
Computational methods for bias
reduction in surveys

Doctoral Thesis

Luis Castro Martín
Thesis supervised by Prof. María del Mar Rueda García

Doctorate Program in Mathematical and Applied Statistics
University of Granada

Granada, May, 2022



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editor: Universidad de Granada. Tesis Doctorales  
Autor: Luis Castro Martín 
ISBN: 978-84-1117-436-7 
URI: http://hdl.handle.net/10481/75960 

http://hdl.handle.net/10481/75960


Contents

Agradecimientos vii

Summary ix

I xi

1. Introduction 1

2. Objectives 5
2.1. Inference from Non-Probability Surveys with Statistical Mat-

ching and Propensity Score Adjustment Using Modern Pre-
diction Techniques . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. The R Package NonProbEst for Estimation in Non-probability
Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Combining Statistical Matching and Propensity Score Adjust-
ment for inference from non-probability surveys . . . . . . . . 6

2.4. On the Use of Gradient Boosting Methods to Improve the
Estimation with Data Obtained with Self-Selection Procedures 7

2.5. Reweighting with machine learning techniques in panel sur-
veys. Application to the Health Care and Social Survey. . . . 8

2.6. Enhancing estimation methods for integrating probability and
non-probability survey samples with machine-learning techni-
ques. An application to a Survey on the impact of the COVID-
19 pandemic in Spain . . . . . . . . . . . . . . . . . . . . . . . 9

3. Methodology 11
3.1. Inference from Non-Probability Surveys with Statistical Mat-

ching and Propensity Score Adjustment Using Modern Pre-
diction Techniques . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2. The R Package NonProbEst for Estimation in Non-probability
Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



iv Contents

3.3. Combining Statistical Matching and Propensity Score Adjust-
ment for inference from non-probability surveys . . . . . . . . 18

3.4. On the Use of Gradient Boosting Methods to Improve the
Estimation with Data Obtained with Self-Selection Procedures 19

3.5. Reweighting with machine learning techniques in panel sur-
veys. Application to the Health Care and Social Survey. . . . 21

3.6. Enhancing estimation methods for integrating probability and
non-probability survey samples with machine-learning techni-
ques. An application to a Survey on the impact of the COVID-
19 pandemic in Spain . . . . . . . . . . . . . . . . . . . . . . . 25

4. Results 29
4.1. Inference from Non-Probability Surveys with Statistical Mat-

ching and Propensity Score Adjustment Using Modern Pre-
diction Techniques . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. The R Package NonProbEst for Estimation in Non-probability
Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3. Combining Statistical Matching and Propensity Score Adjust-
ment for inference from non-probability surveys . . . . . . . . 31

4.4. On the Use of Gradient Boosting Methods to Improve the
Estimation with Data Obtained with Self-Selection Procedures 31

4.5. Reweighting with machine learning techniques in panel sur-
veys. Application to the Health Care and Social Survey. . . . 32

4.6. Enhancing estimation methods for integrating probability and
non-probability survey samples with machine-learning techni-
ques. An application to a Survey on the impact of the COVID-
19 pandemic in Spain . . . . . . . . . . . . . . . . . . . . . . . 33

5. Conclusions 35
5.1. Inference from Non-Probability Surveys with Statistical Mat-

ching and Propensity Score Adjustment Using Modern Pre-
diction Techniques . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2. The R Package NonProbEst for Estimation in Non-probability
Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3. Combining Statistical Matching and Propensity Score Adjust-
ment for inference from non-probability surveys . . . . . . . . 36

5.4. On the Use of Gradient Boosting Methods to Improve the
Estimation with Data Obtained with Self-Selection Procedures 36

5.5. Reweighting with machine learning techniques in panel sur-
veys. Application to the Health Care and Social Survey. . . . 37



Contents v

5.6. Enhancing estimation methods for integrating probability and
non-probability survey samples with machine-learning techni-
ques. An application to a Survey on the impact of the COVID-
19 pandemic in Spain . . . . . . . . . . . . . . . . . . . . . . . 38

6. Future Research 39

Bibliography 41

II Appendices 49





Agradecimientos

Si he logrado ver más lejos, ha sido
porque he subido a hombros de gigantes.

Isaac Newton (1675)

No puedo dejar de agradecer el entorno tan favorable que he tenido du-
rante el desarrollo de esta tesis, sin el cual habría sido imposible llevarla a
cabo.

En primer lugar y en especial a María del Mar por su incansable gene-
rosidad, paciencia, trabajo y sabiduría. Ha sido la mejor tutora que habría
podido desear como ya sabrán todos los que la conocen.

También a toda la gente con la que he colaborado en el proceso (Andrés,
Carmen, Ramón, Bea, Giovanna, Paqui...) que no han dudado en hacerme la
vida más fácil siempre que han tenido la oportunidad. Así da gusto trabajar.

Y finalmente a mi familia y a mis amigos pero sobre todo a Laura, porque
sin ella todo este esfuerzo no habría tenido sentido.

Muchas gracias a todos. Este logro es tan vuestro como mío.

vii





Summary

Probability sampling has been a fundamental framework over time in
order to carry out surveys from which reliable conclusions can be extracted
and properly justified. However, the application of its basic principles is now
being threatened by the surge of new technologies.

Online surveys are becoming a standard due to their ability to obtain big
data in a simple, cheap and efficient manner. In contrast, the methodologies
associated with these kinds of surveys are usually non-probabilistic. Often, a
link with the questionnaire is publicly shared, following a snowball sampling
design, implying the absence of representative design weights. This causes an
important self-selection bias. Even when there is a sampling frame available,
the reduced response rates associated with the lack of human interaction
produce an important non-response bias. Finally, coverage biases are also
common because part of the target population does not have access to some
of the required mediums, whether it is an internet connection, a smartphone
or some specific social network account.

Despite all these problems, their use is widely extended. Besides, the de-
crease over the last years in the response rates of traditional surveys has af-
fected the viability of the alternatives. Therefore, great effort has been spent
on developing techniques which allow us to reduce bias in non-probability
surveys. The objective is proposing new methodologies in order to preserve
the credibility of statistical studies while also making use of the advantages
of new technologies.

The main proposals for this purpose are Propensity Score Adjustment,
which estimates the inclusion probabilities in order to obtain some represen-
tative sample weights, and Statistical Matching, which is based on predicting
and imputing the individual’s responses. Both rely on an auxiliary probabi-
lity sample containing some covariates in common with our non-probability
sample, which includes the target variable of interest.

We contribute to the development of these techniques by proposing compu-
tational methods which significantly improve their efficacy. First, we consider
their application with different advanced machine learning models, culmina-
ting in state-of-the-art techniques which optimize the results obtained. We
also propose a novel method for combining Propensity Score Adjustment
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x Summary

and Statistical Matching, improving the bias reduction obtained with each
method separately. We implement many of these methods along with other
bias reduction alternatives for non-probability surveys in NonProbEst, an
easy-to-use R package.

Additionally, we extend their application to more contexts. The Propen-
sity Score Adjustment method, combined with calibration techniques, can
be considered for overlapping panel surveys in order to obtain transversal as
well as longitudinal estimates over time. This compensates the bias resulting
from the non-response in successive measurements. In this way we propo-
se several reliable estimators which are then applied to diverse parameters
of interest in a research project about the evolution of COVID-19. We also
consider a scenario in which the auxiliary probabilistic sample includes the
target variable as well. An extensive comparative study is carried out with
different possible strategies. The results show the benefits of the proposed
methodologies.

Note: This thesis is presented as a compendium of six publications in
relation with the contents of the thesis. The full version of the papers is
included in Appendices A1 - A6.



Part I





Chapter 1

Introduction

The theoretical basis for probability sampling, initially established by
Neyman (1934) and extended ever since by Horvitz and Thompson (1952)
among others, lays the foundation for a reliable framework in order to carry
out probabilistic surveys from which researchers from all fields can obtain
information and draw unbiased conclusions. Over the years, this framework
has been a fundamental reference for survey sampling, guaranteeing the cre-
dibility of the results obtained.

However, two factors have become extremely relevant recently affecting
the viability of the classical methods. The first one is the increasing lack of
response in surveys carried out with traditional methods (face-to-face or over
the telephone), as analyzed by Díaz de Rada (2012), Kohut et al. (2012) and
Marken (2018). Even though the low response rates greatly increase costs
and jeopardize the ability of the institutions to extract enough data in order
to carry out their research, this issue has been compensated by the second
factor: the development of new technologies.

With the success of web technologies, researchers are able to carry out on-
line surveys which are cheap, simple, and effective for obtaining big amounts
of data. Berzofsky et al. (2018) and Brickman Bhutta (2012) propose met-
hodologies based on the Twitter and Facebook, respectively, advertising ap-
plications which try to replicate a probability approach. Their applications
excel at quickly obtaining responses but their probabilistic characteristics are
very limited. Pötzschke and Braun (2017) makes use of Facebook in order
to obtain data from a hard to reach population (Polish migrants in Europe).
This approach has been proven to be very effective for such difficult scena-
rios as also analyzed by Iannelli et al. (2020). In fact, a comparison carried
out by Gilligan et al. (2014) proves its advantages over traditional strategies
such as social networking.

However, the major issue with these new methodologies are the inevita-
ble changes in the reference theoretical framework which was used so far, as
pointed out by Callegaro et al. (2015), Schonlau and Couper (2017) and
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2 Chapter 1. Introduction

Díaz de Rada et al. (2019); causing important bias problems. First, the ques-
tionnaires are usually distributed with a snowball sampling design (Beth-
lehem, 2010). A link is publicly shared, often through social media, so there
is not a sampling frame available. Therefore, a formal definition of “design
weights” is difficult (Snijders, 1992) and an important self-selection bias is
implied (Schonlau et al., 2009). Also, even in those cases where there is a
sampling frame available, the response rates when using these procedures
are even lower than those using more personal methods (Manfreda et al.,
2008), in which the individuals feel more committed. This causes a signifi-
cant non-response bias instead. Other difficulties associated with a lack of
human assistance should also be considered, since an interviewer is able to
explain concepts, clarify ambiguities and validate some responses (Anduiza
and Galais, 2017; Gao et al., 2016). Finally, the use of these kinds of modern
technologies is associated with coverage bias since not all the population has
the same level of internet and smartphone access (Couper et al., 2018). The
chosen distribution medium, such as paid advertisements in certain social
networks, also implies an important coverage bias as the sampled population
is then limited to their user base.

In this context, the use of online surveys is necessary even when their
bias issues would invalidate the results obtained. Thus a lot of effort has been
put by researchers in order to develop techniques which solve the mentioned
bias problems. This work is needed if we want to preserve the confidence in
statistical surveys. Beaumont (2020) carries out an extensive review on this
matter.

Propensity Score Adjustment (PSA) (Lee, 2006; Lee and Valliant, 2009;
Valliant, 2020) is one of the main methods proposed in order to reduce bias
in such non-probabilistic surveys. It models the inclusion probability of each
individual as its propensity to participate in the non-probability sample.
The estimated propensity may then be used as a substitute of the inclusion
probability in order to assign representative sample weights. Therefore, it is
a reweighting technique which needs an auxiliary probabilistic sample with
some covariates in common with our convenience sample. This auxiliary re-
ference sample correctly represents the target population with some valid
sample weights but it does not include the variable of interest. By applying
PSA, it is possible to combine the information provided by both samples.
This method has been thoroughly developed, including its application for the
estimation of general parameters (Castro-Martín et al., 2020a) and different
proposals in order to transform the propensities into weights (Valliant, 2020;
Schonlau and Couper, 2017; Valliant and Dever, 2011; Lee, 2006; Lee and
Valliant, 2009; Ferri-García et al., 2021a). Among them, Wang et al. (2020)
proposes a novel Kernel Weighting approach which considers the distance
among the estimated propensity scores, smoothed via a kernel function.

Statistical Matching is another alternative method which was proposed
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by Rivers (2007) and further developed by Beaumont and Bissonnette (2011).
It also uses an auxiliary probability sample with some covariates in common
with our volunteer sample but without the target variable. However, instead
of reweighting, it is an imputation technique. Thus the values for the target
variable are imputed in the reference probability sample. A prediction mo-
del is obtained using the non-probability sample in order to carry out this
imputation.

These methods can be combined with each other as well as with other
classic techniques. Ferri-García and Rueda (2018) combines Propensity Score
Adjustment with calibration weighting. Given some known population totals,
calibration calculates new sample weights which are as close as possible to
the original weights while respecting the calibration equation so the sample
totals match said population totals. Therefore, the initial weights as returned
by PSA can be further adjusted with this method. Chen et al. (2020) also
proposes a Doubly Robust estimator which combines PSA with Statistical
Matching. The potential estimation error resulting from the values impu-
ted via Matching is weighted and corrected with the weights obtained via
PSA. This proposal, which aims for a more consistent behavior of the final
estimator, has been further developed by Liu et al. (2021) and Rafei et al.
(2022a).

The proposed methods usually consider initially basic linear models for
their application. The propensities estimated by PSA are obtained using
logistic regression and the values are imputed by Matching using linear re-
gression for numerical variables and logistic regression for categorical varia-
bles. However, some recent papers have considered the application of ad-
vanced machine learning models and algorithms with satisfactory results.
Ferri-García and Rueda (2020) carries out a comparative study of some pos-
sible machine learning models for PSA. Chu and Beaumont (2019) proposes
a modification of the decision tree algorithm specifically designed for esti-
mating propensities. Kern et al. (2020) proposes Boosted Kernel Weighting,
which considers boosting algorithms in order to improve the Kernel Weigh-
ting method. Integrating the predictive potential of state-of-the-art machine
learning techniques into these methods, which are completely dependent on
estimated values, has shown to be one of the main means in order to obtain
optimal results in real use cases.

The aim of this thesis is to provide significant progress in this research
field by computational methods which allow us to obtain reliable inferences,
comparable to those obtained when applying classical probabilistic metho-
dologies, while making use of the advantages offered by new technologies. In
Appendix 1, the performance of Propensity Score Adjustment and Statistical
Matching is tested in a complex simulation study considering several machi-
ne learning algorithms which can be used for their application. In Appendix
2, an easy-to-use R package is developed including the implementation of
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a wide variety of bias reduction techniques in surveys. In Appendix 3, a
novel method for combining PSA and Matching is proposed and its better
performance over previous alternatives is proven in a comparative study. In
Appendix 4, state-of-the-art machine learning techniques are applied to re-
cently proposed methods in order to obtain optimal results. Their efficacy
is justified in a simulation study and they are used to analyze a nonpro-
bability survey sample on social effects of COVID-19. In Appendix 5, new
weighting methods are developed in order to reduce the bias of overlapping
panel surveys, allowing for accurate cross-sectional as well as longitudinal
estimations in a research project on the evolution of COVID-19. In Appen-
dix 6, several methodologies are considered for integrating probability and
non-probability survey samples, both including the target variable(s), with
advanced machine learning techniques.



Chapter 2

Objectives

2.1. Inference from Non-Probability Surveys with
Statistical Matching and Propensity Score Ad-
justment Using Modern Prediction Techniques

The popularity of non-probabilistic surveys has led to the development
of several techniques in order to compensate for the important bias pro-
blems that they imply. Many papers on Propensity Score Adjustment (Lee,
2006; Lee and Valliant, 2009; Valliant, 2020) and Statistical Matching (Ri-
vers, 2007; Beaumont and Bissonnette, 2011) can be found in the literature.
There are even some works combining them with other bias reduction techni-
ques like calibration (Ferri-García and Rueda, 2018). However, these papers
usually work with methodologies which apply simple linear models, like li-
near regression or logistic regression. Even though some works do introduce
more advanced machine learning models (Ferri-García and Rueda, 2020),
they are still limited to one main method (eg. Propensity Score Adjustment)
without considering the alternatives (eg. Statistical Matching).

We carry out an exhaustive comparison at two levels. On one hand, a wide
variety of possible machine learning techniques, beyond simple linear models,
which can be applied with PSA as well as with Matching are considered. On
the other hand, the performance improvement of PSA over Matching or vice
versa is also measured.

Every possible combination is applied to a simulation with various real
datasets, choosing different selection bias mechanisms for each one of them.
The objective is aggregating the metrics obtained in order for the results to
determine if one method is superior to the other, as well as the importance
of introducing advanced machine learning models.

5



6 Chapter 2. Objectives

2.2. The R Package NonProbEst for Estimation in
Non-probability Surveys

Techniques of all kinds have been proposed and developed in the lite-
rature in order to reduce the bias problems associated with non-probability
surveys. Classic methods like calibration (Deville and Särndal, 1992), which
considers known population totals for some auxiliary variables, are included
in this category. More modern but well known methods like Propensity Score
Adjustment, which takes advantage of auxiliary probabilistic samples with
some covariates in common, should also be included. In the same scenario,
Statistical Matching can also be applied in order to use said auxiliary pro-
babilistic sample. If we have information on the whole population for some
variables, superpopulation modeling techniques (Ferri-García et al., 2021b)
like model based (Valliant et al., 2000), model assisted (Breidt et al., 2017)
or model calibrated (Wu and Sitter, 2001) estimators are appropriate.

It should also be noted that those methods often have multiple variants
which can be applied. For example, there are multiple formulas proposed in
order to obtain the new adjusted weights from the propensities calculated in
Propensity Score Adjustment (Valliant, 2020; Schonlau and Couper, 2017;
Valliant and Dever, 2011; Lee and Valliant, 2009). We have also analyzed
at this point (Castro-Martín et al., 2020b) the importance of working with
different machine learning models, depending on the type of selection bias
and the type of data we are dealing with.

