM [Ahn2015] 

Al/PCMO/Pt 103 107 8 ns VCM [Liao2011] 

Pt/SiN/Ti 107 >109 < 100 ns Bipolar charge trap [Kim2013] 

TiN/TiOx/HfOx/TiN 10 106 10 ns VCM [Chen2010] 

Cu/ZrO2:Cu/Pt 106 104  50-100 ns 
Nonpolar/unipolar 

CBRAM 
[Guan2008] 

TiN/ZrO2/Pt 102 104 1 µs Bipolar TM  [Sun2009b] 

Ti/Mo-embedded 102 107 10 ns Bipolar  [Wang2010a] 

Au/HfO2/TiN 104 102 20-120 ns Unipolar CBRAM [Walczyk2009] 

Table 1.1. Comparison among various RRAM devices. The most representative parameters such as the ON-OFF 

ratio, between the LRS and HRS operation, data retention and operation speed are displayed along with the type of 

device. 

Another less common classification could be made depending on atomic rearrangements that causes 

the resistance change and is linked to the devices area [Meyer2008] or to conductive filaments formed 

in the dielectric (in this case it is not area dependent). In this thesis we will focus on the latter, which 

is the predominant operation principle for most of the competitive transition-metal-oxide-based 

RRAMs. Filamentary conduction arises when atomic rearrangements appear as clusters typically 

lower than 100 nm2, forming a percolation path in a defined part of the oxide [Lanza2019, Chen2013, 

Bersuker2010, Celano2013, Kwon2010, Calka2013, Cartoixa2012, Pan2014]. In Figure 1.3 a-c) the 

formation of a cylindrical shape conductive filament is depicted during the forming process, showing 

its growth from the cathode to the anode whereas in d) the CF (conductive filament) ruptures near 

the anode during the reset process. 
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Figure 1.3. TEM examination of the evolution of a CF during a forming and a reset process on a unipolar CBRAM 

Pt/ZnO/Pt device. a-b) detail of the formation of the filament from the bottom to the top electrode, c) fully formed 

cylindrical shape filament after set, d) partially broken filament after reset [Pan2014]. 

1.1. Memristors. Applications 

Resistive Random Access Memories belong to a wider category named memristors. The 

memristor, the contraction of the words “memory” and “resistor”, was predicted long ago by Leon 

Chua in 1971 [Chua1971]. This is a new two terminal passive element that can change its internal 

resistance to shift between several different states when an external condition is applied (these devices 

are employed both for digital and analog applications). This device is known as the missing circuit 

element [Strukov2008] since it completes the classical passive electric elements: resistor, capacitor and 

inductor, which are linked to the essential magnitudes such as voltage, charge, flux and intensity, as 

shown in the scheme of Figure 1.4a. The typical transfer characteristic of these devices is presented 

in Figure 1.4b, note that the area within the hysteresis curve decreases as the frequency increases. 

The inset details that the charge is a particular function of the flux as expected in a memory device. 
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Figure 1.4. a) Diagram of the four basic passive elements (resistor, capacitor, inductor and memristor) and their 

association with the basic electrical magnitudes (voltage, intensity, charge and flux). b) Classical current versus voltage 

plot of a memristor element. Inset: charge versus flux function [Strukov2008]. 

Among the applications of RRAMs, and memristors in general, we can find the following: 

a.-  RRAMs are nowadays under scrutiny of the international scientific community due to their 

exceptional ability to mimic biological synapses for hardware neural networks implementation 

due to their controllable conductance (from an analog perspective), low power consumption, 

CMOS technology compatibility, retention and size [Yu2011, Wang2019, Yao2020, Villena2015, 

Merolla2014, Alibart2013, Prezioso2015, RomeroZaliz2021, González-Cordero2019b]. This 

architecture is called to replace the classical von Neumann for artificial intelligence purposes 

since the latter struggles when dealing with large-scale data processing which provokes the 

undesirable effect of a bottleneck. Neuromorphic computing is the alternative to von Neumann 

architecture, it allows to design and implement learning algorithms to automate tasks without 

the need of anybody to control, a huge advantage [Zidan2018]. This is possible since different 

processes are carried out in the same unit at the same time, resulting also in a low power 

consumption and no latency because the information is processed and stored in the same place 

in memory computing [Sakellaropoulos2020]. Although there is still a long way to go for this 

architecture [Alibart2013], neuromorphic systems could be developed to manufacture appropriate 

systems with higher computation sufficiency than actual ones reducing the power consumption.  

b.-  Physical unclonable function (PUF) implementation and random number generators (RNG) can 

be built based on the stochastic properties of RRAM [Huang2012]. These kinds of circuits are 

implemented by means of variations of RS parameters such as set and reset voltages, switching 

times, conductance levels and fluctuations of the current in a certain period [Zhang2018]. The 

latter, also known as random telegraph noise (RTN), are very interesting in order to be used as 

entropy sources as they do not imply the creation and disruption of a CF over the dielectric, 

which implies a low power implementation [Lanza2021b]. PUFs arise as an up-and-coming 

technology for hardware security and encryption key generation with multiple applications like 

the IoT, since real randomness along with robustness in functional applications could be achieved 
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[Lin2021, Nili2018, Pang2017]. On the other hand, true RNGs play a decisive role in 

cryptographic applications to generate non predictable, independent and statistically uniform 

data [Yang2021, Rodriguez-Montañés2021, Tseng2021]. 

c.-  Another important characteristic of memristive devices is their use as non-volatile memories.  

This is possible due to their binary storage capacity (6 bits/cell) [Banerjee2020] since two 

differentiated resistance levels could be accomplished. In this respect, scalability along with low 

power operation are the main elements desired in a high density memory which make RRAMs a 

suitable candidate to replace flash ones. In the past years, industry has put a lot of effort in 

developing these technologies. In particular, commercial fabrication is offering different processes, 

e.g., TSMC’s 40 nm RRAM [Chou2018] and Intel’s 22 nm RRAM [Jain2019].  

1.2. Actual technology and limitations 

Non-volatile memories based on silicon, flash memories, are the dominating technology currently. 

In Figure 1.5 the scheme of a MOSFET with a floating gate placed down the Control Gate (CG) 

noted as Floating Gate (FG) is presented. The FG is located inside the oxide, so it is electrically 

isolated from the other elements which allows keeping the injected electrons there for a long time 

(over 10 years). There are some charge carriers stored in the FG which screen the effect of the CG 

over the channel of the transistor, in other words, that charge somewhat cancels the electric field 

applied amid the CG and the transistor channel. The threshold voltage of the transistor (VT) could 

be tuned by implanting hot electrons from the channel to the FG by employing a high electric field 

over the drain and the CG [Frohman‐Bentchkowsky1974]. This results in a higher threshold voltage 

(VT2) which means that the formation of the conduction channel inside the transistor is harder to 

achieve [Bez2013].  

 

Figure 1.5. Graph of a FAMOS transistor (Floating Gate Avalanche-injection MOS) [Villena2015]. 

Through the charge or discharge the FG, each of the cells could store a unit of logic information 

(known as a 0 or a 1 logic state). If the FG is already charged, with a certain voltage V (VT < V < 

VT2) applied to the CG, the conduction channel of the transistor will not be created and there will be 

no current flowing across it, so a logic 0 is registered. Conversely, if the FG is discharged but with 

the same previous voltage, a logic 1 is registered because of the conduction in the channel.  

Flash memories are reaching its physical limit since reducing the size of the cells is getting quite 

difficult. Currently, the scale down over 10 nm is producing several problems of loss or fluctuation of 

charge [Christensen2022]. Some of them are related to [Aritome1993, Atwood2004, Ielmini2009]: 
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• Charges trapped in the oxide: storing charge in NAND memories takes place under the effect 

of high electric fields that drag charges into the FG through the oxide. This produces that 

unavoidably some charges rest in the oxide due to the cycling, so a screening effect occurs in 

the FG. As a result of that, the threshold voltage of the transistor changes and that means a 

malfunction of the device [Lee2002]. 

• Random telegraph noise: appearing traps in the oxide also affects to the reading process, a 

carrier leak provokes random fluctuations of the current [Yang2006]. 

• Cross-talk (parasitic capacities): when cells are close enough, capacities between FG becomes 

coupled, this effect is especially relevant when a low number of electrons is involved 

[Atwood2004]. 

• Stress Induced Leakage Current (SILC): intensive programming of the cells over time 

produces oxide damage which makes that carrier could escape from the FG to the gate. Once 

again, the threshold voltage VT is affected, and the cell does not behave properly. 

1.3. New devices in the framework of non-volatile 

memories 

The hurdles purported in the previous section 1.2 have favoured the need for researching and 

developing new electronic components. In general, there are several ways to go. The first one is to 

improve the current CMOS technology focusing on the power consumption and the increase of the 

speed and the storage density, this is also known as “More Moore strategy”. Another way is to employ 

CMOS technology in new architectures to enhance data treatment. The objective of this thesis is the 

study of novel devices based on new procedures with the potential to replace flash technology for data 

storing in the midterm, also known as “More than Moore strategy”. Note that the latter technology 

is not an alternative to the digital trend stated by Moore’s Law, it certainly is a mixture assimilation 

of digital and non-digital purposes into compact systems which will be the basis of multiple 

applications. As depicted in Figure 1.6, see that “More Moore” is regarded as the brain of an 

intelligent compact system while “More than Moore” means interacting with the outside world and 

the users. 
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Figure 1.6. “More than Moore” technology allows the communication between the digital processing & storage of an 

integrated system and the users in the outside world. 

Some of the most promising technologies capable of implementing non-volatile memories are shown 

in  Figure 1.7: 

1. Phase Change Memories. These devices are built on chalcogenide glasses and their 

operation is based on the change of its internal structure to reach two different conduction 

states: the crystalline phase (SET state), implying a low resistance and the amorphous phase 

(RESET state), with a high resistance [Christensen2022, Pirovano2004, Lacaita2006]. 

2. Spin-transfer-torque random-access-memories. These devices are based on spin transfer 

torque processes and fabricated on a magnetic tunnel junction (MTJ) with two ferromagnetic 

layers separated by a thin insulator barrier. The switching relies on the difference between 

parallel configuration (corresponding to the LRS) and the anti-parallel configuration 

(corresponding to the HRS) [Sebastian2020, Chen2016, Yu2016]. 

3. Ferroelectric memories as Ferroelectric Field-Effect transistor (FeFET) and the 

Ferroelectric Tunnel Junction (FTJ). A ferroelectric capacitor is included in the gate of the 

FET transistor which can be tuned to control the charge distribution in the channel, so, the 

output current is controlled [Zeng2019, Ma2000, Horiuchi2008]. These memories are built on 

two electrodes with a ferroelectric layer in between where a quantum tunnel effect induces a 

current. This current is fixed depending on the energy of the barrier height that is produced 

as result of the external voltage. [García2014, Gruverman2009]. The biggest drawback of these 

devices is the leakage current and the depolarization of the ferroelectric layer because of the 

electric fields in the common operation which implies shorter retention times.  

4. Mott memories. These devices are typically based on a MIM structure where the dielectric 

is a Mott material [Xang2019b, Mott2004] that is activated by means of the carrier injection 

[Asamitsu1997], thermal activation [Pickett2012] or an electric field. Their operation consists 

of the transition between a metal and a dielectric in materials with correlated electrons. 

5. Memories fabricated with carbon-based materials. These devices are based on 

amorphous carbon, nanotubes carbon or even graphene since their properties allow the 

switching between diamond-like (HRS) and graphite-like (LRS) phases [Zhou2019, Qin2012]. 
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Some of them shift between both HRS and LRS states with the thermal creation and rupture 

of nano-holes [Kreupl2008]. 

6. Molecular and macromolecular memories. These memories are based on a simple or a 

little cluster of molecules which create a path between two electrical electrodes [Chen2018b]. 

This is carried out by applying an external electric field that changes the internal resistance, 

showing both unipolar and bipolar behavior [Song2011, Reed2001]. The most remarkable 

advantage of this technology is scalability, since the size of the cell may range from a few 

molecules to more efficient and complex structures [Liu2012, Bai2013]. 

7. Resistive Random Access Memories. This is one of the most promising technologies in 

the non-volatile realm and the objective of this work. These devices are based on a MIS or 

MIM structure where the resistive switching takes place in the dielectric. Dielectrics are 

typically made of chalcogenides, transition metal oxides, organic materials or semiconductors 

that change its internal resistance by means of physical mechanisms [Wong2012a, 

Villena2015]. There are multiple properties which make these devices such a powerful 

candidate: scalability under 5 nm, easy and cheap mass fabrication cost, low operation voltage 

(under 3 V), low power dissipation (under 64 pJ/cell), high processing speed (under 100 ns), 

CMOS compatibility and 3D integration [Chen2016, Yu2016, Pan2014, Villena2015]. Several 

classifications could be determined by the physical mechanism responsible to control the RS: 

Valence Change Memory (VCM) [Xue2019], thermochemical RRAM memory [Zhang2020], 

Conductive Bridge RAM (CBRAM) [Coll2019], and metal oxide bipolar non-filamentary 

RRAM memories [Zhang2020, Yu2016].  

Since the conduction of these devices is generally formed by conductive filaments formed by 

redox reactions, they are also named redox-based memories [Funck2021]. 

 

 

Figure 1.7. Diagram including all the different types of memories underway. In this work, all the efforts will be 

focused on emerging NVMs, precisely on RRAMs. 

Currently, some companies are devoted to RRAM design, manufacturing and sales. One of the best 

known is Crossbar Inc. founded in 2010 in California with more than 190 patents issued worldwide. 

As stated in their website [Crossbar2021], their devices have been proved to scale below 10 nm and 
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compared to a traditional NAND Flash memory; they have 100 times lower read latency, 20 times 

better energy efficiency and 1000 times faster write performance, among other properties, see the 

diagram in Figure 1.8. Additionally, they do not need to be erased since they are capable to 

overwrite to bit/byte level, they are fabricated on standard CMOS production lines and their capacities 

could reach 1 TB/chip and more [Crossbar2021]. 

 

Figure 1.8. Crossbar Inc. RRAM technology highlights compared to traditional NAND Flash technology 

[Crossbar2021]. 

1.4. RRAM Technology 

1.4.1. RRAM Structure 

As it has been already stated, RRAM cells consists of a MIM or MIS structure, see Figure 

1.9a. This is quite simple, so the industrial fabrication process is very competitive. The dielectric 

layer grants the movement of ions under the effect of an external electric field which induces an 

electric current [Pan2014, Waser2009]. A crossbar is needed when dealing with a high density of 

RRAM cells. This structure consists of a perpendicular top wire (TE) and a bottom wire (BE) with 

a dielectric layer in between. See in Figure 1.9b a crossbar example with nine cells [Wei2020]. 
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Figure 1.9. Sketch of a RRAM memory crossbar array. (a) Structure of a single cell, b), crossbar architecture formed 

by multiple cells driven at the same polarity at the same time [Wei2020]. 

If a higher level of integration is needed, this technology also gives the chance to stack the cells in a 

horizontal or vertical 3D cross-point architecture. The first one is based on stacking the horizontal 

cross-point array layer by layer as shown in Figure 1.10a, while the other consists of a vertical pillar 

structure with the RRAM sandwiched between the vertical electrodes and multilayer horizontal 

electrodes as shown in Figure 1.10b. The latter is inspired on the vertical 3D channel employed 

currently by NAND flash memories. Note that the fabrication process of the horizontal cross-point 

array is higher than the vertical one because the vertical approach only requires one critical 

lithography step or mask to define the pillar electrodes after the deposition of successive planes of 

electrodes [Pan2014, Wu2016, Yu2016]. In essence, production costs are lower as more layers are 

stocked. 

 

Figure 1.10. Design of a 3D a) horizontal cross-point array (HRRAM) where the memory cell is positioned at the 

intersection between bit line and world line, b) vertical cross-point array (VRRAM) where the memory cell is located 

at the intersection between pillar electrode and word line [Yu2016]. 

1.4.2. Device fabrication 

In these devices, the election of the electrode material is key to the switching behavior. A 

broad diversity of them have been studied. The electrode materials can be summarized in five 

categories depending on their configuration: silicon-based electrodes, nitrite-based electrodes, oxide-

based electrodes, alloy electrodes and elementary substance electrodes. The latter are the most usual 

electrodes which include Al [Maestro-Izquierdo2020], Ni [Villena2016] Ag [Huang2016], W 

[Prakash2014], Ti [Yang2009b], Cu [Yang2009c], Pt [Chiu2012] or graphene [Son2010]. Alloy 
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electrodes generally tend to balance the RS including Pt-Al [Wang2013] and Cu-Ti [Huang2013b]. 

Oxide-based electrodes include ZnO [Zheng2011], ITO [Kim2012], etc. In case of silicon-based 

electrodes p-type Si and n-type Si [Tang2013] are employed. The last group of nitrite-based electrodes 

is the quite frequent, for instance TiN [Poblador2020] and TaN [Tang2013b]. Regarding the dielectric 

layer, MIM and MIS structures could be easily assembled by employing the oxides that are typically 

operated in the semiconductor industry. The most common way of assembling is by physical vapor 

deposition and lifting-off successively. The top electrode and the dielectric layer are deposited by 

using physical vapor deposition (PVD) or atomic layer deposition (ALD) [Zahoor2020]. 

 

Figure 1.11. Typical RRAM structures to study the RS mechanism, SEM images are presented. a) Multiple top 

electrodes of different sizes with a common bottom electrode, b) device built on a horizontal cross-point structure, 

c) crossbar structure, d) section of a MIM structure showing its different layers, TEM image [Lanza2019]. 

Usually, RRAM shares the same bottom electrode as shown in Figure 1.11a whereas, for a crossbar 

architecture, separate bottom electrodes are used for each device, see Figure 1.11b for cross-point 

and Figure 1.11c for a 3D crossbar [Lanza2019]. It is important to highlight here that the size of 

the MIM cell makes HRS current depend on it when the RS is not filamentary and the LRS when 

the RS mechanism is distributed. Additionally, some studies demonstrated that RS is a stochastic 

process that always takes place at the weakest locations of the device [Pietronero1988]. Thus, as the 

size of the cell rises, the probability of finding defects and weaker regions is higher, which implies a 

variation of the set and reset threshold voltages. This fact foments that the electrical properties of 

the device vary a lot due to the formation of different CF sizes and shapes. Typically, smaller RS 

devices present lower HRS current and larger set and reset voltages [Shi2017], see in Figure 1.11d 

an example of a 28 nm diameter MIM RS device [Park2017]. 
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1.4.3. Operation 

The resistive switching operation is stochastic and takes place in the dielectric layer and in 

the corresponding interfaces, as reported at the beginning of the chapter. In the event of a filamentary 

conduction, RS takes place by means of conductive filaments that shunt both electrodes. In the case 

of unipolar switching, Joule heating could be the main physical mechanism involved in the conductive 

filament rupture while the reset process takes place. In bipolar switching the main principle involved 

is the migration of charged species due to the electric field, although Joule effect also accelerates the 

physical mechanisms (which are thermally activated) and, therefore, the resistive switching dynamics. 

To prevent the electric permanent breakdown of the device while successive cycling, a compliant 

current is stablished by a semiconductor parameter analyzer or by an external component such as a 

resistance, transistor or diode is employed. 

Depending on the type of the resistive switching mechanism, RRAMs could be classified in two main 

groups: Electrochemical Metallization Cells (EMC), also known as CBRAM, and VCM.  

In CBRAM memories the movement of metal ions and consecutive redox (reduction and oxidation) 

reactions is the physical mechanism responsible for the RS [Coll2019, Kozicki2016, Valov2011]. This 

structure is based on an oxidizable top electrode, commonly Cu, Ni or Ag, while bottom electrode is 

almost inert, such as Pt or W elements, with a metal oxide layer sandwiched in between. Regarding 

the creation of the filament, it is produced because of the oxidation of the active metal electrodes, 

generally Cu or Ag the migration of the corresponding cations Cu+ or Ag+ and the reduction at 

different parts of the dielectric [Goux2016]. Hence, RS in CBRAM memories is controlled due to 

creation and rupture of metallic filaments as depicted with an example in Figure 1.12 [Ye2016]. 

 

Figure 1.12. Sketch of resistive switching in ECM devices taking as example an Ag/ZnO:Mn/Pt structure. a) At the 

top electrode, Ag oxidize to ions (Ag → Ag+ + e-) when an electric field high enough is applied, b) Ag+ is reduced 

after moving to the bottom electrode (Ag+ + e- 
→ Ag), c) a conductive filament is created as precipitations of Ag are 

deposited at the bottom electrode creating a percolation path to the top electrode and the cell reaches the LRS, 

d) when electric field is inverted the cell switches back to the HRS as a consequence of an electrochemical dissolution 

of the conductive filament which breaks the percolation path. Adapted from [Ye2016]. 
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In case of VCM memories, the RS phenomenon involved is produced by a physical mechanism related 

to the generation of oxygen vacancies 𝑉𝑜
2+ and consecutive movement of oxygen ions O2- which 

produces the creation of a conductive filament from the bottom to the top electrode of the cell, see 

Figure 1.13. At the beginning, when the device is in a pristine state, this process is called forming 

process, Figure 1.13a. In this operation, if an anode forms an interfacial oxide layer created with 

metals, oxygen ions O2- react with this or even loss their charge staying as neutral non-lattice oxygen. 

Thus, the electrode/oxide interface acts as the commonly called oxygen reservoir, [Chand2015]. 

Therefore, as oxygen vacancies 𝑉𝑜
2+ agglomerate in the dielectric layer a conductive filament is created 

between both electrodes allowing the current to flow through it and the cell swaps from the HRS to 

the LRS, this is called set process, see Figure 1.13b and Figure 1.13c. On the contrary, a reset 

process takes place when oxygen ions O2 return to the dielectric from the anode interface and oxidize 

the metallic CF or couple with oxygen vacancies 𝑉𝑜
2+ which provokes the destruction of the CF and 

the cell switches back to the HRS [Vandelli2015] as depicted in Figure 1.13d and Figure 1.13e. In 

bipolar RRAMs, a positive and negative electric field is required to move oxygen ions O2- in different 

directions. 

 

Figure 1.13. Schematic of resistive switching in VCM devices [Wong2012a].  

To better describe both types of RRAM devices, in Table 1.2 a comparison of the most representative 

parameters is shown. Note that the values are very similar except for the endurance, where VCM 

takes a huge advantage. This fact is produced because CFs of ECM devices are formed mostly by 

metal atoms that are easier to move and diffuse in relation to oxygen ions. Hence, a higher degradation 

of the components and so properties is produced in ECM devices as to VCM devices. 
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 RRAM type 

Parameters ECM (CBRAM) VCM  

Operation voltage (V) 7 [Park2015] 3 [Wu2010] 

Operation current (µA) 10[Woo2016] 5 [Wu2010] 

Endurance (number of cycles) 106 [Huang2016] 1012 [Hsu2013] 

Retention (s) 106 [Huang2016] 106 [Chiu2012] 

Operation speed (ns) 1 [Goux2012] 5 [Lee2008] 

On/off ratio 107 [Lim2016] 107 [Chen2017] 

Table 1.2. Comparison of the typical main features in RRAM memories between ECM and VCM. The best 

parameters of each of the references are considered. Adapted from [Zahoor2020] 

1.4.4. State of the art and challenges  

Although RRAM technology presents outstanding advantages, some important hurdles need 

to be addressed before their massive industrial use in real-world applications. RS devices presenting 

two different states are being employed to build non-volatile memories, logic gates, frequency switches 

or stochastic computing systems. When multiple stable states are considered, these devices are being 

employed to hardware implementation of electronic synapses in artificial neural networks among other 

applications, as multiple conductance states can be maintained in the device operation [Lanza2021]. 

The typical figures-of-merit are endurance, retention, scalability, switching time, energy consumption 

and variability as shown in Figure 1.14 diagram. 

 

Figure 1.14. Sketch of the most important RRAM features including endurance, retention, scalability, switching time 

and energy consumption; and hurdles to be addressed, such as variability and the lack of EDA tools. 

• Endurance: due to the continuous transitions in RRAM memories, from HRS to LRS and 

vice versa, this process produces damage in the device which implies degradation and a loss 

of performance. Hence, endurance measures the number of times a device is able to switch 

between both states granting a minimum resistance ratio amid them, this is, HRS and LRS 

states are still distinguishable. Endurance characteristics are obtained typically by applying 

a successive sequence of I-V sweeps to the device and extracting RHRS and RLRS at a fixed 
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voltage afterwards, a slow operation in most cases. The proper way of doing that is after 

every set/reset transition in order to have a high reliable and standard method, in addition, 

it is recommended to consider a large number of measured points as explained in [Lanza2021]. 

Measured endurances of 106 and 107 cycles are commonly achieved as reported in the literature 

[Yoshida2007, Wang2018] although in some cases 1012 cycles have been accomplished [Lee2011, 

Baek2004]. 

• Retention: this parameter measures the time the memory stays in a certain state after a set 

or reset process. Thus, the cell capacity to maintain its information could be quantified. The 

typical procedure to obtain this is by applying a constant voltage stress (CVS) of a low 

voltage (0.1 V) over the time for both HRS and LRS to measure the current versus time (I-

t) curve. Note that retention in LRS is determined by the compliance current stablished while 

the set process takes place, for example in devices relying on CF-resistive switching as the 

compliance rises, the more robust and stable the conductive filament is over time. To consider 

a decent retention time for NVMs it should last 10 years at 85ºC [Lanza2019]. Logically, this 

test is not easy to carry out, so the common method to obtain retention is by applying pulses 

at high temperature and extrapolate the results to a 10-year period. 

• Scalability: the RRAM area is a key parameter in this technology since it has been 

demonstrated the potential to hit low dimensions due to the filamentary conduction. This is 

not only determined by how small a useful memory could be fabricated, but also to consider 

the compatibility to 3D architectures. RS behavior occurs at the weakest place of the total 

dielectric region because of the high number of defects [Lanza2019]. As a consequence of that, 

it has been proved that nanoscale devices with areas under 100 nm2 need a higher forming 

value in comparison to larger devices comprising areas over 25 µm2 [Shi2017]. In addition, 

CFs are formed randomly on sizes and directions along the dielectric medium which provokes 

variations in the performance of the device. 

• Switching time and energy consumption: to analyze these parameters, the employment 

of ramped voltage stress (RVS) used to perform I-V sweeps is useless, so pulsed voltage stress 

(PVS) with square or triangular pulses is mandatory. In this respect, energy consumption 

during switching transient is calculated by integrating voltage and current after each pulse 

which is acquired by the instrument used for the electrical characterization [Lanza2019]. 

Nowadays energy consumption is essential for the design and construction of portable devices 

such as laptops, mobile phones, or more recently, the use of electronic synapses in artificial 

neural networks. Typically, in RRAM devices this value ranges between 0.1 to 1 pJ/bit while 

in PCMs this is around 10 pJ/bit [Carboni2019]. Switching time accounts for the elapsed time 

in this read/write process, usually comprising the range of a nanosecond in RRAMs followed 

by FeRAMS (65 ns) and PCRAMs (100 ns) [Govoreanu2011, Munjal2019].   

• Variability: this is one of the critical factors in RRAM devices [Pan2014, Lanza2019]. Set 

and reset voltages along HRS and LRS resistances present an important level of disparity 

which is not desirable. Variability can be studied when including temporal alterations (cycle-

to-cycle) and spatial alterations (device-to-device) [Perez2019]. Thus, the stochastic nature of 

resistive switching, based on the formation and rupture of conductive filaments, is considered 

the main reason behind these alterations. In this sense, it is of high interest to understand 
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and control the form and shape of conductive filaments which is linked to the device features 

even on special circumstances as under the effects of an external magnetic field 

[Maldonado2019]. Therefore, the control and prediction of the experimental values becomes 

highly challenging, although some statistical techniques have been developed in order to 

analyse this phenomenon [Roldán2019, Roldán2021b, Acal2019]. In spite of all this, variability 

could also be an ally in certain occasions, leading to build true random number generators in 

the context of integrated circuit cryptography [Carboni2019]. 

• Lack of Electronic Design Automation (EDA) tools: it is worth to point out that there 

is still a lack of well-established compact models. In this respect, the latter are fundamental 

tools to face parameter extraction algorithms properly, another key issue not frequently 

tackled in these devices [Maldonado2022b]. Automatic and robust mathematical procedures 

are necessary to deal with high amounts of experimental data in order to process them 

simultaneously, a typical situation that is always necessary to carry out when studying a new 

device. 

1.5. RRAM Simulation and Modeling  

Simulation tools are one of the most important concerns in the development of any novel electron 

device since they are essential to understand the underlying mechanisms involved and predict its 

operation. In this sense, efficient and accurate models need to be addressed to establish proper working 

designs and normalize their utilization to provide circuit developers useful resources [Lanza2019, 

Panda2018]. Simulators could be classified in accord with the degree of accuracy and computational 

cost generally in three levels: 1) ab-initio simulation frames on the atomic scale comprising a few nm3, 

2) physically based device simulations employing finite element methods (FEM) and KMC models 

comprising tens of nm3, 3) compact models comprising several µm3  [Ielmini2017, Panda2018]. 

Depending on the nature of the simulation one can obtain different results [Ielmini2017, Lanza2019]: 

• Atomistic models relying on the density functional theory (DFT) explain charge transport 

and the inherent phenomena which leads to resistive switching in order to understand the 

band structure, diffusion of ions and atoms and migration mechanisms, in addition to the 

energy barriers for defect generation. 

• FEM models provide the typical current-voltage transfer characteristic based on differential 

equations to obtain the transport of charge carriers including effects such as the electric field, 

temperature and the concentration of defects. 

• KMC models involve simulating the stochastic behavior of the RS operation to obtain the 

current-voltage transfer accounting for the possibility to describe individual defects such as 

the generation and recombination of oxygen vacancies and trap assisted tunneling. 

• Compact models determine I-V characteristics by solving simplified differential equations 

to describe global attributes of the device such as the filament radius or the average device 

temperature, even in several devices at the same time. 
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Note that as the scale of the model decreases, the physical detail is more accurate, so it gives rise to 

an increase of the complexity and the computational cost. See Figure 1.15 for a summary of the 

simulation tools. 

 

Figure 1.15. Schematic of the different simulation models employed for the characterization of RRAM devices 

depending on the scale. As the physical detail level increases, the corresponding computational cost is increased in 

concordance. 

1.5.1. Atomistic simulators 

Atomistic models are the most suitable for an in-depth study of the physical processes 

underlying in resistive switching devices such as diffusion of defect species, creation, recombination 

and all the effects related to charge transport mechanisms [Kamiya2012]. To properly analyse all 

these features, microscopic simulators must incorporate significant phenomena related with materials, 

defects and atoms such as structural and phase changes in the materials, generation, recombination, 

drift and diffusion of defects/atoms, combination of ions and thermal, electrical, or optical properties 

and reactions at interfaces, in addition to their combined interactions [Duncan2016]. Furthermore, 

other components could be added to improve the understanding in the physics involved in the inner 

part of the device regarding external factors like composition or materials, some of them are:  

1. Defects sub-band formation. 

2. Electron and ion transport models which include carrier tunnelling mechanisms. 

3. Universal Landauer approach and ballistic transport.  

To carry out the simulations, a KMC appliance is incorporated to explain the stochasticity of the 

operation in relation to the defects phenomenality and simulate its progression. 
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In order to reach a higher degree of efficiency and veracity, atomistic simulators could be calibrated 

by entering certain experimental information of chemical-physical details such as thermal and 

electrical conductivity, work function and crystallographic structure of the bands or the bandgap 

itself [Duncan2017]. To begin the simulation, ab initio or molecular models (DFT) account for the 

calculation of the most representative defects in the material like thermal ionization, relaxation 

energies and activation energies for the formation, recombination of defect species as well as their 

mobility within the insulator. In this way, the obtained results could be compared to experimental 

ones where some aspects are involved, for instance variable ramped voltage input, temperature and 

magnetic field switching, RTN characterization and time-dependent dielectric breakdown 

[Lanza2019].  

Therefore, choosing the most appropriate materials depending on the applications of the device is key 

to tune their corresponding semi-empirical and compact models to enhance the previous design 

[Jung2017]. One of the advantages of this approach is that no necessary preliminary expertise of the 

CF shape is required and complex structures including several layers may be tested. On the other 

hand, one must consider that dealing with complex structures involves a very high computational 

cost so simulation times may take up to several days or weeks. In this sense, it is capital to know and 

decide which factors may be included in the simulation to achieve a trade-off between relevant results 

and spent time. In Figure 1.16 an example of a simulated Cu/a-SiO2 device is shown [Onofrio2015]. 