Having such a wide and complex range of possibilities may be difficult
for researchers trying to reduce the bias of a real non-probabilistic sample.
The objective of the NonProbEst package is offering them easy-to-use im-
plementations in a common programming language like R so estimations
for key parameters like totals, means, variances or confidence intervals can
be obtained in a simple manner. Therefore, state-of-the-art techniques can
be applied without the need for excessively advanced knowledge or complex
implementations.

2.3. Combining Statistical Matching and Propen-
sity Score Adjustment for inference from non-
probability surveys

The comparisons between Statistical Matching and Propensity Score
Adjustment do not determine a clear winner at reducing bias from non-
probability surveys estimations (Castro-Martín et al., 2020b). The conclu-
sions rather indicate that the performance of each method depends on the
kind of data and the selection mechanism for each specific case. Given the
difficulty of estimating a priori which technique will perform better in a real
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case scenario, where the metrics calculated at the simulations cannot be
obtained, researchers look for a combination of PSA and Matching able to
reduce the bias properly in every case.

A first approximation for this purpose would be shrinkage (Copas, 1983,
1993; Arcos et al., 2014), which applies a linear combination of both methods.
The coefficients of this linear combination are determined by the estimated
variance of each estimator. Chen et al. (2020) proposes a Doubly Robust
estimator which corrects the error of the Matching estimator by using the
weights obtained with PSA. Its results already show that this proposal is
able to produce optimal estimations when PSA would be the best choice as
well as when Matching would be the best choice.

However, previously proposed techniques apply PSA and Matching inde-
pendently before combining the results. Our study proposes a new estimator
which takes advantage of the very nature of the machine learning algorithms
implied in the process in order to obtain a deeper combination of both met-
hods. The objective is proving that using the weights produced by PSA when
training the Matching model leads to a significantly more optimal estima-
tor than the doubly robust estimator. Both alternatives are considered in
a thorough comparative study which includes simulations with several real
datasets and different selection mechanisms.

2.4. On the Use of Gradient Boosting Methods to
Improve the Estimation with Data Obtained
with Self-Selection Procedures

The development of bias reduction methods for non-probability surveys
inevitably led to considering cutting edge machine learning techniques on
their application (Kern et al., 2020). The objective of this paper is to test
how much is XGBoost (Chen and Guestrin, 2016), proven to be one of the
most effective machine learning algorithms for this kind of tabular data,
combined with other advanced techniques like hyperparameter optimization
via the Tree-structured Parzen Estimator algorithm (Bergstra et al., 2011,
2013), able to improve the results obtained so far.

To that end, an in-depth comparative study which shows its efficiency
with respect to the most recently developed methods is carried out. It in-
cludes the TrIPW estimator (Chu and Beaumont, 2019) which applies PSA
with a modification of the classical machine learning algorithm Decision Tree,
specifically adapted for estimation with non-probability samples using an au-
xiliary probability sample. We also consider Kernel Boosting (Wang et al.,
2020), which proposes an innovative way of obtaining adjusted weights from
the propensities calculated via PSA. This improvement can also be combined
with the use of gradient boosting algorithms like XGBoost. Lastly, techni-
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ques which combine PSA with Statistical Matching like the Doubly Robust
Estimator (Chen et al., 2020) or the Training Estimator (Castro-Martín et
al., 2022) are also included in the study. Again, since these proposals can be
applied with any machine learning model, its combination with XGBoost is
also considered.

Said study consists of three parts. The first one replicates the simula-
tion carried out by Chen et al. (2020), determining a reliable reference of
the potential of the new techniques proposed. Once this potential has been
proven, a more complex simulation with real datasets is carried out. Finally,
we show their utility in a real application to the ESPACOV (Serrano del
Rosal et al., 2020), a survey which provides information on the social effects
of COVID-19 in Spain.

2.5. Reweighting with machine learning techniques
in panel surveys. Application to the Health Ca-
re and Social Survey.

Panel surveys are widely used when the target is seeing the evolution of
certain characteristics over time (Kalton and Citro, 1995). The Health Care
and Social Survey (ESSOC) (Sánchez-Cantalejo et al., 2021) research project
is the perfect example. It arises from the need to provide data on the evolu-
tion of the COVID-19 impact that can be considered when making decisions
to prepare and provide an effective Public Health response in the different
affected populations, especially in the most vulnerable ones. The objective
of this survey is to determine the magnitude, characteristics, and evolution
of the impact of COVID-19 on overall health and its socioeconomic, psycho-
social, behavioral, occupational, environmental, and clinical determinants in
the general population and those with greater socioeconomic vulnerability.

The ESSOC has an overlapping panel design so the same individuals are
sampled at every measurement. While this design is very useful for obtaining
cross-sectional as well as longitudinal estimations, the fatigue of the surveyed
population when being repeatedly sampled over time causes an increasing
non-response problem (Kalton et al., 1985; Lepkowski, 1989; Kalton and
Brick, 1995). This lack of response introduces a bias in the results which
may invalidate them. Therefore, some reliable techniques in order to correct
this bias are needed.

The objective of this work is developing weighting methods for estimating
totals, proportions and change or differences of a population characteristic,
from overlapping panel survey data, using various combined methods such
as Propensity Score Matching, machine learning and calibration. The re-
weighting methods are formulated based on the ESSOC structure but can
be adapted to any other type of overlapping panel design.
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2.6. Enhancing estimation methods for integrating
probability and non-probability survey sam-
ples with machine-learning techniques. An ap-
plication to a Survey on the impact of the COVID-
19 pandemic in Spain

So far we have worked with non-probability surveys which make use of
auxiliary probabilistic surveys with some covariates in common in order to
reduce the bias of the estimators for the target variables. However, there is
another typical scenario in which a probability survey with a small sample
is complemented with a non-probability sample (DiSogra et al., 2011; Rob-
bins et al., 2021; Wiśniowski et al., 2020). This second sample benefits from
popular technologies like online surveys which make it easier and cheaper to
obtain big amounts of data. On the other hand, we have already established
the important bias problem they imply. Since both samples contain the same
variables, they should be combined in order to obtain estimations with small
variance while also being reliable.

Such is the case in the Survey on the impact of the COVID-19 pandemic
in Spain (ESPACOV) (Serrano del Rosal et al., 2020) which used a mixed
multiphase sampling design inspired by the responsive approach (Groves
and Heeringa, 2006). There were two editions of the survey addressing the
opinions and attitudes of the Spanish population regarding the COVID-19
crisis, as well as the assessments of its management and its consequences,
either anticipated (ESPACOV I) or endured (ESPACOV II). Both editions
of the ESPACOV Survey were web based and followed a sampling design
that combined the use of SMS invitations to take part in the survey, sent
to a list of randomly generated mobile phone numbers (probability-based
sample), with the publication of Facebook, Instagram and Google Ads seg-
mented to purposely oversample the socio-demographic profiles that were
underrepresented in the probability-based sample (non-probability sample).
An in-depth explanation and justification of this methodology is provided in
Rinken et al. (2020).

Our objective is proposing a methodology which, with the help of machine
learning techniques, integrates probability and non-probability samples. The
efficacy of the estimators is evaluated in a simulation study which includes
a comparison with other alternative proposals (DiSogra et al., 2011; Elliott
and Haviland, 2007; Robbins et al., 2021). Lastly, they are applied to the
second wave of the Survey on the impact of the COVID-19 pandemic in
Spain, allowing us to conclude that the estimation method we propose is the
best option for reducing observed biases in the data.





Chapter 3

Methodology

3.1. Inference from Non-Probability Surveys with
Statistical Matching and Propensity Score Ad-
justment Using Modern Prediction Techniques

Let U denote a finite population of size N , U = {1, . . . , i, . . . , N}. Let
sV be a convenience (or volunteer) nonprobability sample of size nV . Let y
be the variable of interest in the survey estimation.

A first estimator for the population mean, Y , can be the naive estimator
based on the sample mean of y in sV :

Ŷ =
∑

i∈sV

yi
nV

(3.1)

In order to correct the bias implied in sV , let sR be a reference auxi-
liary sample of size nR selected from U under a probability sampling design
(sR, pR) with πi =

∑
sR3i pR(sR) (where sR 3 i denotes the samples which

contain the unit i) the first order inclusion probability for individual i, we
denote by di = 1/πi the design weights for the units in the reference sample.
Let xi be the values presented by individual i for a vector of covariates x.
Those covariates are common to both samples, while we only have measu-
rements of the variable of interest y for the individuals in the convenience
sample.

The popular Propensity Score Adjustment (PSA) technique (Lee, 2006;
Lee and Valliant, 2009; Valliant, 2020) is applied assuming some conditions.
We assume that the selection mechanism of sV is ignorable, this is:

P (δi = 1|yi,xi) = P (δi = 1|xi), i ∈ sV (3.2)

where δi is the following indicator variable:

δi =

{
1 i ∈ sV
0 i /∈ sV , i = 1, 2, ..., N

11



12 Chapter 3. Methodology

We also assume that the selection mechanism follows a parametric model:

P (δi = 1|xi) = p(xi) (3.3)

where the function p(xi) is determined by the chosen machine learning model.
This machine learning model is trained with xi, i ∈ sV ∪sR on the variable

δi, obtaining the model p̂. The predicted propensities to participate in the
volunteer sample can be calculated as p̂i = p̂(xi). These are transformed
into weights by inverting them: wi = 1/p̂i. Thus the inverse propensity score
weighting estimator (IPSW) is:

Ŷ IPSW =
1∑

i∈sV wi

∑

i∈sV
yiwi (3.4)

The propensities can also be stratified (Valliant and Dever, 2011) in a fixed
number of groups, c, with the idea of grouping individuals with similar vo-
lunteering propensities. Then the average propensity within each group is
calculated:

πc =
∑

i∈scR∪scV

p̂i(x)/(ncR + ncV ) (3.5)

where ncR and ncV are the number of individuals from the reference and
the volunteer sample respectively that belong to the c-th group. Thus the
stratified PSA estimator would be:

Ŷ SPSA =
1∑

i∈sV w
strat
i

∑

i∈sV
yiw

strat
i (3.6)

where wstrati = 1/πc with i ∈ scV .
Statistical matching (SM) (Rivers, 2007; Beaumont and Bissonnette,

2011) is an alternative model-based approach. The idea in this context is
to model the relationship between the target variable yi and the covariates
xi using the volunteer sample sV in order to predict yi for the reference
sample sR (where y has not been measured). SM assumes that y is a reali-
zation of a superpopulation random variable Y , which follows a functional
relationship with the set of covariates x such that:

yi = m(xi) + ei, i = 1, 2, ..., N, (3.7)

where the function m(xi) is determined by the chosen machine learning mo-
del.

In this case, the model is trained with xi, i ∈ sV on the variable yi
and applied to sR, obtaining the imputed values ŷi = m̂(xi). The matching
estimator is then given by:

Ŷ SM =
1∑

i∈sR di

∑

sR

ŷidi (3.8)
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Both PSA and SM are applied in a comparative study with the machine
learning models described below.

Generalized linear models (GLM): The most basic model applies a
linear combination to the input variables with the coefficients β =
(X′X)−1X′Y in order to obtain the prediction. When covariates suffer
from multicollinearity, ridge regression (McDonald, 2009) proposes an
identity term to control instability: β = (X′X+ kI)−1X′Y. The Least
Absolute Shrinkage and Selection Operator (LASSO) regression (Tibs-
hirani, 1996) proposes instead using a penalty parameter, α, according
to the following optimization problem:

argmin
∑N

i=1(yi − α−
∑

j βjxij)
2

subject to
∑

j |βj | ≤ t
(3.9)

Ridge and LASSO are both considered standard penalized regression
models Van Houwelingen (2001). For classification problems, like in
PSA, a logistic function is applied to the output in order to transform
it into a probability.

Discriminant Analysis: It can only be used for discrete variables (clas-
sification problems). Let y be the dependent variable with K classes,
πk the probability of an individual of belonging to the kth class, X
the matrix of covariates n × p, and fk(x) the joint distribution of x
conditioned to y taking the kth class. As described in James et al.
(2013) Linear Discriminant Analysis (LDA) assigns an individual the
class that maximizes the probability:

P (yi = k|x = xi) =
πkfk(xi)∑K
j=1 πjfj(xi)

, k = 1, ...,K (3.10)

Decision trees, Bagged trees and Random Forests: Decision trees split
sequentially the input data via conditional clauses until they reach a
terminal node, which assigns an specific class or value. This process
results in the following estimation for the expectance Em(yi|xi):

Em(yi|xi) =





y(sJ1) {i ∈ s/xi ∈ J1}
... ...

y(sJk) {i ∈ s/xi ∈ Jk}
(3.11)

where y(sJi) denote the mean of y among the members of the sampled
population, s, meeting the criteria of the i-th terminal node. Bagged
trees combine this approach with bagging (Breiman, 1996), which ave-
rages the predictions of multiple decision trees trained with boostrap-
ped subsamples of the complete dataset. The Random Forests variant
(Breiman, 2001) also selects a random subset of the covariates for each
decision tree forming the ensemble.
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Gradient Boosting Machine (GBM): It also works as an ensemble of
weak classifiers. Boosting is an iterative process that trains subsequent
models giving more importance to the data for which previous mo-
dels failed. This idea can be interpreted as an optimization problem
(Breiman, 1997) and, therefore, it is suitable for the gradient descent
algorithm (Friedman, 2001). Then the estimates for y are:

Em(yi|xi) = vTJ(xi) (3.12)

where J(xi) stands for a matrix of terminal nodes of m decision trees
and v is a vector representing the weight of each tree. GBM has im-
proved previous state-of-the-art models for some cases (Touzani et al.,
2018).

k-Nearest Neighbors: The algorithm simply averages the value of the
target variable for the k individuals closer to the estimated individual
(its k nearest neighbors), given a certain distance dependent on the
covariates. This is:

Em(yi|xi) =

∑
j∈s/d(xi,xj)≤d(xi,x(k))

yj

k
(3.13)

where x(1),...,x(n−1) are, respectively, the closest and the furthest in-
dividual to xi.

Naive Bayes: It can only be used to predict discrete variables. For PSA,
it uses the Bayes theorem to predict the propensities as follows:

p̂i(xi) =
P (δi = 1)P (X = xi|δi = 1)

P (X = xi)
(3.14)

Its simplicity has proven to be effective under certain conditions (Ferri-
García and Rueda, 2020).

Neural networks with Bayesian Regularization: Neural networks work
as universal approximators (Csáji et al., 2001) combining linear and
non-linear functions. The inputs follow an iterative process through one
or more hidden layers until reaching the last layer, which produces the
final output. The weights are initialized randomly and then optimized
via gradient descent with the backpropagation algorithm Rumelhart
et al. (1986). Since overfitting is usually an important problem, prior
distributions can be imposed to the weights as a regularization method
(Burden and Winkler, 2008). Another option is bagging, as it is applied
to decision trees. This approach is known as Model Averaged Neural
Networks (Ripley, 2007).

All the methods and models are applied to the following three different
populations, each considering two different sampling strategies.
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Spanish Life Conditions Survey (2012 edition) (Spanish National Insti-
tute of Statistics, 2012): It collects the data for 28,610 adults living in
Spain about economic and life conditions variables. The target variable
is the self-reported health on a scale from 1 to 5. The algorithms were
trained using 56 variables. The first sampling strategy was a simple
random sampling excluding the individuals without internet access.
The second sampling strategy also included a non-linear propensity
to participate in the sample using the formula Pr(yr) = yr2−19002

19962−19002 ,
where yr is the year the individual was born.

BigLucy (Gutiérrez, 2009): It consists of various financial variables of
85,396 industrial companies of a city for a particular fiscal year. The
target variable is the annual income in the previous fiscal year. The
algorithms were trained using 4 variables. The first sampling strategy
was simple random sampling among the companies with SPAM options
that are not small companies, simulating a significant coverage bias.
The second sampling strategy was simple random sampling among the
companies with SPAM options including a propensity to participate
calculated as Pr(taxes) = min(taxes2/30, 1) where taxes is the com-
pany’s income tax.

Bank Marketing Data Set Moro et al. (2014): It includes information
about 41,188 phone calls related to direct marketing campaigns of a
Portuguese banking institution. The target variable is the mean con-
tact duration. 18 variables were used for training. For the first sampling
strategy, we applied simple random sampling among the clients con-
tacted more than 3 times. For the second sampling strategy, we applied
simple random sampling among the clients contacted more than twice.

Each population and sampling strategy was simulated using various sam-
ple sizes: 1000, 2000 and 5000. The same size is taken for the convenience
sample and for the reference sample. For each scenario (the specific met-
hod, model, population, sampling strategy and sample size combination),
500 simulations were executed.

3.2. The R Package NonProbEst for Estimation in
Non-probability Surveys

In the same context as Section 3.1, several estimators are implemented
in order to reduce the bias of the naive estimator 3.1, depending on the
available auxiliary information. We distinguish three different cases:

InfoTP: Only the population totals of the auxiliary variables are known
(often called control totals).
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InfoES: The values of the auxiliary variables are available for every
element in a probability sample.

InfoEP: The values auxiliary variables are available for every element
in the whole population.

For the first case, InfoTP, the calibration method is implemented. Let
xi be the value taken on unit i by a vector of auxiliary variables which
population total is assumed to be known, X =

∑N
i=1 xi. The calibration

estimation of Y consists in the computation of a new vector of weights wi
for i ∈ sV which modifies as little as possible the original sample weights,
wV i = N/nV in our case since the sample is non-probabilistic, respecting at
the same time the calibration equation:

∑

i∈sV
wixi = X (3.15)

Given a pseudo-distance G(wi, wV i), the calibration process consists in fin-
ding the solution to the minimization problem

mı́n
wi

{
∑

i∈sV
G(wi, wV i)} (3.16)

while respecting the calibration equation. Several distances as defined in
Deville and Särndal (1992) are included in the package.