 

Figure 1.16. Example of a microscopic simulation of a Cu/a-SiO2 RRAM device accounting for a (a-d) forming, 

(e) reset and (f-h) set processes. Note that each capture is displayed as a function of the simulation elapsed time 

[Onofrio2015]. 

1.5.2. Microscopic simulators (kinetic Monte Carlo 

simulators) 

KMC simulators, unlike FEM simulators, base their operation on individual contributions of 

the ions/defects/vacancies by employing random numbers under simple rules [Aldana2020b, 

Aldana2017, Lanza2019, Ielmini2017]. In this manner, it is possible to consider variability and 

reliability of the device under study due to the generation and recombination of oxygen vacancies 
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which represent a decisive part during switching. Additionally, trap assisted tunneling is another 

important factor to be included in order to describe the main charge transport mechanism while the 

reset process and previous to the forming. This tool is also able to emulate current fluctuations like 

RTN as defects and impurities in the oxide provokes modifications in the current [González-

Cordero2019, González-Cordero2019a]. In Figure 1.17 an example of a KMC simulation of a forming 

process showing the microscopic distribution of ion and atoms is depicted [Aldana2017]. 

Note that both FEM and KMC tools present the huge advantage to solve the fundamental equations 

and simulate the device with a high level of detail without assuming CF sizes and shapes previously 

but also some hurdles need to be contemplated. One of the most important disadvantages is the lack 

of implementation in commercial circuit solvers such as SPICE and the corresponding Verilog-A 

support. This fact arises from the impossibility to solve partial differential equations (PDE) in these 

platforms unlike ordinary differential equations (ODE) which are tackled consistently. 

 

Figure 1.17. Kinetic Monte Carlo simulation of a forming process presenting different stages depending on the 

external applied voltage. Red balls represent Ni atoms while blue balls mean Ni cations. In h) the conductive filament 

is fully formed and the process concluded [Aldana2017]. 

1.5.3. Macroscopic simulators (finite element method) 

In FEM simulators, numerical models based on heat, transport and Poisson equations are 

solved including boundary conditions in 2D or 3D situations where the total volume is discretized 

with finite elements [Lanza2019, Ielmini2015, Ielmini2017]. As is the case of RRAM devices, 

simulations are more complex in comparison to others such as CMOS devices where only carrier 

transport equations are taken into account. In this sense, ionic and thermal effects are inherent to 

the RS operation and must be considered for the evolution of the conductive filament [Vandelli2015, 

Villena2017]. Note that other components like oxygen vacancies and impurities in the layers may be 

included to study the modification of the CF aspect [Menzel2015, Aldana2017]. As an example of this 
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model, a Pt/Ta2O5/TaOx/W RRAM device is simulated presenting a good accuracy with its 

experimental I-V characteristic as shown in Figure 1.18 [Ielmini2017]. 

 

 

Figure 1.18. Example of a Pt/Ta2O5/TaOx/W RRAM simulated device making use of a properly configured 

FEM model, a) cross section, b) I-V measured and simulated curve comparison [Ielmini2017]. 

1.5.4. Compact modeling 

Compact models emerge as the need to simulate large-scale circuits and systems in SPICE-

like environments established on RS devices [González-Cordero2016, Guan2012, Chen2015, 

Huang2013]. Thus, previous models presented in this section are not suitable for this task because 

the high computational cost required would suppose colossal simulation times. In this respect, the 

level of detail needs to be simplified to speed up the process and provide reasonable results. 

Typically, the solutions assumed are defining the filament shape, e.g., conical or cylindrical and 

assume average values along the device such as temperature, electric field or particles drift [González-

Cordero2016b, González-Cordero2016c, González-Cordero2017c, González-Cordero2017d, Jiménez-

Molinos2017]. The main characteristics of these models consist of integrating the most common device 

switching variability parameters such as set and reset voltages and resistance values corresponding 

with the LRS and HRS states. Thus, these analytical models are acceptable to reproduce the behavior 

of a circuit and grant excellent results in different routines and situations. 

Sometimes, FEM and KMC approaches could be included by performing some simplifications in the 

differential equations destined to model ion and vacancy drift in addition to generation and 

recombination to account for temperature and voltage dependence of the process [Bocquet2014, 

Bocquet2014b, Huang2013, Kang2015]. Once properly calibrated, I-V simulations are carried out 

under different situations which directly rely on the chosen parameters such as 

Schottky/Poole-Frenkel barrier height, hopping range, number of open Landauer channels, CF 

resistivity thermal resistance and capacitance, among others [Lanza2019, Ielmini2017]. As an example 
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of a SPICE compact model simulation, in Figure 1.19 a basic modeling scheme is presented by 

adapting the shape of the conductive filament obtaining different results [González-Cordero2016c]. 

 

Figure 1.19. 3D representation of the geometrical aspect of a RRAM conductive filament to be modeled, a) square 

shaped, b) cylindrical shape, c) conical shape. Obtained I-V simulated curves considering different d) oxide thickness, 

e) thermal resistances [González-Cordero2016c].  
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2. Electrical characterization of 

resistive memories 

2.1. Measurement of resistive memories under the 

effects of the magnetic field  

This section focuses on the experimental characterization of RRAM devices based on 

TiN/Ti/HfO2/W stacks. In particular, the role of the magnetic field (MF) has been studied in-depth 

in addition to traditional measurements. The main physical phenomenon involved in this situation is 

the inclusion of the effects of Lorentz force which have been analyzed in the RS both in the LRS and 

the HRS states, see Figure 2.1.  

The effect of the MF has been proven to influence the RS parameters such as Vset, Vreset, Iset and Ireset 

leading to a distribution as the successive cycles are measured in a long RS series. Specifically, when 

the MF is enhanced, the LRS current experiments a progressive increase. This effect is also observed 

in the HRS current, which is also increased on average. Nevertheless, set voltages and currents are 

lower on average as the MF rises while reset voltages are not so influenced since cycle-to-cycle 

variability masks this effect. In case of reset currents a cycle-by-cycle increase for high MF values is 

appreciated. 
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Figure 2.1. a) Scheme of Lorentz force produced as a result of the combination of electric and magnetic force, b) 

3D CF shunting both top and bottom electrodes when no MF is applied, c) 3D CF when the action of a MF is 

activated resulting in a clustering of the atoms on one side [Maldonado2020b]. 

These measurements have been carried out in the laboratory L4 located at the second floor of the 

physics building of the Facultad de Ciencias de Granada, see Figure. 2.22.2. More details are given in 

[Maldonado2017, Maldonado2019c] 

 

The following section is an already published work [Maldonado2019]. 

 

 

 

Force 

Magnetic field 

Current 
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Abstract 
 
A characterization process for resistive RAM (RRAMs) based on TiN/Ti/HfO2/W stacks has been 

performed. In addition to conventional electrical measurements, the effects of the magnetic field (MF) 
have also been considered. The influence of the Lorenz force on resistive switching (RS) processes and 
on the device conduction was explored both in the Low Resistance State (LRS) and in the High 
Resistance State (HRS). The MF influences the set/reset voltages and current distributions, spreading 
the range of current values obtained in a long RS series of successive set and reset cycles and modifying 
set voltage values. For the reset voltage, the influence is less significant than the cycle-to-cycle 
variability. 

Keywords: Magnetic field effects; RRAM; Resistive switching; Set voltage; Reset voltage. 

 



 

32 
 

1. Introduction 

Resistive random access memories (RRAM) 

devices have shown great possibilities for 

applications related to non-volatile memories, 

neuromorphic circuits and physical unclonable 

functions implementation [1-8]. RRAM new 

designs consume much less power than 

traditional non-volatile NAND flash memories. 

In addition, read and writing speeds are higher 

and their technology is CMOS compatible. The 

scaling possibilities as well as the potential for 

building 3D structures based on crossbar 

architectures are also of great interest [1-4]. 

Nevertheless, the full-scale industrial use of this 

technology has faced several hurdles such as 

variability, lack of simulation and modeling 

tools, etc. In this respect, different facets of 

resistive switching (RS) physics have not been 

explained yet completely; therefore, there are 

outstanding research efforts going on [1, 3-10]. In 

this context, new characterization techniques are 

needed. Moreover, although in the last few years 

different results in relation to RRAM physical 

simulations and modeling have been published 

[1, 6-7, 11-17], greater efforts should be put to 

develop accurate and easy-to-use physical 

simulation tools and reliable compact models for 

circuit simulation. 

In this manuscript we show the main results 

of RRAM characterization employing different 

magnetic fields (MFs). The use of MFs presents 

an advantage from the characterization viewpoint 

since it adds a new control variable. We have 

performed conventional electrical RS 

measurements [7, 18] while the devices are under 

the effects of a controlled MF perpendicular to the 

charge conduction direction. Different reports 

related to characterization including MF effects 

have been presented previously [19-24]. In 

general, these studies [21-23] show a shift of the 

transition voltages (set and reset voltages) 
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towards higher absolute values. These works are 

based on devices made of different materials, 

among them only one has been performed on 

RRAMs with HfO2 as dielectric [19], although this 

oxide shows promising RS performance both for 

non-volatile memories [3] and for mimicking 

biological synapsis in the context of neuromorphic 

circuits [25]. We have focused our study on HfO2 

devices; in particular, we studied the conduction 

levels as well as the set and reset voltages and 

currents (extracted as reported in Ref. [17]) for 

different MFs both in the HRS and LRS.  

Some of the studies devoted to analyze MF 

effects used high MFs (several thousands Oe). 

However, in our case we chose lower MFs; this is 

a more representative situation, closer to real 

cases of multifunctional devices whose operation 

would be modulated by different physical 

variables (electric field, magnetic field or light 

intensity [23]), as it is the case of some sensor 

devices. 

In Section 2 of this paper, the device and 

measurement process are described. Section 3 is 

devoted to explain and discuss the main results 

and, finally, the main conclusions are drawn in 

Section 4. 

2. Device fabrication and 

measurement 

The field-oxide isolated TiN/Ti/HfO2/W 

devices were fabricated on an N-type (ρ = 4 

mΩ·cm) silicon wafer. First, a Ti adherence 

layer (20nm-thick) was deposited on the silicon 

substrate, and subsequently, a 50 nm-thick W 

film was deposited. The 10 nm-thick HfO2 layer 

was grown by ALD at 225 °C using TDMAH 

and H2O as precursors and N2 as carrier and 

purge gas. The top metal electrode consists of a 

200 nm-thick TiN and 10nm-thick Ti scavenging 

layer. The electrical contact to the bottom 
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electrode is made through the aluminum-

metallized back of the silicon wafer. The 

resulting TiN/Ti/HfO2/W structures are 

square-shaped with an area of 15×15 µm2. 

The current-voltage (I-V) measurements 

were performed by means of a semiconductor 

parameter analyzer. The voltage was applied to 

the TiN/Ti top electrode, while the bottom 

electrode was grounded. A forming process was 

needed prior to the long RS series measurement 

with a current compliance of 0.1 mA. These 

series were programed with a Matlab software 

tool that controls the instrumentation via 

GPIB. The voltage ramp employed was 0.15 V/s 

and the voltage step was 0.02 V. 

 

 

 (a) 

 (b) 

Figure 1. Measurement set-up. (a) Side view, the wafer 

is placed between Helmholtz coils that produce a nearly 

uniform magnetic field. (b) Top view, the MF created is 

perpendicular to the charge current direction. 

 

The MF was generated by two Helmholtz coils 

(Figure 1), which are driven by a programmable 

current source. Sequences of 50 RS cycles were 

carried out at the same MF. Between the 

sequences of 50 RS cycles with a given MF 

value, 50 RS cycles were measured without an 

applied MF in order to allow comparison. In 

Figure 2 we show the magnetic field values 

applied during the whole experiment. By 

considering RS cycles for null magnetic field 

between every two different MF values, a 

representative comparison of the results can be 

performed.  

 
 Figure 2: Applied magnetic field sequence for the 450 

set/reset cycles measured during the experiment. The 

MF is increased in 50 Oe steps (from 0 Oe to 200 Oe) 

and between each MF value considered, 50 RS cycles 

were measured without MF. 

 

Figure 3: Experimental I-V curves for 450 set/reset 

cycles. The MF is increased in 50 Oe steps (from 0 Oe 

to 200 Oe) and between each MF value considered, 50 
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RS cycles are measured without MF. Figure 2a shows 

the 250 curves measured without MF (after applying a 

MF value shown in the legend), while Figure 2b shows 

the 200 curves obtained when applying a specific MF 

value. 

3. Results and discussion 

Figure 3 shows the measured I-V curves. Curves 

obtained at 0 Oe after applying a specific MF 

are shown in Figure 3a, while those obtained 

under different MFs have been plotted in Figure 

3b. As can be seen, the MF spreads out the 

distribution of I-V curves. In order to check if 

there is any underlying trend, Figure 4 shows 

the current versus cycle number at different 

applied voltages. 

Figures 4a and 4c show that the MF influences 

the HRS device resistance: a slight current 

increase is observed as the MF rises; therefore, 

the MF effects seem to affect the CF 

morphology during switching. Notice that the 

first cycle after MF removal is strongly affected 

by the previous MF value applied. However, the 

subsequent cycle-to-cycle variability measured 

at 0 Oe is again low, pointing out the influence 

of the MF during RS operation. 

In Figure 4b a wider range of current values at 

HRS is obtained in comparison to Fig. 4c. This 

situation is different because the voltage 

considered here is close to the set voltage. At 

this operation point the CFs are almost formed 

and the conduction is ohmic. 

 
Figure 4: Experimental HRS and LRS currents 

measured at different applied voltages: a) 0.2 V, b) 0.6V, 

c) -0.6V versus cycle number for the whole experiment 

(curves Figs. 3a and 3b). 

The results show that the MF affects the 

stochasticity of the RS process as indicated by 

the increase in set voltage variability. Regarding 

the LRS, the MF effects are significant, 

especially for values above 100 Oe. These effects 

seem to be cumulative, increasing the current 

cycle-by-cycle mean while the MF is applied 

(with some points out of this general trend). 

However, this effect is not maintained after 

removing the MF, where the current levels 

during switching are stable. In addition, it 



 

35 
 

should be noticed that only for the lowest MF 

values the current remains at the same level 

after switching off the MF, indicating that MF 

strongly influences CF morphology and 

stoichiometry.   

Figure 5: Experimental set (a) and reset (b) voltages 

obtained for each measured cycle for the whole RS series. 

Once the MF effect on the current has been 

shown, we focus on the MF influence on the 

set/reset currents and voltages. Previous studies 

performed for much higher MFs (few thousands 

Oe) have revealed an increase of the reset and 

set voltage absolute values with the magnetic 

field increase [21, 23]. These results were 

obtained for different dielectrics (none of which 

was HfO2). Our measurements show different 

trends (Figure 5 and Figure 6). The set voltage 

(Figure 5a) and set current (Figure 6a) 

decreasing trend on the average values is 

observed when they are plotted cycle-by-cycle 

under MF effects. Regarding the reset voltage, 

MF effects are not significant. Nevertheless, it is 

remarkable that the first cycle of the RS series 

for zero MF after the application of 150 Oe and 

200 Oe shows an important increase in its 

absolute value, indicating the influence of the 

previous applied MF on the filamentary 

morphology and switching stability. Figure 6b 

shows the corresponding reset currents during 

cycling. A clear MF influence on the current 

levels is obtained for 150 and 200 Oe. 

Figure 6: Experimental set (a) and reset (b) currents 

obtained for each measured cycle in the whole RS series. 

Finally, Figure 7 shows the cumulative 

distribution functions of set/reset voltages and 

currents. Apart from the general trends 

commented above, a clear spreading in the 

measured values is observed under the MF 

influence in comparison with the corresponding 

values obtained without applying a MF. Notice 

that the average value for the 0 Oe curves is 

clearly affected by the morphological changes 

due to the previous MF applied. 
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Figure 7: Cumulative distribution functions for the 

measured Vset, Vreset, Iset and Ireset, parameters with and 

without applied MF. 

4. Conclusions 

The influence of the magnetic field (from 0 to 

200 Oe) on the operation TiN/Ti/HfO2/W 

resistive memories has been investigated. The 

results show that MF enhances the LRS current 

level in a cumulative manner in a successive RS 

cycle series. The HRS current is also increased 

on average under MF effects. The set and reset 

voltages and currents have been also analyzed 

under MF influence. A decrease in the average 

value of the set voltages and set current with 

the cycle number is observed for high magnetic 

field values. However, the cycle-to-cycle 

variability of the reset voltages is larger than the 

influence of the MF in the range assessed, 

although the corresponding reset currents shows 

a cycle-by-cycle increase for the higher MF 

values assessed. 
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2.2. Statistical procedures to analyze resistive 

switching 

In this section we have studied different types of measurements performed in several MIS 

devices in order to obtain the energy that is linked to the reset process. Particularly, instead of 

working on the usual current versus voltage domain, charge and flux have been calculated to 

study this special operation domain. Thereby, diverse numerical mechanisms such as Phase 

type Distributions (PHD) along Weibull distributions (WD) and Erlang distributions (ED) 

have been employed as theoretical tools to reproduce the experimental variability of the energy 

needed to complete a single reset process for the devices under consideration. 

In particular, PHD is a probability distribution based on a convolution of exponential 

distributions that outcomes from an entity of one or several inter-related Poisson processes 

while ED is the distribution of sum of k independent exponential variables with mean 
1

𝜆
 each. 

Likewise, it is the distribution of the time before the kth case of a Poisson process with a ratio 

of 𝜆. If k=1, this is reduced to the exponential distribution. On the other hand, WD is 

commonly used in the dielectric breakdown situations to study the hazard and failure rate of 

the devices, which is linked to a number of other probability distributions. It is a distribution 

that describes properties of system that fail because the rupture of the weakest-link. 

Nonetheless, it is probed that WD and ED fail to reproduce the variability of the data whereas 

PHD makes that feasible as intermediary cases of degradation on a reset process which may be 

defined and related to probabilistic states (k) that evolve as the resistive switching process goes 

on. 

 

The following section is an already published work [Maldonado2019b]. 
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1. Introduction 

Resistive Random Access Memories 

(RRAMs) have shown an outstanding potential 

for storage class non-volatile memory 

applications [1]. Some of the advantages of 

RRAMs over FLASH devices, the current 

technology in massive non-volatile circuits, are a 

lower read latency, faster write performance and 

lower power consumption. RRAMs are also 

gaining momentum as memristive artificial 

synaptic interconnections, the key components 

in hardware neural networks and other 

neuromorphic circuits. The potential of these 

devices is fostering research in all the fronts, 

from materials to compact modeling and 

simulation [1]. 

In this work we have characterized the energy 

linked to reset processes in different types of 

unipolar metal-insulator-semiconductor devices 

[2]. We have chosen an approach followed by L. 

Chua [3]; instead of using an I-V domain, we 

work in a charge (Q) and flux (ϕ) domain [3], 

being these variables defined as follows, 

0 0

( ) ( )      ( ) ( )       

t t

Q t i t dt t v t dt   = =   

Finally, we also calculate the energy needed in a 

reset process, given by: 

0

( ) ( ) ( ) 

t

E t i t v t dt  =   

We have applied different numerical procedures 

to extract the statistical features of the 

experimental Ereset (energy consumed till a reset 

event takes place), for the different devices 

considered. To do so, we made use of a previously 

developed technique based on Phase type 

Distributions (PHD), whose theoretical 

development took place at the end of 20th century 

[4]. We will show that neither the Weibull 

distribution (WD), widely employed in the 

context of dielectric breakdown studies, nor the 

Erlang distribution (ED), that come up in 

previous RRAM analysis [4], fulfill the needed 

requirements to reproduce the experimental data 

variability. This new PHD analysis allows the 

characterization of possible intermediate states 

of degradation along a reset process. These states 

are linked to the different probabilistic states (k) 
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that can be extracted from the sample of Ereset 

data. 

2. Device fabrication and 

measurement 

The Ni/HfO2/Si-n+ devices with dielectric 

thicknesses of 10nm and 20nm and 

Cu/HfO2(20nm)/Si-n+ devices have been 

fabricated. The fabrication details are given in 

[2]. The device stacks schemes are shown in Fig. 

1. Long series of I-V curves under negative 

voltage ramps have been measured by means of 

an HP-4155B semiconductor parameter analyzer 

controlled using Matlab via GPIB. The Si 

substrate was grounded.  

3. Results and discussion 

Typical I-V curves for the three technologies 

are shown in Fig. 2 for both set and reset 

processes. The corresponding Q versus ϕ curves 

are plotted in Fig 3a. At the reset point, the 

charge, flux and energy obtained are named as 

Qreset, ϕreset and Ereset. The Qreset versus ϕreset 

experimental distributions are shown in Fig 3. In 

Fig. 4, the Ereset versus ϕ reset distributions are also 

given. The cumulative distribution functions 

(CDF) for the voltage, charge and energy at the 

reset point are shown in Fig. 5. It can be seen 

that we get approximately the same Ereset CDFs 

for the different technologies. This fact suggests 

that they are thermally activated since the 

energy consumed till the reset event shows a 

similar statistical pattern and that the physical 

mechanisms behind the reset are similar. 

We have investigated this issue by applying 

different voltage ramp rates in the resistive 

switching cycles of the Ni 20nm-based 

technology. It can be seen that the differences in 

terms of Ereset CDFs are not significant in the 

studied ramp rate range.  

Finally, PHDs have been employed to fit the 

Ereset distributions (Fig. 6). The WD and ED failed 

to reproduce the data. A canonical PHD (cPHD) 

works better, although with different number of 

intermediate states for each stack. The cPHD 

presents a forward movement between the 

intermediate states till the reset point is reached, 

with transitions characterized by the different 

probabilities between the states.  This means 

that the transitions between the k intermediate 

states go from the first to the final state in a 

forward manner, there are no backward 

transitions. 

4. Acknowledgements  

The authors thank the support of the Spanish 

Ministry of Science and Universities and the 

FEDER program through projects TEC2017-

84321-C4-1-R, TEC2017-84321-C4-3-R, 

MTM2017-88708-P, TEC2014-54906-JIN. This 

work has made use of the Spanish ICTS Network 

MICRONANOFABS. 

References 

[1] M. Lanza et al., Advanced Elec. Mat. (2018), 

1800143 

[2] M. Gonzalez et al., IEEE Trans. Dev. Mat. Rel. 14 

(2014), 769–771 

[3] L. Chua, Applied Physics A 102 (2011), 765–783 

[4] C. Acal et al., J. of Comp. App. Math. 345 (2018), 

23 



 
 

45 
 

                                     
 

 

 

                         

  

 
 

 

 

 
 

 

 

 
 

 

Fig. 1. Schematic of the unipolar RRAMs considered in this study. 

For the sake of brevity we name them using the top electrode metal 

and the thickness of the dielectric.   

Fig. 2. Set and reset experimental I-V curves for the three 

devices considered and measured under unipolar regime. For 

the set process a current compliance of 100μA was employed. 

Fig. 3. Charge versus flux data for the three technologies considered (a). Extracted charge and flux data at the reset point 

for the devices with Cu electrode (b), Ni electrode and a 10nm thick oxide (c), and Ni electrode and a 20nm thick. oxide 

(d). 

Fig. 4. Energy versus flux experimental data at the reset point for the devices with Cu electrode (a), Ni electrode and 

a 10nm thick oxide (b), and Ni electrode and a 20nm thick oxide (c). 

Fig. 5. For the technologies under study, Cumulative Distribution Functions (CDF), of Vreset (a) Qreset (b), and Ereset 

(c). For the Ni 20nm devices, CDF for Ereset measured for three different voltage ramps (d). 
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Fig. 6. Cumulative hazard rate calculated as –ln(1-FEreset) versus energy at the reset point. Different distribution 

functions have been employed to fit the experimental data (shown in symbols). The WD is shown in light blue, it is 

seen that it is far from being a good fit, neither the Erlang distribution (used in [4]) worked out. PHDs were employed 

to improve the fitting. The PHD was the better fit in all cases, although using different number of probabilistic states 

(phases, whose number is described by k) for each stack. 
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3.  Time series analysis for the study 

of variability in resistive memories 

3.1. Introduction and application of the technique 

Time series are a series of data listed in the time order they happened, commonly plotted in a 

temporal line chart. This is widely used in fields like statistics, weather forecasting, communications 

engineering or any situation related to temporal evaluations. Time series analysis evaluates the data 

in the series by means of different methods to take out the statistics. Different models can be 

implemented making use of this theory in order to predict future values of the series depending on 

previous observed ones. 

Time series statistical analyses (TSSA) have been utilized in this chapter to assess and model the 

variability of RRAMs. In particular, set and reset voltages in a long RS series of different measured 

devices such as Ni/HfO2/Si-n+, Cu/HfO2/Si-n+ and Au/Ti/TiO2/SiOx/Si-n+ have been obtained with 

the aim of forecasting future values as previous ones are established. Thus, several analytical models 

for this purpose are calculated. The autocorrelation (ACF) and partial autocorrelation (PACF) 

functions are obtained to develop the models and also to calculate the “inertia or memory” between 

the cycles, as they are mathematical tools for finding repeating statistical patterns. 

 

The following section is an already published work [Roldán2019]. 
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Abstract 

Time series statistical analyses (TSSA) have been employed to evaluate the variability of resistive 

switching memories, and to model the set and reset voltages for modeling purposes. The conventional 

procedures behind time series theory have been used to obtain autocorrelation and partial 

autocorrelation functions and determine the simplest analytical models to forecast the set and reset 

voltages in long series of resistive switching processes. To do so, and for the sake of generality in our 

study, a wide range of devices have been fabricated and measured. Different oxides and electrodes 

have been employed, including bilayer dielectrics in devices such as: Ni/HfO2/Si-n+, Cu/HfO2/Si-n+ 

and Au/Ti/TiO2/SiOx/Si-n+. The TSSA models obtained allowed to forecast the reset and set 

voltages in a series if previous values were known. The study of autocorrelation data between different 

cycles in the series allows estimating the inertia between cycles in long resistive switching series. 
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Overall, TSSA seems to be a very promising method to evaluate the intrinsic variability of resistive 

switching memories. 

 

Index Terms—Resistive switching memory, RRAM, Conductive filaments, Variability, 

Time series modelling, Autocovariance, Stationary time series.  
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1 - INTRODUCTION 

Resistive random access memories (RRAM) 

have shown an outstanding potential for 

information storage, especially for internet of 

things (IoT) and related applications, due to 

their excellent scalability, low power operation, 

fast switching speed, easy fabrication and good 

compatibility with the well-established 

complementary metal-oxide-semiconductor 

(CMOS) technology [1, 2, 3, 4, 5, 6, 7]. The most 

promising RRAM unit cells consist of matrixes 

of two-terminal metal/insulator/metal (MIM) 

nanocells, in which the electrical resistance of 

the insulating film can be switched between a 

high resistive state (HRS) and a low resistive 

state (LRS) depending on the electrical impulses 

applied between the two metallic electrodes. 

However, after more than one decade of intense 

research, RRAM devices still have not been 

mass produced by the industry, nor entered in 

the market of non-volatile memories (NVM), 

mainly due to variability problems [1, 2, 5, 8, 9, 

10]. In RRAM devices the resistive switching 

(RS) is related to the formation and rupture of 

defect-rich conductive filaments (CFs) within 

the dielectric layer, which leads to a HRS-to-

LRS (set) and a LRS-to-HRS (reset) transition 

(respectively). Set and reset transitions are 

related to diffusion, redox and nucleation of 

different chemical species within the MIM 

nanocells [1, 2, 5, 7, 10], which take place with 

a very high degree of randomness from one cycle 

to another, leading to an intrinsic high 

variability. Consequently, the electrical 

characteristics measured in a RRAM device 

reflects the stochasticity of these physical 

processes, and produces the so-called cycle-to-

cycle variability.  

In the past few years, the variability of RRAM 

devices has been statistically analysed in most 

cases using the Weibull distribution (WD) [1, 

11, 12]. The WD comes out in the field of 

reliability physics [13] and its use makes sense 

for RRAMs under filamentary conduction since 

it is a weakest-link type distribution, i.e. the 

failure of the whole is dominated by the 

degradation rate for the weakest element. 

However, this method does not describe all the 

inherent statistical particularities of RRAM 

devices: and although it has been previously 

employed to deepen on the experimental data 

characteristic obtained for different technologies 

[1, 11, 12], it does not entirely capture the 

essence of the RS process. In fact, classical 

reliability analyses with the Weibull distribution 

assume that times to failure, in our case set 

voltage (VSET) and/or reset voltage (VRESET), are 

independent within a RS series. This assumption 

may not be valid in the case of stochastic 

processes associated with RRAMs because 

successive observations could be highly 

dependent (in fact, a CF is formed making use 

of broken parts of previous ones). It is worth 

highlighting that other mathematical 

approaches have been proposed to tackle 

different facets of the statistical study of 

variability in RRAMs and, in a more general 

scope, thin dielectrics. Among them, the use of 

a clustering statistical approach complementing 

the use of the WD [14] can be counted; in line 

with this, convolution-based modelling is also 

interesting being noticed [15]. Strategies making 

use of completely different distribution functions 

have also been reported; for example, the 

employment of phase-type distribution 

functions for certain devices led to interesting 

results [16]. Markov models have also been 

employed in the analysis of these devices [17, 

18]. Kinetic Monte Carlo (KMC) and related 

simulations can also be considered as statistical 

tools to analyse RRAM variability, as they allow 

modifying very specific physical parameters of 

the devices (i.e. concentration of atomic 
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vacancies/dopants, insulator thickness 

fluctuations) within a reasonable range and 

analyse the deviation of the electrical 

characteristics. A broad number of contributions 

have been presented in this respect [10, 19-25]. 

The only drawback of KMC simulations is the 

longer computational time, which obligates 

researchers to make assumptions that simplify 

the calculations, leading in some cases to a loss 

of accuracy.  

It is clear that variability is still an unresolved 

problem in RRAM devices both from the 

technological and the modelling viewpoint, and 

developing new analytical methods to shed light 

into this problem is highly necessary. Times 

series statistical analyses (TSSA) are powerful 

numerical methods that have been successfully 

applied for decades in the fields of economics 

and sociology, and more recently they have been 

also sporadically used in the field of engineering 

and reliability of electronic devices [26-27]. 

TSSA may be useful to analyse the variability 

of RRAM devices because: i) the data (VSET and 

VRESET) are collected in a continuous manner 

over the time (cycle-to-cycle) for a long RS 

series [28-29]; ii) TSSA is appropriate for 

physical processes that exhibit any kind of 

inertia in some of their particular features [30, 

31]. In this respect, in RS cycling, the CF is 

formed (set process) making use of the remnants 

of the CFs ruptured in the previous cycle (reset 

process). Therefore, from a statistical point of 

view it is relevant to analyse any numerical 

relations between neighbouring cycles and assess 

the system “memory” in a long RS series (to put 

it in formal words, the parameters that 

characterize consecutive cycles in a RS series can 

be correlated and, therefore, the term 

autocorrelation comes up naturally). And iii) 

under certain mathematical conditions (i.e. time 

series stationarity, an assumption that our data 

distributions fulfil) a comprehensive analysis can 

be performed through a time series analysis 

approach [30, 31]. However, despite this strong 

parallelism, to the best of our knowledge, TSSA 

have never been employed to evaluate the 

variability of RRAM devices. In this work we 

present the first variability study of three 

different types of RRAM devices using the 

TSSA, and observe that in all cases essential RS 

parameters, such as VSET and VRESET, can be 

reasonably forecasted making use of 

mathematical models and the information of 

these parameters in previous cycles. In addition, 

in long RS series the dependence of forthcoming 

cycles on previous ones can be correctly studied 

by means of correlation and autocorrelation 

analyses, characterizing in this manner the 

inertia of RS operation in RRAMs for different 

technologies.   

The manuscript is organized as follows: in 

Section II the new model is described in depth, 

in Section III the fabricated devices and 

measurement process details are given, in 

Section IV the new statistical analysis is 

explained, and in Section V the main results and 

discussion are presented. Finally, the main 

conclusions are drawn in Section VI. 