For the second case, InfoES, several techniques can be applied as des-
cribed in Section 3.1. The Inverse Propensity Score Weighting estimator is
implemented as in 3.4. In addition, other variants of Propensity Score Adjust-
ment are included. These change the way the propensities are transformed
into weights. The estimator proposed in Schonlau and Couper (2017) uses
the following formula instead:

wPSA2i =
1− p̂i
p̂i

(3.17)

The stratified version 3.6 is also implemented along with the alternative
proposed in Lee and Valliant (2009), which calculates an adjustment factor
as

fc =

∑
i∈scR wi/

∑
i∈sR wi∑

i∈scV wi/
∑

i∈sV wi
(3.18)

and the estimator is given by

Ŷ SPSA2 =
1∑

i∈sV w
strat2
i

∑

i∈sV
yiw

strat2
i (3.19)

where wstrat2i = wifc with i ∈ scV . The variance of all these variants can
be obtained with Jackknife’s variance estimator (Quenouille, 1956). Let ŷ =
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1
N

∑
i∈sV wiyi be the estimator of the mean of y, his Leave-One-Out Jackknife

estimator of the variance is given by:

V̂ (ŷ) =
n− 1

n

n∑

j=1

(y(j) − y)2 (3.20)

where y(j) is the value of the estimator ŷ after dropping unit j from sV and
where y is the mean of values y(j). Finally, the Statistical Matching method
3.8 is also available in the package.

For the third case, InfoEP, superpopulation models are applied. These
assume that the population under study y = (y1, ..., yN )′ is a realization of
super-population random variables Y = (Y1, ..., YN )′ having a superpopula-
tion model ξ. To incorporate auxiliary information xi available for all i ∈ U ,
we assume that y follows a parametric model:

Yk = m(xi) + ei, i = 1, ..., N. (3.21)

where m is the chosen machine learning model and the random vector e =
(e1, ..., eN )′ is assumed to have zero mean and a positive definite covariance
matrix which is diagonal (Yi are mutually independent). Let sV = U − sV .
The model is trained with xi, i ∈ sV on the variable yi and applied to sV ,
obtaining the imputed values ŷi = m̂(xi). Then the following estimators are
considered:

the model-based estimator:

Ŷm =
∑

i∈sV
yi +

∑

i∈sV
ŷi (3.22)

the model-assisted estimator:

Ŷma =
∑

i∈U
ŷi +

∑

i∈sV
(yi − ŷi)wV i (3.23)

the model-calibrated estimator:

Ŷmcal =
∑

i∈sV
yiw

CAL
i (3.24)

where wCALi are such that they minimize
∑

i∈sV G
(
wCALi , wV i

)
, where

G(·, ·) is a particular distance function, subject to
∑

i∈sV
wCALi ŷi =

∑

i∈U
ŷi.

For all the methods implemented, NonProbEst allows the use of a wide
variety of classification and regression models by relying on caret (Kuhn,
2015), a well known machine learning package.
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3.3. Combining Statistical Matching and Propen-
sity Score Adjustment for inference from non-
probability surveys

In the same context as Section 3.1, multiple techniques are proposed in
order to combine the Propensity Score Adjustment estimator 3.4, which total
will be referred to as ŶPSA, and the Statistical Matching estimator 3.8, which
total will be referred to as ŶSM .

Shrinkage:
Ŷsrk = KŶSM + (1−K)ŶPSA (3.25)

where K is a constant satisfying 0 < K < 1. In particular, optimum
value for k if sV and sR are independent is

kopt =
V (ŶPSA)

V (ŶSM ) + V (ŶPSA)
. (3.26)

Since those variances are unknown, the alternatives considered are
K1 = nR/(nR + nV ) and K2 = V (θ̂PSA)/(V (θ̂PSA) + V (θ̂SM )) where
V (θ̂PSA) and V (θ̂SM ) are the variances of ŶPSA and ŶSM , respectively,
observed at the simulations.

Doubly Robust estimator (Chen et al., 2020):

ŶDR =
∑

sR

ŷidi +
∑

sV

wi(yi − ŷi), (3.27)

based on the idea of the difference estimator (Särndal et al., 2003),
which considers the following decomposition:

Y =
∑

U

ŷi +
∑

U

(yi − ŷi) (3.28)

Training data with PSA weights. Since most machine learning models
allow considering weights for the training data, we also propose an
estimator obtained with the following algorithm:

• Calculate wi for i ∈ sV by using some machine learning classifi-
cation algorithm.

• Train a model Em(yi|xi) using xi for i ∈ sV weighted with wi for
i ∈ sV . Each machine learning model may have its own weighting
mechanism.

• Obtain ŷitr for i ∈ sR by using the model trained in the previous
step.
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• Estimate the total as

Ŷtr =
∑

sR

ŷi
trdi (3.29)

All the alternatives, along with the naive estimator 3.1, PSA 3.4 and
Matching 3.8, are considered in a comparative study similar to the one con-
ducted in Section 3.1.

3.4. On the Use of Gradient Boosting Methods to
Improve the Estimation with Data Obtained
with Self-Selection Procedures

In the same context as Section 3.1, newly proposed estimators are consi-
dered:

The TrIPW estimator (Chu and Beaumont, 2019): A modification of
PSA 3.4 that uses a modified version of the Classification And Regres-
sion Trees (CART) algorithm (Breiman et al., 1984). The propensity
for each individual i ∈ sV is calculated as:

p̃i
CART =

# (l(i) ∩ sV )

# (l(i))
(3.30)

where l(i) represents the terminal node of the CART algorithm trained
on sV in which the i-th individual of U lies and # (l(i)) the number
of individuals it includes. Given that U − sV is not available, that
propensity has to be estimated as:

p̂i
CART =

# (l(i) ∩ sV )

#̂ (l(i))
=

# (l(i) ∩ sV )∑
j∈l(i)∩sR dj

(3.31)

Kernel Weighting (Wang et al., 2020): A modification of PSA 3.4. In
this case, the propensity estimation process of p̂i for i ∈ sV is not affec-
ted. The authors consider initially the use of logistic regression as the
chosen machine learning model. For j ∈ sR we compute the distance
of its estimated propensity score from each i in the non-probability
sample as:

d(xi,xj) = p̂i(xi)− p̂j(xj) (3.32)

Then, a zero-centred Kernel function is applied to smooth distances.
Thus, the pseudoweights can be calculated:

kij =
K {d(xi,xj)/h}∑
j∈sV K {d(xi,xj)/h}

(3.33)
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where K(·) is the applied Kernel function (ie. Gaussian) and h is the
bandwidth. The final weights for i ∈ sV are obtained as:

wKWi =
∑

j∈sR
kijdj (3.34)

The previously described Doubly Robust estimator 3.27 and the Training
estimator 3.29 are also considered.

A combination of these methods with a well-tested powerful machine
learning technique like XGBoost is proposed. XGBoost (Chen and Guestrin,
2016) is an improved variant of the gradient boosting algorithm (Friedman,
2001) which works as a decision tree ensemble. The final prediction is defined
as follows:

ŷxgi = φ(xi) =
K∑

k=1

fk(xi), fk ∈ F (3.35)

where K is the number of trees forming the ensemble and F = {f(x) =
ωq(x)}; with q : Rm → T representing the structure of each tree which, given
xi, returns its corresponding final node and ωi the score on the i-th final
node. The trees fk, k = 1, ...,K, are built aiming to minimize the following
regularized objective function:

L(φ) =
∑

i

l(ŷxgi, yi) +
∑

k

Ω(fk) (3.36)

where the first term l is a differentiable convex function which measures
the error of the estimations and the second term regularizes the function
penalizing complex trees. The objective function is minimized iteratively
with the Gradient Tree Boosting method (Friedman, 2001), including several
modifications which improve its efficiency and efficacy.

XGBoost is applied as the chosen machine learning algorithm for the
methods described above in an extensive comparative study. This study in-
cludes a replica of the experiments with simulated populations conducted in
Chen et al. (2020) and another set of similar experiments considering the
following real datasets:

Hotel Booking Demand Dataset: As described in 3.1.

Adult Dataset (Dua and Graff, 2017): It includes census income infor-
mation for 32,561 adult individuals from the 1994 Census database of
the United States. The target is estimating the proportion of indivi-
duals who make over $50K a year. 14 covariates are used for training.
For the first nonprobability sampling strategy, individuals who ma-
ke over $50K a year have double probability of being chosen. For the
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second nonprobability sampling strategy, individuals who make over
$50K/yr have a propensity to participate multiplied by Pr(a) = 2a2,
where a is the individual’s age. The probabilistic samples are obtained
via simple random sampling.

Even though default XGBoost hyperparameters are used for an initial si-
mulation, the importance of hyperparameter optimization in bias reduction
methods for non-probability samples is evaluated with another set of ex-
periments applying the Tree-structured Parzen Estimator (TPE) algorithm
(Bergstra et al., 2011, 2013) in order to find the optimal values.

All the described methods are applied to the ESPACOV (Serrano del
Rosal et al., 2020), a survey conducted in Spain in the fourth week of the
strict lockdown imposed on March 14th, 2020, which provides information
on the living conditions of the population, acquired habits, health and con-
sequences of the state of alarm and home confinement. The variance of each
estimator is estimated via bootstraping (Wolter, 2007).

3.5. Reweighting with machine learning techniques
in panel surveys. Application to the Health Ca-
re and Social Survey.

Let U denote a finite population of size N , U = {1, . . . , i, . . . , N}. We
want to estimate a population parameter of a variable of interest, y. On the
first measurement (t = 1), a sample s(1) of size n(1) is selected from the
population U by random stratified sampling. Let h be the stratum to which
unit i belongs, (h = 1, ...L) and s(1)h be the sample corresponding to stratum
h on occasion 1. The lack of response in the sample s(1) divides it into

s
(1)
rh = {i ∈ s(1)/respond in stratum h }
s
(1)
fh = {i ∈ s(1)/missing in stratum h },

Let m(1)
h denote the number of the observations obtained from the n(1)h sam-

pled units, so
∑

hm
(1)
h is the size of s(1)r .

In following measurements t = 2, 3, ..., k we denote by s
(t)
rh the sample

of respondents in measurement t in stratum h of the original sample s(1),
the size of which we denote by m(t)

h . To complete the sample, a new sample
s
(t)
new is selected from the population U by stratified sampling independently
of the sample s(1). Let n(t)hnew be the size of the sample s(t)new in stratum h

and denote by m(t)
hnew the size of the sample of respondents in this stratum,

s
(t)
rhnew.

Let y(t)i be the value of the target variable associated to the i-th unit in
measurement t. An initial estimation of the total of Y in the first occasion
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is given by the Horvitz-Thompson estimator:

Ŷ
(1)
ht =

∑

h

∑

i∈s(1)rh

dihy
(1)
ih (3.37)

where dih = Nh

n
(1)
h

.

In order to take the response rate in stratum h, rh =
m

(1)
h

n
(1)
h

, into account,

the initial weights are replaced with d(1)ih = dih
rh

and the estimator is given by:

Ŷ (1) =
∑

h

∑

i∈s(1)rh

d
(1)
ih y

(1)
ih (3.38)

For the followings measurements, since both s(t)new and s(t)r are available,
two different estimators have to be considered:

Ŷ (t)
n =

∑

h

∑

s
(t)
rhnew

Nh

n
(t)
hnew

n
(t)
hnew

m
(t)
hnew

y
(t)
ih =

∑

h

∑

s
(t)
rhnew

d
(t)
ihny

(t)
ih (3.39)

Ŷ (t)
r =

∑

h

∑

i∈s(t)rh

Nh

n
(1)
h

n
(1)
h

m
(t)
h

y
(t)
ih =

∑

h

∑

i∈s(t)rh

d
(t)
ihry

(t)
ih (3.40)

They can be combined with the following estimator:

Ŷ (t) = α1Ŷ
(t)
r + α2Ŷ

(t)
n (3.41)

where α1 and α2 are nonnegative constants such that α1 + α2 = 1. The

optimal coefficients would be α1 = 1− α2 = V (Ŷ
(t)
n )

V (Ŷ
(t)
r )+V (Ŷ

(t)
n )

but, since those
variances are unknown, a simple solution is to weight each estimator by the
weight that sample has in the total sample. In this way we consider the
self-weighted total estimator:

Ŷ (t)
sw =

∑

h

Nh

m
(t)
h +m

(t)
hnew

(
∑

i∈s(t)rh

y
(t)
ih +

∑

i∈s(t)rhnew

y
(t)
ih ) =

∑

h

∑

i∈s(t)rh∪s
(t)
rhnew

d
(t)
ichy

(t)
ih

(3.42)
Calibration, as described in formula 3.16, should also be applied with

known population totals. Thus the calibration total estimator is obtained
as:

Ŷ
(t)
cal =

∑

h

∑

i∈s(t)rh∪s
(t)
rhnew

w
(t)
ih y

(t)
ih (3.43)

where w(t)
ih are the calibrated weights from d

(t)
ich for each stratum h.
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Therefore, the absolute change from one measurement to the first mea-
surement of the variable, denoted by θ(t) = Y (t) − Y (1), is estimated as:

θ̂
(t)
abs = Ŷ

(t)
cal − Ŷ

(1)
cal (3.44)

Similarly, the relative change θ(t)rel = Y (t)−Y (1)

Y (1) can be estimated with the ratio
estimator as:

θ̂
(t)
rel =

θ̂
(t)
abs

Ŷ
(1)
cal

(3.45)

Another parameter of interest is the gender gap. Let Gen = {M,W}
be the variable measured in s(t), t = 1, 2, 3, ..., k which reflects whether a
respondent is a man (M) or a woman (W ). We define the two indicator
variables: IMih = 1 if the unit i in stratum h is a man and 0 elsewhere, and
IWih in a similar way. The absolute gender gap estimator in the absolute
change is defined as follows:

ˆGGabs
(t)

abs = θ̂
(t)
W − θ̂

(t)
M =

= (
∑

h

∑
i∈s(t)rh∪s

(t)
rhnew

w
(t)
ih y

(t)
ih I

W
ih −

∑
h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

W
ih )−

(
∑

h

∑
i∈s(t)rh∪s

(t)
rhnew

w
(t)
ih y

(t)
ih I

M
ih −

∑
h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

M
ih )

(3.46)

Alternatively, we define the relative gender gap estimator in the absolute
change as follows:

ˆGGabs
(t)

rel =
ˆGGabs

(t)

abs

θ̂
(t)
M

=
θ̂
(t)
W − θ̂

(t)
M

θ̂
(t)
M

(3.47)

We also define the absolute gender gap in the relative change as follows:

ˆGGrel
(t)

abs = θ̂
(t)
relW−θ̂

(t)
relM =

θ̂
(t)
W∑

h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

W
ih

− θ̂
(t)
M∑

h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

M
ih

(3.48)
and the relative gender gap in the relative change as follows:

ˆGGrel
(t)

rel =
ˆGGrel

(t)

abs

θ̂
(t)
relM

(3.49)

In order to produce longitudinal estimations, the weights after the first
measurement should take attrition into account. Therefore, the weights are
adjusted for non-response using the Propensity Score Adjustment method
to model the probability that a unit of the sample s(1)r responds on occasion
t. For each sample unit s(1)r let be δ(t)i = 1 if i ∈ s

(t)
r and δ

(t)
i = 0 if i ∈

s
(1)
r − s(t)r . We assume that the selection mechanism of response is ignorable
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and follows a parametric model. In order to obtain the estimated propensities
π̂
(t)
i , we train a model with s

(1)
r where xi includes every available variable

observed in the sample. Said model minimizes the logistic loss for δ(t)i ; i ∈ s(1)r .
The chosen machine learning model for this purpose is XGBoost, including
hyperparameter optimization as described in Section 3.4.

The estimated propensities for each unit i of sample s(t)rh , π̂
(t)
ih , are used

to reweighting for nonresponse, and we define an estimator for θ(t) from the
sample of respondents on occasion t by:

θ̂
(t)
l =

∑

h

∑

i∈s(t)rh

d
(1)
ih

1

π̂
(t)
ih

(y
(t)
ih − y

(1)
ih ) =

∑

h

∑

i∈s(t)rh

d
(t)
ihPSA(y

(t)
ih − y

(1)
ih ) (3.50)

This weights d(t)ihPSA are also calibrated as described in formula 3.16 with
known population totals, obtaining the final weights v(t)ih . The final calibrate
estimator is given by

θ̂(t)c =
∑

h

∑

i∈s(t)rh

v
(t)
ih (y

(t)
ih − y

(1)
ih ) (3.51)

This process is repeated with θ(t,t−1) = Y (t)−Y (t−1) in order to model the
non-response with respect to the sample obtained in the previous occasion.
Thus the longitudinal estimator of θ(t,t−1) = Y (t) − Y (t−1) can be defined as
follows:

θ̂(t,t−1)c =
∑

h

∑

i∈s(t)rh

v
(t,t−1)
ih (y

(t)
ih − y

(t−1)
ih ) (3.52)

We may be also interested in the number of population individuals whose
value of y increases, decreases or remains the same between t − 1 and t.
Let A be a subset of interest (R+, R− or 0); the estimator of the number
of population individuals for which y(t) − y(t−1) ∈ A can be estimated as
follows:

θ̂
(t,t−1)
cA =

∑

h

∑

i∈s(t)rh

v
(t,t−1)
ih IA, IA =

{
1 y

(t)
ih − y

(t−1)
ih ∈ A

0 y
(t)
ih − y

(t−1)
ih /∈ A

(3.53)

We can also obtain the estimator of the rate of people whose value in y has
decreased between t − 1 and t, in reference to the people whose value in y
has increased between t− 1 and t:

D̂IRate
(t,t−1)
c =

θ̂
(t,t−1)
cAR− − θ̂

(t,t−1)
cAR+

θ̂
(t,t−1)
cAR+

(3.54)

Finally, estimators of the gender gap of the change between t − 1 and t
can be defined as follows:

ˆGGlong
(t)

abs = θ̂
(t,t−1)
cW − θ̂(t,t−1)cM (3.55)
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ˆGGlong
(t)

absA = θ̂
(t,t−1)
cAW − θ̂(t,t−1)cAM (3.56)

ˆGGlong
(t)

rel =
ˆGGlong

(t)

abs

θ̂
(t,t−1)
cM

(3.57)

ˆGGlong
(t)

relA =
ˆGGlong

(t)

absA

θ̂
(t,t−1)
cAM

(3.58)

3.6. Enhancing estimation methods for integrating
probability and non-probability survey sam-
ples with machine-learning techniques. An ap-
plication to a Survey on the impact of the COVID-
19 pandemic in Spain

In the same context as Section 3.1, now the values of the variable of
interest y are also available in the probabilistic sample sR. Therefore, the
population total Y can be estimated via the Horvitz-Thompson estimator:

ŶR =
∑

i∈sR

yi
πi

=
∑

i∈sR
diyi (3.59)

which is design-unbiased of the population total if there is not lack of res-
ponse. The design-based variance of this estimator is given by:

Vp(ŶR) =
N∑

i,j=1

yi
πi

yj
πj

(πij − πiπj) . (3.60)

where πij are the second order probabilities of the sampling design pR. If
πij > 0 ∀(i, j), an unbiased estimator is given by:

V̂p(ŶR) =
∑

i,j∈sR

πij − πiπj
πij

yi
πi

yj
πj
. (3.61)

In order to incorporate the non-probability sample data, the Inverse Pro-
bability Weighted estimator ŶIPW is also calculated following the methodo-
logy described in formula 3.4. Chen et al. (2020) determines an expression
for its variance as

V (ŶIPW ) =
N∑

i=1

(yi/p̂i − bT1 xi)
2(1− p̂i)p̂i + bT1Db1 (3.62)

where bT1 =
∑N

i=1(1−p̂i)yixTi /
∑N

i=1 p̂i(1−p̂i)xixTi , andD = Vp(
∑

i∈sR dip̂ixi)
where Vp denotes the design-based variance under the sampling design p. Ho-
wever, from a practical viewpoint, it is better to use jackknife or bootstrap
techniques Wolter (2007) for its estimation.
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A simple estimator is calculated by weighting the estimators obtained
from each sample:

Ŷcom = αŶR + (1− α)ŶIPW (3.63)

where α is a nonnegative constant such that 0 ≤ α ≤ 1. Different values can
be considered, such as: α0 = V̂ (ŶIPW )

V̂p(ŶR)+V̂ (ŶIPW )
, αn = nR

nR+nV
or αe = 0,5. The

resulting estimator can be rewritten as:

Ŷcom =
∑

i∈s
yid

?
i (3.64)

being s = sR
⋃
sV and

d?i =

{
αdi if i ∈ sR
(1− α)wi if i ∈ sV (3.65)

Calibration can also be applied to these d?i weights with some known
population totals, as described in formula 3.16, to obtain new calibrated
weights w?i . Thus the calibration estimator can be calculated as:

Ŷcal =
∑

i∈s
w?i yi. (3.66)

The following estimators are evaluated in a comparative study:

Reference estimator (ŶREF ): the two samples are joined and calibration
is performed to obtain the final estimator.

Elliott and Haviland estimator (ŶEH): we join the probabilistic and
non-probabilistic sample and obtain the final estimator using the for-
mulas proposed in Elliott and Haviland (2007).

Based on Robbins et al. (2021) we calculate four estimators:

• the disjoint propensity score (DPS) weights estimator (section
2.1.1. of Robbins et al. (2021)): ŶRDR1

• the simultaneous weights estimator (section 2.1.2. of Robbins et
al. (2021)): ŶRDR2

• the disjoint calibration (DC) weights estimators (section 2.2 of
Robbins et al. (2021)): ŶRDR3

• the combined calibration estimator (section 2.2 of Robbins et al.
(2021)): ŶRDR4

Propensities estimator (ŶPPSA): the probability and non-probability
sample propensities are obtained, both samples are merged and cali-
bration is performed to obtain the final estimator using the inverse of
propensities as initial weights.
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Calibration - PSA estimator (ŶCPSA): calibration is performed in the
probability sample and in the non-probability sample we calculate the
propensities. To obtain the final estimator, we combine them in several
ways, considering α0,5, αn and α0, and then we do the calibration. We
will denote these estimators ŶCPSA−0,5, ŶCPSA−n and ŶCPSA−α0 .

In all the estimators in which the propensities are calculated we use as the
chosen machine learning model both logistic regression and XGBoost, inclu-
ding hyperparameter optimization for the later as described in Section 3.4.

We simulate a population of size 500,000 in which we have two target
variables y1 and y2, and eight auxiliary variables to perform the PSA algo-
rithms and the calibration, x1, . . . , x8, defined as follows:

x1i, x3i, x5i, x7i ∼ B(0,5), i ∈ U (3.67)

xji ∼ N(µji, 1), i ∈ U, j = 2, 4, 6, 8 (3.68)

with

µji =

{
2, if x(j−1)i = 1

0, if x(j−1)i = 0
, i ∈ U, j = 2, 4, 6, 8

The target variables were simulated as follows:

y1i = N(10, 4) + 5πi, i ∈ U (3.69)

y2i = N(10, 4) + 2(x7i = 1)− 2(x7i = 0) + x8i + 5πi, i ∈ U (3.70)

500 iterations are carried out in order to obtain the Relative Bias and
Root Mean Square Relative Error for each method. In each iteration, we
draw a probability sample of size nP = 250 and a non-probability sample of
sizes nNP = 500; 1, 000; 2, 000. The probability sample is drawn by simple
random sampling without replacement (SRSWOR) from the full population.
The non-probability sample is drawn according to the following probability
sampling design:

ln

(
πi

1− πi

)
= −0,5 + 2,5(x5i = 1) +

√
2πx6ix8i − 2,5(x7i = 1), i ∈ U.

(3.71)





Chapter 4

Results

4.1. Inference from Non-Probability Surveys with
Statistical Matching and Propensity Score Ad-
justment Using Modern Prediction Techniques

The results of the simulation study are summarized in the following
points:

In general, it can be observed that Statistical Matching outperforms
PSA, which outperforms PSA with stratification.

In the case of standard deviation, there is also evidence that PSA
without propensity stratification provides higher values than Matching.

Nevertheless, all three methods consistently reduce the sample bias.

In terms of machine learning algorithms, basic linear models seem the
most robust. Others, like Naive Bayes or k-Nearest Neighbors, can
achieve outstanding results but only for some cases.

Basic decision trees can lead to worse estimations than the naive esti-
mator for some cases. Bagged trees are also outperformed by the other
models.

In order to avoid overfitting, presumably one of the main problems of
matching, Ridge regression should be prefered if the data suffer from
multicollinearity. Otherwise, linear regression alone is fast and effective.

4.2. The R Package NonProbEst for Estimation in
Non-probability Surveys

The resulting package includes the following functions:
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propensities: It computes the estimated propensities given a convenien-
ce sample and a reference sample.

matching : It predicts unknown responses by applying Statistical Mat-
ching.

model_based : It calculates a model based mean or total estimation.

model_assisted : It calculates a model assisted mean or total estimation.

model_calibrated : It calculates a model calibrated mean or total esti-
mation.

valliant_weights: It computes the sample weights given the estimated
propensities using the formula introduced by Valliant (2020).

sc_weights: It computes the sample weights given the estimated pro-
pensities using the formula introduced by Schonlau and Couper (2017).

vd_weights: It computes the sample weights given the estimated pro-
pensities using the formula introduced by Valliant and Dever (2011).

lee_weights: It computes the sample weights given the estimated pro-
pensities using the formula introduced by Lee (2006) and Lee and Va-
lliant (2009).

calib_weights: It applies calibration to some sample weights.

mean_estimation: It estimates the population mean given some sample
weights.

total_estimation: It estimates the population total given some sample
weights.

prop_estimation: It estimates the proportion of a category in the po-
pulation given some sample weights.

jackknife_variance: It calculates the Jackknife variance with reweigh-
ting for PSA.

generic_jackknife_variance: It calculates the Jackknife variance with
reweighting for an arbitrary estimator.

fast_jackknife_variance: It calculates the Jackknife variance without
reweighting.

confidence_interval : It calculates the confidence interval for a given
estimator.

A wide variety of machine learning models can be specified for the fo-
llowing functions: propensities, matching, model_based, model_assisted and
model_calibrated.
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4.3. Combining Statistical Matching and Propen-
sity Score Adjustment for inference from non-
probability surveys

The results of the simulation study are summarized in the following
points:

The proposed Training estimator always obtains the best estimations.

Even in those cases for which Propensity Score Adjustment outper-
forms Statistical Matching, Training is still a better choice.

The Doubly Robust estimator offers very similar results, although
slightly worse than the Training estimator.

Shrinkage is not as optimal because its efficacy is simply an average
between Statistical Matching and Propensity Score Adjustment.

4.4. On the Use of Gradient Boosting Methods to
Improve the Estimation with Data Obtained
with Self-Selection Procedures

The results of the comparative study with simulated populations are
summarized in the following points:

Even though linear/logistic regression is theoretically unbeatable for
the linear models, it is observed that XGBoost can also effectively
remove the bias in those cases.

XGBoost is still able to correctly learn the non-linear models, where
linear/logistic regression suffers.

The TrIPW and the XGBoosted Kernel Weighting estimators suffer
from overfitting without hyperparameter optimization.

Doubly Robust estimators are not required for such simple models.

The results of the comparative study with real populations are summa-
rized in the following points:

A significant improvement in the estimations can be observed when
using XGBoost instead of linear or single tree regressors.

XGBoost is more useful as more data is available.
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In the majority of cases, the Matching based variants obtain the best
results. However, for some specific cases, XGBoosted Kernel Weighting
is better.

Doubly Robust estimators may yield slightly more accurate estimations
in these cases with XGBoost as well, specially when using the Training
estimator.

Applying hyperparameter optimization considerably improves the es-
timations. In some cases, this improvement is so significant that the
method which was the worst one without optimization is now the best
alternative.

The results of the application to the ESPACOV are summarized in the
following points:

The results generally show that the application of bias correction tech-
niques provides an important shift with respect to the unweighted es-
timate.

There is a small and expectable increase in variance from the unweigh-
ted case.

The differences are not as significant when the target variables are not
related to the covariates used.

4.5. Reweighting with machine learning techniques
in panel surveys. Application to the Health Ca-
re and Social Survey.

We have developed novel estimators for several parameters in overlapping
panel surveys. The applied weighting methods reduce the bias in the estima-
tion of the total, the absolute and relative difference of the total, transversal
gender gaps in absolute and relative terms, longitudinal differences, dete-
rioration/improvement rates and longitudinal gender gaps in relative and
absolute terms.

The results from applying the proposed methods to the ESSOC are sum-
marized in the following points:

The self-perceived general health worsens for the population older than
35 years as the pandemic advances.

This deteriorating of general health can be observed more as age in-
creases.
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Women’s self-perceived health is more affected by the pandemic than
men’s in the long term.

However, men’s self-perceived health is more affected by the initial
lockdown.

For the population between 16 and 34 years old, the evolution has been
stable throughout the pandemic since the lockdown, for men as well as
for women.

4.6. Enhancing estimation methods for integrating
probability and non-probability survey sam-
ples with machine-learning techniques. An ap-
plication to a Survey on the impact of the COVID-
19 pandemic in Spain

The results of the simulation study are summarized in the following
points:

Calibration in both samples is not enough to completely remove se-
lection bias, although this approach provides smaller RB and RMSRE
than other methods.

The method proposed by Elliott and Haviland (2007) is vastly efficient
at removing part of the selection bias.

The combination of calibration and PSA reduces bias and RMSRE,
particularly when the algorithm used in PSA is XGBoost, although
the advantage of this algorithm vanishes as the non-probability sample
size increases.

The behavior of the estimators considered in Robbins et al. (2021) is
very diverse. In some cases, the Relative Bias is even larger than the
case where only calibration is used. Others are able to considerably
reduce RB and RMSRE as long as XGBoost is used.

The proposed estimator ŶCPSA, particularly when the coefficients ap-
plied consider the estimated variances (ŶCPSA−α0), is the best alter-
native.

This new estimation method, which has shown to be very efficient at
reducing biases, is applied to several variables in the ESPACOV II in order
to assess the impact of the COVID-19 in Spain. The results solve the discre-
pancies between the conclusions obtained from the probability sample and
those obtained from the non-probability sample.
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Conclusions

5.1. Inference from Non-Probability Surveys with
Statistical Matching and Propensity Score Ad-
justment Using Modern Prediction Techniques

Two of the most popular proposed methods to reduce biases produced
by nonprobability sampling, PSA and Matching, are studied through a com-
plex simulation study considering several datasets and different self-selection
scenarios. Results show that Statistical Matching provides, in general, better
results than PSA on bias reduction and RMSE, regardless of the dataset and
selection mechanism.

In addition, linear models and k-Nearest Neighbors provided, on average,
better predictions in terms of bias reduction than more complex models, such
as GBM and Bagged Trees. Complex models are often dependent on many
factors like hyperparameter optimization or data preprocessing. This causes
high variability for the results obtained. Therefore, basic models are more
robust and would be preferred in order to obtain reliable results.

These conclusions are obtained after working with real-life examples.
Thus, we cannot ensure whether these selection bias mechanisms are Missing
At Random (MAR) or Missing Not At Random (MNAR), as the causality
relationships are not known. It is known that the selection mechanism makes
a difference in terms of how challenging bias reduction can be.

5.2. The R Package NonProbEst for Estimation in
Non-probability Surveys

The NonProbEst package for R can simplify the use of different methods
to correct selection bias in non-probability surveys. It supports the user for
estimation in a wide variety of contexts, depending on the available auxi-
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liary information. This allows an easy application of many alternatives (ca-
libration, PSA, PSA+calibration, Statistical Matching, model-calibration...)
within a single package. Another important feature is that any kind of ma-
chine learning algorithm can be applied, without requiring expert knowledge
by the user, in order to optimize the information provided by the auxiliary
variables.

The package is very flexible, allowing different strategies depending on the
situation and the available execution time. For example, a hyperparameter
optimization process is carried out by default but it can be easily deactivated.
Also, the Jackknife variance estimator can be computed with or without
reweighting. However, some newer techniques like Kernel Weighting for PSA
or Doubly Robust estimators have been proposed since its development so
they are not included yet.

5.3. Combining Statistical Matching and Propen-
sity Score Adjustment for inference from non-
probability surveys

We propose a novel method for combining two of the most effective tech-
niques in order to reduce the bias of non-probability surveys: Propensity
Score Adjustment and Statistical Matching. The efficiency of the proposed
method is tested in an extensive comparative study with simulations from
three different datasets, thus considering its behavior under different condi-
tions. Results show a certain advantage of the developed method over other
proposals like the Doubly Robust estimator or shrinkage. Its estimations are
always better than those given by PSA or SM alone.

The advantage of our training method is that it gives more importance in
the prediction to those individuals who are more likely to appear in the po-
pulation. By default, a model trained in a biased dataset might also produce
biased predictions; however, if this bias is corrected by methods such as PSA,
it is expected that the relationships established by the prediction model and
its results are more similar to those present in the target population.

5.4. On the Use of Gradient Boosting Methods to
Improve the Estimation with Data Obtained
with Self-Selection Procedures

We present four different methods to estimate parameters based on the
use of an important machine learning technique, the XGBoost algorithm, to
predict the values of the target variable in the probability sample and also
to determine the propensities of participating in the non-probability sample.
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These are evaluated along classical estimators as well as other methods of
estimation from web survey data that are more innovative.

To be as close as possible to other recent estimation works in non-
probability surveys, we have replicated the experiment carried out by Chen et
al. (2020). When comparing results from both simulations, we observe that
estimators involving XGBoost provide better results overall in non-linear
situations in comparison to the case where linear models are used. These re-
sults are relevant considering that, in practice, models will rarely be linear.
In fact, they will likely be much more complex than the ones considered in
this simulation. For this reason, we also compare the different estimators in
two real datasets. The performance of XGBoost is shown to be better than
classical machine learning models in terms of bias and Mean Square Error
reduction.

However, these results can also be unreliable when the algorithms suf-
fer from overfitting. Hyperparameter optimization has shown to be highly
effective at controlling this issue. These kinds of procedures are therefore
important when producing estimations.

The proposed method is also used to analyze a nonprobability survey
sample on social effects of COVID-19. The results of this application show
that selection bias correction techniques have the potential to provide subs-
tantial changes in the estimates of population means in nonprobability sam-
ples.

5.5. Reweighting with machine learning techniques
in panel surveys. Application to the Health Ca-
re and Social Survey.

We have established a two-step reweighting process in order to adjust
the bias associated to surveys with an overlapping probability panel design.
First, via calibration, the population nonresponse is addressed, understood
as people who did not take part in the survey despite having been selected in
the sample. Then, via PSA, the panel nonresponse is addressed, understood
as people who participated in some of the measurements but did not follow
up in further ones. This Propensity Score Adjustment is applied using state of
the art machine learning techniques, such as XGBoost and hyperparameter
optimization.