2 – MODEL DESCRIPTION 

Back in 1927, G.U. Yule introduced modern 

TSSA formulating a model for a pendulum 

dynamic movement time dependency [32]. After 

rearrangements in the corresponding equation 

describing the pendulum movement he came out 

with a second order autoregressive time series 

model where the pendulum displacement (zt) 

from the equilibrium position was regressed on 

the two previous observations (zt-1) and (zt-2) —

the physics governing the pendulum is linked to 

a second order differential equation—. In our 

study, we model the values of VSET and VRESET 
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of different RRAM devices over long series of RS 

cycles by considering the values of previous 

cycles using TSSA [30, 31, 33]. One of the main 

difficulties is to find the order of the model, i.e. 

how many VSET or VRESET values from previous 

cycles we need to forecast the current cycle (for 

a general model previous cycles are usually 

considered, see Equation 1). In addition, it is 

also necessary to find the weights (Φ1…Φp) of the 

autoregressive model we are seeking (see 

Equation 1). 

𝑉𝑟𝑒𝑠𝑒𝑡𝑡 = Φ1𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1 +Φ2𝑉𝑟𝑒𝑠𝑒𝑡𝑡−2
+⋯+Φ𝑝𝑉𝑟𝑒𝑠𝑒𝑡𝑡−𝑝
+ 𝜀𝑡 

(Eq. 1) 

 

The order of the model (p) depends on the 

physics governing RS, but we will not assume 

any knowledge of it and we will only make use 

of the information within the experimental data 

because the underlying physics and the 

technological details of the fabrication process 

are “hidden” in the RS data collected. 

Therefore, the models obtained with this 

approach are empirical and the TSSA output 

will consist of the order of the model (p) and the 

weights set (Φ1, ..., Φp). Sometimes a model such 

as the one described in Equation 1 works better 

for the centred variables; e.g., 𝑉𝑅𝐸𝑆𝐸𝑇 − 𝜇, where 

µ stands for VRESET mean in the RS series (this 

formulation is equivalent to include a constant 

term Φ0 in the model). The term εt, as usually 

employed in time series studies, stands for a 

residual that accounts for the model error (the 

difference between the measured value and the 

modelled value). This term is obtained in TSSA 

theory by generating random numbers with a 

normal distribution whose variance corresponds 

to the one calculated from the measured data. 

Nevertheless, for the sake of simplicity, this term 

will not be included in the models developed 

here, following the conventional notation in the 

engineering context. In this approach, the 

algebraic equations are employed in the form 

usually seen in compact modelling, i.e., the 

current value of reset or set voltages are given 

as a function of variables already known, such 

as reset and set voltages of previous cycles. The 

existence of a difference between the measured 

and modelled values is assumed. Equation 1 

shows what is called an autoregressive (AR) 

model [30]; however, not always such an easy 

model can be obtained. Occasionally more 

complex models are needed; if this is the case, 

an autoregressive moving average (ARMA) 

model that includes AR and moving average 

(MA) parts are considered [30]. MA models are 

a linear combination of past residuals [30-32]. 

The general expression of an ARMA model is 

described in the Supplementary Information 

(see Equation A1). 

We have employed TSSA to study and model 

the data obtained from RRAMs made of 

different materials. Three types of devices were 

considered, two of them including HfO2 as the 

dielectric, sandwiched by different electrode 

materials (Ni and Cu), and another one based 

on a bilayer (TiO2/SiOX) insulating stack.  

3 – DEVICE FABRICATION AND 

MEASUREMENT  

The HfO2-based RRAM devices consisted of 

Ni/HfO2/Si-n+ and Cu/HfO2/Si-n+ (20nm thick 

dielectric layers were used) stacks [28]. The 

active area of the MIM cells was 5 µm×5 µm, 

and the devices were patterned by 

photolithography. A HP-4155B semiconductor 

parameter analyser was used in the 

measurement process, which consisted of 

collecting long sequences (series) of current vs. 

voltage (I-V) curves by applying ramped voltage 

stress (RVS). The Si-n+ substrate (bottom) 

electrode was grounded and a negative voltage 
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was applied to the Ni (0.3V/s ramps) or Cu 

(0.5V/s ramps) (top) electrode, although for 

simplicity we have assumed the absolute value 

of the applied voltage henceforth [28]. The RS 

phenomenon observed for both type of devices 

was unipolar, as displayed by the I-V curves (see 

Figures 1a, 1b) [5]. 

A RS series of 2800 cycles was obtained for the 

Ni/HfO2/Si-n+ RRAMs, and a series of 280 

cycles for the Cu/HfO2/Si-n+ RRAMs. The 

values of VSET and VRESET were extracted from 

the I-V curves as reported in [1, 28, 34], and 

plotted in Figures 1b-1f. The variability of VSET 

and VRESET from one cycle to another can be 

clearly observed. 

Figure 1. Typical I-V curves observed in (a) Ni/HfO2/Si-n+ and (d) Cu/HfO2/Si-n+ RRAMs. Experimental values of 
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VSET (b, e) and VRESET (c, f) versus cycle number for a series of continuous RS cycles under RVS for RRAMs based on 

Ni/HfO2/Si-n+ and Cu/HfO2/Si-n+ stacks. 

The third type of RRAM devices was fabricated 

using an Au/Ti/TiO2/SiOX/Si-n+ structure. A 

2nm TiO2 film was grown by atomic layer 

deposition (ALD), on Si-n+ wafer with a ~1.5 

nm thick native SiOX layer. The device area was 

5 µm x 5 µm and the thicknesses of other layers 

were Au (60nm) and Ti (20nm). The Ti 

interfacial top electrode was employed as a 

gathering layer for oxygen accumulation. More 

details about the fabrication process of these 

structures are given in Ref. [29]. 0.5V/s ramps 

were employed for the series measured in this 

case. 

 

 

Figure 2. (a) Typical I-V curves observed in 

Au/Ti/TiO2/SiOX/Si-n+ RRAMs. Experimental values 

of VSET (b) and VRESET (c) versus cycle number for a 

series of continuous resistive switching cycles under 

RVS.  

Some of the I-V curves for the 

Au/Ti/TiO2/SiOX/Si-n+ devices are plotted in 

Figure 2, which shows clear bipolar RS 

behaviour, and the extracted values of the set 

and reset voltages for a RS series of 100 cycles. 

As it can be seen, the different type of RS 

(bipolar) compared to Figure 1 (unipolar) also 

leads to different patterns in the VSET and VRESET 

plots. For the devices based on HfO2 dielectrics 

the set (reset) voltage were determined by 

detecting a 70% current increase (decrease) with 

respect to the previous current point. For the 

devices with the TiO2 dielectric the current 

maximum was selected to determine the reset 

voltage and the maximum change in the 

derivative was the choice for the determination 

of the set voltage. More details on these methods 

are given in Ref. [34]. 

4 – NEW STATISTICAL 

METHODOLOGY 

We have employed TSSA to analyze the 

experimental VSET and VRESET plotted in Figure 
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1 and Figure 2 for the technologies under 

consideration. A detailed description of this 

statistical methodology is given in the 

Supplementary Information. This new statistical 

approach for RRAM variability modeling was 

implemented with the packages TSA and 

forecast in R language [35].  

The first step of our methodology is to prove 

that our data constitute a stationary series [30, 

31, 33]. This implies that the mean and variance 

are constant in time (RS cycle). Figure 1 

indicates that the values are distributed around 

the mean value and no pattern in the data 

fluctuation can be found. This fact suggests that 

both the data mean and variance are constant 

all along the series, i.e. for all the cycle intervals 

considered —a numerical check of these issues 

has been also performed—. Therefore, according 

to the explanation given in the Supplementary 

Information, all the data series under 

consideration for the devices Ni/HfO2/Si-n+ and 

Cu/HfO2/Si-n+ are stationary. For the 

Au/Ti/TiO2/SiOx/Si-n+ devices we obtain 

similar results in what is related to the 

stationarity of the series, i.e. the data are 

distributed around the mean value and no data 

fluctuation patterns are seen. 

The second step is to select the most 

parsimonious ARMA model to forecast the 

voltage to reset/set in one cycle in terms of the 

voltages to reset/set in previous cycles. A 

parsimonious model is the simplest model 

(algebraically speaking) that can be used to 

correctly model a certain phenomenon [31]. 

4.1 – Modeling VSET 

For the VSET distributions considered in this 

investigation, the mean values are μ̂VSET=2.934 

V (Ni/HfO2/Si-n+ devices) and μ̂VSET=4.433 V 

(Cu/HfO2/Si-n+ devices). The autocorrelation 

functions (ACFs) and partial autocorrelation 

functions (PACFs) of the data samples are 

shown in Figure 3. The ACF is a function of the 

number of cycles k and measures the 

influence/connection between VSET/VRESET 

separated by k cycles (k distant lags). On the 

other hand, the PACF measures the same 

correlation but eliminating the dependency due 

to the intermediated lags (1, 2, ..., k-1). That is, 

in the PACF the dependencies of each two cycles 

are evaluated making sure that statistical 

crossed dependencies by means of cycles in 

between are eliminated. A simple example to 

illustrate this concept can be built with a 3 

elements series. For this series, the calculation 

of PACF between the first and third elements 

would need the elimination of the dependencies 

provided by the second on the first and the 

second on the third elements; in this way, the 

direct dependencies of the first on the third 

could be calculated. 
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Figure 3. (a) ACF and (b) PACF versus cycle lag 

(distance apart in cycles within a RS series; for a cycle 

lag 1 the ACF and PACF of consecutive cycles are 

measured and so on) for the VSET series described in 

Figure 1, corresponding to Ni/HfO2/Si-n+ and 

Cu/HfO2/Si-n+ devices. The ACF and PACF minimum 

threshold bounds for the Cu/HfO2/Si-n+ and 

Ni/HfO2/Si-n+ devices are 0.117 and 0.037 respectively, 

shown with dashed lines.  

As Figure 3a shows, the ACF for Cu/HfO2/Si-

n+ devices is higher than for Ni/HfO2/Si-n+ 

devices for the first two lag cycles (see that the 

blue columns are higher). In fact, we have just 

one component, the corresponding to the 

previous cycle, that dominates over the rest. 

These values have to be compared with the 

threshold bounds (Equation A10 in the 

Supplementary Information for ACF, which 

depends on the number of cycles of the series). 

In the PACF plot shown in Figure 3b (see also 

Equation A9 in the Supplementary 

Information), only the first value is above the 

threshold bound. Consequently, following the 

procedure to select the simplest model depicted 

in the Supplementary Information (Model 

identification section), an AR (1) model is 

proposed for the Cu/HfO2/Si-n+ devices (ACF 

decreases and PACF has only one significant 

value). This can be translated to Equation 2, 

that reflects that the VSET model of a current 

cycle just depends on the value of the previous 

cycle: 

𝑉𝑆𝐸𝑇𝑡(𝑉) = 2.4263 + 0.4527𝑉𝑆𝐸𝑇𝑡−1. (Eq. 2) 

The numbers included in Equation 2 can be 

obtained as described in the Supplementary 

Information (Parameter estimation section). In 

this case and henceforth, as explained in the 

introduction, we will not include the residual for 

the current cycle (εt), as usually done in a 

mathematician context. For Ni/HfO2/Si-n+ 

devices, the ACF and PACF have several values 

outside the corresponding thresholds (the 

minimum threshold bounds for the Cu/HfO2/Si-

n+ and Ni/HfO2/Si-n+ devices are 0.117 and 

0.037 respectively) and both functions decrease. 

The model selection procedure suggests an 

ARMA (1,1) model. Thus, VSET for the 

Ni/HfO2/Si-n+ RRAMs can be described by 

means of Equation 3: 

𝑉𝑆𝐸𝑇𝑡(𝑉) = 0.2380 +

0.9189𝑉𝑆𝐸𝑇𝑡−1 + 0.8049𝜀𝑡−1. 
(Eq. 3) 

 

As it can be seen, the structure of the 

autocorrelation relations between cycles for the 

set voltage series lead to a more complex model 

for the Ni/HfO2/Si-n+ devices. Finally, the 

residuals (i.e. the difference between the 

measured and modeled values for each cycle) of 

both models (Equations 2 and 3) were computed 

and the white noise behavior (uncorrelated 

errors) was satisfactorily checked, as it is usually 

done. 

For the Au/Ti/TiO2/SiOx/Si-n+ devices the 

ACF and PACF have several values outside the 

corresponding thresholds and both functions 

decrease.  
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Figure 4. (a) ACF and (b) PACF versus cycle lag 

(distance apart in cycles within a RS series; for a cycle 

lag 1 the ACF and PACF of consecutive cycles are 

measured and so on) for the VSET series described in 

Figure 2, corresponding to Au/Ti/TiO2/SiOx/Si-n+ 

devices. The ACF and PACF minimum threshold 

bounds is 0.2, shown in solid line.  

The model selection procedure suggests an AR 

(2) model with a null coefficient for the previous 

cycle component (VSET(t-1)). Therefore, for this 

case VSET is given in Equation 4: 

𝑉𝑆𝐸𝑇𝑡(𝑉) = 0.6051 + 0.2926 𝑉𝑆𝐸𝑇𝑡−2(𝑉). (Eq. 4) 

4.2 – Modeling VRESET 

For the VRESET model we have proceeded in a 

similar manner. The mean values are the 

following: μ̂VRESET=2.358 V (Cu/HfO2/Si-n+) 

and μ̂VRESET=1.665 V (Ni/HfO2/Si-n+). The 

sample ACF for the measured series of Figure 1 

are given in Figure 5a, and the sample PACF is 

given in Figure 5b. The greater height of the 

blue bars in Figure 5, both in the ACF and 

PACF, indicate a higher autocorrelation 

function for Cu/HfO2/Si-n+ devices in 

comparison to Ni/HfO2/Si-n+ devices.  

 

Figure 5. (a) ACF and (b) PACF versus cycle lag for 

the reset voltage of the Cu/HfO2/Si-n+ and Ni/HfO2/Si-

n+ devices under study and the RS series described in 

section II. The ACF minimum threshold bounds for the 

Cu/HfO2/Si-n+ and Ni/HfO2/Si-n+ devices are 0.117 and 

0.037 respectively, shown with dashed lines.  

See that the sample PACF for Cu/HfO2/Si-n+ 

RRAMs has only two values (the first and 

second lagged cycles) above the threshold bound 

(Equation A9), so that an AR (2) model could 

be considered. However, taking into 

consideration that the second component is close 

to the threshold bound an AR (1) can be 

reasonable. After the AR (1) is adjusted all the 

validation considerations are satisfied. The 
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VRESET model for these devices is given in 

Equation 5: 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡(𝑉) = 1.0117

+ 0.5711 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1 . 
(Eq. 5) 

 

For the Ni/HfO2/Si-n+ devices, the VRESET model 

works similarly to what was determined for the 

set voltage modeling (ACF and PACF 

decrease). Then an ARMA (1,1) model 

(Equation 5) holds for the VRESET time series for 

Ni/HfO2/Si-n+ devices: 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡(𝑉) = 0.237 

+ 0.8573𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1
+ 0.6523𝜀𝑡−1. 

(Eq. 6) 

 

The residuals of the VRESET models depicted in 

Equations 5 and 6 have white noise behavior 

again, and confirm the appropriateness of the 

modeling procedure. 

For the Au/Ti/TiO2/SiOx/Si-n+ devices the 

ACF and PACF are given in Figure 6. In this 

case, the influence of other lagged cycles is more 

important than in previous cases; therefore, the 

reset voltage can be given by a linear 

combination of reset voltages obtained in the 

previous cycles. The model is a factorized AR 

(6) type. 

 

Figure 6. (a) ACF and (b) PACF versus cycle lag for 

the reset voltage of the Au/Ti/TiO2/SiOx/Si-n+ devices 

under study and the RS series described in section II. 

The ACF and PACF minimum threshold bounds are 0.2 

respectively, shown in blue lines.  

The analytical expression for the TSSA 

description of the set voltage in 

Au/Ti/TiO2/SiOx/Si-n+ devices is given by 

Equation 7. 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡(𝑉)

= −0.3228 + 0.3198 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1(𝑉)

+ 0.2197 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−5(𝑉)

− 0.0703 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−6(𝑉) 

(Eq. 7) 

  

The residuals of the VRESET models depicted in 

Equation 7 have white noise behavior again and 

consequently the modeling procedure is correct. 

Note that the coefficient of the (t-6) component 

is the product of the components (t-5) and (t-1) 
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because of the characteristics of the parameter 

calculation procedure. 

The three technologies under study here show 

stationarity in the set and reset voltages series. 

Nevertheless, for other technologies a drift in the 

mean and variance shows up. In these cases, 

stationarity does not hold; therefore stationarity 

is not a general rule. If we are faced with a 

nonstationary data series, the methodology 

described in the supplementary material would 

not be appropriate and no models can be 

extracted. In these situations, there can be other 

options since the TSSA theory proposes changes 

of variables that lead the newly derived series to 

fulfill the stationary requirements that are 

needed prior to the modeling 

process.  Autoregressive integrated moving 

average (ARIMA) approaches can be employed 

instead of the AR or ARMA modeling schemes 

explained above, Ref [30, 31]. 

5 - RESULTS AND DISCUSSION 

In order to test the accuracy of the models 

previously developed we superposed in the same 

graphic the measured VSET and VRESET with the 

modeled ones for the devices under 

consideration in this manuscript. The modeling 

is a forecast of the actual value considering 

previous measured values, as it is conventionally 

done in TSSA. These results for VSET (Figure 7) 

and VRESET (Figure 8) are plotted taking into 

consideration Ni/HfO2/Si-n+ and Cu/HfO2/Si-

n+ devices. As can be seen, the VSET mean 

general trend is described reasonably well by 

Equations 2 and 3. The main dependencies have 

been correctly analyzed and incorporated with 

our procedure; hence, within the time series 

context, the model works well. We have 

validated this point by studying the residuals 

correlation, and we did not obtain any 

significant correlation between the residuals of 

the current cycle and those of the lagged ones 

(this constitutes the validation step, as 

explained in the Supplementary Information). 

Consequently, no more dependencies have to be 

incorporated to the models, since no information 

is statistically “hidden”. 

Although the scales and the modeling strategies 

are different for VSET, i.e. AR (1) for 

Cu/HfO2/Si-n+ devices and ARMA (1,1) for 

Ni/HfO2/Si-n+ devices, the accuracy is similarly 

reasonable, as Figure 7 shows. The model error 

(εt), as highlighted before, presents a white 

noise structure. We have also checked that the 

model accuracy is maintained if the number 

interval is changed.  
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Figure 7. VSET versus cycle number for the RS series under consideration. The measured values are shown in blue 

lines and the modelled ones in red. (a) Ni/HfO2/Si-n+ RRAMs, cycles 1000-1200, (b) Ni/HfO2/Si-n+ RRAMs, cycles 

1800-2000 (c) Cu/HfO2/Si-n+ RRAMs, cycles 50-150, (d) Cu/HfO2/Si-n+ RRAMs, cycles 50-250.  

The results for VRESET are in line with those of 

VSET. In this case, an AR (1) model is used for 

the Cu/HfO2/Si-n+ devices and ARMA(1,1) for 

Ni/HfO2/Si-n+ devices. Again, the model 

reproduces accurately the VRESET mean 

evolution for all the cycle number intervals 

considered, as displayed in Figure 8.  
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Figure 8. VRESET versus cycle number for the RS series under consideration. The measured values are shown in blue 

lines and the modeled ones in red. (a) Ni/HfO2/Si-n+ RRAMs, cycles 1000-1200, (b) Ni/HfO2/Si-n+ RRAMs, cycles 

1500-1700 (c) Cu/HfO2/Si-n+ RRAMs, cycles 50-150, (d) Cu/HfO2/Si-n+ RRAMs, cycles 50-250. 

For the Au/Ti/TiO2/SiOx/Si-n+ devices the 

comparison between measured and modelled 

data is shown in Figure 9. The prediction is also 

reasonable although more values of set 

(Equation 4) and reset (Equation 7) voltages of 

previous cycles are considered. 

 

Figure 9. (a) Set (b) Reset voltage versus cycle number 

for the RS series under consideration. The measured 

values are shown in blue lines and the modeled ones in 

red. Au/Ti/TiO2/SiOx/Si-n+ devices are considered 

here.  

It can be observed in the figures above that in 

certain cases the fit is smaller than current 

values. This effect is seen when values much 

different than the mean show up. However, we 

1000 1050 1100 1150 1200

1

2

3

1500 1550 1600 1650 1700

1

2

3

50 100 150
0

1

2

3

4

50 100 150 200 250
0

1

2

3

4

Ni
V

R
E

S
E

T
 (

V
)

Cycle number

 Measured

 Modeled

(a) Ni

V
R

E
S

E
T
 (

V
)

Cycle number

 Measured

 Modeled

(b)

Cu

V
R

E
S

E
T
 (

V
)

Cycle number

 Measured

 Modeled

(c) Cu

V
R

E
S

E
T

 (
V

)

Cycle number

 Measured

 Modeled

(d)

0 20 40 60 80 100

0.5

1.0

1.5

0 20 40 60 80 100
-1.0

-0.8

-0.6

-0.4

-0.2(a)

V
S

E
T

 (
V

)

Cycle number

 Measured

 Modeled

(b)

V
R

E
S

E
T

 (
V

)

Cycle number

 Measured

 Modeled

0 20 40 60 80 100

0.5

1.0

1.5

0 20 40 60 80 100
-1.0

-0.8

-0.6

-0.4

-0.2(a)

V
S

E
T

 (
V

)

Cycle number

 Measured

 Modeled

(b)

V
R

E
S

E
T

 (
V

)

Cycle number

 Measured

 Modeled



 

 

65 
 

would like to highlight that the modeling 

methodology we are presenting deals well with 

the prediction of the set and reset voltage mean. 

The current voltage values are also predicted 

well in most cases by using the statistical 

information of previous cycles. Therefore, taking 

into account that current models in the 

literature do not have this information, and that 

prediction of variability is interesting in devices 

(RRAMs) that show inherent stochasticity, we 

believe that, although it is not a modeling final 

solution, this technique is a step forward that 

can be worthwhile to characterize the device 

physics and help with variability modeling. 

It is important to highlight that Figure 3 and 

Figure 5 (in addition to the data needed for 

model building) provide information about the 

RS processes of the HfO2-based devices 

analysed. In Figure 3a, we can see that the 

correlation between cycles is higher for the 

Cu/HfO2/Si-n+ devices for the first lag cycles 

with respect to the set voltage. In Figure 5a, a 

similar trend can be observed for the reset 

voltage series. So, in general, the influence of 

previous cycles in Cu/HfO2/Si-n+ devices is 

higher; i.e., the CF remnants from resets 

processes influence more the following set cycles, 

and that is why a higher correlation comes out 

for the set voltage values when several lag cycles 

are considered. 

The qualitative explanation for this behaviour 

could be in the nature of RS in these devices. It 

is known that devices with Cu and Ag electrodes 

are employed in conductive-bridge RAMs [2, 36, 

37] because of the capacity of Cu and Ag cations 

to diffuse in the dielectric and form, after a 

reduction process, a metallic-like conductive 

filament. In these devices, the reduction and 

oxidation potential are described by a thermally 

activated process whose activation energy 

depends on the number of atoms surrounding 

the one which is taken into consideration [1, 23, 

24]. In this manner, the formation of the 

percolation path introduces “inertia” as the 

reduced atom clusters grow denser in the 

dielectric since they tend to maintain their 

shape hindering the oxidation processes of their 

atoms. This behaviour could explain the higher 

RS “inertia” shown by Cu/HfO2/Si-n+ devices 

since they maintain better the CF form and size 

that determine VSET and VRESET values. These 

effects would be reflected in the ACF plot with 

higher autocorrelation values for cycles not 

distant away in the series. 

The lower autocorrelation (Figures 3a and 5a) 

for the Ni/HfO2/Si-n+ devices reflect a lower RS 

“inertia”, as highlighted above. That could also 

be linked to a mixture of RS phenomena, since 

oxygen vacancies could be also involved in their 

resistive switching operation, as suggested in 

Ref. [38]. In this respect, the effects linked to 

activation energy lowering for oxidation of 

clustered metal atoms from the electrode would 

be mitigated, producing less correlation between 

the set and reset values of consecutive cycles. 

In both cases, Ni/HfO2/Si-n+ and Cu/HfO2/Si-

n+ devices, the most significant dependency 

(correlation) is with the previous value (first 

lag). In line with these latter issues, the results 

of Au/Ti/TiO2/SiOx/Si-n+ devices can be 

analysed. In Figures 4 and 6, the cycles 

correlated in the ACF and PACF (mostly for 

the reset voltage) is higher than for the 

technologies studied previously. In particular, 

for the reset voltage, the correlation of cycles 9, 

11, 13 is high with respect to the previous cases. 

This fact shows again an important inertia in 

the RS features of this technology in comparison 

to the devices based on HfO2. The nature of CFs 

in TiO2 for the filamentary current component 

and the presence of a volume current component 

(this component is linked to the ion distribution 
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that is spread out in the dielectric and that can 

affect several consecutive cycles in a RS series, as 

it was shown in devices of this kind [29]), is key 

to explain the higher correlation highlighted 

above.  

It is important to highlight that the 

autocorrelation and partial autocorrelation 

functions employed to in the analysis presented 

above (Figures 3-6) can be used separately from 

the TSSA modeling. They reflect the correlation 

of set and reset voltages between the different 

cycles, this means extracting the dependencies 

of the current cycle on the previous ones. This 

information is useful even if no TSSA modeling 

is performed since it shows that the values 

studied as independent data, are, in fact, 

dependent, and this fact has implications in the 

study of cycle-to-cycle variability. It is 

important to highlight that ACF and PACF 

analysis could be easily performed on RRAM 

measured data to assess the correlation between 

the characteristics of successive RS cycles.  

From the modeling viewpoint, TSSA models 

could be implemented in circuit simulators with 

Verilog-A compilers. TSSA models could be 

embedded in previous models to account for the 

RRAM stochastic behavior and for the 

correlation of certain parameters such as set and 

reset voltages in long RS series, as explained 

above. We have done so making use of the 

RRAM Stanford model [40]. In our case, a log 

file of previous set and reset values for the 

RRAMs has been employed in a model built on 

the TSSA approach making use of regressed 

values. The file was written with the current 

values of set and reset voltages every time a set 

or reset was performed. Previously, in order to 

simulate the RVS case we described 

experimentally above, we implemented a 

modification of the local enhancement factor (γ) 

[41] to be able to obtain the corresponding set 

and reset voltages, since these latter parameters 

are not model parameters. 

Finally, we would like to comment on the fact 

that the operation regime of these devices would 

be characterized by pulses if they are used as 

storage-class memory in different chips or spikes 

of a variety of shapes if employed to mimic 

synapses in neuromorphic circuits. The device 

conductance depends on the pulse number for 

each signal amplitude, because of the different 

thermal inertia that is produced in each 

operation regime [39]. In this respect, we have 

chosen RVS measurements to show a particular 

application of the TSSA in a well-known 

characterization approach. This approach could 

be considered as the DC facet of a classical 

compact model, further developments could be 

needed to deal with transient events in a more 

general model where thermal and capacitive 

effects would be needed.   

VI.- CONCLUSIONS 

Times series statistical analyses (TSSA) have 

been used to study long series of resistive 

switching processes. The experimental data 

analyzed here were measured in resistive 

random access memories with Ni/HfO2/Si-n+, 

Cu/HfO2/Si-n+, Au/Ti/TiO2/SiOx/Si-n+ 

structures. The conventional time series 

techniques were applied to model the VSET and 

VRESET of these devices; to do so, autocorrelation 

functions and partial autocorrelation functions 

were obtained for all the types of RRAMs. 

Autoregressive models were obtained for 

Cu/HfO2/Si-n+ devices and the autocorrelation 

function between cycles was high, showing an 

important inertia between resistive switching 

cycles. The better diffusion of Cu ions in the 

dielectric is behind this behaviour. For 

Ni/HfO2/Si-n+ devices more complex models are 

needed and autocorrelation data show less 
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inertia between resistive switching cycles. 

Finally, for Au/Ti/TiO2/SiOx/Si-n+ devices a 

significant correlation can be observed for more 

distant cycles in the reset voltage description. A 

physical explanation has been developed in 

connection with the correlation results found. 

The models obtained can be used to forecast the 

values of set and reset voltages in a resistive 

switching series if previous values are known. 

The information obtained in this context can be 

employed in modelling and in the 

characterization of RRAM variability.  
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Supplementary Information 

In this paper, Box-Jenkins methodology 

[Bisgaard11] is applied for modeling the time 

series of reset and set voltages in resistive 

RRAMs. For the sake of clarity, a brief 

summary of the theoretical background related 

with autoregressive moving average (ARMA) 

models is given below. 

The formulation of an ARMA(p,q) model is 

given as follows (the considerations would be the 

same for the set voltage), 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡 = Φ0 +  Φ1𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1 +⋯

+Φ𝑝𝑉𝑅𝐸𝑆𝐸𝑇𝑡−𝑝
− 𝜃1𝜀𝑡−1 +⋯
− 𝜃𝑞𝜀𝑡−𝑞 

 (A1) 

 

where VRESETt is the modeled reset voltage in the 

current cycle of an RS series, and VRESETt−k are 

the modelled reset voltages lagged k cycles (i.e., 

the k reset voltage values of the previous RS 

cycles), εt−k are the errors (residuals) made in 

the modeling process from earlier cycles, with 

Φi(i=1, …, p) and θj(j=1, …, q) being the 

unknown regression coefficients to be estimated 

in the modelling process. In time series 

methodology the term 𝜀𝑡 is also included in the 

model but, in our case, we assume it. A similar 

description holds for the set voltage. 

The current value of the modeled reset voltage 

can be calculated by means of two linear 

polynomials, one for the autoregressive part 

(AR, in this case the reset voltage is modeled as 

a linear function of some of its past values), and 

the other for the moving average part (MA, a 

linear combination of the past model errors or 

residuals). The parameters p and q are the 

orders of the autoregressive part and the moving 

average part, respectively.  

The ARMA approach assumes that the time 

series is stationary and the model error εt shows 

a white noise behaviour (uncorrelated random 

errors). Because of this, the first step, previous 

to model fitting, is to determine if the time series 

is stationary. This characteristic is achieved if 

the data structure has the same properties, 

generally second order properties, in all the 

observation period. Therefore, the mean and the 

variance should be constant in time and the 

value of the covariance between two periods 

depends only on the distance or lag between 

them. That is, they have the following 

mathematical properties: 

Mean: 

E(VRESETt) = E( VRESETt−k) = μ (A2) 

 

Variance: 

Var (VRESETt) = E[(VRESETt − μ)
2
]

= Var( VRESETt−k)

= σ 

 

(A3) 

 

Autocovariance: 

γ(k) = Cov(VRESETt−k , VRESETt)

= E[(VRESETt−k
− μ)(VRESETt − μ)] 

(A4) 

 

A useful measure of the degree of dependence 

among the data (reset voltages) of different 

cycles is the Autocorrelation Function (ACF). It 

can be calculated as follows, taking into account 

that γ(0) is the variance: 

𝜌(𝑘) = 𝐶𝑜𝑟(𝑉𝑅𝐸𝑆𝐸𝑇𝑡−𝑘 , 𝑉𝑅𝐸𝑆𝐸𝑇𝑡)

=
Cov(VRESETt−k , VRESETt)

√Var(VRESETt)Var( VRESETt−k)
 

=
𝛾(𝑘)

𝛾(0)
 

(A5) 
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Notice that the ACF measures the correlation 

between two variables separated by k periods. 

That is, the ACF summarizes how correlated are 

the data that are k lags distant. 

The usual estimate of the autocorrelation 

function from the observed data 

{VRESET1 , VRESET2 , … , VRESETn} is the sample 

autocorrelation function (correlogram) given by, 

ρ̂(k) =
γ̂(k)

γ̂(0)
 (A6) 

 

where γ̂(k)is the sample autocovariance function 

(see Equation A7) 

γ̂(k) =  
1

n
∑(VRESETt−k − μ̂)(VRESETt

n−k

t=1

− μ̂) 

(A7) 

 

withμ̂ being the reset voltage mean function μ̂ =

 
1

n
∑ VRESETt .
n
t=1  Note, that accordingly to the 

statistics jargon, the functions with a hat are 

computed from experimental data only. In this 

way, they are distinguished from the functions 

without hat that corresponds to the theoretical 

model. 

The ARMA modeling process can be performed 

in five main steps: checking stationarity, model 

identification, parameter estimation, validation 

and prediction. 

Checking stationarity 

First of all we must be sure that the series is 

stationary. If the series is plotted and there is no 

evidence of a change in the mean and the 

variance over time, it is said that the series is 

stationary in the mean and in the variance. 

Stationarity can be visually checked from the 

plot of the time series observed values. These 

values have to be distributed around a value 

(the mean) and the fluctuations above and 

under this value have to be similar in all the 

series range (the series values have to be within 

a constant interval). Also, the sample ACF must 

tail off near zero after a few lags. Nevertheless, 

if the sample ACF is very persistent (it decays 

very slowly and exhibits sample autocorrelations 

that are still rather large even at long lags) the 

time series is nonstationary. If the series is not 

stationary, some appropriate transformation 

(logarithm, differentiation…) is needed to be 

converted to a stationary series, and the 

modeling process would follow for the 

transformed series. A final reverse 

transformation would allow to obtain the model 

for the original variable. 

Model identification 

In order to select a tentative ARMA model 

(identify the orders p and q of the AR and MA 

polynomials respectively), the autocorrelation 

function (ACF) and partial autocorrelation 

function (PACF) of the data must be computed 

and compared to the corresponding theoretical 

ACF and PACF for various ARMA models. 

The Partial Autocorrelation Function measures 

the correlation between two variables separated 

by k periods when the dependency due to the 

intermediate lags is eliminated. That is, 

π(k)

= Cor (VRESETt−k , VRESETt
/VRESETt−1 , VRESETt−2 , VRESETt−k+1)

=  Cor(VRESETt−k − V̂RESETt−k , VRESETt
− V̂RESETt) 

(A8) 

 

where V̂RESETt is the estimated value by the 

linear regression model of VRESETt on the lagged 

variables VRESETt−1 , VRESETt−2 , … , VRESETt−k+1. 

These π(k) can be iteratively computed in terms 

of correlations 𝜌(𝑘) (Equation A5) using for 

example the Durbin-Levinston algorithm 
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[Brockwell02] (in practice, it uses the estimated 

values, Equation A6). 

If the data PACF is zero after lag p, this means 

that the data structure is well modeled using the 

p previous observed values. Thus, an AR model 

can be accurate enough for modeling the data. 

The number of regression terms (p) is given by 

the last significant value with respect to the 

threshold bounds in the PACF. 

If the sample PACF tails off to zero, the ACF is 

inspected. If the sample ACF is zero after lag q, 

a MA model is used for the data. The order is 

given by the last significant term in the ACF 

function. If both functions, the sample ACF and 

PACF, tail off to zero the model needs 

autoregressive and moving average terms. 

The sample partial autocorrelation π̂(k) at 

certain lag k is considered to be zero if they do 

not exceed the significance bound (threshold) 

given by, 

±
1.96

√n
, (A9) 

where n is the number of observed data (the 

number of cycles in our case) [Brockwell02].  

The autocorrelation ρ̂(k) at certain lag k is 

considered to be zero if it does not exceed the 

significance bound (threshold) given by 

[Brockwell02], 

±
1.96

√n
√1 + 2ρ2̂(1) +⋯+ 2 ρ2̂(k − 1) (A10) 

 

If several models appear to fit well the data, the 

principle of parsimony [Bisgaard11] is used to 

decide which among these models is the best. 

That is, we assume that the model with the 

fewest number of parameters (the simplest 

model) is the best option. 

Parameter estimation 

Once an ARMA model is selected, its 

parameters must be estimated (i.e., Φi, θj). The 

non-linear least square method can be used to 

calculate the parameters by using an iterative 

procedure. Initial estimates are used as starting 

points so that in successive steps these estimates 

are systematically improved until optimal values 

are found using the minimum mean square error 

as the criterion. This procedure also allows to 

calculate the residuals,𝜀𝑡, for all t. 

Validation 

In order to evaluate the adequacy of the 

estimated model, we must check that the 

residuals are not correlated. For this aim, the 

residuals (εj) ACF and PACF have to be 

plotted. These data, when plotted, have to be 

within the threshold bounds (Equations A9 and 

A10). A diagnostic test to check that the 

autocorrelation (Equation A6) of the error terms 

(residuals) is not significantly different from zero 

must be carried out. In practice, Ljung-Box 

statistic is used [Brockwell02]. This test checks 

that the first "L" correlations are equal to 0 

(ρ(1) = ρ(2) = ⋯ = ρ(L) = 0). 

If the residuals are correlated, the model must 

be discarded and the diagnosis test repeated 

with another of the possible model candidates to 

identify the most appropriate model. 

Prediction 

Once the best candidate model is selected, 

probabilistic predictions of future values can be 

made. In our case, the VRESET (or VSET) in cycle 

t could be predicted making use of the reset 

voltages and the residuals of previous cycles. 
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3.2. TSSA in h-BN memristors 

In the same manner as in the previous section, we have characterized h-BN devices in order to 

be analyzed under the TSSA by extracting the set and resets voltages and currents. The memristor 

dielectric is based on a novel 2D material such as the hexagonal boron nitride, accounting with a few 

layers in the Au/Ti/h-BN/Au/Ti stack. Hence, ACF and PACF have been calculated to get the 

analytical models presented in the realm of time series analysis. Additionally, the Stanford model has 

been modified to account for the variability by including the mentioned statistical procedure. 
 

The following section is an already published work [Roldán2021b]. 
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Abstract— We have characterized and modeled memristor devices based on the Au/Ti/multilayer h-BN/Au/Ti stack. Resistive 

switching (RS) operation has been analysed by extracting the reset and set voltages and currents. The evolution of the set and 

reset parameters along a RS series was mathematically modeled in a cycle-to-cycle (CTC) basis by means of the Time Series 

Analysis (TSSA). To do so, the Autocorrelation Functions (ACF) and the Partial Autocorrelation Functions (PACF) have been 

calculated. These tools help to perform a comprehensive variability study and to obtain the corresponding analytical models 

within the TSA context. Finally, we have included this modeling procedure in a complete compact model such as the Stanford 

to be able to account for this variability at the circuit level. Experimental current versus voltage (I-V) curves have been correctly 

fitted with the model. 

Index Terms-- Memristor, variability, compact modeling, reliability, time series analysis, dielectric, two-dimensional material, 

electrical characterization. 
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1. Introduction 

Memristors, predicted by Chua in 1971 [1], can be 

applied to different technologies [2]. Nowadays, there 

are different types of devices that can be considered 

as memristors; among them, there are the ones relying 

on ferroelectric, phase change or magnetic material 

properties [2-4]. Transition metal oxides  

have been extensively studied in this context [2-4]. In 

particular, resistive switching (RS) devices with 

filamentary charge conduction, based on HfO2, TiO2, 

Al2O3 dielectrics, among others, have shown 

outstanding features such as high endurance, good 

retention, low power consumption, CMOS technology 

compatibility, scalability, and capacity for being 

fabricated in 3D stacked structures [4-6].   

Nevertheless, other dielectric alternatives based on 2D 

materials are being considered due to the outstanding 

features of the electron devices that employ them [7-

10]. Intense research efforts are being conducted to 

describe yield, variability, reliability and stability in 

the field of 2D materials based solid-state nano/micro-

electronic devices [9, 10]. 2D dielectric memristor 

technology can lead to solutions to some of the issues 

that show up in memristors industrial applications 

linked to non-volatile memories [2, 9], entropy sources 

for cryptographic hardware (random number 

generation and implementation of physical unclonable 

functions [2, 9, 11]) and, most important, 

neuromorphic computing [2, 8, 10]. In the latter case, 

the fabrication of devices that mimic the behavior of 

biological synapses is essential [8, 12, 13]. The 

capacity to build circuits to perform matrix-vector 

multiplications will allow the implementation of 

efficient hardware neural networks (HNN) that can 

greatly accelerate neuromorphic computing, and  

above all, reduce power consumption of brain-inspired 

designs and native artificial intelligence systems. In 

addition, properties such as spike timing dependent 

plasticity, long/short term plasticity, etc., facilitate 

the development of spiking neural networks that 

process information closely to what is done in the 

human brain [14].  

For the use of these emerging technologies out of 

certain niche applications, both variability and 

implementation of mature simulation tools have to be 

addressed. We deal with both subjects in this work. 

It is known that the inherent random nature of the 

physical mechanisms behind RS makes memristor 

operation different to other type of electron devices 

[2, 5, 6]. In this respect, the device stochasticity has 

been studied and modeled from different viewpoints. 

For instance, advanced statistical distribution 

functions, e.g., Phase-type distributions have been 

successfully applied to deal with variability [15, 16]; 

approaches founded on functional data analysis were 

also used [17-19]; from another perspective, 

simulations linked to kinetic Monte Carlo techniques 

proved their adequacy [20, 21]. Here, we address CTC 

variability in h-BN memristors from the time series 

analysis perspective [22-24]. TSA has been proved to 

be an efficient tool for a comprehensive CTC 

variability characterization and modeling [22-24]. 

This modeling technique accounts for the “inertia” 

connected to RS processes; i.e., the dependencies of 

present set and reset events on previous RS operation 

is taken into consideration. This idea means keeping 

“modeling memory” of the RS previous operation; 

e.g., CF remnants left in past reset processes are 

considered when a new reset event is to be described. 

As far as we know, this is the first time this 

methodology has been used in 2D materials based 

devices.    

2. Device fabrication and 

measurement 

The memristors we have fabricated consists of the 

following layers (40 nm Au/10 nm Ti/multilayer 

h-BN/40 nm Au/10nm Ti/300 nm SiO2/Si). E-beam 

evaporation was employed for the electrode 

We thank the Spanish Ministry of Science for project 

TEC2017-84321-C4-3-R, MTM2017-88708-P, PGC2018-

098860-B-I00 and Junta de Andalucía for projects A-TIC-117-

UGR18 and A-FQM-345-UGR18 all with the support of the 

European Regional Development Fund. We also thank NSFC 

(61874075), MOST (BRICS2018-211-2DNEURO) and the 

Ministry of Finance of China (SX21400213).  
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deposition. The h-BN multilayer films were grown by 

chemical vapor deposition (CVD) on Cu foil and 

inserted between the electrodes via wet transfer. The 

(I-V) curves were measured through a Karl Suss probe 

station connected to a semiconductor parameter 

analyzer under ramped voltage stress (RVS). Long RS 

series were obtained including complete and 

consecutive set and reset cycles. The voltage was 

applied to the top electrode, the bottom electrode was 

grounded.  

 

Figure 1. (a) Experimental current versus applied voltage for 

different RS cycles in a long series for the devices under study. 

94 set (black curve) and reset (red curve) processes have been 

plotted. (b) Schematic of the fabricated devices, ICC=10-4 A. 

The measured I-V curves are shown in Fig. 1 along 

with the device layer schema. The charge conduction 

is known to be filamentary, RS is produced by means 

of the rupture and creation of conductive filaments 

(CFs) that short the electrodes [2, 7]. The mechanisms 

involved in the CFs formation and rupture are 

random, this randomness is linked to the cycle-to-

cycle (CTC) variability.   

 

 

 

 

 

3. TSA Modeling, results and 

discussion 

We have obtained the set and reset voltages and 

currents by identifying the higher I-V slope point and 

the maximum current point respectively (Fig. 2).  

 

Figure 2. Experimental current versus applied voltage for 

different RS cycles. The points where VSET and VRESET are 

calculated have been marked. We have identified the higher I-

V slope point for the set voltage determination and the 

maximum current point for the reset voltage. 

The set and reset (absolute value) voltages 

cumulative distribution functions were plotted (Fig. 

3) to describe the cycle-to-cycle variability for 94 RS 

cycles.  

 

Figure 3. Cumulative Distribution Functions (CDF) for the 

calculated parameters VSET and |VRESET|. 

The corresponding ACF (Fig. 4) and PACF (Fig. 

5) plots have been calculated [22-23]. A useful 

measure of the degree of dependence among the data 

(reset and set voltages) of different cycles is the 

autocorrelation function. The ACF (Eq. 1), a function 

of the number of cycles, k, measures the 

influence/connection between VRESET values separated 



 

84 
 

by k cycles (k distant lags in the RS series), this also 

works out for the other RS parameters, such as VSET 

[22, 25-26]. For the VSET (Fig. 4) we have several 

components, the corresponding to the previous cycle 

and two others that dominate over the reset. The 

values have to be compared with the threshold 

bounds, which depends on the number of cycles of the 

series [25, 26]. For the VRESET we have just one 

component. The ACF, ρ, is given in Equation 1, 

 

(1) 

where Cov is the covariance, Var is the variance, t is 

the actual VRESET value and (t-k) the value of k cycles 

before [25].  

To better understand the ACF, we stress that it 

accounts for the “inertia” produced in the RS 

parameter values by the CF remnants remaining in 

each RS cycle (these remnants characterize the 

influence of previous RS cycles on the current one). 

The PACF describes the same correlation than ACF 

eliminating the dependency due to the intermediate 

lags (1, 2…, k–1) [22, 23].  

 

Figure 4. ACF vs cycle lag (distance apart in cycles within a 

RS series; for a cycle lag 1, the ACF of consecutive cycles is 

measured) for the (a) VSET and (b) VRESET series. The minimum 

and maximum threshold bounds are 0.20628 and -0.20628 

respectively, shown by the dashed lines. These values depend 

on the number of data in the sample [22]. 

 

 

Figure 5. PACF vs cycle lag for the (a) VSET and (b) VRESET 

series described in Fig. 3. The minimum and maximum 

threshold bounds are 0.20628 and -0.20628 respectively, shown 

by the dashed lines. 

 

The TSA techniques (along with the results of Figs. 

4 and 5) allowed us to obtain the analytical expression 

of the time series for prediction of VSET and VRESET, 

see Table I. For the determination of the constants 

included in the equations and the number of terms 

and the type of models, see ref. [22, 25]. An Auto 

Regressive AR (1) model was employed for VSET data, 

the VRESET model proposed, in this case for the 

absolute value, is an AR (4) model with null 

coefficients in cycles t-1, t-2 and t-3: 

TSA analytical expressions for prediction 

along a 

 RS series for VSET and VRESET 

 

 

Table I. Time series analytical expressions based on a first 

order (VSET) and fourth order (VRESET) TSA autoregressive 

models. 
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See in Fig. 6 the measured and modeled values of 

the set and reset voltages, which were obtained by 

using the expressions of Table I. As can be seen, a 

reasonably good prediction can be performed for the 

cycle-to-cycle variability. This type of modeling, as far 

as we know, is the most accurate approach to deal 

with cycle-to-cycle variability because in addition to 

models where the VRESET and VSET variations are 

considered, the RS memory effects linked to resistive 

switching and past dependencies can be taken into 

account. It is also important to highlight that the time 

series is formulated accounting for the statistical 

features of the whole series; therefore, these 

characteristics are included in the corresponding 

analytical expression “on average”. In this respect, the 

model reproduces the ups and downs (trend) of the 

experimental data; nevertheless, the sudden peaks in 

the data cannot be reproduced with a model that it’s 

forged with the averaged features of the whole series. 

It is important to highlight that this sort of variability 

is important in the context of hardware neural 

networks, since although the training process could be 

affected by the variations in a conductance multilevel 

operation regime, variability could also compensate 

training weaknesses such as overfitting, when using 

memristors to implement synaptic devices. 

 

Figure 6. (a) VSET (b) |VRESET| versus cycle number for the RS 

series under consideration.  

 

 

Stanford model parameters 

Device 

Parameters 

Unit Resistive Switching 

  SET RESET 

Vo V 0.75 0.45 

I0 mA 0.2 18 

g0 nm 0.2 0.143 

ν0 m/s 5×106 

α  - 3 

β - 1 28 

γ0 - 16 44 

Table II. Stanford model parameters employed for the 

experimental device under study. 

Finally, a simulation based on the Stanford model 

[27-28] has been implemented (see the results in Fig. 

7). A reasonably good fit of the experimental curves 

was obtained using different sets of parameters for the 

set and reset curves, as it was proposed in ref. [28], 

(see Fig. 7a). This fact shows the flexibility of the 

model, it works reasonably well although the nature 

of the dielectric could lead to complex charge 

transport mechanisms to explain the device operation. 

We have included the time series formula (Table I) 

and we were able to account for the experimental 

cycle-to-cycle variability we measured (Figs. 3, 6 and 

7b) under the needed transformations to describe the 

resistive switching parameters variability in terms of 

the internal Stanford model parameters. This 

modeling was devoted to the reset and set voltages; 

nevertheless, other effects of the stochasticity inherent 

to resistive switching, such as different conductive 

filaments geometries, take place in each cycle. 

Therefore, other features (current levels, I-V curve 

shapes…) would have to be considered from the 

modeling viewpoint in the future.   
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Figure 7. (a) Experimental cycle (black symbols) vs. voltage 

for the device measured. Modeled data employing the Stanford 

model (blue line). (b) Simulations as result of implementing 

the TSA expression of VSET on the Stanford model (dashed 

lines) and experimental cycles (symbols).  

4. Conclusions 

We have measured and modeled memristors 

fabricated with the Au/Ti/h-BN/Au/Ti stack. 

Resistive switching (RS) operation has been analyzed; 

in particular, the evolution of the set and reset 

parameters along a RS series. Time series analysis 

techniques were employed to obtain analytical 

expressions to describe cycle-to-cycle variability. The 

equations obtained have been incorporated in the 

Stanford model to correctly reproduce the 

experimental measurements. 
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3.3. TSSA in graphene oxide memristors 

Novel laser fabricated graphene oxide devices are investigated in this section making use of 

the TSSA and the Quantum Point Contact model. It has been proved that RS phenomena 

takes place as a filament is created bridging the electrodes which makes the devices suitable 

memristor candidates. Thus, by employing this kind of material, some properties such as 

flexibility and conduction are offered in addition to the required non-volatility. The fabrication 

process is also an important issue here since these devices could be easily implemented in the 

industrial manufacturing context due to its simplicity. In this sense, no lithography masks are 

required and the electrodes could be chosen accounting with a great versatility. 

 

The following section is an already published work [Rodríguez2019].
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Abstract: This work investigates the sources of resistive switching (RS) in recently reported 

laser-fabricated graphene oxide memristors by means of two numerical analysis tools linked to   

the Time Series Statistical Analysis and the use of the Quantum Point Contact Conduction model. 

The application of both numerical procedures points to the existence of a filament connecting the 

electrodes that may be interrupted at a precise point within the conductive path, resulting in 

resistive switching phenomena. These results support the existing model attributing the 

memristance of laser-fabricated graphene oxide memristors to the modification of a conductive 

path stoichiometry inside the graphene oxide. 
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1. Introduction 

Memristors have shown great potential in 

the context of neuromorphic circuits. Their 

operation, based on resistance modulation by 

means of ion transport and redox reactions, 

leads to the creation of regions of different 

conductivity mimicking neuronal synapses in a 

coherent and natural manner. Consequently, 

memristors are of most interest for the 

fabrication of optimized hardware that aims to 

design and implement artificial neural networks 

[1–3]. This potential, along with their intrinsic 

facet of non-volatility, poses the set of features 

needed by memristors to become the 

cornerstone for computation schemes beyond of 

the classical von Neumann paradigm, such as 

neuromorphic computing. This new focus will 

be essential to push forward the artificial 

intelligence challenges that the industry is 

facing currently [2,3]. 

From a more general perspective, the 

outstanding features of memristors make them 

also suitable for applications that run through 

non-volatile memories, Internet of Things (IoT) 

devices, 5G, etc. Among their promising 

characteristics, the following can be highlighted: 

fast read/write times for the set and reset 

processes, low power consumption, scalability 

and CMOS technology compatibility among 

others [3–7]. 

The physics behind memristors is strongly 

dependent on the materials employed and the 

details of their fabrication process. In this 

respect,  there is a plethora of recent 

experimental,  modeling  and simulation studies 

on technologies that make use of transition 

metal oxides as the switching dielectric [4,5,8–

15]. However, in the field of memristors based on 

2D materials, the amount of studies and 

published manuscripts is much lower. In this 

context, the difficulties related to the creation of 

high quality metal contacts, the purity of the 

materials and the fabrication details pose extra 

difficulties for dealing with all of the facets of 

the study of these devices, and in particular, in 

regards to the physical simulation and 

modeling. 

In the 2D material memristors landscape, there 

are h-BN based devices, memristors with a 

different number of graphene layers or other 2D 

materials that are employed for oxygen ion 

scavenging and other particular purposes 

[3,16,17]. Among all the 2D materials-based 

contenders, the laser fabrication of memristors 

based on graphene oxide (GO) was recently 

introduced [18]. GO is a highly functionalized 

form of polycrystalline nanographene that is 

decorated with oxygen-containing groups [19]. 

The use of GO as a memristive material takes 

advantage of its inherent 2D materials potential 

with respect to conduction and structural 

flexibility properties while simultaneously 

including its non-volatility and electrical 

plasticity [20], as expected in ideal memristors 

[21]. 

The implementation of a laser-assisted 

fabrication protocol provides the device with 

several attractive features for its potential 

industrial implementation: (i) the fabrication 

process is very simple, comprising a limited 

number of steps; (ii) there is no need for 

lithographic masks since the laser itself defines 

the geometry of the memristor; (iii) the devices 

do not require scarce or hazardous materials for 

their fabrication; (iv) the resistive switching 

behavior originates in the GO (and not in the 

electrodes) adding versatility from the 

contacting electrodes perspective and (v) the 

supporting substrate can be selected with 

versatility from a rigid surface to flexible 

polymers for conformal integration. 

The novelty of the devices employed here 

results in a lack of studies linked to their resistive 
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switching features, both from the physical 

modeling and experimental viewpoint. 

Therefore, the physics lying behind their 

operation has only had its surface scratched [18]. 

In this work, we intend to tackle this issue 

making use of well-established numerical 

techniques previously developed for more 

“conventional” memristors that are developed 

with 3D stacks of transitions metal oxides 

[13,15,22,23]. Therefore, in this manuscript, we 

specifically deal with the characterization and 

analysis of resistive switching processes and 

charge conduction in laser-fabricated graphene 

oxide (GO) memristors [18] from a statistical 

perspective. We do not focus this study on the 

digital performance of the devices; we consider 

instead their conductance variation in an 

analogic manner, as it is the proper approach for 

neuromorphic applications. 

The device variability has also been 

considered in this study, specifically by using 

Time Series Statistical Analysis (TSSA) [24–27]. 

From the statistical viewpoint, information can 

be extracted that is related to the correlation of 

successive RS cycles and the inherent 

stochasticity of RS memristors operation. The 

quantum properties of conduction along the 

conductive filaments that short the electrodes 

have been scrutinized by means of the Quantum 

Point Contact (QPC) model as described in 

[15,22]. 

Therefore, the outline of this work is as 

follows: the fabricated devices and measurement 

process are described in Section 2, and the 

numerical procedure, the main results and the 

discussion are explained in Section 3. Finally, the 

conclusions are given in Section 4. 

 

 

2. Device Fabrication and 

Measurement 

The memristors fabricated for this study are 

fully based on the process described in [18] and 

summarized in Figure 1. The raw precursor 

material is a graphene oxide colloid (4 mg/mL) 

prepared following a modified version of 

Hummers and Offerman’s method [28]. The GO 

colloid is deposited by drop-casting onto a PET 

(Polyethylene terephthalate, 3 M) film (0.5 

mL/cm2) and left on a 3D-shaker for 48 h until 

the water has completely evaporated (293 K, 

RH 50%). The CNC-driven laser is then applied 

in a rectangular pattern with the precise power 

that reduces the GO at the point where 

memristance is manifested (Plaser ~ 70 mW, λ 

= 405 nm) [18]. After the laser treatment, the 

volume of the reduced GO increases; the height 

difference between the GO film and the laser-

treated GO is ~10 µm, determined using a 

DekTak XT profilometer from Bruker (Bruker 

Corporation, MA, USA). The devices were 

contacted using micro drops of conductive 

carbon-based paste (Bare Conductive Electric 

Paint, London, UK). 

 

Figure 1. Schematic representation of the fabrication 

steps for graphene oxide memristors produced by laser. 

Graphene Oxide colloid is drop-casted on a PET 

substrate (a) and left 48 h on a 3D shaker for water 

evaporation (b). Then the laser diode is applied (70 

mW) to partially reduce the GO resulting in the 
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memristive structures (c). Finally, electrical contacts 

are created by depositing microdrops of organic bare 

conductive paint (d). 

The electrical measurement experiments 

were performed with the support of a two-

channel Keysight® B2902A (Keysight 

Technologies, Inc., CA, USA) precision source-

measurement unit controlled by Easy-Expert® 

software (version 6.2.1927.7790, CA, USA). 

Figure 2a presents measured current–voltage 

characteristics showing two consecutive voltage 

cycles extracted from an L = 2.2 mm, W = 1 mm 

laser-fabricated graphene oxide memristor. These 

curves reveal the characteristic fingerprint of a 

memristor device that is determined by a 

pinched hysteresis loop closed in the origin of the 

current–voltage axis [29]. Figure 2b depicts the 

time evolution of the current when a −3 to 3 V 

symmetric voltage ramp is applied, illustrating 

the fast and abrupt transitions of the resistance. 

 

 

 

 

Figure 2. (a) Experimental current versus voltage for 

two different cycles within a resistive switching series. 

A ramped voltage with step of 10 mV was employed in 

the measurement process. (b) Voltage and current 

versus time for the cycle A shown previously. (c) 

Conductance values obtained during device cycling with 

limited compliance current [18]. The resistance was 

extracted in the range [−1,1] V of the current–voltage 

characteristics. 

Figure 2c shows the device conductance 

extracted under successive device cycling from 

a laser-fabricated GO memristor. These 

measurements constitute the input of the Time 

Series Statistical Analysis discussed in Section 

3. To avoid resistive switching degradation of 

the device, the current is limited to 20 µA [18]. 

As observed, the Low Resistance State (LRS) 

conductance presents a monotonic derivative, 

whereas the High Resistance State (HRS) 

conductance remains stable with cycling. The 

reader can notice the small conductance jump at 

cycle 28. This phenomenon is attributed to the 

defective nature of GO, which is heavily 

decorated with oxygen, hydroxyl and epoxy 

groups. Spontaneous movements of functional 

groups along the conductive path yields to local 

modification of the stoichiometry of the sample 

and, therefore, to the modification of its 

conductance [19]. Further structural and 

electrical details of Laser-Fabricated Graphene 

Oxide Memristors can be found in reference 

[18], including spectroscopic characterization, 

retention time and variability. The electrical 
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results (average HRS/LRS ratio, 6; retention 

time, 104 s; endurance, 102 cycles [18]) can be 

considered to be promising given the early stage 

of development of this technology, and they are 

expected to become more attractive once 

advanced laser lithography tools are employed 

for the development of GO laser-fabricated 

memristors. 

3. Numerical Analysis of Charge 

Conduction and Resistive Switching 

Mechanisms, Results and Discussion 

3.1. Time Series Statistical Analysis (TSSA) 

The TSSA has been employed to 

characterize the statistical features of the device 

operation variables through a long RS series 

[24].  In particular, the resistances in the LRS 

and HRS have been studied. The 

Autocorrelation (ACF) and Partial 

Autocorrelation functions (PACFs) have been 

calculated and represented in Figure 3 (see also 

Supplementary Materials). As can be observed, 

the degree of correlation between the 

measurements of previous cycles is very high 

with respect to other technologies (see, for 

instance, Reference [24] for other technologies 

with transition metal oxides as a dielectric). 

 

 

Figure 3. (a) ACF and (b) PACF versus cycle lag for 

the inverse of the values shown in Figure 2c. These 

functions show the ACF and PACFs versus cycle 

number that represent the distance apart in cycles 

within a RS series, see Reference [24]. The ACF and 

PACF minimum threshold bounds for the devices under 

study are ±0.195 for both plots (see the supplementary 

information for the information linked to the calculation 

of these threshold bounds), shown with dashed lines. We 

have considered 100 cycles in our series; this is a 

reasonable number to extract information on the 

correlation between the data and to extract a TSSA 

model. 

It can be concluded that to obtain these 

results, the high conductivity region does not 

change much between different cycles; this 

feature is the main source of the correlation. 

This fact leads us to assume a filamentary-like 

conduction mechanism where a channel of high 

conductivity region is formed after a set process 

that shorts the electrodes. In addition, the high 

correlation suggests that the high conductivity 

path does not change much between cycles, 

keeping unaltered the main conduction 

properties. It is reasonable to assume that it is 

just a narrow region that changes in between 

two larger high conductivity regions that 

remain mostly unaltered. This narrowing is 

modified leading to the creation of a fully-

formed high conduction path that shorts the 

electrodes or that isolates them in case the path 

is ruptured, leading to two large virtual 
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electrodes (filaments remnants connected to the 

electrodes [6]). 

We have employed TSSA to analytically 

describe the dependencies of the LRS and HRS 

resistances on previous cycles throughout the 

complete RS series (see in the Supplementary 

Material a summary of the steps needed to 

develop a TSSA model). The general expression 

employed was based on an Autoregressive (AR) 

approach [24], as seen in Equation (1): 

RLRS/HRS(t) = Φ1 × RLRS/HRS(t-1) + Φ2 

× RLRS/HRS(t-2) + . . .  + Φp × 

RLRS/HRS(t-p) + εt                                  (1) 

where t stands for the cycle number within a long 

resistive switching series. In this modeling 

technique, the order (p) is linked to the physics 

governing RS process in these devices. No 

previous knowledge is assumed to extract the 

information from experimental data because the 

underlying technology details and physics 

mechanisms are “hidden” in the RS data 

collected. The TSSA models are empirical and 

determine the weights set (Φ1, ..., Φp), and the 

model order is determined by p.  The term εt is   

a residual that accounts for the model error (the 

difference between the measured and the 

modeled value). In this respect, we focus here 

on the statistical information of the measured 

data without any previous assumption linked to 

the underlying physics. 

The resistance at the LRS can be modeled with 

an AR(2) approach, as seen in Equation (2). 

RLRS(t) = 4936.018 + 0.7306 × RLRS(t-1) + 0.229 

× RLRS(t-2) + εt.                                     (2) 

The HRS resistance works well with an AR(1), 

as described in Equation (3). 

RHRS(t) = 69955.16 + 0.9236 × RHRS(t-1) + εt. (3) 

The time series residuals that are left after 

a comparison with the experimental data show 

a white noise behavior; therefore, we can 

conclude that all the statistical information is 

included in the models described in Equations 

(2) and (3). It is important to highlight at this 

point that TSSA is an ideal tool used to analyze 

data in a series (such as a RS series); in this 

respect, it works well for cycle-to-cycle 

variability analysis if we consider parameters 

such as the set and reset voltages or LRS/HRS 

device resistances. 

3.2. Quantum Point Contact Modeled 

Conduction 

 An analysis of the I–V curves in terms of 

second derivative dependencies has been 

performed following [22]. In this respect, it is 

important to highlight that a screening 

procedure was developed in [22] to detect charge 

conduction features that can be modeled with 

the QPC model. The results are shown in 

Figure 4. 

 

Figure 4. Experimental current versus applied voltage in 

the devices under study including the second derivative of 

the current versus voltage for cycle A (a) and cycle B (b) 

shown in Figure 2a. A pattern in agreement with the 

QPC model is seen in [22]. 
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The characteristic one or two maxima in the 

current second derivative are seen in these 

devices. Following previous results [22], this 

behavior could be regarded as a footprint of the 

existence of QPC conduction. However, the 

fitting of the second derivative leads to an N 

parameter (number of channels in the QPC model 

[22]) lower than the unity, which is inconsistent 

with the QPC model. In this respect, a new 

representation is obtained assuming a series 

resistance of 5000 Ω (second numerical derivative 

of the corrected current, I, taking into account 

the series resistance is shown in Figure 5). This 

series resistance is reasonable considering the 

device resistance both at LRS and HRS, see 

Figure 2c. In this manner, the voltage on the 

constriction that leads to quantum effects can be 

obtained accurately. 

 

Figure 5. Second derivative of the experimental 

current (symbols) versus voltage in the device under 

study for the two reset curves shown in Figure 2. The 

analytically calculated QPC modeled current second 

derivative (solid lines) is also shown. The QPC model 

parameters employed for cycle A are the following: α = 

6.5 (eV)−1; β = 0.4; Φ = 0.13 eV; N = 1; and for cycle 

B: α = 7.5(eV)−1; β = 0.5; Φ = 0.055 eV; N = 1. 