The proposed estimators are applied to the ESSOC in order to obtain
reliable estimates, both cross-sectional and longitudinal, on the impact of
COVID-19 on health and its determinants. The results show that the impact
of the pandemic has hit differently across age groups and genders. More
precisely, the self-perceived general health seems to have decreased more
notably in older age groups and women, both according to the evolution of
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cross-sectional estimates and longitudinal estimates. The gender gap, both
in absolute and relative terms, has mostly grown as the pandemic advanced,
meaning that the changes (mostly decreases in self-perceived general health)
have been larger and worse in women in comparison to men.

5.6. Enhancing estimation methods for integrating
probability and non-probability survey sam-
ples with machine-learning techniques. An ap-
plication to a Survey on the impact of the COVID-
19 pandemic in Spain

We have addressed the problem of improving the estimates obtained from
the union of a probability sample and a convenience sample. We introduce
four methods for calculating weights that blend them together. These met-
hods combine calibration and Propensity Score Adjustment using machine
learning techniques for those situations where the variables of interest are
observed in both samples.

We evaluate the behavior of the proposed estimators against other tech-
niques for integrating probability and non-probability samples used in the
literature. For this purpose, we have considered a simulation study with se-
veral sample sizes to cover different Missing At Random situations and we
have compared the performance of standard logistic regression model with
a modern machine learning algorithm (XGBoost) when estimating the pro-
pensity score. Our simulations show that the proposed estimator based on
calibration and PSA techniques is very efficient at reducing self-selection bias
and RMSRE with this kind of data. Also, the best performing techniques for
the estimation of the propensity scores were those based on boosting, which
guaranteed considerably lower bias and RMSRE in comparison to a simi-
lar estimator based on logistic regression and other techniques considered in
the study. Hyperparameter tuning is also applied and the results prove its
importance when using machine learning techniques in this context.

The application of ŶCPSA−α0 , the proposed method which has shown the
most promising results at the simulation, to the ESPACOV II, a survey about
the effects of the COVID-19 pandemic in Spain, provides the best correction
of the impact of the deviations from population parameters in both samples.
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Future Research

The research presented in this dissertation lays the foundation for further
issues which will be addressed in future works. One of the most interesting
topics which should be explored is the evaluation in advance of the efficacy of
a specific method when applied to a specific survey. So far, we have carried
out comparative studies with simulations for which the real value for the
parameter of interest is already known. This allowed a precise measurement
of the resulting bias and Mean Square Error. However, the results have been
very variable and dependent on each context. Therefore, being able to de-
termine the expectable bias reduction even when said value is not available,
which will be the case for a real case scenario, would be very useful. This
would also allow us to compare techniques in order to determine the best
alternative for each case. An in-depth analysis of the relation between known
error estimation techniques, such as cross-validation, and the bias reduction
after applying the methods would help for this matter.

The possibility of compensating the bias associated to a non-probability
sample with a new auxiliary sampling would also be very interesting. Some-
times, the available data is too limited and therefore reducing its bias is too
difficult. The model that estimates propensities could be used in order to
define a new sampling design which specifically compensates its limitations.
For example, these kinds of techniques may be especially useful when wor-
king with overlapping panel designs. The expectable non-response could be
considered and compensated in advance for the following measurements.

Another frequently requested characteristic at the application of these
methods is explicability. Obtaining accurate estimations with "black box"models
is sometimes not enough. Being able to explain those estimations is also often
useful. This would allow us to describe and interpret the origin of the bias.
Thus it would be easier for a researcher to identify the problems and solve
them in future works. In any case, being able to explain the self-selection or
non-response bias would be valuable for many scenarios. Therefore, the use
of interpretable models when applying the methods should be explored.
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Finally, other statistical methodologies will be considered in order to
further improve the robustness of the bias reduction techniques, similarly to
the recent proposals by Rafei et al. (2022b) which uses Bayesian bootstrap
methods in a fully model-based method. Implementations of all the novel
state-of-the-art methods should be included in the NonProbEst package.
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Abstract: Online surveys are increasingly common in social and health studies, as they provide
fast and inexpensive results in comparison to traditional ones. However, these surveys often
work with biased samples, as the data collection is often non-probabilistic because of the lack
of internet coverage in certain population groups and the self-selection procedure that many online
surveys rely on. Some procedures have been proposed to mitigate the bias, such as propensity score
adjustment (PSA) and statistical matching. In PSA, propensity to participate in a nonprobability
survey is estimated using a probability reference survey, and then used to obtain weighted estimates.
In statistical matching, the nonprobability sample is used to train models to predict the values of
the target variable, and the predictions of the models for the probability sample can be used to
estimate population values. In this study, both methods are compared using three datasets to
simulate pseudopopulations from which nonprobability and probability samples are drawn and used
to estimate population parameters. In addition, the study compares the use of linear models and
Machine Learning prediction algorithms in propensity estimation in PSA and predictive modeling
in Statistical Matching. The results show that statistical matching outperforms PSA in terms of bias
reduction and Root Mean Square Error (RMSE), and that simpler prediction models, such as linear
and k-Nearest Neighbors, provide better outcomes than bagging algorithms.

Keywords: nonprobability surveys; machine learning; matching; propensity score adjustment;
sampling

1. Introduction

Surveys are a fundamental tool for data collection in areas like social studies and health sciences.
Probability sampling methods have been widely adopted by researchers in those areas, as well as
by official statistics. The main reason is that it provides valid statistical inferences about large finite
populations by using relatively small samples, based on a solid mathematical theory, with the right
combination of a random sample design and an approximately design-unbiased estimator.

Over the last decade, new alternatives to survey sample data have became popular as data sources.
Examples are big data and web surveys that have the potential of providing estimates in nearly
real time, an easier data access, and lower data collection costs than traditional probability sampling [1].
Very often, the data-generating process of such sources is nonprobabilistic, given that the probability
of being part of the sample is not known and/or is null for some groups of the target population, and,
as a result, these methods produce nonprobability samples. There are serious issues on the use of
nonprobability survey samples; the most relevant is that the data-generating process is unknown and
may have serious coverage, nonresponse, and selection biases, which may not be ignorable and could

Mathematics 2020, 8, 879; doi:10.3390/math8060879 www.mdpi.com/journal/mathematics
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deeply affect estimates [2]. These biases tend to be more disruptive as the population size gets larger,
regardless of the sample size [3].

In order to correct this selection bias produced by non-random selection mechanisms,
some inference procedures are proposed in the literature. A first class of methods includes statistical
models aiming to predict the non-sampled units of the population [4–6]. Specifying an appropriate
super-population model capable of learning the variation of the target variables is important for this
model-based method. For this approach, auxiliary features X must be available for each unit of the
observed and the unobserved parts of the population. This situation is complicated in practice.

Some studies combine a nonprobability sample with a reference probability sample for
constructing models for units in the latter or to adjust selection probabilities. The most important
methods for this case are statistical matching and propensity score adjustment (PSA). There are many
works studying the properties and performance of PSA [7–12], but there is not much of a bibliography
that develops statistical matching in this context.

In this article, we apply machine learning prediction techniques to build statistical matching
estimators and compare their performance with PSA estimators. Since there is not a sampling design
that allows us to determine the main statistical properties (sampling distribution, expected value,
variance, etc.) of random quantities calculated from the non-probability sample, we cannot include
theoretical properties of the estimators obtained, but their behavior is studied through simulation
studies that also include several propensity score techniques. Although PSA performance was
compared with linear calibration in [10] and the combination of PSA with machine learning was
already studied in [12], to the best of our knowledge, this is the first time that these methodologies are
compared in practice and the first time that machine learning techniques are used for estimation with
statistical matching from nonprobability samples.

The description of the conducted study is organized as follows: In Section 2, we introduce the
notation and explain the estimation problem that can be solved with the aforementioned methods.
In Sections 3 and 4, we describe the mathematical foundations of PSA and statistical matching,
respectively, and their properties according to previous research. In Section 5, we briefly explain the
ideas behind each of the algorithms tested in the study. In Section 6, we describe the data and the
simulation study used to compare the performance of PSA and statistical matching, as well as the
metrics used to measure it. Finally, in Sections 7 and 8, we show the results of the study and discuss
some of their implications in the comparison between methods.

2. Background

Suppose that the finite population U consists of i = 1, ..., N subjects. Let y be a survey variable
and yi be the y-value attached to the i-th unit,i = 1, ..., N.

Let sv be a volunteer nonprobability sample of size nv, obtained from Uv ⊂ U observing the study
variable y.

Without any auxiliary information, the population mean Ȳ is usually estimated with the
unweighted sample mean

ˆ̄Y = ∑
k∈sv

yk
nv

(1)

that produces biased estimates of the population mean. The size and direction of the bias depend on
the proportion of the population with no chance of inclusion in the sample (coverage) and differences
in the inclusion probabilities among the different members of the sample with a non-zero probability
of taking part in the survey (selection) [2,13]. The selection bias cannot be estimated in practice for
most survey variables of interest.

We consider the situation where there is a probability sample available and compare two inference
methods to treat selection biases in a general framework. Let sr be the reference probability sample
selected under the sampling design (sd, pd) with πi the first-order inclusion probability for the
i-th individual. Let us assume that in sr, we observe some other study variables that are common to
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both samples, denoted by x. The available data are denoted by {(i, yi, xi), i ∈ sv}, and {(i, xi), i ∈ sr}.
We are interested in estimating a linear parameter θN = ∑U aiyi, where ai are known constants.
Examples include the population total Ty = ∑U yi, the population mean Ȳ, and the population
proportion pA = ∑U yi/N, where yi = 1 if the unit i belongs to the interest group A, and 0 otherwise.

3. Propensity Score Adjustment

The most popular adjustment method in nonprobability settings is propensity score adjustment
(PSA) or propensity weighting. This method, firstly developed by [14], was originally intended to
correct the confounding bias in the experimental design context, and it is the most widely used method
in practice [2,7–10,12,15–17]. In this approach, the propensity for an individual to participate in the
volunteer survey is estimated by binning the data from both samples, sr and sv, together and training a
machine learning model (usually logistic regression) on the variable δ, with δk = 1 if k ∈ sv and δk = 0
if k ∈ sr. We assume that the selection mechanism of sv is ignorable; this is:

P(δk = i|yk, xk) = P(δk = i|xk), i = 0, 1; k ∈ sv. (2)

We also assume that the mechanism follows a parametric model:

P(δk = 1|yk, xk) = pk(x) =
1

e−(γTxk) + 1
(3)

for some vector γ. We obtain the pseudo maximum likelihood of parameter γ and use the inverse of
the estimated response propensity as weight for constructing the estimator [11]:

θ̂PSA1 = ∑
k∈sv

akyk/ p̂k(xk), (4)

where p̂k(xk) denotes the estimated response propensity for the individual k ∈ sv. Alternative
estimators can be constructed by slightly modifying the formula in (4) [18]:

θ̂PSA2 = ∑
k∈sv

(1− p̂k(xk)) akyk/ p̂k(xk). (5)

Other alternatives involve the stratification of propensities in a fixed number of groups, with the
idea of grouping individuals with similar volunteering propensities. For instance, in [7,8], adjustment
factors fc are obtained for the cth strata of individuals:

fc =
∑k∈sc

r
dr

k/ ∑k∈sr dr
k

∑j∈sc
v

dv
j / ∑j∈sv dv

j
, (6)

where sc
r and sc

v are individuals from the sr and sv sample respectively who belong to the cth group,
while dr

k = 1/πk and dv
j = 1/ p̂j are the design weights for the kth individual of the reference sample

and the jth individual of the volunteer sample, respectively. The final weights are:

wj = fcdv
j =

∑k∈sc
r

dr
k/ ∑k∈sr dr

k

∑j∈sc
v

dv
j / ∑j∈sv dv

j
dv

j . (7)

The weights are then used in the Horvitz–Thompson estimator:

θ̂PSA3 = ∑
k∈sv

wkakyk. (8)
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The approach used in [9] does not require the calculation of fc. It only uses the average propensity
within each group

πc = ∑
k∈sc

r∪sc
v

pk(x)/(nc
r + nc

v), (9)

where nc
r and nc

v are the number of individuals from the reference and the volunteer sample,
respectively, that belong to the cth group. The mean propensity for each member of the volunteer
sample is used in the Horvitz–Thompson estimator:

θ̂PSA4 = ∑
c

∑
k∈sc

v

akyk/πc. (10)

PSA in nonprobability online surveys has been proven to be efficient if the selection mechanism is
ignorable and the right covariates are used for modeling [7]. If some of these conditions do not apply,
the use of PSA can induce biased estimates that would need further adjustments [9]. The combination
of PSA and calibration has shown successful results in terms of bias removal [8,10].

Several machine learning models have been suggested as alternatives to logistic regression
for the estimation of propensity scores in the experimental design context, with promising results.
Ref. [19,20] examined the performance of various classification and regression trees (CART) for PSA
in sample balancing. Other applications of machine learning algorithms in PSA involve their use in
nonresponse adjustments; more precisely, they have been studied using Random Forests as propensity
predictors [21]. Regarding the nonprobability sampling context covered in this study, [12] presented
a simulation study using decision trees, k-Nearest Neighbors, Naive Bayes, Random Forests, and
a Gradient Boosting Machine that support the view given in [6] about machine learning methods
being used for removing selection bias in nonprobability samples. All of those algorithms, along with
Discriminant Analysis and Model Averaged Neural Networks, will be used for propensity estimation
in this study. Further details can be consulted in Section 5.

4. Statistical Matching

Statistical matching (also known as data fusion, data merging, or synthetic matching) is
a model-based approach introduced by [22] and further developed by [23] for nonresponse in
probability samples. The idea in this context is to model the relationship between yk and xk using the
volunteer sample sV in order to predict yk for the reference sample.

Suppose that the finite population {(i, yi, xi), i ∈ U} can be viewed as a random sample from the
superpopulation model:

yi = m(xi) + ei, i = 1, 2, ..., N, (11)

where m(xi) = Em(yi|xi) and the random vector e = (e1, ..., eN)
′ is assumed to have zero mean.

Under the design-based approach, the usual estimator of a population’s linear parameter is the
Horvitz–Thompson estimator given by:

θ̂HT = ∑
k∈sr

akykdk (12)

where dk = 1/πk is the sampling weight of the unit k that is design-unbiased, consistent for θ, and
asymptotically normally distributed under mild conditions [24]. This estimator cannot be calculated
because yk is not observed for the units k ∈ sr; thus, we substitute yi by the predicted values from the
above model. Thus, the matching estimator is given by:

θ̂SM = ∑
sr

ak ŷkdk, (13)

where ŷk is the predicted value of yk.
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The key is how to predict the values of yk. Usually, the linear regression model is considered
for estimation; Em(yi|xi) = xT

i β is easy to implement in most of the existent statistical packages, but
several drawbacks have to be considered. Parametric models require assumptions regarding variable
selection, the functional form and distributions of variables, and specification of interactions. If any
of these assumptions are incorrect, the bias reduction could be incomplete or nonexistent. Contrary
to statistical modeling approaches that assume a data model with parameters estimated from the
data, more advanced machine learning algorithms aim to extract the relationship between an outcome
and predictor without an a priori data model. These methods have not been widely applied in the
statistical matching literature. Now, we propose the use of machine learning methods as an alternative
to linear regression modeling. The ML prediction methods considered in this article are described in
the following section.

5. Prediction Modeling

5.1. Generalized Linear Models (GLM)

The most basic regression model consists of calculating coefficients, β, of linear regression based
on input data. The coefficients that satisfy the optimality criteria based on minimizing the Ordinary
Least Squares are estimated with the formula β = (X′X)−1X′Y. This method is only stable as long
as X′X is relatively close to a unit matrix [25]. Quite often, covariates suffer from multicollinearity.
For those cases, ridge regression proposes an identity term to control instability: β = (X′X + kI)−1X′Y,
where k ≥ 0 can be chosen arbitrarily or via parameter tuning. β can also be considered as the posterior
mean of a prior normal distribution with zero mean and a variance of Iσ2/k [26]. From that point
of view, Bayesian estimates can be obtained via Gibbs sampling.

Instead, the Least Absolute Shrinkage and Selection Operator (LASSO) regression [27] proposes
using a penalty parameter, α, according to the following optimization problem:

argmin ∑N
i=1(yi − α−∑j β jxij)

2

subject to ∑j |β j| ≤ t.
(14)

t is a hyperparameter that forces the shrinkage of the coefficients. In this case, coefficients are
allowed to be equal to zero. Therefore, the main difference is that LASSO allows the optimization
procedure to select variables, while ridge regression may produce very small coefficients for some cases
without reaching zero. Alternatively, LASSO coefficients can be estimated considering the posterior
mode of prior Laplace distributions. Bayesian estimates can then be calculated as described in [28].
Ridge and LASSO are both considered standard penalized regression models [29].

For PSA, these methods can be used for estimating the propensities. First, the target variable for
the model is defined as yi = 1 if k ∈ sv and yi = 0 if k ∈ sr. The pseudo maximum likelihood can then
be optimized via logistic regression or any of its variants described above.

For statistical matching, the target variable for the model is the survey variable itself. Therefore,
the model is trained with the volunteer sample and then used to obtain the estimated responses for the
reference sample.