In both cases, there is only one channel 

for charge conduction, and this result 

corresponds to a low dimensional high 

conductivity region. Also, a low energy barrier 

is observed, suggesting an almost ohmic charge 

conduction regime, although in a low 

conductivity regime when compared with 

conventional memristors based on transition 

metal oxides. 

The previous results support the existing 

model that attributes resistive switching in laser-

reduced GO to the non-uniformity in the 

number and location of functional groups that 

create nanometric-size regions of different 

conductance [18]. The sp
2 regions present high-

conductivity but they are interrupted by low-

conductivity sp
3 domains at a nanoscale level 

that are responsible for a low current flow 

[30,31]. At certain locations within the 

structure, under the action of the voltage bias 

in the HRS, large electrostatic potential 

gradients are created in the nanometric-size low-

conductivity regions, resulting in large localized 

electric fields. Assisted by Joule heating effects, 

these electric fields can trigger the drift of 

oxygen and oxygen-containing groups due to 

the low migration barrier in GO [32,33]. The 

group migration at a specific point within the 

structure establishes a continuity path of sp
2 

domains, which was previously impeded by a 

nanometric sp
3 domain (quantum point contact 

as identified in this work) and leads to a LRS 

[18]. Finally, it is worth mentioning that the 

findings in this work, disclosing the filamentary 

nature of the conduction in laser fabricated GO 

memristors, open the path for scaling the 

devices down by using high precision laser 

scribing systems. 

4. Conclusions 

The origins of resistive switching in recently 

introduced laser-fabricated graphene oxide 

memristors have been studied by using statistical 

and numerical analysis tools. Time Series 

Statistical Analysis applied to the high and low 

resistance states of the devices has shown high 

correlation that supports the model of the 

formation of a conductive filament as the main 
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source of the device internal resistance switching. 

Furthermore, the quantum point contact 

conduction method has pointed to the existence of 

a quantized point of conduction, which is formed 

and destroyed, connecting the electrodes by 

means of a conductive path. These results 

underpin the existing theory that attributes the 

memristance in GO to the formation of a highly 

reduced path in which stoichiometry is modified 

at a precise point leading to the resistive 

switching. 
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4. Enhanced compact modeling in 

resistive memories 

4.1. Series resistance extraction and inclusion in 

the Stanford model 

In this section the role of the series resistance in a RRAM device is thoroughly explored as 

it is an important parasitic element not considered so often in the literature. It can influence 

in a significant way the conduction characteristics. We have developed an algorithm to be able 

to process hundreds of experimental curves from different devices in order to extract the value 

of the resistance. Moreover, set and reset voltages have been determined to study its relevance 

and possible relation to the resistance value in HfO2 VCM memories. Another important aspect 

like modeling, essential to study the behavior of the devices, has been addressed by modifying 

the Stanford model and including the series resistance in the Verilog-A code as another 

parameter to consider. The latter is of special interest specially when dealing with experimental 

data from devices that show snapback and snapforward effects, see Figure 4.1. 
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Figure 4.1. Example of a TiN/Ti/HfO2/W experimental I-V curve (in blue) showing a rapid increase in the 

voltage compared to a typical one (in black). This is known as the snapback effect. 

The following section is an already published work [Maldonado2021]. 
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Abstract 

The relevance of the intrinsic series resistance effect in the context of RRAM compact modeling is 

investigated. This resistance notably affects the conduction characteristic of resistive switching 

memories so that it becomes an essential factor to consider when fitting experimental data, especially 

those coming from devices exhibiting the so-called snapback and snapforward effects. A thorough 

description of the resistance value extraction procedure and an analysis of the connection of this value 

with the set and reset transition voltages in HfO2-based valence change memories is presented. 

Furthermore, in order to illustrate the importance of this feature in the shape of the I-V curve, the 

Stanford model for RRAM devices is enhanced by incorporating the series resistance as an additional 

parameter in the Verilog-A model script. 

Index Terms — Resistive switching memory, RRAM, Snapback, Series resistance, Statistical analysis, 

Variability, Stanford model 
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I.-Introduction 

Resistive Random Access Memories (RRAMs) are 

nowadays under study worldwide for their outstanding 

potential in the development of non-volatile memory-

based applications [1, 2]. Because of their tunable 

conduction properties, resistive switching devices are 

also gaining momentum in the neuromorphic circuit 

landscape since they can mimic biological synapses [3, 

4, 5, 6, 7]. Their use in a fully compatible CMOS 

technology context can unleash an overwhelming 

development of these applications to advance in 

neuromorphic computing and neural network 

hardware implementation [3, 4, 5, 6, 7]. Moreover, due 

to their inherent stochastic nature, these devices can 

be used as entropy sources for cryptographic circuits, 

such as physical unclonable functions and random 

number generators [8, 9, 10]. RRAMs features allow to 

stack cells in 3D and scale to very small process nodes. 

The cells typically employ a switching material 

(usually a transition metal oxide) sandwiched in 

between two metal electrodes [1, 2]. One of the most 

important physical mechanisms associated with 

resistive switching (RS) is the formation and rupture 

of nanofilaments across the dielectric film. From a 

technology point of view, there is substantial flexibility 

to optimize the performance through an appropriate 

selection of switching materials and memory cell 

organization. However, although RRAMs have 

demonstrated some advantages over flash devices and 

other emerging structures (phase change memories, 

ferroelectric memories) such as short read/write times, 

high endurance, low power operation, radiation 

hardness, CMOS compatibility, they are not exempt 

from serious drawbacks [2, 11]. It is worth mentioning 

that massive industrial production still faces several 

challenges such as a high variability and the lack of 

reliable Electronic Design Automation EDA tools. In 

this regard, compact models are essential tools to 

tackle these latter concerns. 

RRAM compact modeling has been addressed in the 

last years at different levels. The Stanford model 

(STFM) [12-15] has been employed by many research 

groups. Other models have also been introduced [16-

20]. In the general modeling context, both, analytical 

expressions to describe device operation and parameter 

extraction techniques need to be developed as a whole 

[21]. Even well-established models are unable to 

reproduce certain observable phenomena and, 

therefore, they must be continuously improved to 

account for new physical and technological features 

associated with particular materials or devices. This is 

precisely the focus of our work. In particular, we take 

the intrinsic series resistance effect in RRAM 

operation analysis into consideration and report a 

systematic approach to extract this series resistance 

from the experimental results. As it will be shown in 

the following sections, the role played by the series 

resistance is of utmost importance for understanding 

the RRAM electrical behavior, an issue which has been 

already recognized by several authors [22-25]. The 

study of the role played by the series resistance within 

RRAM models is particularly performed for the 

STFM, since its use is extended and its algebraic 

formulation is both compact as well as intuitive. The 

enhanced STFM flexibility to reproduce Valence 

Change Memories (VCM) experimental data is 

assessed in depth. For the sake of completeness, it is 

worth pointing out that in the last few years, VCM 

devices modeling has been addressed following a 

variety of approaches [12, 14, 16, 17, 18]; in particular, 

different types of filament shapes have been considered 

(cylindrical, truncated cone, hourglass [26]). In 

addition, from the analytical formulation viewpoint, 

the state variable has been assumed from a different 

perspective: the width of the gap between the 

conductive filament tip and the electrode [12, 13], the 

CF volume or radius [17, 18] and as a generalized 

memory variable [27]. The device current calculation 

has been performed also under different considerations 

including tunneling, Schottky, Poole-Frenkel, and 

ohmic conduction regimes [12, 14, 20, 26]. Some of the 

modeling implementations also account for variability 

[28] and noise; in the latter case, Random Telegraph 

Noise (RTN) has been found appropriate for 
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cryptographic purposes such as random number 

generation circuits [9, 29]. 

The paper is organized as follows, in section II we 

introduce the device fabrication and measurement 

details. Section III is devoted to the series resistance 

extraction procedures, while the modeling 

developments are tackled in section IV; finally, we 

wrap up with the main conclusions in section V.    

II.-Device description and measurement 

The RRAMs were fabricated using a highly doped N-

type (ρ = 4 mΩ·cm) silicon wafer. The top metal 

electrode consists of a 200 nm TiN/10 nm Ti bi-layer 

while the bottom metal, a 50 nm-thick W layer, was 

deposited on the silicon substrate with a 20 nm Ti 

adhesion layer, see Figure 1a. The back of the wafers 

was metalized with aluminum for electrically 

contacting the bottom electrode through the silicon 

substrate. The dielectric layer consists of a 10nm-thick 

HfO2 film deposited by ALD. The area of the devices 

is 15×15 µm2. It is worth mentioning that the 

fabricated RRAMs are valence change mechanism-

based devices. 

The electrical characterization of the devices was 

performed applying a ramped voltage (0.08 V/s) to the 

TiN/Ti top electrode with a voltage step of 0.01 V and 

with the W bottom electrode grounded. A forming 

process was performed with current compliance 

ICC=0.1 mA and subsequently a sequence of 1000 RS 

cycles was measured, see Figure 1b. These cycles 

consist of consecutive set and reset transitions. In 

particular, for positive voltages a set process leads to 

the formation of a conductive filament (CF) that 

shorts the electrodes [30] and the device switches to 

the low resistance state (LRS). The reset process 

occurs at negative voltages, in this case the CF is 

ruptured and the device switches back to the high 

resistance state (HRS) [30]. See the set and reset 

voltages indicated in the inset of Figure 1b. 

 

Figure 1. a) Layer stack scheme of the devices under 

study, b) experimental I-V curves for 1000 set/reset 

cycles. The inset in (b) shows the set and reset voltages 

for two of the curves measured. 

III.- Series resistance and transition 

voltages extraction 

In order to calculate the intrinsic series resistance, 

Rseries, for compact modeling purposes, a numerical 

procedure similar to that used in previous publications 

[22-24] is considered here. The method consists in 

using a redefined voltage scale, VN=VApplied-

IMeasuredxRseries, where VApplied is the external applied 

voltage and IMeasured the measured current. We replot 

the experimental I-V curves (as the ones shown in 

Figure 1) by changing the variable in the X-axis to VN 

instead of the experimental VApplied. By sweeping Rseries 

we obtain different modified IMeasured - VN curves (see 

Figure 2). Among them, we select the one with the 
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steepest slope (close to a vertical line) in the region 

after the curve knee; in doing so, we make sure the set 

process is visualized properly as long as the current 

rises while the voltage is constant as shown in Figure 

2. This behavior is a clear sign of a sustained 

conductive filament growth that leads to a current rise 

even if the device voltage is fixed. The slope of the 

curve is computed by a linear regression scheme along 

its straightest part.  

 

Figure 2. Modified I-V curves (measured current versus VN) 

for a set process making use of different series resistances. For 

the sake of clarity, only 4 curves corresponding to different 

series resistances are included. The black-dashed lines are the 

result of the linear regression performed to choose the curve 

with the highest slope in the methodology proposed. 

Based on the obtained Rseries value, a comparison 

between Vset and the transition voltage for the set 

process (VTS) is performed to assess the influence of 

Rseries on the I-V curves. Notice that Vset is obtained 

from the original I-V curve (first point where the 

maximum current slope along the I-V curve is found) 

and VTS from the modified one (IMeasured - VN) after the 

Rseries calculation. In this latter case, the projection in 

the X axis of the vertical line obtained in the new 

curve (IMeasured - VN) is assumed as VTS (see Figure 3). 

 

Figure 3. Experimental current versus applied voltage for one 

cycle in a long RS series for one of the devices under study. The 

new transition voltage VTS is obtained from the I-VN curve. (a) 

Linear and (b) logarithmic scale. 

The above described methodology can lead to 

erroneous values for the series resistance in some 

particular I-VN curves (because of the snapback effect). 

In order to improve the parameter extraction method, 

only a region of the vertical section of the modified I-

V curve is fitted when searching for the steepest slope. 

As indicated in Figure 4a, the fitting region is selected 

to be in between a current value of 0.9xImax and a 

current resulting from the average of the current (IS) 

(obtained at the point where the set voltage is 

determined in the original experimental curve) and the 

maximum current Imax, as shown in Figure 4a. This 

methodology has been found to be more appropriate 

when snapback effects (Figure 4a) take place in the 

lower part of the “intrinsic” I-V curve [22, 23, 24]. By 

doing this, the snapback is avoided since this region 
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represents the starting phase of the conductive 

filament formation (the weight of the series resistance 

with respect to the overall resistance, device plus series 

resistance, changes fast here). The proper set process 

takes place in the vertical section of the I-VN curve, as 

already stated. While the highest region of the curve 

cannot be considered because of a different reason. 

When the filament can no longer expand, the process 

slows down, which can be regarded as the appearance 

of an additional series resistance. 

 

Figure 4. a) Modified I-V curve in a set process for a series 

resistance = 22.1 Ω. This value was obtained with the improved 

methodology. b) Application of this methodology to the 1000 

RS set cycles measured (for each I-V curve one series resistance 

value is obtained). The red line indicates the average curve 

(calculated as the mean) of all the RS cycles, while the black 

curve corresponds to the median curve of all the RS cycles 

considered. 

Figure 4b shows the proposed fitting methodology 

applied to the measured 1000 RS cycles as well as the 

median and average I-V curve. As it can be seen, the 

snapback effect is clear for some of the curves plotted. 

Once Rseries is determined after obtaining the steepest 

slope, the reset curves are corrected accordingly as 

illustrated in Figure 5. 

 

 

Figure 5. a) Experimental and modified reset I-V curves. b) 

Modified I-V reset curves for the 1000 cycles measured. The red 

line corresponds to the average curve (calculated as the mean) 

of all the RS cycles and the black curve corresponds to the 

median. 

In addition, the reset and reset transition (VTR) 

voltages are calculated from the measured and 

corrected reset curves, respectively. They are obtained 

as the voltages corresponding to the maximum current 

values, see Figure 5a. Notice that the values of the set 

and reset transition voltages are quite similar, 

suggesting a clear electric field dependence of the 

resistive switching mechanisms. They are the 
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minimum voltages required to induce the vacancy 

movements in opposite directions. Nevertheless, 

temperature effects are also known to be involved in 

resistive switching due to the thermally activated 

nature of the diffusive transport mechanism [12, 30-

35]. It is interesting to notice the axes scale in Figure 

6a, the transition voltages are located in relatively 

narrow intervals; i.e, cycle-to-cycle variability is low 

(within a few tenths of a volt). In addition, see that 

the higher the transition voltages absolute value, the 

lower the series resistance, Figure 6b.     

 

 

Figure 6. Transition voltage for reset versus transition voltage 

for set for the data under study (1000 cycles). a) The correlation 

of the variables plotted is shown and the corresponding series 

resistances are given in a color code, b) 3D plot of the series 

resistance versus set transition voltage and reset transition 

voltage for the whole RS series. 

Figure 7a illustrates the cumulative distribution 

function (CDF) for the series resistances extracted 

from the 1000 cycles measured. The corresponding 

transition voltages CDFs are shown in Figure 7b. 

Notice that VTS and VTR are described by the same 

CDF except for the voltage sign (they are parallel).  

 

 

Figure 7. Cumulative distribution functions for the studied 

parameters in the whole RS series: a) series resistance, b) 

transition voltages for the set (VTS) and for the reset processes 

(VTR). The mean values for the series resistance, VTS and VTR 

are 22.80Ω, 0.418V and -0.384V, respectively. The standard 

deviation for the latter parameters is 2.26 Ω, 0.042V and 0.043V 

in each case.  

The variability of the series resistance and the 

transition voltages as a function of the cycle number 

is illustrated in Figures 8a and 8b, respectively. A 

reasonable modeling of these numerical series can be 

performed by means of time series analysis for circuit 

simulation purposes [36]. Notice that cycle-to-cycle 
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(C2C) autocorrelation effects cannot be disregarded. 

In addition, the results seem to be consistent, at least 

in the medium term, with a mean-reverting stochastic 

process. In the case of VTR and VTS, the cross-

correlation is more than evident: as VTS increases, VTR 

decreases in a symmetrical fashion. Again, this is a 

clear evidence that the same physical mechanism 

activates the switching process.  

 

Figure 8. a) Calculated series resistance versus cycle number 

in the whole RS series for the data under study, b) set transition 

voltage (VTS) and reset transition voltage (VTR) versus cycle 

number in the whole RS series for the data under study. 

Once the intrinsic series resistance parameter is 

extracted, the C2C variability and the statistical 

distribution of the results can be analysed and 

quantified; in the next section, we introduce the 

observed parameter variation in the compact modeling 

approach. It is important to highlight that the 

methodology introduced here, although presented for 

VCM devices could also be employed with other 

RRAM technologies. 

IV.- Series resistance influence on RRAM 

compact modeling   

In this section, the role played by the series resistance 

in the RRAM electrical behavior is investigated by 

means of the Stanford model [12-15], see Figure 9. The 

model consists in a differential equation that describes 

the gap between the conductive filament tip and the 

electrode (g), a current equation that shows 

exponential dependencies with the gap and the applied 

voltage and a thermal model that allows the 

calculation of the main filament temperature by means 

of the device thermal resistance and capacitance. The 

series resistance is introduced as a series component to 

the original model. Notice that by doing this we 

consider the case in which part of this series resistance 

can be external to the device. 

 

Figure 9. a) Three-dimensional view of the STFM modeling 

structure with an indication of different device regions (Top 

electrode (TE), Dielectric, Conductive Filament and Bottom 

electrode (BE)), b) schematic representation of the main model 

geometrical parameters. The gap (g) between the TE and the 

filament tip is one of the state variables, the other one is the 

temperature (T), c) subcircuit for the STFM implementation, 

d) proposed modification of STFM implementation with 

cylindrical CF including the series resistance. 

Figure 10 illustrates a typical RS cycle simulation 

using the STFM. The model is coded in Verilog-A. The 

inclusion of the series resistance notably improves the 
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fitting of the original experimental results (see Table I 

for the model parameters). 

 

Figure 10. Experimental (black symbols) and modified current 

(red symbols) versus voltage. Modeled data employing the 

STFM are shown for the modified (red line) and original (black 

line, in this case it is included an external resistance to account 

for the role of the series resistance, see the schematic). a) Linear, 

b) logarithmic scale.  

The fitting was performed with and without a series 

resistance (previously extracted, Rseries=22.3 Ω) in the 

simulation, see Figure 9d. As can be seen, a good 

approximation was obtained in the experimental I-V 

curve. This versatile and simple model works well; 

however, for higher accuracy, other models (with even 

higher complexity) need to be considered [16, 17, 18, 

19]. As expected, there is a trade-off between accuracy 

and complexity in the RRAM modeling approach. In 

particular, for the devices considered here, we assume 

some model parameters different for the set and reset 

processes, as suggested in [14], see Table I.  

Stanford model parameters 

Device 

Parameters 

Unit Resistive Switching 

  SET RESET 

Vo V 0.45 

I0 mA 48 

g0 nm 0.35 

ν0 m/s 5x106 
α - 1 1.1 
β - 1 15 

γ0 - 20 

Table I. Stanford model parameters employed for the fitting 

of the experimental devices under study, in particular for the 

cycle selected in Figure 10. 

Importantly, the set of parameters employed to 

simulate the TiN/Ti/HfO2/W structure is different 

from what was used for other type of devices [14]. In 

particular, device currents for our devices are higher 

than those reported in [14] and the abruptness of the 

I-V curves at the onset of the set and reset processes 

is different. To have a clear picture of the model 

behavior, we have analyzed the influence of some of 

the model parameters on the I-V curve shape, see 

Figure 11 (in this case no series resistance correction 

is included). By accounting for the parameter 

variation, we can reproduce the cycle-to-cycle 

variability observed in our devices. Although this is 

out of the scope of this paper, we will try to establish 

next the connection between the resistance variation 

and the CF physical aspect. 
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Figure 11. Current versus voltage for the modeled curves obtained with the Stanford model isolating some parameter variations. 

a) I0, b) ν0, c) V0, d) β, e) g0, f) γ0

In order to complete the picture, the series resistance 

effect can be incorporated into the STFM assuming 

approximately a cylinder-like structure for the CF. 

This could be linked to the filament remnants after the 

reset process. In this case, as shown in the schematics 

included in Fig. 9, due to the particularities of these 

devices, we can compute the cylinder radius under this 

approximation using Equation 1 (see Figure 12). 

𝑅𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑡𝑜𝑥 −  

𝜋 𝜎𝐶𝐹 𝑟𝐶𝐹
2  (1) 

The following values for the gap and electrical 

conductivity are considered in Figures 12a and 12b 

(g=2nm and σCF=5×105 S/m, this latter value is in 

line with those previous reported in Refs. [17]), and in 

Figures 12c and 12d, g=2nm and σCF=5×106 S/m (a 

conductivity value in line with Ref. [37]) were 

employed. 
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Figure 12. Calculated radii of a cylindrical CF employed to model series resistance versus cycle number in the whole RS series 

obtained considering g=2nm and σCF=5×105 S/m (a), or g=2nm and σCF=5×106 S/m (c). (b), (d) Corresponding cylinder radii 

histogram for g=2nm and σCF=5×105 S/m, (σCF = 5×106 S/m)

See that the estimated radii are in the order of several 

nanometers (Figure 12a, 12b) but recall that this could 

depend on the electrical conductivity considered 

(Figure 12c, 12d); in this respect, a kind of “effective” 

radii should be understood here since, in real devices, 

conductive filaments are not strictly cylindrical; in 

fact, the wider parts seem to be located close to the 

electrodes [30]. 

 

 

Figure 13. Modeled current versus voltage curves for different 

series resistances. (a) Current versus RRAM applied voltage (I-

VApplied). (b) Current versus modified voltage (I-VN) using the 

series resistances.  

Finally, Figure 13 shows the original fitting (see red 

line in Figure 10) and simulations including a series 

resistance ranging from 0 to 100 Ω. The role played by 

the series resistance is clearly recognized from these 

plots. The experimental I-V curve shapes in this type 

of devices (Figure 1) are more closely reproduced when 

series resistances are included (Figure 13). In 



 
 
 

117 
 

particular, as the series resistance increases the set 

curve slope drops off. Notice that this is not related to 

the progressiveness of the set transition but only a 

consequence of the additional potential drop. 

Similarly, a more progressive current reduction in the 

reset region is seen as the series resistance increases. 

V.-CONCLUSIONS 

The role played by the intrinsic series resistance in 

RRAM devices has been analyzed from a compact 

modeling viewpoint. The extraction procedure of the 

series resistance parameter has been evaluated using 

experimental data from HfO2-based VCM devices. The 

use of the series resistance to redefine the measured I-

V curves allows to extract device transition voltages. 

These transition voltages are shown to be correlated. 

It has been found that the lower the series resistance 

is, the higher the transition voltage absolute values 

are. We have also employed the series resistance to 

enhance the accuracy of the RRAM Stanford model. 

The use of this parameter to enhance the Stanford 

model allows to improve experimental data fitting. 
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4.2. Inclusion of thermal effects on the quantum 

point contact model 

The quantum point contact model is based on the fact that the CF acts as a quantum 

wire capable to detail the conduction both in the LRS and HRS. These two states exhibit linear 

and non-linear I-V properties, presenting ohmic conduction and conductance quantization only 

in the former case. Thus, in the HRS the conduction is linear only at high enough voltages, 

exhibiting a tough non-linearity at low ones. The model considers that during the reset process 

the conduction depends on an extremely narrow CF that quantizes the energy perpendicularly 

to the electron transport, which gives rise to a pseudo 1D arrangement, see Figure 4.2 

[Lian2012]. 

 

Figure 4.2. Diagram of a variable width CF including the energy band description. See that as the potential 

barrier height increases, the constriction width of the CF decreases and vice versa [Lian2012]. 

In this section we have presented an analytic expression for the non-linear I-V behavior of 

filamentary memories based on different approximations of the tunneling coefficient in the 

structure of Landauer’s theory. In particular, the effect of the charge reservoirs temperature on 

the current has been included and assessed based on experimental measurements in Ni/HfO2/Si 

devices. 
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Abstract 

Electron transport in filamentary-type resistive switching memories is modeled using quantum point-

contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the 

first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current 

flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer 

approach. Different approximations for the barrier transmission coefficient are assessed with the aim 

of determining the role played by the temperature of the charge reservoirs. In order to corroborate 

the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in 

the non-linear transport regime were performed in the temperature range from -40C to 200C. Obtained 

results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the 

experimental observations. Finally, the model proposed to calculate the device current including the 

temperature dependence is developed. 
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1. Introduction 

Filamentary-type resistive switching memory is 

currently considered a suitable candidate for the 

next generation of non-volatile memory devices 

because of its high switching speed, low power 

consumption and scaling properties, among 

others [1]. Although variability as- sociated with 

the stochastic nature of the switching process is 

still a serious concern for this technology, the 

idea of storing one bit of information in the form 

of an opened or closed atomic chain embedded 

in a dielectric film sandwiched by two metal 

electrodes is very appealing not only for its 

simplicity but also for the low fabrication cost 

involved. In Resistive Random Access Memory 

(RRAM) devices, the atomic-sized conducting 

bridge consists of oxygen vacancies or metal ions 

depending on the metal-dielectric system com- 

bination. These species move under the 

application of an external electric field by hopping 

enabling or blocking the pass of electrons from 

one electrode to the opposite. These two extreme 

situations are referred to as the low (LRS) and 

high (HRS) resistance states of the device. 

Intermediate states and thus multibit storage is 

also a reality in these structures. While LRS is 

often regarded as a completely formed filament 

with a linear current-voltage (I-V) characteristic 

associated, HRS is represented as a filament with 

a kind of gap along its length. In this latter case, 

the I-V curve is no longer linear but exhibits an 

exponential dependence on the applied voltage. 

This behavior has been pointed out as indicative 

of the presence of a potential barrier as 

considered in many other mesoscopic systems 

[2]. As already proposed in the past for the soft-

breakdown current in MOS devices [3, 4] and 

more recently for RRAMs [5, 6, 7], the electron 

transport in these structures can be envisaged as 

a one-dimensional tunneling problem in which 

the filament is represented by a parabolic-shaped 

potential barrier associated with the lateral 

confinement of the electron wave function when 

passing through the constriction’s bottleneck, i.e. 

the gap or the filament remnants. Remarkably, 

the effect of the charge reservoirs temperature 

on this non-linear conduction regime has not 

received extensive attention in the literature. 

Most of the works concerning the temperature 

effects focus exclusively on the linear conduction 

regime [8, 9, 10] or on the ion/vacancy diffusive 

movement through numerically solving the 

standard heat equation in combination with the 

current continuity equation [11, 12, 13]. It is clear 

that this classical approach does not leave space 

for a quantum treatment of the phenomenon 

disregarding recent studies pointing out in that 

direction [14, 15, 16]. In this work, we explore by 

means of inverse modeling the role played by the 

temperature on the confinement barrier and 

proposed a simple analytic model for the I-V 

curves based on the Landauer formalism [2]. 

After a brief presentation of the theoretical 

framework and a review of past developments in 

the area, we derive a method for extracting the 

relevant parameters of the tunneling barrier from 

experiments and verify that the feature 

dimensions obtained for the filament are those 

expected for an atomic-sized constriction, giving 

support to the initial paradigms 

2. The model 

Because of symmetry considerations, the 

problem of quantum transport through a 3D 

tube-like constriction becomes a simple 1D 

tunneling problem, so that the expression for 

the current I is given by the Landauer formula, 

within the Landauer-Buttiker formalism 

 =
2𝑞

ℎ
∫ 𝐷
∞

−∞
(𝐸)[𝐹(𝐸 − 𝜇1) − 𝐹(𝐸 − 𝜇2)]𝑑𝐸 (1) 

where q is the electron charge, h the Planck 

constant, 𝜇1 = 𝜇 + 𝛽𝑞𝑉 and 𝜇2 = 𝜇 − (1 −
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𝛽)𝑞𝑉 are the cathode (top electrode) and anode 

(bottom electrode) quasi-Fermi levels at the two 

ends of the constriction¶, respectively, V is the 

voltage drop across the constrictionII, β is the 

fraction of V that drops at the cathode side, E is 

the energy, D(E) is the transmission coefficient of 

the system and F (E) is the Fermi-Dirac 

distribution function 

𝐹(𝐸) = 1/(1 + exp (
𝐸

𝑘𝐵𝑇
))  (2) 

with kB = 8.617×10−5eV/K the Boltzmann 

constant and T the temperature. Since we are 

dealing with electrons, the Fermi-Dirac 

statistics must be used. It is employed to 

represent the carrier density at both sides of the 

constriction. For the sake of simplicity, we are 

assuming that there is no additional potential 

drop along the filament, therefore this statistics 

reflects what is happening at the electrodes. 

In the zero temperature limit, F(E) becomes the 

unit step function so that the I-V expression 

simplifies as: 

 =
2𝑞

ℎ
∫ 𝐷
𝜇2
𝜇1

(𝐸)𝑑𝐸  (3) 

 

 

¶ We understand the term constriction as the 

narrowest section along the filamentary 

structure. As always, the quasi-Fermi levels 

dictate the population of electrons under non-

equilibrium conditions (corresponding to a 

biased device). 

II In a resistive memory with a conductive 

filament formed, since the filament regions 

outside the constriction are low resistance 

regions, the voltage V can be assumed to be in 

some cases the externally applied voltage if the 

Maxwell and series resistance are low enough. 

which only relies on the transmission coefficient 

D(E). The constriction’s bottleneck can be 

approximately described by an inverted 

parabolic potential barrier, for which an exact 

analytic expression for the corresponding 

tunneling probability (transmission coefficient) 

is known [17, 18], 

𝐷𝑃(𝐸) = 1/(1 + 𝑒−𝛼(𝐸−𝐸0)),  (4) 

where E0 is related to the potential barrier height 

and α to its curvature (inverse width). In 

general, there are N 1D propagating channels 

connecting the electrodes, which can be 

considered identical for simplicity. The current 

for this case turns out to be straightforwardly 

integrated and analytically expressed as [19]: 

 

Figure 1: Effect of the temperature on the 

energy window associated with the injected 

carriers. 

 (𝑉) =
2𝑞𝑁

ℎ
{𝑞𝑉 +

1

𝛼
ln [

1+𝑒𝛼(𝜙−𝛽𝑞𝑉)

1+𝑒𝛼(𝜙+(1−𝛽)𝑞𝑉)
]},  (5) 

where 𝜙 = 𝐸0 − 𝜇. For a non-zero temperature 

T ≠ 0, no analytical expression for the current 

(1) with the transmission coefficient (4) is 

available. We see in Figure 1 that, for T ≠ 0, the 

Fermi functions smear over an effective energy 

region larger than the interval [µ2, µ1]. This issue 

introduces a dependence of the current I on the 
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temperature T which will be analyzed in the 

following section. 

In order to obtain analytic formulae for the 

current at T ≠ 0, we replace the trans- mission 

coefficient (4) by a continuous piecewise linear 

approximation as follows: 

𝐷𝐿(𝐸) = {

0 𝐸 ≤ 𝐸0 − 𝛿
𝛿+𝐸−𝐸0

2𝛿
𝐸0 − 𝛿 < 𝐸 < 𝐸0 + 𝛿

1 𝐸 ≥ 𝐸0 + 𝛿

  (6) 

which is illustrated in Figure 2. The width of the 

barrier (4) is inversely proportional to α and we 

take 𝛿 ≃
𝜋

𝛼
 for a fairly good matching of both 

transmission coefficients** (see Section 4 for a 

relationship between transmission coefficients 

and potential barriers). 

Indeed, a comparison between the currents I(V) 

at T = 0 obtained from the trans- mission 

coefficient (4) and its piecewise linear estimation 

(6) is given in Figure 3 for a particular choice of 

parameters E0, φ, β, N , showing a good 

qualitative and quantitative agreement. Note 

that the current (3) obtained by integrating the 

continuous piecewise linear transmission 

coefficient (6) on the interval [µ2, µ1] is a spline of 

order three [28] (a continuous and differentiable 

piecewise polynomial of degree two). 

 

**This relationship between δ and α arises when 

we make to coincide the average dispersion of 

the derivatives D’(E) (with a bell shape), which 

can be calculated as ∫ 𝐷
∞

−∞
′(𝐸)(𝐸 − 𝐸0)

2𝑑𝐸, for 

the parabolic (4) and for the piecewise linear (6) 

transmission coefficients, giving π2/(3α2) and 

δ2/3, respectively, that is π2/(3α2) = δ2/3 ⇒ δ 

= π/α. 

 

 

Figure 2: Comparison between the tunneling 

probability DP for a parabolic barrier of height 

E0 (dashed) and its piecewise linear 

approximation DL (solid black) for a barrier 

width 2𝛿 ≃
2𝜋

𝛼
. 

 

 

Figure 3: Comparison between the currents 

I(V) at T = 0 obtained from the parabolic 

transmission coefficient (dashed curves) in (4) 

and its piecewise linear approximation (solid 

curves) in (6) for barrier thickness 𝛿 = 𝜋/𝛼 

 

3. Temperature effects on the I-

V characteristics 

As mentioned above, no analytical expression of 

the current (1) at T ≠ 0 for the transmission 

coefficient (4) is available. Some approximations 

have been considered in the literature (see e.g., 

[4] and [20]), which consists in replacing (4) by 

𝐷(𝐸) ≈ exp[𝛼(𝐸 − 𝐸0)] for E < E0 − 3/α, which 
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gives the current at low voltages (exclusively the 

tunneling regime)  

 𝑃(𝑉,  ) =
2𝑞𝑁

ℎ𝛼

exp[−𝛼(𝜙−𝛽𝑞𝑉)]

sinc(𝜋𝛼𝑘𝐵𝑇)
[1 − exp(−𝛼𝑞𝑉)], 

(7) 

valid for a Fermi level µ at least 3kBT below the 

tip E0 of the barrier and kBTα < 1. Note that 

when 𝛼 → 0, we recover the ballistic case D = 1 

and therefore the standard Landauer formula. 

For the continuous piecewise linear transmission 

coefficient (6), the integral (1) can be performed 

and an explicit analytical formula for the 

current is obtained as 

 𝐿(𝑉,  ) =
2𝑞𝑁

ℎ
{𝑞𝑉 +

(𝑘𝐵𝑇)
2

2𝛿
[Li2 (−𝑒

−
𝑞𝛽𝑉+𝛿−𝜙

𝑘𝐵𝑇 ) − Li2 (−𝑒
−
𝑞𝛽𝑉−𝛿−𝜙

𝑘𝐵𝑇 )

+Li2 (−𝑒
−
𝑞(𝛽−1)𝑉−𝛿−𝜙

𝑘𝐵𝑇 ) − Li2 (−𝑒
−
𝑞(𝛽−1)𝑉+𝛿−𝜙

𝑘𝐵𝑇 )]}

  (8) 

in terms of the dilogarithm or Spence’s function 

Li2 (see the appendix A for specific calculations 

and for more information about these special 

functions). 

We can relate all energies to the Fermi level, so 

that 𝜙 = 𝐸0 is the barrier height for zero applied 

voltage. The model presented here works well at 

low voltages. In the quantum regime, Joule 

heating effects are assumed to occur both 

outside and inside the region of interest, i.e. the 

constriction’s bottleneck. It is widely accepted 

in mesoscopic theory that for D = 1 dissipation 

takes place exclusively at the reservoirs. 

However, for D < 1, only part of the total power 

is dissipated in the filament. This part is what 

contributes to the thermal movement of the 

atoms that form the filament and which 

ultimately reduces the average barrier height. 

Since we don’t have access to the internal 

temperature we link the thermal movement with 

the external temperature. These effects 

introduce a temperature dependence in the 

barrier height 𝜙 = 𝜙( ), which can be linearly 

approximated by 

φ(T ) ≈ φ0 − θT,  (9) 

with θ a (positive) temperature coefficient. This 

effect has been previously introduced in Ref. [20]. 

We shall introduce this extra temperature 

dependence in the currents (7) and (8) coming 

from “parabolic” and piecewise linear 

transmission coefficients. In Figure 4 we see the 

effect of temperature on the current IL for fixed 

values of δ, β, N, φ0 and θ. We see that IL(V, T ) 

is an increasing function of T . We have employed 

experimental data to try to assess the accuracy 

of our model (see Figure 5). In particular, we 

have used structures fabricated at the Institut of 

Microelectronics of Barcelona IMB-CNM 

(CSIC), they are based on a Ni/Hf O2/Si − n+ 

[21]. 

 

Figure 4: Current IL in eq. (8) against voltage 

for three different temperatures. We have 

chosen δ = 1eV, β = 1, N = 10, 𝜙0 = 2eV and 

θ = 0.002eV/K for the three cases. 

In these devices the top 200 nm-thick Ni 

electrode was deposited by magnetron sput- 

tering, then a lift-off process went on. The area 

of the cells was 5×5µm2, defined by the field 

oxide patterning. The statistical features of 

variability in this technology have been 

analyzed previously [22, 23]. 

The ALD fabricated dielectric layer was 20nm 

thick. The conduction is filamentary in these 

devices; i.e., it takes place through conductive 
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filaments (CFs) that are formed and destroyed 

within the the Resistive Switching (RS) device 

operation. At low volt- ages these I-V curves are 

non-linear and, in previous publications [7, 24, 

25], the QPC model was employed to analyze the 

conduction. These devices were measured at 

different temperatures, precisely, 50 cycles of set 

and reset processes for each temperature. 

For these curves we first selected the reset curves 

at T1 = −40oC, T2 = 20oC, T3 = 140oC and T2 

= 200oC (five cycles for each temperature). For 

these temperatures, the conductive filaments are 

destroyed arround the reset voltages V = 1.5 V, 

V = 1.4 V, V = 1.1 V and V = 1 V, respectively. 

The behaviour of these values is in line with the 

evolution of the barrier height 𝐸0 = 𝜙 with 

temperature (see later in this section and Figure 

9). It is interesting to highlight that the effects 

of variability in these type of devices have to be 

considered and assumed taking into account the 

stochastic nature of resistive switching. Studies 

on these variability issues have to account for 

hundreds of curves in long resistive switching 

series and they have to be performed under a 

statistical methodology [22, 23]. For the 

validation of the model presented here and for 

the sake of simplicity, we have limited the 

amount of experimental curves considered. A 

comparison between experimental values of the 

current I(V,T) at these four temperatures and 

their fit to the “linear” current formula (8) is 

presented in Figure 5. The agreement of this 

formula with experimental data is good far from 

the reset point (that is, in the low voltage 

regime). All the curves in Figure 5 can be 

reasonably well fitted to IL with common 

parameters: zero temperature barrier height φ0 = 

2.2 eV and zero anode quasi-Fermi level β = 1. 

The barrier width δ is a decreasing function of 

temperature and θ varies in the interval [0.0025, 

0.003] eV/K; the main difference between these 

currents comes from the number N of 

propagating channels (conductive filaments) 

formed within each RS device operation. When 

the number of filaments is higher than one, we 

consider an average of the existing channels. 

This is a reasonable and simplifying approach 

from the compact modeling viewpoint. In this 

case, the QPC parameters should be considered 

as effective parameters, since the individual 

filament details (barrier heights, widths, etc.) 

cannot be accessed individually. Also, the barrier 

height E0 = φ gets affected by temperature 

according to formula (9), giving 𝜙( 1) ≃ 1.5eV, 

𝜙( 2) ≃ 1.38eV and 𝜙( 3) ≃ 𝜙( 4) ≃ 1eV. This 

is better appreciated in the potential barrier 

profiles calculated in the next section (see Figure 

9). 

The linear dependence of I(V;T ) on the 

number of propagating channels N masks the 

intrinsic dependence of I(V;T) on temperature in 

Figure 5. This is linked to the conductive 

filament length and intrinsic variability of these 

devices in their resistive switching operation. 

However, we can still appreciate this 

temperature dependence when we take into 

consideration an average within a resistive 

switching series. To better see this, we compute 

the average current, measured considering all the 

curves at our disposal, for three different low 

voltages (0.1V, 0.2V and 0.3V) inside the 

temperature range T [233, 473] Kelvin. Figure 

6 shows these averaged data of I versus 

temperature T , together with their fittings 

using formulas (8) (left) and (7) (right). We find 

a qualitative fitting for barrier width 𝛿 = 2eV 

(𝛼 = 𝜋/2eV−1), zero anode quasi-Fermi level β 

= 1, N = 6 propagating channels, zero 

temperature barrier height φ0 = 2.4eV and 

temperature factor θ = 0.002eV/K. We see that 

formula (8) captures the qualitative behavior 

(increase of I with T and V), although the 
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variability inherently linked to resistive 

switching makes the quantitative behavior less 

accurate. Other issues, such as the ohmic 

resistance of the conductive filament, the 

existence of tree-branched filaments, etc., should 

also be taken into account when comparing with 

experimental measurements, as it is the case here. 

For the temperature range considered, the 

threshold 𝑘𝐵 𝛼 < 1 [imposed for the validity of 

(7)] is not exceeded, since 𝑘𝐵 max𝛼 = 0.064 for 

the maximum temperature Tmax = 473K and 𝛼 =

𝜋/2. However, we observe that the fitting with IP 

in Figure 6 is less accurate at higher 

temperatures. The expression (8) for IL is not 

affected by this constraint. 

4. Transmission coefficients and 

potential barriers 

As we stated in Section 2, the transmission 

coefficient DP (E) for an inverted parabolic 

barrier 𝑈(𝑥) = 𝐸0 − 𝑘𝑥2/2 (here 𝑘  reminds a 

“spring constant”) is given by (4) with 𝛼 =

2𝜋√𝑚/𝑘/ℏ  where m is the effective mass of the 

particle in the constriction. In this article we 

have proposed continuous piecewise linear 

estimations of D(E) like (6), and we wonder 

what is the corresponding barrier shape. For this 

purpose, we shall use the semiclassical (WKB) 

formula: 
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Figure 5: Comparison between experimental 

values of the current (for four temperatures and 

five cycles for each temperature) and their fit to 

the linear formula IL(V,T) in eq. (8), as a 

function of voltage VRRAM. All the curves can be 

reasonably well fitted to the common 

parameters: zero temperature barrier height φ0 

= 2.2 eV and zero anode quasi- Fermi level β = 

1.  The barrier width δ is a decreasing function 

of temperature and θ ∈ [0.0025, 0.003]. The 

main difference between cycles has to do with 

the number N of propagating channels (different 

filaments corresponding to different cycles). 

 

 

Figure 6: Experimental data, and fitting with 

formulas (8) (a) and (7) (b), of average currents 

values against temperature T for three different 

voltages: 0.1, 0.2 and 0.3V. The fitting 

parameters correspond to: δ = 2 (α = π/2), β = 

1, N = 6, φ0 = 2.4 and θ = 0.002. 

𝐷(𝐸) ≃ exp [−2∫ 𝑑
𝑥+(𝐸)

𝑥−(𝐸)
𝑥√

2𝑚

ℏ2
(𝑈(𝑥) − 𝐸)] ≡

𝑄(𝐸),  (10) 

where U(x−(E)) = U(x+(E)) = E. We shall 

assume a symmetric potential barrier so that the 

turning points are x−(E) = −x+(E) = −x(E). 

This semiclassical formula is only valid for low 

energies E«E0 compared to the barrier height 

E0. This formula has been used in the past [26] 

to obtain, from experiments, the barrier profile 

of a soft breakdown filament in MOS capacitors. 

In this manuscript we shall consider an 

extension of this formula as 

𝐷(𝐸) =
𝑄(𝐸)

1+𝑄(𝐸)
,  (11) 

which turns out to give good results even for E 

≈E0. Additionally, formula (11) repro- duces the 

value D(E0) = 0.5 for the linear and parabolic 

transmissions (see Figure 2). Solving the 

previous expression (11) for Q(E) gives 

𝑄(𝐸) =
𝐷(𝐸)

1−𝐷(𝐸)
.  (12) 
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In order to obtain the shape of the confinement 

potential barrier U (x) for a given transmission 

D(E), we shall discretize the values of the energy 

and take E = En, n = 0, . . . , M in decreasing 

order, with E0 the potential barrier height. If we 

restrict ourselves to energy values between [E0 − 

∆, E0], then we have En = E0 − n∆/M. We shall 

also discretize the integral that defines the 

exponent of Q(E) in (10). Denoting xm = x(Em), 

x0 = 0, the left Riemann sum (rectangle rule) 

states that, for an even function f (x), a rough 

calculation of the integral is given by 

∫ 𝑓
𝑥𝑛
−𝑥𝑛

(𝑥)𝑑𝑥 = 2∫ 𝑓
𝑥𝑛
𝑥0

(𝑥)𝑑𝑥 =

2∑ ∫ 𝑓
𝑥𝑚+1

𝑥𝑚

𝑛−1
𝑚=0 (𝑥)𝑑𝑥 ≈ 2∑ 𝑓𝑛−1

𝑚=0 (𝑥𝑚)(𝑥𝑚+1 −

𝑥𝑚).  (13) 

Therefore, using that U (xm) = Em, we can 

approximate 

ln(𝑄(𝐸𝑛)) ≃ 𝑎∑ √𝑛 −𝑚𝑛−1
𝑚=0 (𝑥𝑚+1 − 𝑥𝑚),  𝑛 =

1,…𝑀,  (14) 

with 𝑎 = −4
√2𝑚𝑞𝛥

ℏ√𝑀
. Solving the linear system 

coming from (12) 

ln(𝑄(𝐸𝑛)) = ln [
𝐷(𝐸𝑛)

1−𝐷(𝐸𝑛)
],  (15) 

we estimate the values for the points xm at which 

U (xm) = Em. This linear system can be 

compactly written as Ax = b, with =

(𝑥1, … , 𝑥𝑀)
𝑡 the column vector of unknowns. 

The coefficient matrix 

𝐴 =

𝑎

(

 
 

1 0 0 … 0 0

√2 − √1 1 0 … 0 0

√3 − √2 √2 − √1 1 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

√𝑀 − √𝑀 − 1 √𝑀 − 1− √𝑀 − 2 … … √2 − √1 1)

 
 

  

(16) 

is lower triangular and 𝑏𝑛 = ln [
𝐷(𝐸𝑛)

1−𝐷(𝐸𝑛)
] are the 

entries of the column vector b. 

In figure 7 we represent the potential barriers 

obtained from the modified WKB formula (15) 

for the transmission coefficients (4) and (6), for 

two values of 𝛼 (𝛿 = 𝜋/𝛼) and 𝛥 = 𝐸0. Note that 

the parabolic transmission coefficient DP in 

eq. (4) is never zero, whereas the linear 

transmission coefficient DL in eq. (6) is zero for 

E ≤ E0 − δ, which means x±(E) = ±∞. We 

avoid this divergence by taking ∆ = E0 < δ. We 

can appreciate in Figure 7 the different shape of 

the potential barriers coming from DP and DL. 

In order to test the validity of the modified 

WKB formula (11), we also plot in figure 7 the 

exact parabolic barrier U (x) = E0 −kx2/2 curves 

associated with DP for 𝛼1 = 𝜋/𝛿1 (solid blue) 

and 𝛼2 = 𝜋/𝛿2 (dashed blue). Recall that the 

relationship between the “spring constant” k of 

the parabola and the parameter α is 𝑘 =

4𝜋2𝑚/(ℏ2𝛼2). We see that the formula (15) 

accurately recovers the original parabolic 

potential barrier (in blue). Therefore, we shall 

use this adapted semiclassical formula to obtain 

the shape of potential barriers associated with 

transmission coefficients coming from I-V 

curves. 

In fact, starting from (1), with integration interval 

[βqV,∞), assuming the Boltzmann 

approximation F(E) ≃ exp(−E/kBT) and 

neglecting the left-going current component

 

Figure 7: Potential barrier U (x) (in eV), 

obtained from the modified WKB formula (15), 

against the longitudinal x-axis (in nanometers) 
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associated with the transmission coefficient 

𝐷(𝐸) = 1/(1 + 𝑒−𝛼(𝐸−𝐸0)) (blue diamond and 

pink square) and the piecewise linear estimation 

(6) (green triangle and red dot), for inverse 

thickness α1 = π/δ1 (δ1 = 1.4eV) and α2 = π/δ2 

(δ2 = 1.2eV), potential barrier height E0 = 1eV 

and M = 10 points. We also plot the exact 

parabolic barrier U (x) = E0 −kx2/2 curves, with 

𝑘 = 4𝜋2𝑚/(ℏ2𝛼2), associated with the 

transmission (4) for α1 (solid pink) and α2 

(dashed blue). 

 

flowing back from anode to cathode [second 

negative addend in (1)], one can arrive to the 

formula [26] 

𝐷(𝛽𝑞𝑉) ≃

𝑞

𝑘𝐵𝑇
𝐼+

1

𝛽𝑞

∂𝐼

∂𝑉

𝑁
2𝑞2

ℎ
exp(

𝜇

𝑘𝐵𝑇
)
,  (17) 

which allows a numerical reconstruction of 

transmission coefficients from experimental I-V 

data (inverse modeling). As already mentioned, 

this formula has been used in [26] to obtain the 

barrier profile for a soft-breakdown filament in 

electrically stressed MOS capacitors. In our case, 

we shall neglect 
𝑞

𝑘𝐵𝑇
  compared to 

1

𝛽𝑞

∂𝐼

∂𝑉
 and we 

shall take Fermi level µ = 0, which eventually 

seems to be a reasonable choice; note that 

formulas (7) and (8) depend on the relative 

value 𝜙 = 𝐸0 − 𝜇, but we do not have direct 

access to the absolute values of the potential 

barrier height E0 nor to the Fermi energy µ. 

Therefore, we shall use the simple formula 

𝐷(𝐸) ≃
ℎ

2𝑞2𝑁

∂𝐼(𝐸)

∂𝐸
.  (18) 

This formula, when applied to IL in (8), 

reproduces the piecewise linear transmission DL 

in eq. (6) with a slight smoothing due to 

temperature effects. However, the parabolic 

trans- mission DP in eq. (4) is not recovered 

from IP in eq. (7) since, as we already noticed, 

this formula is only valid for low energies below 

E0. In Figure 8 we compute the transmission 

coefficients D(E) from the I-V curves in Figure 5. 

The derivative is carried out numerically using 

the simple difference quotient  ′(𝐸𝑛) ≃

( (𝐸𝑛+1) −  (𝐸𝑛))/𝛥, with energy step size 𝛥/

𝑀 = 0.05eV, which gives 𝑎 = −4.5823nm−1, and 

(2𝑞2/ℎ)−1 = 12906.4A/eV. The result is 

compared with 𝐷𝐿(𝐸) =
ℎ

2𝑞2𝑁

∂𝐼𝐿(𝐸)

∂𝐸
 (black solid 

curve) and 𝐷𝑃(𝐸) = 1/(1 + 𝑒−𝛼(𝐸−𝐸0)) (black 

dashed curve). We choose the interval E ∈ [0, 

E0], for which D(E) ∈ [0, 0.5], approximately 

[remember Figure 2]. From Figure 8, we can 

conclude that, despite the variability associated 

with experimental current measurements and 

their numerical derivatives, formula (18) still 

captures the general behavior of the transmission 

coefficient, with a reasonable fitting to DL. 

Inserting (18) into (12) and solving 

ln[𝑄(𝐸𝑛)] ≃ ln [
𝐼′(𝐸𝑛)

2𝑞2𝑁

ℎ
−𝐼′(𝐸𝑛)

] ,  𝑛 = 1,… ,𝑀,  (19) 

for xn, we get in Figure 9 the potential barriers 

from the experimental values of the I-V curves 

of Figure 5. We see that the general effect of 

temperature is to lower the potential barrier 

height E0, according to the formula (9) for 𝜙 =

𝐸0 for zero Fermi level 𝜇 = 0. In particular, we 

have 𝜙( 1) ≃ 1.5eV, 𝜙( 2) ≃ 1.38eV and 

𝜙( 3) ≃ 𝜙( 4) ≃ 1eV; this   effect has also been 

reported in Ref. [20]. Finally, the barrier width 

along the conductive filament constriction can 

be estimated by the relation [19] 

𝑡𝐵 =
ℏ𝛼

𝜋
√
2𝜙

𝑚
,  (20) 
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Figure 8: Transmission coefficient D(E) from 

the experimental I-V curves in Figure 5, 

together with their fittings to 𝐷𝐿(𝐸) =
ℎ

2𝑞2𝑁

∂𝐼𝐿(𝐸)

∂𝐸
 (black solid curve) and 𝐷𝑃(𝐸) =

1/(1 + 𝑒−𝛼(𝐸−𝐸0)) (black dashed curve). 

 

where m is the electron effective mass and we 

are taking 𝛼 = 𝜋/𝛿. Assuming that m(T1) = 

0.1me, m(T2) = 0.2me, m(T3) = 0.4me, m(T4) = 

0.5me (these are reasonable electron effective 

mass values for HfO2 [5]), and taking the fitting 

values of δ from Figure 5, we get 𝑡𝐵( 1) ≃ 1.1nm, 

𝑡𝐵( 2) ≃ 0.79nm, 𝑡𝐵( 3) ≃ 0.51nm and 

𝑡𝐵( 4) ≃ 0.55nm, which are in concordance with 

the barrier widths in Figure 9. Another 

interesting representative parameter is the 

radius of the constriction, estimated by [5] 

𝑟𝐵 =
ℏ𝑧0

√2𝑚𝜙
  (21) 

where z0 = 2.404 is the first zero of the Bessel 

function J0, when considering the problem of a 

particle in an infinite circular well [27]. In our 

case, using the same electron effective masses as 

before, we get 𝑟𝐵( 1) ≃ 1.2nm, 𝑟𝐵( 2) ≃

0.89nm, 𝑟𝐵( 3) ≃ 0.74nm and 𝑟𝐵( 4) ≃ 0.66nm, 

which are of the order of the values of the barrier 

widths previously calculated. 
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Note that the barrier profiles of Figure 9 at low 

temperatures are sharper than the barrier 

profiles at high temperatures, where quantum 

effects get blurred. This blurring of the potential 

is more apparent near the barrier top where 

filaments start being destroyed. Moreover, we 

observe a barrier narrowing at high temperatures 

for energies close to zero. This is due to the fact 

that the transmission coefficient D(E) turns out 

to be higher than expected at low energies and 

high temperatures [see Figure 8(c) and especially 

8(d)]. This narrowing of the potential barrier 

does not occur when D(E) is an increasing 

function of E, like it happens in Figure 2 for the 

parabolic barrier (this is the usual case, but not 

the more general one). 

In any case, the barrier profile coming from 

experimental I-V curves seems to slightly differ 

from the barrier profiles coming from lineal DL 

and parabolic DP transmissions. Perhaps the use 

of higher-degree continuous piecewise 

estimations of D(E) provides a better fitting to 

the experiment. This is left for future work. 

 

Conclusions 

An analytic expression for the non-linear current-

voltage characteristic of resistive memories based 

on filamentary conduction was presented. The 

model was developed within the framework of 

Landauer’s theory for mesoscopic conductors. 

The role of the confinement effect on the 

electron wavefunction was highlighted through 

an in-depth investigation of different 

approximations for the tunneling coefficient. In 

addition, the role of the charge reservoirs 

temperature on the current magnitude was 

thoroughly analyzed. In agreement with 

previous reports, it was found that the smearing 

of the Fermi functions at the electrodes cannot 

explain by itself the current increase observed 

for increasing temperatures. Instead, a barrier-

lowering effect can indeed explain the 

experimental results. This is directly obtained 

by inverse modeling of the tunneling current, 

without making any assumption about the 

barrier profile as done in the past. The proposed 

approach reveals that quantum effects cannot be 

ruled out when discussing the electron transport 

mechanisms in this kind of RRAM devices and 

that a classical simulation framework only 

describes specific situations. It is important to 

highlight that we have developed a current model 

including temperature and quantum effects that 

can be employed for circuit design and 

simulation. 
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Figure 9: Potential barrier U (x) (in eV), against 

the longitudinal x-axis (in nanometers), 

associated with the transmission coefficient (18) 

obtained from the experimental values of the I-

V curves of Figure 8 for four temperatures. The 

potential barriers obtained from DL and DP are 

represented by solid and dashed black curves, 

respectively. 
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A. Polylogarithm functions 

Replacing the piece-wise linear transmision 

coefficient (6) into the Landauer-Buttiker 

equation (1) for the current I, we arrive to 

 =
2𝑞

ℎ
∫

𝐸−(𝐸0−𝛿)

2𝛿

𝐸0+𝛿

𝐸0−𝛿
(𝐹(𝐸 − 𝜇1) − 𝐹(𝐸 − 𝜇2))𝑑𝐸

+
2𝑞

ℎ
∫ (𝐹(𝐸 − 𝜇1) − 𝐹(𝐸 − 𝜇2))
∞

𝐸0+𝛿
𝑑𝐸

 

(22) 

If we write the Fermi-Dirac distribution function 

(2) as 

𝐹(𝐸 − 𝜇) =
1

1 + exp(
𝐸 − 𝜇
𝑘𝐵 

)
=

1

1 + 𝑒𝜖/𝑧
,  𝜖

≡
𝐸

𝑘𝐵 
,  𝑧 ≡ 𝑒

𝜇
𝑘𝐵𝑇, 

And use that 

∫ 𝐹
∞

0

(𝐸 − 𝜇)𝑑𝐸 = 𝑘𝐵 ln(1 + 𝑧) 

and the definition of the dilogarithm or Spence’s 

function [29] 

Li2(−𝑧) ≡ −∫
𝜖𝑑𝜖

1+𝑒𝜖/𝑧

∞

0
= ∑ (−1)𝑘∞

𝑘=1
𝑧𝑘

𝑘2
,  (23) 

we can easily compute 

∫ (𝐸 − 𝐸0)
𝐸0+𝛿

𝐸0−𝛿

𝐹(𝐸 − 𝜇)𝑑𝐸 = −𝑘𝐵 𝛿(ln(1 + 𝑧+) + ln(1 + 𝑧−))

+𝑘𝐵
2 2(Li2(−𝑧−) − Li2(−𝑧+)),
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with 𝑧± ≡ exp(
−𝜇+𝐸0±𝛿

𝑘𝐵𝑇
), together with 

∫ 𝐹
𝐸0+𝛿

𝐸0−𝛿

(𝐸 − 𝜇)𝑑𝐸

= 2𝛿

+ 𝑘𝐵 (log(1 + 𝑧−)

− log(1 + 𝑧+)) 

and 

∫ 𝐹
∞

𝐸0+𝛿

(𝐸 − 𝜇)𝑑𝐸

= −(𝐸0 + 𝛿)

+ 𝑘𝐵 log(𝑒
𝐸0+𝛿
𝑘𝐵𝑇 + 𝑧). 

Putting together all the previous partial 

calculations into (22) and using the definition of 

the cathode 𝜇1 = 𝜇 + 𝛽𝑞𝑉 and anode 𝜇2 = 𝜇 −

(1 − 𝛽)𝑞𝑉 quasi-Fermi levels in terms of the 

voltage V , we finally arrive to the expression 

(8). 

The dilogarithm or Spence’s function is also 

defined as [29] 

Li2(𝑧) = −∫
ln(1−𝑡)

𝑡

𝑧

0
𝑑𝑡 = −∫

ln(1−𝑧𝑡)

𝑡

1

0
𝑑𝑡  (24) 

and it turns out to be a particular case (n = 2) of 

the polylogarithm (Jonquière’s) function [30] 

Li𝑛(−𝑧) = −
1

(𝑛−1)!
∫

𝜖𝑛−1𝑑𝜖

1+𝑒𝜖/𝑧

∞

0
= ∑ (−1)𝑘∞

𝑘=1
𝑧𝑘

𝑘𝑛
,  

(25) 

which can be extended to non-integer n values. 

These functions are common in quantum 

statistics, where they are also called Fermi-Dirac 

or Bose-Einstein integrals. Moreover, in 

quantum electrodynamics, they arise in the 

calculation of processes represented by higher- 

order Feynman diagrams. In our context, the 

trilogarithm Li3 function would arise when 

considering piecewise parabolic (quadratic 

spline) approximations to the transmission 

coefficient D(E). In general, a piecewise 

polynomial transmission coefficient D(E) of 

degree m would give rise to a current I(V, T ) 

(1) written in terms of Lim+1. 
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5. Use of dynamic route maps to 

understand resistive memories 

operation 

5.1. Introduction 

 A Dynamic Route Map (DRM) consists of a tool devoted to examining the temporal 

evolution of resistive memories in the more general context of dynamical systems. In that sense, 

the DRM supplies valuable information of the state variable that controls the device to reach 

a better understanding of the RS process. Thereby, a unique surface in a phase diagram for 

stability of the state variable that describes the device is created where multiple trajectories 

are included depending on several conditions such as the frequency of the input signal applied 

or the voltage signal shape. Two different models have been included in the study, the first one 

is based on a physical description considering filamentary conduction and the second one is 

based on the mathematical definition of a memristor through a nonlinear analytical association 

between charge and flux. 

To check these analytical models, a set of measurements has been carried out employing 

different slopes and waveforms which implies different ramped voltages. Thus, the CF average 

radius is extracted assuming a truncated-cone shape to show that all the points belong to the 

DRM surface no matter what the input voltage signal waveform is.  

 

The following section is an already published work [Maldonado2020]. 

  



 

142 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

143 
 

 

D. Maldonado et al. 

Chaos, Solitons & Fractals  

(2020) 

 

 

Maldonado, D., González, M. B., Campabadal, F., Jiménez-Molinos, F., Al Chawa, M. M., 

Stavrinides, S. G., ... & Chua, L. O. (2020). Experimental evaluation of the dynamic route map 

in the reset transition of memristive ReRAMs. Chaos, Solitons & Fractals, 139, 110288, DOI: 

10.1016/j.chaos.2020.110288 

 

Quality metrics 

Data base Rating Quartile 

Web of Science Impact factor: 5.94 Q1 

Scimago Scientific journal ranking: 1.04 Q1 

 

Publication citations (23-03-2022) 

Google Scholar Web of Science 

10 7 

 



 

144 
 



 

 

145 
 

Experimental Evaluation of the Dynamic Route Map in 

the Reset Transition of Memristive ReRAMs 

 

David Maldonado
a
, Mireia B. Gonzalez

b
, Francesca Campabadal

b
, 

Francisco Jiménez-Molinos
a
, M. Moner Al Chawa

c
, Stavros G. Stavrinides

d
, 

Juan B. Roldan
a
, Ronald Tetzlaff

c
, Rodrigo Picos

e
, Leon O. Chua

f
 

 

a
Dept. de Electrónica y Tecnología de Computadores, Universidad de Granada, Spain 

 
b
Institut de Microelectrònica de Barcelona, IMB-CNM, CSIC, Barcelona, Spain 

 
c
Institute of Circuits and Systems, Technische Universität Dresden, Dresden, Germany 

d
School of Science and Technology, International Hellenic University, Thessaloniki, Greece. 

e
Physics Department, University of Balearic Islands, Balearic Islands, Spain.  

fElectrical Engineering and Computer Science Department, University of California, Berkeley, CA, USA 

 

 

Abstract 

In this paper, we analyze the reset transition in bipolar TiN/Ti/HfO2 (10 nm)/Al2O3(2 nm)/W 

ReRAM devices using a tool that allows studying the temporal behaviour of these devices. This tool, 

the Dynamic Route Map (DRM), provides information about the temporal evolution of the state 

variable that governs the behaviour of the device, thus allowing an increased insight into resistive 

switching processes. 

Here, we show that this DRM is a powerful tool, that may help explaining some non-intuitive 

behaviours of memristors, like the difference in the reset voltage when the inputs are from different 

frequency or shape. Using this tool, this fact can be explained as a different trajectory on a unique 

surface defining the device. 

As a first step, we have used two different models, one based on a physical description, and 

another one based on the mathematical definition of memristor as a non linear relation between charge 

and flux. We check that similar DRM can be obtained from both models. 

Additionally, several series of set-reset transitions have been measured using voltage ramps of 

different slopes. From the measured transitions, the corresponding resistance has been extracted and, 
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assuming conductive filaments (CF) as the switching mechanism, the corresponding CF radius has 

been calculated. Using these data, we show that explanations from the model are also supported when 

using experimental data, thus proving the validity of the approach. 
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1. Introduction 

The apparent symmetry between the 

relations of the four fundamental electrical 

magnitudes, namely the current i, the voltage v, 

the charge q and the flux ϕ, was something that 

passed unnoticed for many years in circuit 

theory. It was this idea that led Leon O. Chua, 

during the early 70s, to present the axiomatic 

introduction and the related description of a 

fourth (missing at that moment) electrical 

element, named the Memristor [1]. Its name 

originated from the fact that such an element 

should behave as a resistor endowed with 

memory, these two properties (resistance and the 

feature memory) being unified in one element. In 

fact, memristors had been described many years 

ago [2], though they had never been in the 

mainstream of electrical or circuit theory. 