5.2. Discriminant Analysis

When the predicted variable is discrete, Discriminant Analysis can be used for classification
of individuals. Let y be the dependent variable with K classes, πk the probability of an individual
of belonging to the kth class, X the matrix of covariates n× p, and fk(x) the joint distribution of x
conditioned to y taking the kth class. As described in [30], Linear Discriminant Analysis (LDA) assigns
an individual the class that maximizes the probability:

P(yi = k|x = xi) =
πk fk(xi)

∑K
j=1 πj f j(xi)

, k = 1, ..., K. (15)
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Assuming that X|y = k follows a multivariate Gaussian distribution Np(µk, Σ), LDA works by
assigning an instance the class for which the coefficient δk(xi) defined as

δk(xi) = xT
i Σ−1µk −

1
2

µT
k Σ−1µk + log(πk) (16)

is largest. Note that the decision depends on a linear combination of the multivariate Gaussian
distribution parameters; hence, the classifier gets the name of Linear Discriminant Analysis. When used
for PSA, K = 2 and, as a result, the outcome of LDA is the posterior probability obtained in (15) for the
class δ = 1.

LDA can provide good results; however, its simplicity can be a handicap in some cases where
relationships between covariates and target are complex, and if the covariates are correlated, its
performance gets worse [31]. For these reasons, alternatives considering smoothing, such as
Penalized Discriminant Analysis (FDA) or Shrinkage Discriminant Analysis (SDA), can be used.
The former expands the covariate matrix and applies penalization coefficients in the calculation of
thresholds [32], while the latter performs a shrinkage of covariates similar to that performed in the
ridge or LASSO models.

LDA is only suitable for classification and, therefore, it cannot be used for statistical matching
when the survey variable is continuous. However, its probabilistic nature makes it appropriate for
estimating propensities in PSA, as described above.

5.3. Decision Trees, Bagged Trees, and Random Forests

Decision trees sequentially split the input data via conditional clauses until they reach a
terminal node, which assigns a specific class or value. This process results in the following estimation
for the expectance Em(yi|xi):

Em(yi|xi) =





y(sJ1) {i ∈ s/xi ∈ J1}
... ...
y(sJk ) {i ∈ s/xi ∈ Jk},

(17)

where y(sJi ) denotes the mean of y among the members of the sampled population, s, meeting the
criteria of the i-th terminal node.

Bagged trees combine this approach with bagging [33]. Bagging averages the predictions of
multiple weak classifiers (in this case, m unpruned trees). In order for them to complement each other,
they are trained with a bootstrapped subsample of the complete dataset. Therefore:

Em(yi|xi) =
∑m

j=1 φj(xi)

m
, φj(xi) =





y(sJ j
1) {i ∈ s/xi ∈ J j

1}
... ...

y(sJ j
k ) {i ∈ s/xi ∈ J j

k},
(18)

where y(sJ j
i ) denotes the mean of y among the members of the sampled population, s, meeting the

criteria of the i-th terminal node of the j-th tree. This technique is known to improve the accuracy of the
predictions [34]. Alternatively, Random Forests can also be used for both regression and classification
using weak classifiers [35]. In this algorithm, the input variables for each weak classifier are a random
subset of all of the covariates, instead of taking the whole xi vector as in bagged trees.

This approach is easy to apply for statistical matching. As usual, a model is trained using
the volunteer sample in order to predict a response based on the covariates. Said model is then
applied to the reference sample covariates. However, tree-based models are not good for estimating
probabilities [36]. They can still be used for PSA, taking the proportion of weak classifiers that agree as
the estimated propensity.
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5.4. Gradient Boosting Machine

Gradient Boosting Machine (GBM) also works as an ensemble of weak classifiers. Boosting is
an iterative process that trains subsequent models, giving more importance to the data for which
previous models failed. This idea can be interpreted as an optimization problem [37], and, therefore, it
is suitable for the gradient descent algorithm [38]. Then, the estimates for y are:

Em(yi|xi) = vT J(xi), (19)

where J(xi) stands for a matrix of terminal nodes of m decision trees and v is a vector representing the
weight of each tree. GBM has improved previous state-of-the-art models for some cases [39].

GBM can be used for PSA and statistical matching in the same way as the previous ensemble
models considered.

5.5. k-Nearest Neighbors

k-Nearest Neighbors is “one of the most fundamental and simple classification methods” [40].
It does not need training. The algorithm simply averages the value of the target variable for the
k individuals closest to the estimated individual (its k nearest neighbors), given a certain distance
dependent on the covariates. This is:

Em(yi|xi) =
∑j∈s/d(xi ,xj)≤d(xi ,x(k)) yj

k
(20)

where x(1),...,x(n−1) are, respectively, the individuals closest to and furthest from xi. Choosing the right
k is important for the proper performance of the algorithm.

For classification, k-Nearest Neighbors would usually simply predict the most repeated label
among its k-nearest neighbors. However, it can instead take into account the proportion in order to
estimate probabilities. This idea can be applied for PSA, taking yi = 1 if k ∈ sv and yi = 0 if k ∈ sr,
as always. For statistical matching, k-Nearest Neighbors can also be used normally to predict the
responses.

5.6. Naive Bayes

The Naive Bayes algorithm is a classifier (that is, it can only be used to predict discrete variables)
based on the Bayes theorem. In this study, Naive Bayes has been used only for propensity estimation
in PSA. In this case, the Bayes theorem can be used with the probabilities that the participants have of
being part of the volunteer sample and the occurrence of a given vector for X, that is, the values of the
covariates for a given individual i.

p̂i(xi) =
P(δi = 1)P(X = xi|δi = 1)

P(X = xi)
. (21)

The Naive Bayes classifier is simple in its reasoning, but can provide precise results in PSA under
certain conditions [12]. On the other hand, predictions from Naive Bayes can turn unstable when
covariates with high cardinality (e.g., numerical variables) are present, as discrete domains are required
for computation of probabilities [41].

As was the case with discriminant analysis, Naive Bayes works naturally with probabilities;
therefore, it is suitable for estimating propensities in PSA, but not for statistical matching if the survey
variable is continuous.
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5.7. Neural Networks with Bayesian Regularization

Neural networks calculate the expectance of yi as:

Em(yi|xi) = g

(
L

∑
k=1

vk fk(·) + b

)
, (22)

where g and fk stand for the activation functions, vk are the weights of the k-th neuron, and b is the
activation threshold [42]. The inputs follow an iterative process through one or more hidden layers
until reaching the last layer, which produces the final output. The weights are initialized randomly
and then optimized via gradient descent with the backpropagation algorithm [43].

Overfitting is an important problem for neural networks so prior distributions can be imposed to
vk weights as a regularization method. They are then optimized to maximize the posterior density or
the likelihood, as described in [42]. Another option is bagging of neural networks, as explained in [44].
The same neural network model is fitted using different seeds, and the results are averaged to obtain
the predictions. This approach is known as Model Averaged Neural Networks.

Neural networks have already been considered for superpopulation modeling [45]. They are the
state of the art for many domains [46]; Bayesian neural networks in particular are “fairly robust with
respect to the problems of overfitting and hyperparameter choice” [47].

Since they work as universal approximators [48], neural networks can be used for PSA and
statistical matching in the same way as generalized linear models.

6. The Simulation Study

6.1. Data

All of the experiments were performed using three different populations. In addition, two
different sampling strategies were selected for each one in order to recreate the behavior of the
estimates under the lack of representativeness of the potentially sampled subpopulation and under
selection mechanisms tied to individual features (e.g., voluntariness).

The first population, which will be referred to as P1, corresponds to the microdata of the Spanish
Life Conditions Survey (2012 edition) [49]. It collects data about economic and life conditions variables
for 28,610 adults living in Spain. We took the mean health, as reported by the individuals themselves
on a scale from 1 to 5, as the objective variable to estimate. The algorithms were trained using the
56 most related variables, excluding “health issues in the last six months”, “chronic conditions”,
“household income difficulties”, and “civil status” (as they are too correlated with the target variable).
The first sampling strategy for this population, which will be referred to as P1S1, was a simple random
sampling excluding the individuals without internet access. In the second sampling strategy, P2S2,

we also included a propensity to participate in the sample using the formula Pr(yr) = yr2−19002

19962−19002 ,
where yr is the year in which the individual was born. This way, linear models should have more
problems learning the relations.

BigLucy [50], P2, was chosen as the second population. It consists of various financial variables of
85,396 industrial companies of a city for a particular fiscal year. The target variable chosen was the
annual income in the previous fiscal year. The algorithms were trained using the size of the company
(small, medium, or big), the number of employees, the company’s income tax, and whether it is ISO
certified. The first sampling strategy for this population, P2S1, was simple random sampling among the
companies with SPAM options that are not small companies. This approach tested whether the models
were able to correctly estimate the annual income for companies that were not in the training data.
The second sampling strategy, P2S2, was simple random sampling among the companies with SPAM
options, including a propensity to participate calculated as Pr(taxes) = min(taxes2/30, 1), where taxes
is the company’s income tax. This scenario is similar but it implies a quadratic dependence.
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The Bank Marketing Data Set [51], P3, is the third population. It includes information about
41,188 phone calls related to direct marketing campaigns of a Portuguese banking institution. Our goal
is to predict the mean contact duration. A total of 18 variables were used for training. We excluded
two of the dataset variables, the month, and whether the client has subscribed for a term deposit in
order to make the inference more difficult. For the first sampling strategy, P3S1, we applied simple
random sampling among the clients contacted more than three times. For the second sampling strategy,
P3S2, we applied simple random sampling among the clients contacted more than twice. Surprisingly,
filtering less led to worse estimations for some cases.

6.2. Simulation

Each population and sampling strategy was simulated using various sample sizes: 1000, 2000,
and 5000. The same size is taken for the convenience sample and for the reference sample. For each
sample size, 500 simulations were executed. In each simulation, PSA (using weights defined in
Formula (4) in Section 3), PSA with stratification (using weights defined in Formula (10) in Section 3),
and statistical matching estimates were obtained using several predictive algorithms.

For PSA (with and without stratification), the following classification algorithms were used:
Logistic regression (glm), generalized linear model via penalized maximum likelihood (glmnet),
Naive Bayes (naivebayes), k-Nearest Neighbors (knn), C4.5 decision tree (J48), Bagged Trees (treebag),
Random Forests (rf ), Gradient Boosting Machine (gbm), Model Averaged Neural Network (avNNet),
Linear Discriminant Analysis (lda), Penalized Discriminant Analysis (pda), and Shrinkage Discriminant
Analysis (sda).

For statistical matching, the following regression algorithms were used: linear regression (glm),
Ridge regression with and without Bayesian priors (bridge and ridge respectively), LASSO regression
via penalized maximum likelihood (glmnet), LARS-EN algorithm (lasso) and using Bayesian priors on
the estimates (blasso), k-Nearest Neighbors (knn), Bagged Trees (treebag), Gradient Boosting Machine
(gbm) and Bayesian-regularized Neural Networks (brnn).

These represent standard variants from different model types: Linear regression,
penalized regression, Bayesian models, prototype models, trees, gradient boosting, neural networks,
and discriminant analysis. All of the methods were trained using default hyperparameters, except
for k-Nearest Neighbors, Naive Bayes, and C4.5, because their performance improved greatly after
hypeparameter tuning. Said tuning was performed with bootstrap. The framework used for training,
optimization, and prediction was caret [52], an R [53] package.

Different metrics are considered for evaluating each scenario: Relative mean bias, relative standard
deviation, and relative Root Mean Square Error (RMSE).

RBias (%) =

(
∑500

i=1 p̂yi

500
− py

)
× 100

py
(23)

RStandard deviation (%) =

√
∑500

i=1( p̂yi − ˆ̄py)2

499
× 100

py
(24)

RMSE (%) =
√

RBias2 + RSD2, (25)

where py is the value of the target variable, ˆ̄py is the mean of the 500 estimations of py, and p̂yi is the
estimation of py in the i-th simulation.

In order to rank each estimator, the mean efficiency, the median efficiency, and the number of
times it has been among the best are measured. An estimator is considered to be among the best when
its RMSE differs from the minimum RMSE by less than 1%. The efficiency is defined as follows:

E f f iciency (%) =
Baseline− RMSE

Baseline
× 100, (26)
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where the baseline is the RMSE of using the sample average as the estimation.
To complete the comparison analysis, the results of relative bias, standard deviation, and RMSE

were analyzed using linear mixed-effects regression. This approach provides estimates of the effect size
of each adjustment method and algorithm. Datasets were considered random effects, while adjustment
(matching, PSA, or PSA with propensity stratification) and algorithm (glm, gbm, glmnet, knn, and
treebag, as they were the only algorithms used in all adjustments) were the fixed effects variables.
All three response variables take non-negative values, and the interpretation is the same: The lower
their value is, the better (less biased and/or less variable) the estimations are. Following this rule,
negative Beta coefficients indicate that a given factor is contributing to better estimations, and vice
versa for positive coefficients.

7. Results

Tables A1–A3 in the Appendix A show, respectively, the resulting biases, deviations, and RMSEs.
In general, it can be observed that statistical matching outperforms PSA, which outperforms PSA with
stratification. Nevertheless, all three methods consistently reduce the sample bias.

In terms of machine learning algorithms, basic linear models seem the most robust. Others,
like Naive Bayes, can achieve outstanding results, but only for some cases. It is also interesting noting
that C4.5 trees can even lead to worse estimations than simply using the sample average.

The final ranking confirming this impression can be seen in Table 1. Statistical matching with
linear or ridge regression has the best mean efficiency and has been among the best more than the
rest of approaches. This is not a surprise, since their simplicity avoids overfitting, presumably one
of the main problems of matching. Ridge regression should be preferred if the data suffer from
multicollinearity. Otherwise, linear regression alone is very effective (and faster).

Table 1. Mean and median efficiency (%) of each estimator and the number of times it has been among
the best.

Mean Median Best Mean Median Best

matching ridge 61.5 63.8 10 psa gbm 30.7 28.8 3
matching glm 61.5 64.2 10 psa strat naive 30.5 32.1 3
matching glmnet 61 62.8 7 psa strat knn 25.6 24.7 0
matching brnn 57.3 61.7 7 matching lasso 24.6 14.4 3
matching blasso 57.1 59.9 6 psa strat glm 24.5 28.6 1
matching bridge 55.8 61.2 7 psa strat lda 23.4 27.5 0
matching knn 55.8 51.7 3 psa strat sda 23.2 27.2 0
psa glm 46.4 53.8 5 psa strat pda 23.2 27.2 0
psa sda 46.2 51.7 4 psa strat avNNet 21.8 23.4 0
psa glmnet 46.1 53.4 3 psa strat glmnet 21.7 28.1 1
psa lda 46 51.2 3 psa strat gbm 16.8 16.2 0
psa pda 45.7 51.7 4 psa treebag 10.1 11.6 0
psa naive 41.2 56.9 6 psa strat treebag 7.6 3.5 0
psa knn 38.5 42.4 3 psa strat rf 3.6 4.4 0
psa avNNet 34.2 33.2 0 psa rf −4.5 7.8 0
matching gbm 32.2 34.9 0 psa strat J48 −23.9 3.8 0
matching treebag 31.4 49.1 1 psa J48 −36.7 7.9 0

The results of linear mixed-effects modeling can be consulted in Tables 2–4. It is noticeable how
linear models, LASSO with LARS-EN algorithm, and k-Nearest Neighbors outperform Bagged Trees in
all metrics (modulus of relative bias, relative standard deviation, and RMSE), while there is no evidence
that GBM is different from any of them. Regarding adjustment methods, PSA (both with and without
propensity stratification) showed significantly more bias and RMSE than statistical matching. In the
case of standard deviation, there is also evidence that PSA without propensity stratification provides
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higher values (deviation) than matching. Altogether, these results would indicate that matching has a
larger effect on bias reduction than PSA.

Table 2. Linear mixed-effects model on the modulus of relative bias (|RBias|) considering adjustment
methods and algorithms as fixed effects and datasets as random effects. Reference levels: Bagged Trees
(treebag) algorithm and matching adjustment.

Coefficient Estimate Std. Error D. f. t Value IC 95% p-Value

(Intercept) 12.755 8.47 5.1276 1.506 [−8.857; 34.367] 0.19104
glm −3.359 1.224 258.00 −2.745 [−5.769; −0.950] 0.00647

glmnet −2.753 1.224 258.00 −2.250 [−5.163; −0.343] 0.02530
knn −2.960 1.224 258.00 −2.419 [−5.370; −0.551] 0.01624

gbm −0.624 1.224 258.00 −0.510 [−3.034; 1.785] 0.61042
psa 6.844 0.948 258.00 7.221 [4.978; 8.710] 5.79 ×10−12

psa strat 9.601 0.948 258.00 10.129 [7.734; 11.467] <2 ×10−16

Group Variance Std. Dev.

Dataset 424.21 20.596
Residual 40.42 6.358

Dataset Sampling Intercept

P1 P1S1 1.590
P1 P1S2 4.522
P2 P2S1 53.693
P2 P2S2 13.029
P3 P3S1 4.110
P3 P3S2 −0.414

Table 3. Linear mixed-effects model on relative standard deviation considering adjustment methods
and algorithms as fixed effects and datasets as random effects. Reference levels: treebag algorithm and
Matching adjustment.

Coefficient Estimate Std. Error D. f. t Value IC 95% p-value

(Intercept) 3.686 0.518 14.41 7.112 [2.578; 4.795] 4.5 ×10−6

glm −2.095 0.430 258.00 −4.866 [−2.942; −1.247] 2.0 ×10−6

glmnet −2.224 0.430 258.00 −5.167 [−3.071; −1.376] 4.8 ×10−7

knn −1.986 0.430 258.00 −4.614 [−2.833; −1.138] 6.2 ×10−6

gbm −2.020 0.430 258.00 −4.694 [−2.868; −1.173] 4.4 ×10−6

psa 0.623 0.333 258.00 1.869 [−0.033; 1.280] 0.0628
psa strat 0.404 0.333 258.00 1.213 [−0.252; 1.061] 0.2262

Group Variance Std. Dev.

Dataset 0.834 0.913
Residual 5.002 2.236

Dataset Sampling Intercept

P1 P1S1 2.479
P1 P1S2 2.703
P2 P2S1 4.391
P2 P2S2 4.064
P3 P3S1 4.226
P3 P3S2 4.254
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Table 4. Linear mixed-effects model on RMSE considering adjustment methods and algorithms as fixed
effects and datasets as random effects. Reference levels: treebag algorithm and matching adjustment.

Coefficient Estimate Std. Error D. f. t value IC 95% p-value

(Intercept) 14.092 8.374 5.13 1.683 [−7.271; 35.455] 0.15174
glm −4.094 1.222 258.00 −3.351 [−6.500; −1.688] 0.00093

glmnet −3.515 1.222 258.00 −2.877 [−5.920; −1.109] 0.00435
knn −3.639 1.222 258.00 −2.978 [−6.045; −1.233] 0.00317

gbm −1.288 1.222 258.00 −1.054 [−3.694; 1.118] 0.29272
psa 6.744 0.946 258.00 7.126 [4.880; 8.607] 1.0 ×10−11

psa strat 9.246 0.946 258.00 9.771 [7.383; 11.110] <2 ×10−16

Group Variance Std. Dev.

Dataset 414.5 20.359
Residual 40.3 6.348

Dataset Sampling Intercept

P1 P1S1 2.436
P1 P1S2 5.367
P2 P2S1 54.549
P2 P2S2 14.515
P3 P3S1 5.949
P3 P3S2 1.737

8. Discussion

Nonprobability samples are increasingly common due to the growing internet penetration and
the subsequent rise of online questionnaires. These questionnaries are a faster, less expensive, and
more comfortable method of information collection in comparison to traditional ones. However,
samples obtained with this technique deal with several sources of bias: Despite the increasing internet
penetration, large population groups (less educated or elderly people) are still not properly represented.
In addition, questionnaires are often administered with non-probabilistic sampling methods (e.g.,
snowballing), which imply that the selection is controlled by the interviewees themselves, causing a
selection bias.

In this study, we focus on two of the proposed methods to reduce biases produced by
nonprobability sampling: PSA and matching. We also compare the outcomes when the predictive
modeling, required in both methods, is done through linear regression and through machine learning
algorithms. PSA and matching require a probability sample on which the target variable has not
been measured. The unit sampling performed in the simulations captures different self-selection
scenarios in nonprobability sampling, while probability samples are drawn by simple random sampling
with no sources of bias. This canonical representation is not usual, as reference samples are mostly
drawn with complex sampling methods and the amount of bias is non-null. Further research could
take into account these imperfect situations.

Results show that statistical matching provides better results than PSA on bias reduction
and RMSE, regardless of the dataset and selection mechanism. In addition, linear models and k-nearest
neighbors provided, on average, better results in terms of bias reduction than more complex models,
such as GBM and Bagged Trees. These results are relevant since, even though there are comparative
studies between adjustment techniques in nonprobability surveys [11,54], to the best of our knowledge,
no comparison has been done before between these two methods.

Before closing, several limitations of our analysis should be mentioned. Given that the datasets
used for simulation are real-life examples, we cannot ensure whether a selection bias mechanism is
Missing At Random (MAR) or Missing Not At Random (MNAR), as the causality relationships are not
known. It is known that the selection mechanism makes a difference in terms of how challenging bias
reduction can be, but, in this study, it was not possible to assess.
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In the near future, it is planned to explore how to combine PSA and statistical matching techniques.
Shrinkage is a natural way to improve the available estimates in terms of the mean squared error that
has been used by many authors in other contexts (e.g., [55–57]). The idea is to shrink the estimator θ̂SM
towards the estimator θ̂PSA and obtain θ̂srk = Kθ̂SM + (1− K)θ̂PSA, where K is a constant satisfying
0 < K < 1.

Another way can be considered by taking into account that most machine learning models allow
weighting of the data used for training. Therefore, the weights obtained via PSA for the volunteer
sample can be used when training the model used for statistical matching, since it is trained with said
sample.
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Appendix A

Table A1. Relative mean bias (%) of each estimator for each population, sampling method, and sample size. The best values among the methods are shown in bold.

P1S1 P1S2 P2S1 P2S2 P3S1 P3S2

Estimator 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000

baseline 8.4 8.5 8.5 12.9 12.8 12.8 70.6 70.4 70.4 32.7 32.6 32.9 13.4 13.2 13.3 5.9 5.8 5.9
matching blasso 3.3 3 2.7 6.6 5.8 5.2 24.6 24.6 24.6 12.6 12.6 12.6 8.9 5.1 2.7 3 0.4 2
matching bridge 3.4 3.1 2.8 6.9 6.1 5.3 24.5 24.6 24.5 12.3 12.6 12.7 9.1 4.8 2.3 4 0.5 1.5
matching brnn 2.4 2.3 2.2 4.8 4.5 4.3 25.3 24.7 24.7 13.3 13.3 13.3 4.3 2.5 0 0.4 2.1 4
matching gbm 5.3 5.3 5.4 8.8 8.9 8.9 46.2 46.7 47.1 17 17.4 17.5 0.4 2.3 5 5.8 5.3 3.2
matching glm 2.6 2.4 2.5 4.7 4.7 4.6 24.4 24.6 24.7 12.6 12.7 12.7 0.6 0.5 0.8 3.4 3.3 3
matching glmnet 2.6 2.6 2.5 4.8 4.7 4.8 25.5 25.6 25.6 12.7 12.9 12.8 0.7 0.8 0.9 3.2 3.2 3.2
matching knn 5 4.4 3.6 7.5 6.9 6.1 34.2 34.1 34 7 5.8 4.2 6.1 5.8 5.5 0.9 0.5 0.3
matching lasso 7.1 7.2 7.2 10.8 11 11.1 65.5 65.5 65.5 29.9 29.8 29.7 6.8 6.4 6.6 1.8 1.3 1.2
matching ridge 2.4 2.5 2.5 4.7 4.7 4.7 24.5 24.6 24.7 12.6 12.8 12.7 0.5 0.9 0.8 3.2 3.1 3.2
matching treebag 3.5 3.7 4.3 6.5 6.1 6.4 45.5 45.7 46 16.4 16.6 16.6 6.6 0.1 8.8 10.8 6 1.7
psa avNNet 3.9 4.2 3.9 6.3 6.7 6.6 66.8 64.2 62.6 8.6 6.9 10 10.5 8.9 10 5.1 4.5 4.6
psa gbm 5.9 5.7 5.4 9.4 9.2 9 66.1 66.6 67.2 15.1 15.3 15.6 10.9 11.1 11.5 1.3 1.3 1.4
psa glm 3.4 3.5 3.5 5.6 5.8 5.8 67.7 68 68.1 15.1 15.1 15.1 4.8 5.2 5.1 1.3 1.3 1.3
psa glmnet 3.7 3.6 3.6 5.9 6 5.9 66.6 66.7 66.9 15.2 15.1 15.1 5.4 5.6 5.4 1.2 1.1 1.1
psa J48 4.6 5 5.2 9.5 10.5 10.9 70.6 70.4 69.6 23.5 22.1 15.1 19.3 22.3 23.4 4.2 2.2 2
psa knn 4.3 4.2 4.1 7.3 7.1 7 68.4 68.5 66.1 18.8 18.2 13.2 7 7.5 7.9 0.6 0.6 0.6
psa lda 3.7 3.6 3.6 6.1 6.2 6.3 67.3 67.2 67.1 14.8 14.9 14.8 6.5 6.2 6.4 0.2 0.3 0.2
psa naive 2.2 1 0.1 4.7 3.6 2.5 22.4 24.8 29.8 4.5 6.4 7.1 3.4 4.1 4.3 4.3 4.4 5.3
psa pda 3.6 3.6 3.6 6.2 6.3 6.2 67.7 67.2 67 14.8 14.9 14.8 6.8 6.4 6.3 0.5 0.2 0.3
psa rf 7 7.1 7.4 11 11.1 11.4 117.2 125.3 134.9 26.4 30.7 30.9 11.6 11.9 12.4 4.1 4.8 5.1
psa sda 3.5 3.7 3.6 6.2 6.2 6.2 67.1 67 67 14.8 14.7 14.8 6.3 6.2 6.3 0.5 0.3 0.3
psa treebag 6.8 7 7.3 10.9 11 11.4 66.2 66 59.6 13.3 23.4 25.6 12.1 12.4 12.7 4.4 4.7 5.6
psa strat avNNet 6.4 6.5 6.5 9.4 9.5 9.4 68.1 68.5 67.6 17.9 16.4 18.3 12.8 13 12.8 3.5 3.2 3.5
psa strat gbm 7.2 7.1 7 11 10.7 10.6 66.3 65.2 64.1 22.8 22.9 23 12.2 12.2 12 3.9 4.2 4.2
psa strat glm 6.2 6.1 6.1 9 8.8 8.8 71.3 69.6 66.9 23 22.9 23 10.8 10.7 10.8 2.9 3 3
psa strat glmnet 6.3 6.2 6.1 9.1 8.9 8.9 77.3 78.7 81 23 22.9 23 10.9 10.9 10.9 3.1 3 3
psa strat J48 6.2 6.9 6.9 10.5 11.5 11.8 70.6 70.4 70 27.4 26.9 22.5 14.8 17.7 18.8 0.5 0.2 1.4
psa strat knn 6.7 6.6 6.6 9.1 9.1 9.1 69.5 69.7 67.6 16.9 15.5 11.2 11.4 11.1 11.1 3.4 3.6 3.5
psa strat lda 6.2 6.2 6.2 9.1 9.1 9 71.4 69.9 67.2 22.7 22.7 22.8 10.5 10.5 10.5 3.4 3.5 3.6
psa strat naive 5.6 5.5 5.1 6.4 5.8 5 79.8 79.2 77.4 3.4 3.4 2.9 10.4 10.4 10.4 2.5 1.9 0.3
psa strat pda 6.2 6.1 6.1 9.2 9.1 9.1 72 70 67.5 22.8 22.7 22.8 12.6 12.8 12.9 3.6 3.5 3.6
psa strat rf 7.4 7.5 8.1 12.5 12.4 12.1 82 83.3 85 21.4 26.8 30.2 10.5 10.6 10.5 5.5 5.5 5.6
psa strat sda 6.3 6.2 6.1 9.3 9.1 9.1 70.8 70 66.7 22.8 22.7 22.8 12.9 13.2 13.1 3.4 3.6 3.6
psa strat treebag 7.9 7.9 8.1 12.4 12.4 12.4 68.4 68.7 67.1 6.9 20.5 24.3 9.8 8.9 11.2 5.9 5.6 5.7
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Table A2. Relative deviation (%) of each estimator for each population, sampling method, and sample size. The best values among the methods are in bold.

P1S1 P1S2 P2S1 P2S2 P3S1 P3S2

Estimator 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000

baseline 1.1 0.8 0.5 1.3 0.9 0.5 1.7 1.2 0.7 2.4 1.7 1 3.1 1.9 0.8 3 2.1 1.2
matching blasso 1.5 1.1 0.6 1.8 1.3 0.8 1.5 1.2 0.7 1.7 1.2 0.7 3.9 3.1 1.5 3.8 2.7 1.6
matching bridge 1.6 1.1 0.7 2 1.4 1.1 1.7 2.3 0.7 1.8 1.2 0.7 5.1 3.5 1.6 4.1 3 1.6
matching brnn 1.6 1 0.6 1.9 1.4 0.8 2.1 1.1 0.7 1.9 1.2 0.8 6.2 5.1 2.3 5.3 4 1.6
matching gbm 1.4 1 0.6 1.7 1.2 0.7 1.3 0.9 0.6 1.7 1.2 0.7 7.6 4.3 1.6 6.6 5.1 3.6
matching glm 1.4 1 0.6 2 1.4 0.9 1.6 1.1 0.6 1.7 1.2 0.7 4.1 2.7 1.2 4 2.6 1.4
matching glmnet 1.5 1 0.6 2 1.3 0.8 1.6 1.1 0.6 1.6 1.2 0.7 3.9 2.8 1.1 4 2.5 1.4
matching knn 1.6 1 0.7 2 1.4 0.9 1.3 0.8 0.6 1.7 1.3 0.9 4.3 2.8 1.3 3.9 2.8 1.5
matching lasso 1.2 0.8 0.5 1.4 1 0.6 1.7 1.2 0.7 2 1.4 0.9 3.9 2.5 1.1 3.5 2.4 1.4
matching ridge 1.6 1 0.6 1.9 1.3 0.8 1.5 1.1 0.7 1.8 1.2 0.7 4 2.7 1.2 3.9 2.5 1.4
matching treebag 1.4 1.1 0.7 1.9 1.4 0.9 1.4 1 0.7 1.6 1.2 0.8 11 6.4 1.5 9 5.6 2
psa avNNet 1.6 1.1 0.9 2 1.4 1.1 8.8 14.6 16 6.8 3.2 5.3 5 6 3.9 3.4 3 2
psa gbm 1.3 0.9 0.5 1.6 1 0.7 2.7 1.8 1.1 1.8 1.3 0.7 3.9 2.6 1.1 4.1 2.7 1.4
psa glm 1.5 1 0.6 2 1.4 0.8 3 2 1.3 1.7 1.2 0.8 4.1 2.7 1.2 4 2.6 1.3
psa glmnet 1.5 1 0.6 2 1.3 0.8 2.7 1.9 1.3 1.7 1.2 0.8 4 2.6 1.1 3.7 2.6 1.4
psa J48 2.6 1.8 1.2 2.9 2.1 1.2 1.7 1.2 1.6 8.7 8.5 6.5 21.9 19.9 18.6 25.2 17.9 11.5
psa knn 1.9 1.2 0.7 2.1 1.6 0.9 3.4 2.6 1.4 3.4 2.5 1.6 4.9 3.3 1.5 4.5 3.2 1.9
psa lda 1.5 1 0.6 1.9 1.2 0.8 3.6 2.6 1.6 1.9 1.2 0.7 3.5 2.4 1 3.6 2.4 1.3
psa naive 4.3 2.3 1.2 3.4 2.4 1.4 8.4 8.4 5.6 17.2 4.8 0.8 13.1 8 3.8 10.7 6.4 5.9
psa pda 1.5 1 0.5 1.8 1.2 0.7 3.9 2.8 1.6 1.7 1.2 0.7 3.6 2.3 1 3.6 2.6 1.3
psa rf 1.3 1 0.6 1.5 1.1 0.7 11.7 9.7 8.7 5.2 3.6 3.2 5.2 3.6 2.4 4.5 3.3 2.1
psa sda 1.4 1 0.6 1.8 1.2 0.7 3.9 2.7 1.6 1.7 1.2 0.7 3.5 2.4 1 3.6 2.5 1.3
psa treebag 1.6 1.2 1.3 1.8 1.2 0.8 9.7 13.9 8.8 21.1 8.7 4.2 5.7 4.3 2.8 5.3 4 2.4
psa strat avNNet 1.2 0.8 0.5 1.6 1.1 0.7 5.4 5.5 7.2 3.6 1.9 3.7 3.2 2.3 1.1 4 2.7 1.6
psa strat gbm 1.2 0.8 0.5 1.4 1 0.6 4.9 4.4 3.6 1.5 1.1 0.8 3.5 2.2 0.9 3.5 2.2 1.2
psa strat glm 1.2 0.8 0.5 1.5 1 0.6 7.8 6.7 4.5 1.6 1.1 0.8 3.2 2.1 0.9 3.5 2.1 1.2
psa strat glmnet 1.2 0.8 0.5 1.5 1.1 0.6 6.4 4.9 2.5 1.7 1.1 0.7 3.2 1.9 0.9 3.3 2.2 1.2
psa strat J48 2.2 1.1 0.7 2.4 1.5 0.8 2.1 1.4 4.2 5.4 4.9 4 15.4 12.3 10.5 20.1 14.6 10
psa strat knn 1.2 0.9 0.5 1.7 1.2 0.7 2.7 1.9 1.4 5 3.7 2 3.2 2.3 1.2 3.4 2.5 1.3
psa strat lda 1.2 0.8 0.5 1.5 1 0.6 7.1 6.6 4.8 1.7 1.2 0.8 3.2 2 0.9 3.3 2.3 1.3
psa strat naive 1.6 1.1 0.6 2.7 1.7 0.9 4.1 3.6 2.7 2.8 2 1.3 3.1 2 0.9 6 4.8 4
psa strat pda 1.2 0.8 0.5 1.4 1 0.6 7.6 6.8 4.9 1.7 1.3 0.8 2.9 1.9 0.9 3.2 2.2 1.2
psa strat rf 1.2 0.8 0.4 1.4 0.9 0.6 3.2 2.5 1.7 4.2 3.3 2.9 3.1 1.9 0.9 3.3 2.1 1.2
psa strat sda 1.2 0.8 0.5 1.5 1.1 0.6 7.5 7.1 4.4 1.8 1.3 0.8 3 2 1 3.3 2.2 1.2
psa strat treebag 1.2 0.8 0.5 1.4 0.9 0.6 5.6 7.7 4.5 20.8 8.8 4 10.5 10.4 3.7 3.1 2.2 1.3
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Table A3. Relative Root Mean Square Error (RMSE) (%) of each estimator for each population, sampling method, and sample size. The best values among the methods
are shown in bold.