Besides, Chua’s work led to the generalization 

of a class of devices as well as systems that are 

inherently nonlinear and governed by a state-

dependent, algebraic relation accompanied by a 

set of differential equations, which are called 

memristive systems or devices [3]. 

As a result of the inherent memory 

feature embodied in memristors, these novel 

devices are expected to be one of the key 

enablers of a technological breakthrough in 

integrated circuit (IC) performance-growth, 

beyond and more than Moore [4]. Among others, 

they are expected to provide a solution to the 

classical problem of the bottleneck in data 

transmission between memories and processors. 

The Internet-of-Things (IoT) and other edge 

computing applications are expected to be areas 

where the introduction of memristors and 

memristive devices would be beneficial, or even a 

radical changer of the related technological 

landscape. Thus, an increasing number of 

memristor-based applications has already been 

proposed: new kind of memories (ReRAMs, 

MRAM, etc.) [5, 6, 7], innovative new sensor 

devices [8, 9], or fundamental elements in bio-

inspired systems (artificial neural networks 

(ANNs) and other) [10], among many others.  

On the other hand, memristive devices 

can be nowadays implemented in a wide range 

of technologies, from spintronics [11] to organic 

materials [12, 13] and many different oxides [14, 

15, 16, 17], or even emulators [18, 19, 20, 21]. 

However, and up to the best of our knowledge, 

very few foundries are including memristors in 

their design repertoire, as it customarily 

happens with other passive elements, like 

resistors or capacitors. This is due to the 

inadequate level of maturity of all the up-to-date 

proposed memristive technologies, which is a 

drawback that is expected to be solved in the 

near future. 

Simulating a new design incorporating 

memristors is not a straightforward task; many 

good models have been proposed, both using the 

classical approach that utilizes current and 

voltage [22, 23, 24, 25, 26], or the more recent 

charge and flux approach [27, 28, 29, 30], which 

historically had been also used in oxide 

breakdown. However, most of these models 

appear to have drawbacks that make the 

simulation of large circuits rather difficult or 

even impractical [31]. Besides, some of the main 

problems of current memristor device 

technologies are: the variability they exhibit, 

from cycle to cycle [32, 33]; and the short 

number of cycles they can withstand (between 

106 and 108 cycles). 

A very good test to show the goodness 

of a model is the so-called Dynamic Route Map 

(DRM), that plots the evolution of the governing 

variable of a system in front of its rate of change 

(i.e., its temporal derivative). As will be 

explained later, this representation is a powerful 

tool that may provide significant insight into the 
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inner workings of the device. In this work, we 

aim to show experimentally that the DRM tool 

actually makes sense in memristive ReRAMs, 

and can be used as a unifying tool to describe the 

different behaviour of the devices under various 

stimuli. We will show that this behaviour can be 

described as a different trajectory on the same 

surface. Specifically, we will focus on the Low 

Resistance to High Resistance State (LRS to 

HRS, or RESET) transition, since it is 

considered to be more complex than the SET 

transition and, thus, a more appropriate example 

to highlight the merits of the DRM technique. 

The paper is structured following this 

idea: after this introduction, Section 2 introduces 

the basic principles of formal memristor 

modelling, where the DRM naturally appears. 

Then, Section 3 is devoted to introduce the 

concept of the Dynamic Route Map and its 

applications, as well as two different models 

showing two different approaches to DRM. The 

first model directly introduces an equation for 

the variable of concern (the radius of a 

conductive filament), while the second model 

derives the effective radius from the calculation 

of the conductance. Section 4 presents the 

results obtained by applying different waveforms 

to a single device, showing that we can obtain 

experimentally its DRM. Finally, Section 5 ends 

the paper summarizing the main points and 

results. 

2. Memristor Modelling 

Framework 

A fundamental theoretical framework 

for studying memristors and circuits presenting 

memristive behaviour in the flux–charge (ϕ-q) 

domain, was developed by Corinto et al. in [34]. 

In that paper, the authors explain the 

advantages of using the flux–charge (ϕ-q) 

domain in studying memristor elements, 

compared to the current–voltage (i-v) domain. 

On the other hand, utilizing the 

taxonomy proposed in [35], memristors are 

classified according to their proximity to the 

original definition of the memristor. Thus, three 

main categories of memristor devices emerge, 

namely the ideal, the generic, and the extended 

memristor. In the same work [34], the essential 

mathematical framework describing their 

behaviour was also developed. This extended 

categorization emerged as a necessity in order to 

include theoretically the description of pinched, 

hysteretic behaviours demonstrated by various 

elements, not only in circuit theory and 

electronics but also in nature. 

Among the different categories 

presented above, the class of extended 

memristors is the most general one and it refers 

to memristors that have extra state variables 

(next to ϕ and q). For the specific case of flux-

controlled memristors, they are described by 

Eqs. (1) to (3): 

𝑖 = 𝐺(𝜑, 𝑣, 𝑥) ⋅ 𝑣 (1) 

�̇� =  𝜑(𝜑, 𝑣, 𝑥)  (2) 

�̇� = 𝑣        (3) 

The nonlinear memconductance G in 

Eq. (1) represents the inverse memristance M of 

an extended memristor, while v is the voltage 

applied to the memristor, and 𝜑 is the flux or 

voltage first momentum. The vector x stands for 

a set of extra state variables, which includes 

physical magnitudes according to the memristive 

system; indicatively they could be the internal 

temperature, the radius of a conducting filament, 

or any other non-electrical variable describing 

the state of the memristor. In addition, the 

dynamics of the state variables x are governed 

by gϕ and Eq. 2. It is noted that all the real-

world memristor devices that have appeared 

until now, are indeed extended memristors. 
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Taking into account the Lagrangian L 

and the Jacobian J, these are defined in Eqs. (4) 

and (5), respectively. 

𝐿(𝜑, 𝑣, 𝑥) =
∂𝑔𝜑(𝜑,𝑣,𝑥)

∂𝑣
  (4) 

𝐽(𝜑, 𝑣, 𝑥) = (
∂𝑔𝜑(𝜑,𝑣,𝑥)

∂𝑥1
, . . . ,

∂𝑔𝜑(𝜑,𝑣,𝑥)

∂𝑥𝑛
)  (5) 

If no parasitic effects are present, then 

extended memristors can be simplified to generic 

memristors (or, simply, memristors). That is 

because function gϕ is only dependent on flux ϕ 

and the state variables x, thus L = 0. Finally, 

ideal memristors (those corresponding to the 

original definition described by [1]) are generic 

memristors that demonstrate no other state 

variable dependence, thus, J = 0. 

A special case of Eq. (2) is often referred 

to as the power–off plot (POP) equation and 

determines the memory capability of the system 

under no excitation; in this case for v = 0 or ϕ 

= constant. It is apparent that if the POP 

equation is zero, the system presents a long–

term memory since the state variable will not 

change with time, while if it is different than 

zero, the system is capable of exhibiting only 

short–term memory. 

It is noted that the above framework has 

been already used in successfully modelling 

different kinds of memristive systems, further 

improving the generalized framework for 

compact modelling in the flux-charge space [36]. 

Other relevant works using this approach could 

also be found, like in the case of [37] where a 

charge-dependent mobility model was used to 

describe a memristor, [28] or [30] which 

presented semi-empirical models for ReRAMs as 

memristors, [38] that described a Monte Carlo 

model for ReRAMs, [39] which derives a delay 

model for memristor–based memories utilizing a 

flux-charge description, or [27] where a model for 

phase change memories is presented. Finally, two 

examples of experimental characterization of a 

memristive system utilizing the flux-charge 

notation, are presented in [40], where a light bulb 

is determined to be a generic memristor and in 

[41, 42], where the influence of waveform 

frequency and shape are discussed. 

 

3. The Dynamic Route Map 

3.1. The Dynamic Route Map 

Technique 

Phase space, initially introduced by J. 

Liouville [43], is a space proposed by Poincaré 

[44] for studying nonlinear systems. The study of 

nonlinear systems in phase (or state) space is an 

established approach in nonlinear dynamics, 

since important attributes of the systems 

clearly emerge within. The case of a two 

dimensional phase space, that of the phase 

plane, i.e. the space of X vs. dX/dt (where X is 

a state variable of the studied system), was 

introduced and utilized by the Ehrenfests in 

the early 1900s [45]. 

As already mentioned above, memristors are 

described, in general, by Eqs. (1) - (3). These 

equations refer to the case of extended, flux-

controlled memristors; while a duality principle 

holds for the case of charge-controlled ones. 

Considering their hysteretic behaviour 

(fingerprint) and furthermore their switching 

properties, memristors clearly emerge as 

nonlinear elements [46]. Thus, it is expected that 

studying their properties within a phase space, 

would provide useful information about the 

devices and their dynamical properties. 
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Figure 1: A typical DRM for an arbitrary system, 

having as a parameter the voltage applied. It includes 

three distinct cases; the case in middle provides an 

example of identifying the equilibrium points of a system 

- two unstable (labeled x) and a stable one (unlabelled 

x), in this case. 

To this direction, the Dynamic Route 

Map technique, a method mounted within the 

phase plane, was proposed to be applied in the 

case of memristors; thus providing information 

on specific features they demonstrate, such as 

their switching properties [47]. 

Beginning from the definition in the case 

of memristors, the Dynamic Route defines the 

course of a non-zero state variable, within its 

phase plane, when memristor’s voltage (for flux-

controlled) or current (for charged-controlled) 

gets a specific value. Notice that this is 

equivalent to plot Eq. 2. Consequently, the 

DRM is a parametric collection of a theoretically 

infinite number of Dynamic Routes [47]. In Fig. 

1, a typical example of a DRM is presented. In 

this figure three distinct cases appear; the most 

characteristic is the case in middle, which 

includes a stable and two unstable equilibrium 

points (where dX/dt = 0). 

Important features of DRM and 

consequences coming out of it, include the 

following (for a comprehensive and detailed 

presentation, see [47]): 

• DRM is infinitely dense. 

• For visualizing DRM, only some of the 

Dynamic Routes (a finite number) are 

displayed. 

• Any point of a dynamic route, belonging 

to the upper half plane, moves to the 

right (increasing the value of the 

variable). 

• For a dynamic route belonging to the 

upper half plane, the higher it stands, the 

faster its points move along their tracks 

(to the right). 

• Any point of a dynamic route, belonging 

to the lower half plane, moves to the left 

(decreasing the value of the variable). 

 

 

Figure 2: Parameters of a conductive filament when 

considered as a truncated cone. 

• For a dynamic route belonging to the 

lower half plane, the lower it stands, the 

faster its points move along their tracks 

(to the left). 

• Points laying on the horizontal axis, 

are equilibrium points (since their 

possess null velocity dX/dt = 0). 

• An equilibrium point in 2D may be 

stable (the trajectories are such that the 



 

 

151 
 

points converge towards it) or unstable 

(the points diverge from it). 

 

The dynamic route for a zero parameter 

value – in the case of memristor for zero voltage 

v=0 (or current i=0) – reduces to the Power-Off 

Plot (POP). The POP has been proposed as a 

tool for identifying memristor volatility in simple 

visual way. According to [47], any memristor 

demonstrating one stable and two unstable 

equilibrium points appears to be a volatile 

device; on the contrary, non-volatile memristors 

demonstrate one unstable and two stable 

equilibrium points. 

Finally, it is worth commenting on one 

important issue that could be easily identified by 

utilizing the DRM: the dynamics demanded in 

order to achieve switching in a memristor device 

(i.e. setting and resetting it) can be visualized 

on the DRM. This way it becomes clear that 

these two operations could be achieved by 

obliging the operation point to change the 

dynamic route for a specific period of time. This 

operation is usually achieved by the application 

of suitable positive or negative pulses that 

compel switching between two equilibrium 

points. 

 

3.2 Example of DRM: Toy Model 

For the shake of clarity, a simple toy 

model, that can be easily conceived, is presented 

in this section. Let’s consider that the 

memristive behaviour is mediated by a 

conductive filament, defined as in Fig. 2. To 

provide a physical basis, we can consider a model 

described by [48], but strongly simplified to retain 

only some features. We can describe this model 

using the formalism presented in the previous 

section as the following set of equations: 

 

𝑖 = 𝐺(𝜑, 𝑣, 𝑟) ⋅ 𝑣 (6) 

�̇� =  𝜑(𝜑, 𝑣, 𝑟) = 𝐴 ⋅ 𝑣 ⋅ 𝑒𝑥𝑝 (−
𝐵⋅𝑟2

𝑎+𝑣
) (7) 

𝐺(𝜑, 𝑣, 𝑟) = 𝐾
𝑟2

ℎ
 (8) 

𝐿(𝜑, 𝑣, 𝑥) =
∂ 𝜑(𝜑, 𝑣, 𝑥)

∂𝑣
 

= 𝐴 ⋅ 𝑒−
𝐵𝑟2

𝑎+𝑥
𝑎2+2𝑎𝑣+𝑣(𝐵𝑟2+𝑣)

(𝑎+𝑣)2
 (9) 

𝐽(𝜑, 𝑣, 𝑥) =
∂ 𝜑(𝜑, 𝑣, 𝑥)

∂𝑟
 

= −2 𝐴 𝐵
𝑣 𝑟

𝑎+𝑣
⋅ 𝑒𝑥𝑝 (−

𝐵⋅𝑟2

𝑎+𝑣
) (10) 

 

In the equations above A, B, and K are 

constants related to the technology, and h is the 

device dielectric thickness. The radius r is 

defined as an effective average between rmax and 

rmin in Fig. 2. This model corresponds to an ex- 

tended memristor device, since neither the 

Laplacian (Eq. 9) nor the Jacobian (Eq.  10) are 

nil.  In addition, we can see that the POP 

equation (Eq.  7 for v = 0:  ṙ (v   =  0)  =  0) is 

nil.   Thus, the model corresponds to an 

extended memristor with long-term memory. 

This very simple model already leads to 

a behaviour showing some of the most intriguing 

dynamics of real resistive memristor devices, 

namely a high dependence on initial conditions 

(i.e., the initial radius of the CF), and a reset 

voltage (i.e., the voltage where the radius gets 

to zero) depending on both the initial conditions 

and on the shape and frequency of the used 

waveform, as has been shown experimentally 

[41, 49]. 

The dependence on the input signal 

shape and frequency of this model is shown in 

Fig. 3, where four different signals are plotted 
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versus time until the filament breaks at r = 0, all 

starting from the same initial point. Notice that 

this is equivalent to the reset point. The same 

waveforms are plotted in Fig 4, but plotting the 

current versus the voltage. In the case of the 

sinusoidal waveforms (blue and black lines), the 

memory effect is clearly shown in the apparition 

of lobes. Thus, this demonstrates that a 

repetitive signal can be used to set the desired 

resistance of the device. 

On a separate thread, we have then used 

Eq. 7 to plot the evolution of the radius versus 

the radius (the Dynamic Route Map, DRM), in 

Fig. 5. In this plot, it is clearly seen that the 

radius decreases faster for higher voltages and 

smaller radius, as expected. 

Finally, we have used the same Eq. 2 to 

plot a 3D surface in Fig. 6, where we have also 

plotted the evolution of the waveforms in Fig. 3. 

Notice that when using this representation, the 

evolution of the system means that all the 

waveforms simply move over the surface defined 

by Eq. 7, thus providing a valuable insight into 

the dynamics that govern the device. 

 

 

Figure 3: Temporal evolution of the curve of the applied 

signal until the reset point for different waveforms. Notice 

that the curves stop when the reset point is reached (the 

CF radius gets to zero) and, thus, have different lengths. 

 

Figure 4: Current vs Voltage evolution of the curve of 

the applied signal until the reset point for different input 

waveforms, as shown in Fig. 3. Notice that the curves 

stop when the reset point is reached (the CF radius gets 

to zero). 

 

 

Figure 5: DRM of the CF radius, as in Eq. 7, for various 

constant voltages. The arrow shows the direction of 

increasing voltage between 0 and 2V, with 0.4V 

increment. 
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Figure 6: Evolution of the curve of the applied signal 

in the DRM space. The curves are extracted from those 

in Figures 4 and 5, as calculated with Eqs. 6-10. Notice 

that the curves stop when the reset point is reached, 

which is when the CF radius gets to zero. The surface 

corresponds to the 3D representation of Fig. 5. 

 

3.3 DRM in a Flux-Charge model 

As another example, we will consider an 

already existing model [50, 51, 52, 53], derived 

from that presented in [28]. This model starts by 

defining a relation between charge and flux, as 

in Eq. 11. 

𝑄 = 𝑄0 ⋅ (
𝜙

𝜙0
)
𝑛
 (11) 

The memconductance G is then 

described by: 

𝐺 =
𝑑𝑄

𝑑𝜙
= 𝑛 ⋅

𝑄

𝜙
 (12) 

Its rate of change can be written by 

taking the derivative of the memconductance 

(12) as following: 

𝑑𝐺

𝑑𝑡
= 𝐺 ⋅ 𝑣 ⋅

𝑛−1

𝜙
 (13) 

Notice that this is already the DRM 

equation for the conductance. However, it can be 

written in a more compact way assuming that n 

is nearly a constant: 

𝑑𝐺

𝑑𝑡
= 𝐺 (𝑛 − 1)  

𝑑

𝑑𝑡
𝑙𝑛(𝜙) = 𝐺 

𝑑

𝑑𝑡
𝑙𝑛(𝜙𝑛−1) (14)

 

The effective radius reff of the 

conductive filament can also be calculated 

easily, assuming a cylinder [30, 38]: 

𝐺 =
𝜎 𝜋 𝑟𝑒𝑓𝑓

2

ℎ
 (15)

 

where σ is the conductance of the conductive 

filament, assumed to be nearly constant. 

Then, the radius and its rate of change 

can be expressed as: 

𝑟𝑒𝑓𝑓 = 𝑟0√𝐺 (16) 

where 𝑟0 = √ℎ/𝜎𝜋. 

𝑑𝑟𝑒𝑓𝑓

𝑑𝑡
=

𝑟0

2√𝐺

𝑑𝐺

𝑑𝑡
=

1

2
𝑟𝑒𝑓𝑓  

𝑑

𝑑𝑡
𝑙𝑛(𝜙𝑛−1) (17) 

For instance, let us consider the case of a simple 

ramp for the input voltage with slope 𝛼: 

𝑉 = 𝛼𝑡 (18) 

Then the flux is: 

𝜙 =
1

2
𝛼𝑡2 + 𝜙0 (19) 

Then, the DRM can be expressed as: 

𝑑𝐺

𝑑𝑡
= (𝑛 − 1) 𝐺 

𝑑

𝑑𝑡
𝑙𝑛 [(

1

2
𝛼𝑡2 + 𝜙0)] =

(𝑛−1) 𝐺 𝛼𝑡
1

2
𝛼𝑡2+𝜙0

 

(20) 

or using the effective radius: 

 

Figure 7: DRM for the effective radius and its temporal 

derivative for different voltage ramp slopes (𝛼), using 

memristor model described by Eq.  21.  Notice that dreff 

/dt is plotted in absolute value. 

 

𝑑𝑟𝑒𝑓𝑓

𝑑𝑡
=

(𝑛−1) 𝑟𝑒𝑓𝑓 𝛼𝑡

𝛼𝑡2+2𝜙0
   (21) 

Figure 7 plots Eq. 21 for different values 

of the slope α to obtain the DRM in the case of 

the effective radius. It can be seen that the rate 

of change of the radius reff increases when the 

radius decreases, which is coherent with a 
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thermal model where the relation between the 

volume where the power is generated and the 

surface where the power is dissipated goes as 

1/𝑟𝑒𝑓𝑓.  This behaviour implies a higher power 

dissipation efficiency for smaller radius, thus 

causing higher radius decreasing rates due to 

higher temperatures. 

 

4. Experimental Measurements 

and Results 

After introducing the DRM technique, we 

have presented two different examples on how to 

calculate it in the case of two models. These two 

examples have shown how to interpret the 

evolution of the system under different input 

waveforms. This method has then been utilized 

to interpret data obtained from real devices. 

We have measured TiN/Ti/HfO2(10 

nm)/Al2O3(2 nm)/W devices, where the 

dielectric layers were grown by Atomic Layer 

Deposition. For all our measurements, the W 

layer was grounded and the different input 

voltage signals were applied to the TiN/Ti top 

electrode. To estimate the DRM, we considered 

the effects of different ramp speeds and sine 

function voltage signals of different frequency, 

measuring 100 Resistive Switching (RS) cycles 

for each different waveform as in [49]. The ramp 

speeds were (0.08, 0.16, 0.24, 0.34, 0.43) V/s, 

while the sinusoidal signal frequency were 

(0.0131, 0.0340, 0.0540) HzThe measurements 

were performed by using a HP 4145B parameter 

analyzer and a probe station. The signals were 

generated by the 4145B, which was GPIB 

connected and controlled remotely. This same 

instrument was also measuring the currents 

through the devices under test. Figure 8 shows 

some examples of the I-V curves measured for a 

selected device under the different inputs 

waveforms, where a significant dependence on 

frequency and shape is observed, as expected [41, 

49]. 

 

 

Figure 8: Examples of different I-V curves of the 

selected devices under different waveform excitation. 

 

This work has focused on the low (LRS) 

to high resistance state (HRS) transition. In our 

case, for slow signals, and assuming that the 

conductive filament (CF) has a truncated-cone 

shape, we could consider the minor radius r of 

the CF as the sole estate variable, as in Fig. 2 

(in the most common case of filamentary 

conduction ReRAMs). 

For this region, the resistance R of the 

conductive filament (CF) was estimated by 

using Eq. 22 and the values in Table 1. The CF 

shape was assumed to correspond to a 

truncated-cone with small radius r, high radius 

4 ∗ 𝑟, and thickness h. Using these assumptions, 

we have estimated the radius evolution for each 

measured curve during the LRS to HRS. This 

process is depicted in Fig. 9, and can be divided 

into three parts: 

1. IV curves. The I-V curves were 

measured for each LRS to HRS 

transition, and the reset point was 

determined. 
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2. Resistance Determination. From the 

previous experimental curves, the 

resistance up to the reset point was 

calculated using Ohm’s Law. 

3. Radius calculation. Using the 

resistance calculated in the previous step, 

and the value of the conductance in 

Table 1, the value of the radius was 

estimated as: 

4.  

 

Figure 9: a) Current versus applied voltage (the reset 

curve section employed in the calculation is shown in 

bold) obtained making use of an input voltage with a 

ramp of -0.08 V/s; b) The resistance is extracted and 

shown versus the applied voltage; c) The conductive 

filament radius versus applied voltage is estimated. 

 

Table 1: Technological parameters and fitting constants 

used for the TiN/Ti/HfO2/Al2O3/W stack used to 

fabricate the ReRAM memristive device. (* The value 

of h is calculated by adding the thicknesses of the HfO2 

layer (10 nm) and the Al2O3 (2 nm)). 

 

Parameter Value Units 

ℎ (∗) 12 nm 

𝜎 5·105 S/m 

 

 

Figure 10: Radius of the conductive filament versus 

dr/dt (in absolute value), extracted from experimental 

measurements as described in the text. The points 

correspond to the evolution of the CF, as estimated, and 

the lines show their moving average. 

𝑟 = √
ℎ

4𝜋𝑅𝜎
  (22) 

Since the thermal inertia can be 

neglected in the low frequency operation regime 

considered for our calculations, a first order 

memristor can be assumed. Plotting the values 

of radii extracted, using Eq. 22, for several reset 

curves, applying both ramp input voltage signals 
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and sinusoidal input waveforms v(t), results in 

Figure 10. To create this figure, we first have 

plotted all the [r, dr, v(t) points. Then, to obtain 

a drawing similar to Figure 5, we plot in Fig. 10 

the points corresponding to constant V values. 

In this same Figure, the lines correspond to a 

moving average. It has to be pointed out that 

each full I-V cycle causes different initial CF r 

values. Notice that the moving averages strongly 

resemble those in Figures 6 and 7, as expected. 

As a second step, we have plotted in a 

3D graph the [𝑣, 𝑟, 𝑎𝑏𝑠(𝑑𝑟/𝑑𝑡)] triplets, 

corresponding to the experimental 

measurements (see Figure 11) to further 

emphasize that their dynamic behaviour is 

located on a surface. These points define the 

DRM surface, where all the trajectories of the 

system must lay on. It is apparent in this Figure 

that the DRM behaviour seems to hold true for 

all the curves considered. The deviations from 

this surface are attributed to random 

fluctuations in the initial size and shape of the 

conductive filaments, which are created anew in 

the set part of the cycle. Additionally, another 

source of error is the propagation of the 

measurement error and noise, which directly 

translates into deviations of the estimated CF 

radius. 

It is worth pointing out the existence of 

two secondary bumps in Fig. 11, probably due to 

multiple CF. These bumps are clearly exposed in 

Fig. 12, which is simply a rotation of Fig. 11. 

 

 

Figure 11: 3D plot of the experimental DRM, showing 

also an empirical surface fit. The points correspond to a 

random selection of extracted [V, r, dr/dt] triplets. For 

the sake of clarity, three specific indicative trajectories 

are marked as red lines. 

 

It has to be noted that results from both 

the toy model (Eq. 7) and the charge and flux 

model (Eq. 21), closely resemble experimental 

data; thus showing that the model reproduces 

the physics behind the reset mechanism, in a 

reliable way. Specifically, all of them show very 

similar behaviour in the evolution of the radius 

time derivative, which accelerates as the radius 

tends to zero; further reflecting the positive 

feedback process between conductance and 

temperature, which is behind reset events in 

resistive switching devices. 

Moreover, it has to be noted that the 

evolution of the experimental curves 𝑑𝑟/𝑑𝑡 vs. 𝑟 

and 𝑣(𝑡) fall on a surface in the 3D plot, as 

predicted by the models, and as shown in Figure 

11. This last result hints for the fact that the 

response of the device under an arbitrary input 

is being mainly governed by the initial 

conditions (aka the initial CF radius) and the 

shape of the DRM. 
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Figure 12: Rotation of the 3D plot of the experimental 

DRM, showing the presence of two secondary bumps on 

the main surface, caused probably by the existence of 

different CF. The points correspond to the whole range 

of extracted [V, r, dr/dt] triplets, and the grid 

corresponds to an empirical fit of those points. 

 

5. Conclusions 

In this paper we have made a presentation 

of the Dynamic Route Map (DRM) concept and 

its great potential in the modelling and analysis 

of memristive devices. To do so, we have tackled 

with the DRM analysis from the modelling side 

on a first step. In particular, we have addressed 

the issue by means of two memristor models 

based on different paradigms. The first of those 

models is based on a physical description of the 

memristor, assuming filamentary conduction. It 

is described by an explicit equation for the 

radius variation, that, under the convenient 

formulation, leads to the calculation of the 

system DRM. We have plotted this DRM, and 

we have shown that different effects (reset 

voltage dependence on the waveform, variation 

of the device behaviour caused by different 

waveforms, etc.) are easily explained using this 

framework. We followed the same approach 

using a second model, which is based on a 

memristor definition through a nonlinear 

analytical link between the device charge and 

flux. We have also derived an expression for the 

CF radius, and plotted the DRM for this second 

model, obtaining a shape that resembles the one 

of the previous case. 

As a second complementary step, we have 

extracted experimentally the DRM of a ReRAM 

device. This is an interesting task, involving 

many modelling assumptions and measurement 

noise. We considered a truncated-cone shape for 

the conductive filament, and extracted the CF 

average radius in much the same way than for 

the charge-flux model. The results show that all 

the points move very close to the surface 

generated by the DRM, independently of the 

input voltage signal waveform, or the actual 

considered cycle. Consequently, we have shown 

that, actually, the memristors are not behaving 

differently under different stimuli. It is simply 

that the observed device response is the 

projection on the I-V variables of a trajectory on 

a different phase space determined by a 

governing state variable, its rate of change, and 

the input stimulus. The relation between these 

magnitudes is what really defines the device 

behaviour, and, as shown, this relation can be 

experimentally determined. 
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6. A resistive memory simulator 

based on circuit breakers 

6.1. Introduction 

As commented in section 1.4.4, there are still some hurdles in the RRAM realm to be 

addressed for its correct operation as non-volatile memories and the device implementation in 

neuromorphic circuits. As a consequence, industrial mass fabrication is limited at the moment 

as some impediments such as cycle-to-cycle and device-to-device variability, reliability or 

retention must be overcome. In this respect, variability emerges as one of the most critical 

aspects since it is directly related to the dispersion of electrical characteristics of the device. 

The variability of the device itself (also known as intrinsic variability on the contrary to 

extrinsic variability which is linked to the fabrication process), appears from the stochastic 

nature of the formation and rupture of the conductive filament which is dominated by the 

temperature, the electric field and the materials features. Thus, the CF shape must be properly 

studied as it plays an important role in the electrical features of the device. The typical variables 

and switching parameters affected as a result of the intrinsic variability are Vset, Vreset, Iset, Ireset, 

RHRS and RLRS. This chapter focuses on the study of all of these events involved in order to 

understand the physics behind RS so the need of a robust well performing simulator is needed. 

In this manner, we will design and build a new simulator tool based on resistive circuit breakers 

of different features; so forming, set and reset processes would be described in terms of the 

stochastic formation and rupture of conductive filaments of several branches in the dielectric. 

The simulation approach allows to connect in a natural manner to compact modeling solutions 
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because of both the electric field and temperature dependencies are incorporated in addition to 

other effects. 

6.2. Description 

This tool based on circuit breakers has been developed in order to analyze variability in 

RRAM devices due to the possibility to reproduce the typical current versus voltage 

experimental curves. In this manner, the device is modeled in a grid composed of m × n resistors 

as shown in Figure 6. The voltage is applied in all the top nodes at the same time while the 

bottom line is grounded to emulate the device electrical behavior. These resistances could have 

two, three or even four resistive levels. In addition, additional features like series resistance 

correction, dielectrics accounting with several layers, or quantum effects in the charge 

conduction by means of the QPC model among others are included. The breaker switching 

process is determined by evaluating the voltage drop in each circuit breaker by means of 

Kirchhoff’s laws and comparing to the threshold voltages. In the same way, another rule to 

control switching requires to check the local temperature in the breaker, this is the thermal-

driven switching. If this temperature reaches Tset then the switching from Roff to Ron takes place 

and conversely, if the temperature in the breaker reaches Treset then the switching from Ron to 

Roff takes place. Simulation finishes when the compliance current is reached in a forming or set 

process and when a dramatic current drop is detected in a reset process. 

 

Figure 6.1. Sketch of the network composed of circuit breakers. An external voltage is applied to the nodes 

in the top electrode while the nodes in the bottom electrode are grounded.  

We have coded and implemented this simulator tool in MATLAB by means of a graphical user 

interface in order to provide the final user a clear and intuitive interface without the need of 

understanding its internal operation, see Figure 6 along its detailed main aspects described 

below. 
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Figure 6.2. Graphical user interface of the simulator as it is initialized. 

1. Grid size: number of rows (M) and columns (N) of breaker matrix included in the 

simulation. 

2. Breaker levels: number of breaker resistance intervals. Two, three or even four levels 

could be selected in the pop-up menu.  

3. Parameter configuration: depending on the number of intervals selected in (2), the 

corresponding menu boxes will appear to be determined. Resistance and voltage values 

are introduced here along with thermal-drive temperatures. 

4. Random resistances: activate or deactivate the possibility to account with some 

resistances randomly chosen to be in the low resistance state at the beginning of the 

simulation. 

5. Probability of random resistances: number of resistances (%) in the low resistance 

state when (4) is selected. 

6. Compliance current: maximum current that can be reached during the simulation. 

7. Simulation range: establishes the points where the simulation starts and finish as 

well as the step voltage to be increased between two consecutive simulation points. 

8. Second layer: number of rows to account for a second oxide layer starting from the 

top electrode and downwards. 

9. Simulation options: plot simulation status enables to plot the grid situation step by 

step in a new window. Save plot data saves the Matlab files of the simulation to account 

with the possibility to be plotted in the future by another function of the simulator. 

Save netlist saves the netlist files including voltages and resistances in a spice format 

for all the simulation points. Electrical and thermal switching determine the switching 

rules, note that both of them may be activated at the same time. 

10. QPC configuration: allows to activate or deactivate the QPC module to describe 

charge transport. If activated, the alpha, beta, phi and N parameters should be 

introduced. 
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11. Type of simulation: simulate a single or multiple RS cycles. Only one could be 

selected at the same time. 

12. Process to simulate: when a single cycle is selected in (11), the type of process should 

be introduced manually: forming, set or reset. If multiple cycles are chosen in (11), the 

box description changes to ‘Number of cycles to simulate’. 

13. Experimental cycles selection: allows selecting a certain experimental curve to be 

plotted when loaded. If the hold button is selected, the new plots are added to the axes 

without deleting previous ones.  

14. Graphic representation area: space devoted to plot the simulation results. 

15. Series resistance correction: value of the parasitic series resistance to be corrected 

in every run. 

16. Simulation start and stop: buttons to start and stop the simulation. 

6.3. Operation 

As the simulations are launched, if the plot option is activated, a new window will show 

up to display the status of the network step by step, see an example in Figure 6 for and 

external voltage applied of 0.8V. 

 

Figure 6.3. a) Voltage level in each node of the grid for an external applied voltage of 0.8 V. At this point, 

the total current flowing through the network is 0.3081 mA and the equivalent resistance 2.6 kΩ. b) Level of 

the resistances as a function of the voltage across the nodes, see the color code to describe the resistance state 

of each circuit breaker. 

When the simulation is over, the obtained curve is plotted in the graphics representation area 

and the current versus voltage data is saved in a text file in the corresponding folder, see 

Figure 6 for a set case. 

(a) (b) 
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Figure 6.4. Graphical interface of the simulator when simulations are completed. 

Additionally, a video was created in order to explain in a didactic way the operation of the 

simulator by showing its internal principles and how the circuit breakers form different branches 

of the percolation path in the dielectric, see Video 1.1 [videoSimulator]. 

 

Video 1.1 Video detailing the principles of the presented simulator [videoSimulator]. 

6.4. Functionalities  

In addition to the aspects detailed in previous sections, this tool accounts for several 

features to provide the user an optimal fitting and operation experience. One of these consists 

of loading experimental cycles along with simulated ones to compare the curves and improve 

the parameter election. This function is called Load Cycles and could be found in the File tab 

located in the toolbar menu, see Figure 6.5. As it is clicked, a new window appears to ask the 

user to provide the experimental curves location as shown in Figure 6.6..  
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Figure 6.5. Loading cycles tab location. 

 

Figure 6.6. Selection of experimental measurements folder window. 

Finally, the type of cycles to be loaded must be indicated choosing between sets or resets as 

shown in Figure 67.  

 

Figure 6.7. Experimental curves selection window 

Experimental cycles will be plotted together in the representation area as they are loaded. It is 

possible to visualize just one cycle at the same time by selecting the cycle number in the drop-

down menu, see Figure 68 
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Figure 6.8. Graphical interface aspect when experimental cycles are loaded. 

By selecting one or several cycles, the user is able to represent as many cycles as desired. A lot 

of combinations are possible due to the hold button, see Figure 69. 

   

Figure 6.9. Graphical interface with a) one cycle loaded, b) two cycles loaded by means of hold button. 

Another available option in the functions tab called plot step-by-step, see Figure 610a, consists 

of plotting the obtained results in a previous run just in case the plot data was saved in that 

moment. 

     

Figure 6.10. a) Plot step-by-step tab, b) manipulate tab location. 

Thus, a new window will appear to ask the user to provide the location of the data to plot and 

the process will be carried out automatically resulting in what is shown in Figure 6. The last 

(a) (b) 

(a) (b) 
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functionality included in the simulator consists of a manipulate menu designed to provide a 

fast and comfortable way to select the most accurate QPC parameters to fit an experimental 

curve. That could be found on Functions tab as shown in Figure 610b. The menu relies on 4 

sliders to adjust alpha, beta, phi and N in a certain range also configurable by the user. The 

most remarkable fact here is that at the same time the bar is moving, the plot is updated. In 

this manner, the user is seeing how the value of a particular variable affects the curve overall. 

In Figure 611, two sets of QPC parameters are chosen to see the difference in comparison to 

the same experimental curve.  

   

Figure 6.11. Manipulate menu with two different sets of parameters, a) alpha = 9.66, beta = 0.53, phi = 

0.67, N = 1, b) alpha = 4.43, beta = 0.76, phi = 0.83, N = 1. In both cases, the experimental curve is fixed 

(dark blue), while the modified curve varies depending on the sliders position (light blue). 

 

The following section is an already published work [Maldonado2022]. 
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Abstract 

An in-depth analysis of resistive switching (RS) in unipolar devices is performed by means of a new 

simulator based on resistive circuit breakers of different features. The forming, set and reset 

processes are described in terms of the stochastic formation and rupture of conductive filaments of 

several branches in the dielectric. Both, the electric field and temperature dependencies are 

incorporated in the simulation. The simulation tool was tuned with experimental data of devices 

fabricated making use of the Ti/HfO2/Si stack. The variability and the stochastic behavior are 

characterized and reproduced correctly by simulation to understand the physics behind RS. Reset 

curves with several current steps are explained considering the rupture of different branches of the 

conductive filament. The simulation approach allows to connect in a natural manner to compact 

modeling solutions for the devices under study. 
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I.- Introduction 

RRAMs are one of the emerging technologies in 

the agenda of the great companies devoted to 

integrated circuit (IC) fabrication. Resistive 

memories are faster and need much less energy 

than current Flash memories used in solid state 

drives among other applications; hence, they 

are good candidates for storage class low-power 

memory. Apart from their non-volatility, this 

new technology presents good endurance, 

retention, full compatibility with the CMOS 

technology and capability of 3D stack 

fabrication [1-5]. Classical computing 

architectures lead to von Neumann’s bottleneck 

due to the high costs (both in energy and speed) 

linked to constant data shuttle forward and 

backward between the memory and the 

processor. Resistive switching devices could 

provide a solution since ultrahigh-density 

memory layers can be directly integrated on the 

processor chip reducing the bottleneck and 

improving the computing system energy 

efficiency and speed [6].  

In addition to non-volatile memory 

applications, other uses of these type of devices 

(which can be included in a broader set of 

electron devices called memristors [7, 8]) is 

related to neuromorphic computing [6, 9-20]. 

The implementation of matrix-vector 

multiplication by means of resistive switching 

devices crossbar arrays is an important step 

forward to the firstly conceived neuromorphic 

engineering approach introduced by C. Mead in 

the late eighties [21]. The employment of these 

structures is convenient when dealing with 

large-scale data processing, as it is the case of 

deep neural networks (DNN). In this 

perspective, these devices mimic biological 

synapses to allow the fabrication of hardware 

neural networks [9, 10, 11, 13, 15, 17, 19, 20, 

22]. The essential role of resistive switching 

devices in neuromorphic computing can be 

focused on neural network accelerators for 

multilayer perceptron and convolutional DNN, 

and for spiking neural networks; the latter 

encoding the information by means of spikes in 

the time and frequency domain [5, 23].  

Cycle-to-cycle (C2C) variability is inherent to 

RRAM operation due to the stochasticity 

linked to RS [1-4, 24-26]. This variability can 

impose hurdles for certain applications; 

however, it can also be of advantage in some 

cases, for instance in dealing with some 

machine learning DNN training issues, such as 

overfitting [16, 18, 23, 27]. Variability is also 

behind outstanding solutions in hardware 

cryptography (physical unclonable functions 

and random number generators) that are 

growing by leaps and bounds [28-31]. In devices 

with filamentary conduction, C2C variability is 

linked to CF morphological changes in each RS 

cycle, where the CF is created (set process) and 

ruptured (reset process) successively. 

In order to understand variability, different 

simulation and modeling tools have been 

developed. Among the procedures followed, 

there can be found the kinetic Monte Carlo 

(KMC) simulation [32-35]; the advanced 

statistical modeling [24-26, 36] and the compact 

modeling approach for circuit simulation [8, 37-

47]. The KMC approach describes the device 

operation in detail, the most relevant physical 

mechanisms are included at the microscopic 

level and the device stochasticity is considered 

consistently within the KMC algorithm; yet, 

the computing time is too long. In the compact 

modeling arena, the simplicity versus accuracy 

paradigm is different. Device description is 

easier and faster than in other simulation tools; 

nevertheless, considering the variety of 

materials employed in the different devices 

found in the literature, there is also a long way 

to go in the compact modeling context. In this 
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field, the device description has to be quick 

from the numerical viewpoint to be able to 

simulate circuits with a high number of 

components. The main physical mechanisms 

are considered although some complex aspects 

are usually left behind because their associated 

numerical complexity is not reasonable for the 

accuracy needed at this description level. 

Among the features that are simplified, or 

sometimes simply neglected from the models, 

there is variability [24]. An interesting 

approach that stands in between the numerical 

techniques reported above in terms of 

complexity (KMC simulation and compact 

modeling for circuit simulation) is related to 

RRAM simulation by means of circuit breakers 

(CB) [4, 48-52]. This procedure allows a 

reasonably accurate CF description on RS 

devices with a resistance mesh that permits a 

qualitative insight to the randomness linked to 

the percolation path formation. In this work we 

have used a simulation procedure based on 

circuit breakers to study the operation of 

unipolar resistive switching devices with HfO2 

dielectrics. In addition to the general features 

of this simulation scheme [4, 48-51], we have 

introduced several improvements such as the 

inclusion of quantum effects by means of the 

quantum point contact model, the use of circuit 

breakers of four conductivity levels and a device 

series resistance, and the consideration of 

several dielectric layers with different 

conduction characteristics. A much better 

quantitative description is achieved in this 

manner.  

We have fabricated and measured unipolar RS 

devices. The measurement results of the 

fabricated unipolar RS devices have been 

correctly fitted with this new simulation tool 

and different operational particularities have 

been explained in full. In particular, in section 

II we introduce the fabrication and 

measurement details; section III is devoted to 

the simulator description while section IV 

presents and discuss the main results obtained. 

Finally, the main conclusions are drawn in 

section V. 

II.- Device fabrication and 

measurement setup 

The fabrication of Ni/HfO2/Si devices was 

performed on (100) n-type CZ silicon wafers 

with resistivity (0.007-0.013) Ω∙cm. The 10nm-

thick HfO2 layers were grown by atomic layer 

deposition (ALD) at 200ºC, making use of 

tetrakis (Dimethylamido)-hafnium (TDMAH) 

and H2O as precursors and N2 as carrier and 

purge gas. The top Ni electrode with a 200nm 

thickness was deposited by magnetron 

sputtering. The area of the cells is 5x5 μm2. A 

schematic cross-section of the final device 

structure is shown in Fig. 1(a).  

A HP4155B semiconductor parameter analyser 

was employed to measure the I-V curves. The 

voltage was applied to the top Ni electrode and 

the Si substrate was grounded. Successive I-V 

measurements were performed to dynamically 

detect the set and reset currents. The 

semiconductor parameter analyzer was 

connected to the computer via GPIB that was 

controlled by MATLAB. More than 1800 

successive resistive switching cycles were 

obtained, some of them are shown in Fig. 1(b). 
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Figure 1. (a) Cross section scheme of the Ni/HfO2/Si-

n+ devices, (b) current-voltage characteristics 

corresponding to set and reset cycles. A current 

compliance of 100 μA has been employed. 

 

 

 

III.- Simulation description 

We have developed a flexible and 

comprehensive simulator based on circuit 

breakers (CB) to analyze RRAM variability. It 

allows the step-by-step description of CF 

formation and rupture processes in a 2D 

approach. It can simulate both unipolar and 

bipolar memristor RS devices (including two or 

more dielectric layers with different electrical 

properties). This in-house tool is accurate 

enough to reproduce the typical I-V 

experimental curves as it will be shown below. 

The code has been implemented in MATLAB, 

and the simulations were carried out with a 

desktop Intel Core i5-7400 CPU @ 3GHz. For 

a conventional simulation cycle including set 

and reset transitions, for a CB matrix with 

N=20 and M=20, the simulation time is 

approximately 200s. This is obviously a much 

faster approach than kinetic Monte Carlo 

simulators [32-35], where a RS cycle takes 

several hours to simulate.  

In our case, to improve the CB modeling (the 

basics of this approach have been already 

presented [4, 48-51]) and investigate the device 

RS characteristics and variability, we include 

CBs with up to four conductance levels, 

quantum effects in the charge conduction by 

means of the Quantum Point Contact (QPC) 

model, series resistance, dielectrics with several 

layers and other parameters. 
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Figure 2. Diagram of the 2D CB network that models the device internal electric circuit. Each CB represents a 

cluster of ions embedded in the percolation path [32, 34, 53]. The black and red colors CBs represent clusters with 

different compactness, and therefore different resistance values (there could be more than two resistance levels). The 

horizontal grey bars stand for the electrodes that are connected to an external voltage source. The model also 

accounts for the device series resistance [54, 55]. Finally, quantum effects linked to any potential barriers along the 

charge conduction path are considered [54, 56, 57].

The CB 2D network is shown in Figure 2. It 

represents the conduction structure of the 

dielectric, permitting simulation of percolation 

paths formation that represent metallic-like 

CFs that short the electrodes after a successful 

set or forming process. The circuit breakers 

change their resistive state under the action of 

electric and thermal effects [58].  

The simulator can include a series resistance 

and a module to account for the QPC model in 

series with the CB network. This latter module 

describes non-linear I-V relationship in the low 

resistive state among other effects (see 

Equation 10 in [54]). The QPC model describes 

charge transport due to a barrier under a 

mesoscopic approach in the different RS 

operation situations [56]. For the resistance 

network made of CBs with two resistive states 

shown in Figure 2, the CB resistance is either 

Ron (a low value linked to the low resistance 

state, LRS, plotted in red) or Roff (a high value 

linked to the high resistance state, HRS, 

plotted in black). In our simulator, CBs can be 

chosen to switch between two, three or even 

four different resistance values. These 

resistance values are linked to ion clusters of 

different compactness and size that could be 

part of a conductive filament (CF) that shorts 

the electrodes [32, 53]. The cluster (made of 

oxygen vacancies, reduced metallic ions from 



 

177 
 

the active electrode or both) compactness is 

directly linked to the conductance of the region 

that is modeled by the CB, as it was 

demonstrated by KMC simulations [32, 33, 53]. 

If electric field driven switching is assumed, the 

CB value is determined by evaluating ΔV (the 

voltage in the CB), that is obtained by means 

of Kirchhoff’s circuit laws (see Figure 2) and 

later compared to the threshold voltages Voff 

and Von, which are fitting parameters, see 

Figure 3.  

 

 

 

Figure 3. Circuit breaker internal resistance structure for the set (or forming) process (a) two levels, Roff and Ron; 

(c) three levels, Roff, Ron and Ron2; (e) four levels, Roff, Ron, Ron2 and Ron3. For the reset process the CB internal 

resistance structure is described in (b) two levels, (d) three levels and (f) four levels.

A device with a pristine dielectric is assumed to 

start the simulation where some resistances are 

randomly chosen to be in the low state to better 

reproduce the stochastic behavior of a real 

device. If CBs with three or four levels are 

chosen, the different Ron values can be used for 

the random initialization of the dielectric. 

Following the developments introduced in Refs. 

[50, 51], the Joule heating is considered and a 

thermal-driven switching rule is also 

implemented. It is explained in Figure 4a. 



 

178 
 

Thermal effects are known to be strongly linked 

to the devices under study since the physical 

mechanisms behind resistive switching are 

thermally activated [46, 59]; these effects also 

play a key role in other systems [5, 60-62]. 

If the CB local temperature, TCB, reaches Tset 

(assuming a set and forming process), then the 

switching from Roff to Ron takes place. 

Conversely (Figure 4b, in a reset process), if 

TCB reaches Treset, then the switching from Ron 

to Roff takes place. This thermal switching rule 

can be extended to consider three or even four 

different resistance levels, as in the case 

depicted in Figure 3.  

 

Figure 4. Thermal switching conditions of the circuit 

breaker, (a) from Roff to Ron, (b) from Ron to Roff. The 

thermal switching conditions of the circuit breaker are 

built upon the variation of TCB in comparison with Tset 

and Treset. 

The calculation of TCB is performed according 

to Equation 1, the heat equation. 

𝐶
𝑑 𝐶𝐵
𝑑𝑡

= 𝑅𝑖2 − 𝐴( 𝐶𝐵 −  0) 
(1) 

where C stands for the heat capacitance, R is 

the electric resistance and A is the thermal 

conductance (the inverse of the thermal 

resistance, Rth) of every individual CB [46, 48, 

51]. T0 stands for reference temperature of the 

device, usually room temperature [46]. It is 

important to highlight that more complex 

thermal models could be taken into 

consideration, including a double thermal 

network with thermal resistances and 

capacitances in parallel, as explained in [46]. 

The CB switching is, therefore, implemented in 

this simulation tool both accounting for electric 

field and thermal effects, although these effects 

can be switched on and off in order to simulate 

devices with different RS activation processes 

(electrical or thermally driven) or analyze their 

sole influence on RS. In this manner, we make 

the model capable to describe filamentary 

RRAM operation, including the forming, set 

and reset processes, and also variability; both 

in the unipolar and bipolar cases [58]. 

Finally, we have considered the possibility of 

accounting for dielectrics made of different 

oxide layers [63]. In each layer, different values 

of CB resistances and switching voltages and 

temperatures would be considered. The layers 

width would be considered accounting for 

different rows in the CB network in relation to 

the network size as shown in Figure 5.  
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Figure 5. Schematic of the 2D CB network including 

two types of CBs to account for the bilayer oxide. 

IV.- Results and discussion 

We have used the simulator described in the 

previous section to reproduce the experimental 

measurements from the devices reported in 

section II. In particular, several cycles were 

accurately fitted as shown in Figure 6, both for 

the reset and set processes. The resistive 

switching process usually occurs as follows: 

when a percolation path (a CF) is fully formed 

by means of a chain of low resistances 

associated to CBs, ranging from the top to the 

bottom electrode, the device is in the LRS, 

showing a high current value (this state is 

achieved after a set or forming event). Later on, 

a reset process is launched within a resistive 

switching series; when the percolation path is 

ruptured, by switching one or more circuit 

breakers that where included in the CF to its 

high resistance value, the device turns back to 

the HRS. The fitting starts with the QPC 

model parameters and series resistance in the 

low voltage part of the I-V curve, then the CB 

matrix is established, and the CB configuration 

is chosen. The matrix size and the number of 

CB resistance states can be employed to 

improve the fitting of the experimental curve. 

As in every simulation tool, the accuracy and 

complexity trade-off has been considered in the 

fitting process. 

 

Figure 6. Current versus voltage curves of simulated 

data (solid lines) and experimental data (symbols) 

obtained from measured unipolar resistance switching 

(RS) devices described in section II. To obtain these 

simulations, a 50×20 network was employed using CBs 

with 4 resistance levels: Roff = 1×107 Ω, Ron = 500 Ω, 

Ron2 = 300 Ω and Ron3 = 100 Ω. The following 

parameters were employed: Voff = 0.02V, Voff2 = 0.05V, 

Voff3 = 0.07V, Von = 0.55V, Von2 = 0.6V, Von3 = 0.65V. 

Since the CF narrowing that strangles the electron flux 

and creates a potential barrier for the charge transport 

[54, 56, 57] is different for each cycle, a set of QPC 

model parameters is needed for each curve. These are 

α1= 5.6, β1= 0.93, φ1= 0.94, N1 = 10 and α2= 5.6, β2= 

0.93, φ2= 0.82, N2 = 10. An Rseries=10 Ω was employed 

in general in our simulations, a reasonable estimation 

according to [64].  

Typical RS parameters such as Vset, Vreset, Iset 

and Ireset from the experimental curves are 

correctly reproduced, as shown in Figure 6. It 

is important to emphasize the fact that the 

experimental I-V curves have been fully fitted. 

In other approaches related to CB simulation 

tools, although the authors reproduced some 

RS features of their technology, no exact curve 

fitting is presented [50, 51]. In this respect, the 

switching parameters corresponding to Figure 3 

and the QPC model parameters have been 
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fitted for the devices under study. In order to 

characterize the whole population of RS 

parameters (Vset, Vreset, Iset and Ireset) obtained in 

the complete series of I-V curves measured, a 

massive simulation study was performed, see 

Figures 7 and 8. Precisely, in Figure 7, 1800 

experimental (Iset, Vset) points are plotted 

together with the results of 250 simulations for 

each area (red and blue circles). In Figure 8, in 

turn, the 1800 experimental (Ireset, Vreset) points 

are plotted together with the results of 150 

simulations.  

 

Figure 7. Iset versus Vset for simulated data (red circles 

and blue squares) compared with experimental data 

(black squares) from the devices described in section II.  

The first set of simulated values (red circles) were 

obtained choosing the following values, Roff = 1×107 Ω, 

Ron = 500 Ω, Ron2 = 300 Ω and Ron3 = 100 Ω while the 

second set (blue squares) were obtained assuming Roff 

= 1×108 Ω, Ron = 1000 Ω, Ron2 = 600 Ω and Ron3 = 200 

Ω. A 50×20 network was employed in all cases.  

See that a great area of the experimental points 

in Figures 7 and 8 is covered by the simulation 

results obtained with the parameters employed 

in the I-V curve fitting shown in Figure 6. For 

these variability simulations we employed 

different random initial distributions according 

to our assumption of 0.5% of the CBs in the 

network. See that we can only cover part of the 

experimental cloud. In order to sweep a greater 

area in Figures 7 and 8 another set of 

parameters was employed, see the blue points. 

The use of different parameters is reasonable 

since the ion cluster formation that creates the 

CF varies, as observed in KMC simulations 

[53]; the presence of grain boundaries in 

different regions in the dielectric and their 

influence on ion clustering could also affect this 

issue. Changing the parameters accounts for the 

CF 3D formation differences that are modeled 

in the simplifying 2D approach pictured here; 

the different ion cluster density within the CF 

that could be formed [65] in each RS cycle is 

approximately described by a set of resistances 

and transition voltages for the CBs (Figure 3). 

 

Figure 8. Ireset versus Vreset simulated data (red circles 

and blue squares) compared with experimental data 

(black squares) from the devices described in section II. 

The first set of simulated values (red circles) were 

obtained choosing the following values, Roff = 1×107 Ω, 

Ron = 500 Ω, Ron2 = 300 Ω and Ron3 = 100 Ω while the 

second set of values (blue squares) were obtained by 

taking Roff = 1×108 Ω, Ron = 1000 Ω, Ron2 = 600 Ω and 

Ron3 = 200 Ω. A 50×20 network was employed in all 

cases.  

Some facets of the RS stochasticity are 

captured by our simulator since we are able to 

reproduce experimental curves with several 

decreasing current steps taking place in the 

reset process. These steps are linked to the 

rupture of conductive branches which are part 

of a complete conductive filament, i.e., the 
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steps are linked to a partial filament 

destruction, see Figure 9 and 10.  

Figure 9. Current versus device voltage for simulated 

data (solid lines) and experimental data (symbols) 

measured from the devices described in section II. 

These simulation results were obtained by employing a 

10x10 network using CBs with 2 resistance levels: Roff 

= 7.5×106 Ω and Ron = 2.5×103 Ω. The following 

parameters were employed: Voff = 0.19V and Von = 

0.15V. 

In relation to the simulations of the previous 

figure and to better show the details of a CF 

partial rupture that leads to a decreasing step 

in an I-V reset curve, we show a simulation 

using a 20×20 network, see Figure 10.  

Figure 10. Simulated current versus voltage. CBs with four resistance values were employed. Points A, B and C in 

the I-V curve represent different CF evolution stages. A corresponds to a fully formed CF, see a continuous 

percolation path shorting the electrodes; B shows a CF partial rupture (that is why an abrupt current step is seen 

in the I-V curve), one of the two low resistive connecting paths between the CF main body and the bottom electrode 

is broken (it is shown in the zoomed in region); C shows a full CF rupture since the low resistance path next to the 

bottom electrode is gone at the CF narrowest region. These simulation results were obtained by employing a 10x10 

network using CBs with 4 resistance levels: Roff = 1×107 Ω, Ron = 500 Ω, Ron2 = 300 Ω and Ron3 = 100 Ω. The 

following parameters were employed: Voff = 0.112V, Voff2 = 0.15V, Voff3 = 0.2V, Von = 0.112V, Von2 = 0.15V, Von3 = 

0.2V. 

To illustrate the role of the temperature for 

resistive switching, we turned off the CB 

voltage driven switching. As explained above, 

Joule heating rises the CB local temperature. 

In figure 11, simulated forming, reset, and set 

processes were carried out by taking different 

Rth values in order to study their effects. As it 

is clearly seen, the higher the thermal resistance 

the lower the Vreset since the CF is heated faster, 

this also works for the set process. The CB 

associated thermal resistance values are higher 

than what is usually employed in modeling 
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complete resistive switching devices. In this 

respect it is important to point out that the 

power dissipated in each CBs can be one or two 

orders of magnitude lower than in the device 

since the current and, mostly, the voltage 

values are reduced in the resistance network 

nodes. Consequently, these corrections are 

translated to Rth in order to achieve 

temperatures in the order of what is found in 

simulation and modeling studies [46]. Since the 

Tset and Treset are fitting parameters, a trade-off 

between these temperatures and Rth can be 

achieved; in our case, the parameters employed 

in Figure 11 worked well. 

 

Figure 11. Simulated current versus device voltage for 

different a) forming, b) reset and c) set processes for 

different values of the thermal resistance. All the 

simulations were performed assuming the following 

values for the CB thermal model: Roff = 1×106 Ω, Ron 

= 5 kΩ, Tset = 350K, Treset = 700K. These simulations 

correspond to curves with ramped voltages that last 

several seconds; therefore, the time dependent term in 

Equation 1 was neglected and no thermal capacitances 

were considered. 

V.- CONCLUSIONS 

A simulator tool to study the formation and 

rupture processes of conductive filaments in 
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resistive switching (RS) has been developed and 

tested, including quantum effects and series 

resistance correction. Experimental 

measurements of RRAMs based on Ni/HfO2/Si 

structures have been reproduced under several 

conditions to show the versatility of the 

simulator that accounts for the device electrical 

and thermal description. Both the ohmic and 

tunneling based conduction regimes are 

considered since their contribution depends on 

the device operation regime. I-V reset curves 

with decreasing steps are explained by means 

of partial conductive filament the ruptures of 

which are correctly reproduced. This tool, in 

terms of the computing time and device 

complexity, stands in a middle point between 

the physical simulation and compact modeling 

approaches. 
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7. Conclusions 

Nowadays there is an increasing interest on data storing in the electronic device context 

either for volatile (temporary) and non-volatile (permanent) applications. This arises from 

several requirements related to 5G structures, advanced artificial intelligence implementations, 

internet of things (IoT) arrival, complex data mining, faster and smaller solid-state drives 

(SSD) and even common laptops and smartphones. Thus, RRAM devices appear as one of the 

best suitable candidates to be considered due to its outstanding characteristics such as 

extraordinary scalability accounting with the potentiality of 3D stacking, high endurance and 

speed and low latency and energy demand. In addition, the fabrication process is quite simple 

and cheap and the compatibility with CMOS technology in the Back-End-Of-Line (BEOL) is 

guaranteed, another key aspect to take into account. 

This work has been focused on the characterization and measurement of RRAM devices 

including external effects such as temperature, electric field and magnetic field for the 

subsequent analysis and determination of results. Hence, modelling of these data adopting 

quantum effects and time series approach is addressed along the QPC model. Then, existing 

compact models are employed and modified to reproduce experimental data and simulate 

circuits to account for different issues like the series resistance correction. To conclude, a 

simulator tool based on resistive circuit breakers is designed and developed to study variability 

and the stochastic features of resistive memories. This thesis includes seven publications in 

scientific journals indexed in the Journal Citation Report of Science Citation Index, one 

proceeding published in IEEE Xplore digital library and one contribution to an International 

Conference and other publications outside this work where a book chapter is included and a 

video explaining the operation of the simulator among multiple congress contributions.  

The most relevant results obtained can be compiled as follows:
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1. Different RRAM technologies have been characterized and modeled. In particular, several 

devices based on Ni/HfO2/Si-n+, Cu/HfO2/Si-n+, Au/Ti/TiO2/SiOx/Si-n+, Au/Ti/h-

BN/Au/Ti, Au/h-BN/Au/Ti, TiN/Ti/HfO2/W and TiN/Ti/HfO2/Al2O3/W stacks, 

fabricated both in MIS and MIM structures, are tackled to extract the most representative 

RS parameters from the characterization viewpoint. The measured data have been 

elaborated using advanced statistical techniques. Among conventional measurements, 

diverse external effects (for instance a variable magnetic field) are included in order to 

study the impact they have on the operation of these devices. 

2. We have studied the device-to-device and cycle-to-cycle variability by means of Weibull, 

Erlang and Phase type statistical distributions applicated on a great amount of 

experimental data. The latter distribution has shown a higher degree of reproducibility as 

the data gets fitted more consistently. 

3. We have employed the time series analysis to evaluate variability in resistive memories. 

Different models have been obtained to assess current RS parameters as a function of the 

previous values in RS series. Devices based in h-BN and graphene oxide, along with different 

transition metal oxides, such as TiO2, HfO2, Al2O3 have been modeled by means of this 

technique; in doing so, ACF and PACF tools were calculated to achieve the proper 

analytical models and assess autocorrelation between the data. In general, the results show 

a correlation between set and reset voltages of different cycles in the series, this led us to 

obtain mathematical expressions based on Auto regressive modeling approaches in order to 

predict future values of the parameters studied along a RS series.  

4. Modeling of quantum effects based on the quantum point contact model. Landauer’s theory 

has been employed to get an analytical expression for the I-V characteristics in resistive 

memories based on filamentary conduction when non-linearity is present. The role of the 

temperature in the current calculation is also assessed. It is also proved that quantum 

effects must be taken into account when considering electron transport in these situations. 

5. Dynamic route maps have been used in resistive memories reset transitions. This concept 

has been proved to have an outstanding potential in the modeling and analysis context of 

RRAM memories. By plotting the dynamic route map, it is shown that every variation 

provoked by external waveforms of different nature in the device in the measuring process 

belongs to the generated surface in the DRM. Thus, it is demonstrated that memristors do 

not respond in a different manner regarding different inputs. At the end, this is what 

actually determines the role of the device.  

6. We have developed a methodology to extract the series resistance. The effects of this 

resistance have been included in compact models. Redefined I-V experimental curves are 

considered to extract the set and reset transition voltages, which exhibit correlation from 

the statistical viewpoint. In that sense, it has been demonstrated that the lower the series 

resistance, the higher the set and reset transition absolute voltages. The Stanford model 

has been modified to include this effect and enhance its accuracy to improve the fitting of 

experimental data of VCM devices. 

7. We have developed a circuit breaker-based RRAM simulator tool implemented by 

resistances of different features to analyze RRAM variability. Typical RS processes such as 

forming, set and reset are reproduced progressively to detail the rupture and formation of 

the CF in a 2D resistance network. Experimental I-V measurements from unipolar and 

bipolar devices are reproduced as several dielectric layers with different characteristics could 

be included. To enhance the modeling process some functionalities are incorporated: 

quantum effects in a QPC module to describe non-linear curves, electrical and/or thermal 
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switching rules to change the resistive state of the circuit breakers, series resistance 

correction, a few layers to account for diverse dielectric stacks and resistances with up to 

four values. 

In the last few years, an increase of the number of publications, congresses and workshops 

has been clearly observed. Many research groups worldwide are devoted to take RRAM 

applications to a new level. There are many fronts to advance in research and development in 

the future. 

In the short-term, the improvement of the developed compact models and the creation of 

new ones is key for the proper evolution of this technology as detailed in section 1.5. In addition, 

the simplification and the public release of the modeling tools could help to bring new developers 

to the community which implies more people pushing in the same direction. As a consequence 

of that, new layered structures could be properly investigated in order to get a better 

understanding of the resistive switching phenomena. 

Moving up to the simulation level presented in Chapter 6, there are some lines to pursue. 

For example, implementing a 3D circuit breaker network instead of the 2D would imply a more 

detailed step-by-step formation and rupture of the conductive filament. On the other hand, 

new conditions to trigger the resistive state of the breakers could be considered to achieve 

several conduction levels and reproduce different experimental curves. 
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