P1S1 P1S2 P2S1 P2S2 P3S1 P3S2

Estimator 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000 1000 2000 5000

baseline 8.5 8.5 8.5 12.9 12.9 12.8 70.6 70.4 70.5 32.8 32.7 32.9 13.8 13.4 13.3 6.6 6.2 6
matching blasso 3.6 3.2 2.8 6.9 6 5.3 24.7 24.6 24.6 12.7 12.7 12.6 9.7 6 3 4.8 2.7 2.6
matching bridge 3.8 3.3 2.8 7.1 6.3 5.4 24.6 24.7 24.5 12.5 12.6 12.7 10.4 5.9 2.8 5.7 3 2.2
matching brnn 2.9 2.5 2.5 5.2 4.7 4.4 25.4 24.7 24.7 13.4 13.4 13.3 7.6 5.6 2.3 5.3 4.5 4.3
matching gbm 5.5 5.4 5.4 9 9 8.9 46.2 46.7 47.1 17.1 17.4 17.5 7.6 4.9 5.2 8.8 7.3 4.8
matching glm 3 2.6 2.5 5.1 4.9 4.7 24.4 24.6 24.7 12.7 12.7 12.7 4.2 2.8 1.4 5.2 4.2 3.3
matching glmnet 3 2.8 2.6 5.2 4.9 4.9 25.5 25.6 25.6 12.8 12.9 12.8 4 2.9 1.4 5.2 4 3.4
matching knn 5.3 4.6 3.6 7.8 7 6.2 34.2 34.1 34 7.2 6 4.3 7.5 6.5 5.7 4 2.9 1.5
matching lasso 7.2 7.3 7.3 10.9 11.1 11.1 65.6 65.5 65.5 30 29.8 29.7 7.8 6.8 6.7 3.9 2.7 1.8
matching ridge 2.9 2.7 2.6 5.1 4.9 4.8 24.5 24.6 24.7 12.7 12.9 12.7 4 2.9 1.5 5.1 4 3.5
matching treebag 3.8 3.8 4.3 6.7 6.2 6.4 45.5 45.7 46 16.5 16.6 16.7 12.8 6.4 9 14 8.2 2.7
psa avNNet 4.2 4.3 4 6.6 6.8 6.7 67.4 65.8 64.6 11 7.6 11.3 11.7 10.8 10.7 6.1 5.4 5
psa gbm 6.1 5.8 5.5 9.5 9.3 9 66.1 66.6 67.2 15.2 15.3 15.6 11.6 11.4 11.5 4.3 3 2
psa glm 3.7 3.6 3.5 6 6 5.9 67.8 68.1 68.1 15.2 15.1 15.2 6.4 5.8 5.2 4.2 3 1.9
psa glmnet 4 3.8 3.7 6.2 6.1 6 66.7 66.8 66.9 15.3 15.1 15.1 6.7 6.2 5.6 3.9 2.8 1.8
psa J48 5.3 5.3 5.4 9.9 10.7 10.9 70.6 70.4 69.6 25 23.7 16.4 29.2 29.9 29.9 25.5 18.1 11.7
psa knn 4.7 4.4 4.2 7.6 7.3 7.1 68.5 68.5 66.1 19.1 18.4 13.3 8.5 8.2 8 4.5 3.3 2
psa lda 4 3.7 3.6 6.4 6.3 6.3 67.4 67.2 67.2 14.9 14.9 14.8 7.4 6.7 6.4 3.6 2.4 1.3
psa naive 4.8 2.6 1.2 5.8 4.3 2.9 23.9 26.2 30.3 17.8 8 7.1 13.5 9 5.7 11.6 7.8 8
psa pda 3.9 3.7 3.6 6.5 6.5 6.3 67.8 67.2 67 14.9 15 14.9 7.7 6.8 6.3 3.7 2.6 1.3
psa rf 7.1 7.1 7.4 11.1 11.2 11.4 117.8 125.7 135.2 26.9 30.9 31.1 12.7 12.4 12.7 6.1 5.8 5.5
psa sda 3.8 3.8 3.7 6.5 6.3 6.3 67.2 67.1 67 14.9 14.8 14.8 7.3 6.6 6.4 3.6 2.5 1.3
psa treebag 7 7.1 7.4 11.1 11.1 11.4 66.9 67.4 60.2 25 24.9 26 13.3 13.1 13 6.9 6.1 6.1
psa strat avNNet 6.5 6.6 6.5 9.5 9.6 9.4 68.3 68.7 68 18.3 16.5 18.6 13.2 13.2 12.8 5.3 4.2 3.8
psa strat gbm 7.3 7.2 7 11.1 10.8 10.7 66.5 65.3 64.2 22.9 22.9 23 12.7 12.4 12 5.2 4.8 4.4
psa strat glm 6.3 6.2 6.2 9.1 8.8 8.8 71.7 69.9 67.1 23.1 22.9 23 11.2 10.9 10.8 4.5 3.7 3.2
psa strat glmnet 6.4 6.2 6.2 9.2 9 9 77.5 78.8 81 23.1 22.9 23 11.3 11.1 10.9 4.5 3.8 3.3
psa strat J48 6.6 7 7 10.7 11.6 11.9 70.6 70.5 70.2 27.9 27.3 22.9 21.4 21.5 21.6 20.1 14.6 10.1
psa strat knn 6.8 6.7 6.6 9.3 9.2 9.1 69.5 69.7 67.6 17.6 15.9 11.3 11.8 11.3 11.2 4.8 4.3 3.7
psa strat lda 6.3 6.2 6.2 9.2 9.1 9 71.7 70.2 67.4 22.7 22.7 22.9 11 10.7 10.5 4.8 4.2 3.8
psa strat naive 5.9 5.6 5.2 6.9 6 5.1 79.9 79.3 77.4 4.4 3.9 3.2 10.8 10.6 10.5 6.5 5.2 4
psa strat pda 6.3 6.2 6.2 9.3 9.2 9.1 72.4 70.4 67.7 22.8 22.7 22.9 12.9 12.9 13 4.9 4.2 3.8
psa strat rf 7.5 7.6 8.1 12.5 12.5 12.1 82 83.3 85 21.8 27 30.3 10.9 10.8 10.5 6.4 5.9 5.8
psa strat sda 6.4 6.2 6.2 9.4 9.1 9.1 71.2 70.3 66.8 22.8 22.8 22.8 13.2 13.3 13.1 4.7 4.3 3.8
psa strat treebag 8 8 8.1 12.5 12.4 12.4 68.6 69.1 67.2 21.9 22.3 24.6 14.4 13.7 11.8 6.6 6 5.9
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The R Package NonProbEst for
Estimation in Non-probability Surveys
by María del Mar Rueda, Ramón Ferri-García and Luis Castro-Martín

Abstract Different inference procedures are proposed in the literature to correct selection bias that
might be introduced with non-random sampling mechanisms. The R package NonProbEst enables
the estimation of parameters using some of these techniques to correct selection bias in non-probability
surveys. The mean and the total of the target variable are estimated using Propensity Score Adjustment,
calibration, statistical matching, model-based, model-assisted and model-calibratated techniques.
Confidence intervals can also obtained for each method. Machine learning algorithms can be used
for estimating the propensities or for predicting the unknown values of the target variable for the
non-sampled units. Variance of a given estimator is performed by two different Leave-One-Out
jackknife procedures. The functionality of the package is illustrated with example data sets.

Introduction

Since sampling theory was formalized in the beginning of the 20th century, surveys have been the main
tool to obtain information from society and nature. Traditional surveys used telephone or face-to-face
interviews for questionnaire administration, as well as mailing lists. However, the increase of costs,
linked to the decrease in response rates, and the development of information and communication
technologies have favored the use of new survey modes such as online or smartphone questionnaires.
These modes make the sampling process cheaper and faster, but tend to amplify bias from several
sources. More precisely, online surveys are often performed through a non-probability sampling,
using self-selection procedures without a defined sampling frame where the inclusion probabilities are
known or with deficient sampling frames with coverage issues, leading to higher levels of selection
bias (Elliott, Michael R. and Valliant, Richard, 2017).

Some techniques can be used to correct selection bias in online non-probability surveys. A good
overview of the various methods is given in Elliott, Michael R. and Valliant, Richard (2017). There are
three important approaches: the pseudo-design based inference (or pseudo-randomisation (Buelens,
Bart et al., 2018)), statistical matching and predictive inference.

In the pseudo-design based inference, the idea is to construct weights to correct for selection
bias. The first method is estimating response probabilities and using them in Horvitz-Thompson
or Hajek type estimators to account for unequal selection probabilities. The most used method to
estimate response probabilities is Propensity Score Adjustment (see e.g. Lee, Sunghee and Valliant,
Richard (2009)). This method uses a probability reference sample in addition to a non-probability
convenience sample to construct a response propensity model. Sample matching is another approach
also applied to tackle selection bias. A predictive model, with the target variable as the dependent
variable, is built using data from the non-probability sample. This model is subsequently applied to a
probability sample (where the target variable is not measured) to predict values of its individuals for
an estimation of the population values. Similarly, predictive methods are based on superpopulation
models. In this approach, a predictive model is fitted for the analysis variable from the sample and
used to project the sample to the full population. This approach (that can be used with probability
and non-probability samples) allows researchers to use the auxiliary information about covariates in
different methods for predicting the unknown values. Most of these methods require special software
for their implementation. The package NonProbEst implements some of these techniques.

The paper is structured as follows. First, we introduce the notation used throughout the paper and
we discuss the different ways to do inference for non-probability surveys. In section 2.3 we briefly
comment on the usefulness of Machine Learning (ML) Techniques in this context. Then, we describe
the R package NonProbEst. In section 2.5 we briefly describe the use of the functions, including
suitable examples, for each method.

Statistical methodology

Let U denote a finite population with N units, U = {1, . . . , k, . . . , N}. Let sV be a volunteer non-
probability sample of size nV , self-selected from an online population UV which is a subset of the total
target population U. Let y be the variable of interest in the survey estimation. Without any auxiliary
information, the population total of y, Y, is usually estimated with the following Horvitz-Thompson
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type estimator:
ŶHT = ∑

k∈sV

wvkyk (1)

being wvk a weight of the unit k set by the researcher to adjust the lack of response, lack of coverage,
voluntariness, ... (e.g. by means of post-stratification). A simple choice is wvk = N/nV , that is, consider
the sample of volunteers as if it was obtained with a simple random sampling design of the population
U.

This estimator has a bias induced by various mechanisms regarding their application. The most
important are the selection bias (due to the difference between sampled and nonsampled individuals
on the probability to participate in a survey) and the coverage bias (the online population Uv is not the
same of the target population U).

The key to successful weighting to remove the bias in non-probability surveys lies in the use
of powerful auxiliary information. Auxiliary information can be available in different forms. We
distinguish three different cases, called InfoTP, InfoES and InfoEP, depending on the information at
hand.

• InfoTP: Only the population totals of the auxiliary variables are known (often called control
totals). Possible sources of information are a census of the target population, an administrative
register, ... One of the simplest and most frequently used control totals occurs when the
information consists of known counts for a set of population groups.

• InfoES: The auxiliary variable values are available for every element in a probability sample.
This reference survey is conducted on the same target population than the non-probability
survey, with the main difference that the former has a better coverage and higher response rates
than the latter, thus it is adequate to represent the behavior that the target population should
have when a probability survey is performed on it.

• InfoEP: The auxiliary variable values are available for every element in the whole population.
An example of this is when statistical agencies use auxiliary variables specified in different
existing registers, for all the elements in the population.

We will now explain the main methods used to treat these biases depending on the type of
information that is available.

InfoTP

Calibration

Let xk be the value taken on unit k by a vector of auxiliary variables which population total is assumed
to be known X = ∑N

k=1 xk. The calibration estimation of Y consists in the computation of a new
vector of weights wk for k ∈ s which modifies as little as possible the original sample weights, wvk,
which have the desirable property of producing unbiased estimations, respecting at the same time the
calibration equations

∑
k∈sV

wkxk = X. (2)

Given a pseudo-distance G(wk, wvk), the calibration process consists in finding the solution to the
minimization problem

min
wk
{ ∑

k∈sV

G(wk, wvk)} (3)

while respecting the calibration equation (2). Several distances were defined in Deville, Jean-Claude
and Särndal, Carl Erik (1992), being the linear distance one of the most commonly used. The resulting
estimator of Y under the chi-square distance is the general regression estimator

Yreg = ∑
sV

wkyk = ∑
sV

dkyk + (X−∑
sV

wvkxk)
′ B̂sV (4)

where B̂s is
B̂sV = T−1

s ∑
sV

wvkxkyk (5)

being Ts = ∑sV
wvkxkx′k.
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It is proved in Bethlehem, Jelke (2010) that bias can be reduced through calibration only when the
non-response due to volunteering has a Missing At Random scheme, while it cannot be equally done
in Not Missing at Random situations (which are the most frequent).

InfoSP

Propensity Score Adjustment

The Propensity Score Adjustment method was originally developed by Rosenbaum, Paul R and Rubin,
Donald B (1983) which sought to reduce the confounding bias between treatment and control groups in
experimental designs. This approach would be considered in sampling research as well in combination
with a reference sample (Rubin, Donald B, 1986), but it was not proposed for online surveys until the
early 2000’s (Taylor, H. et al., 2001).

It is expected that a sample collected by online recruitment would not follow the principles of a
probability sampling, especially in those cases that the survey is filled by volunteer respondents. In
such a situation, every individual is associated to a probability of participating in the survey which
depends on her or his characteristics.

The propensity for an individual to take part on the non-probability survey is obtained by training
a predictive model (often a logistic regression) on the dichotomous variable, IsV , which measures
whether a respondent from the combination of both samples took part in the volunteer survey or in
the reference survey. Covariates used in the model, x, are measured in both samples (in contrast to the
target variable which is only measured in the non-probability sample), thus the formula to compute
the propensity of taking part in the volunteer survey with a logistic model, π, can be displayed as

π(x) =
1

e−(γT x) + 1
(6)

for some vector γ, as a function of the model covariates.

We denote by sR the reference sample and wRk the original design weight of the k individual in
the reference sample

Several options for using the propensity scores in estimation are listed below:

• We can use the inverse of the estimated response propensity as a weight for constructing the
estimator (Valliant, Richard, 2020):

ŶPSA1 = ∑
k∈sV

wV kyk/π̂(xk) = ∑
k∈sV

ykwPSA1
k (7)

where π̂(xk) is the estimated response propensity for the individual k of the volunteer sample
as predicted using covariates x.

• Alternatively, the approach proposed in Schonlau, Matthias and Couper, Mick P. (2017) can
be used to obtain weights for a Horvitz-Thompson type estimator using propensity scores.
Weights are defined as

wPSA2
k =

1− π̂(xk)

π̂(xk)
(8)

and resulting estimator for the population total is given by

ŶPSA2 = ∑
k∈sV

ykwPSA2
k (9)

• Valliant, Richard and Dever, Jill A. (2011) use the propensity scores to post-stratify the sample.
The process is: sort the combined sample by π̂(xk); split the combined sample into g classes ( g
= 5 as the conventional choice following Cochran, William G (1968)), each of which has about
the same number of cases in the combined sample; and compute an average propensity, π̄g
within subclass g. Use π̄g as the weight adjustment for every person in the subclass. Resulting
estimator is:

ŶPSA3 = ∑
g

∑
k∈sV g

wV kyk/π̄g = ∑
g

∑
k∈sV g

ykwPSA3
k (10)

• Following the approach described in Lee, Sunghee and Valliant, Richard (2009) propensity
scores are divided in g classes, where all units may have the same propensity score or at least be

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 4

in a very narrow range and an adjustment factor is calculated as:

fg =
∑k∈sR g

wRk/ ∑k∈sR
wRk

∑k∈sV g
wVk/ ∑k∈sV

wVk
(11)

where sRg is the set of individuals in the reference sample that are in the gth class of propensity
scores and sV g is the set of individuals in the volunteer sample that are in the gth class of
propensity scores. Finally, the adjusted weights wPSA4 are the product of the original weights
and the adjustment factor; following the same notation, the adjusted weight for individual k in
sV g (i. e. the individual k of the gth propensity class in the volunteer sample) is computed as

wPSA4
k = wVk fg (12)

and the estimator is given by

ŶPSA4 = ∑
g

∑
k∈sV g

ykwPSA4
k (13)

Research findings have shown that PSA successfully removes bias in some situations, but at the
cost of increasing the variance (Lee, Sunghee and Valliant, Richard, 2009). Valliant, Richard and Dever,
Jill A. (2011) showed that the estimation of a variable using PSA must be complemented with further
weighting adjustment in order to make estimates less biased. The use of PSA with further calibration
is studied in Lee, Sunghee and Valliant, Richard (2009) and Ferri-García, Ramón and Rueda, Maria
del Mar (2018), concluding that calibration adjustments are helpful if they are applied using the right
covariates.

Variance estimation in PSA is not a simple issue. Valliant, Richard (2020) proposes an estimator of
the variance for an estimator of a mean, ŷ, based on linearization, but this estimator does not take into
account the randomness of weight estimation, therefore it will tend to underestimate the variance.

Jackknife’s variance estimator (Quenouille, Maurice H (1956)) can be seen as an acceptable alterna-
tive in nonprobability samples after applying PSA. Let ŷ = 1

N ∑k∈sV
wPSA

k yk be the estimator of the
mean of y, his Leave-One-Out Jackknife estimator of the variance is given by:

V̂(ŷ) =
n− 1

n

n

∑
j=1

(y(j) − y)2 (14)

where y(j) is the value of the estimator ŷ after dropping unit j from sV and where y is the mean of
values y(j).

Given that PSA weights are estimated from the available data, the exclusion of one unit can have an
impact on the values of wi and affect the variability of the estimator. This variability can be taken into
account if propensities are recalculated for each of the n Leave-One-Out partitions. Thus a Jackknife
estimator with recalculating weights is defined as:

V̂rw(ŷ) =
n− 1

n

n

∑
j=1

(yrw(j) − yrw)
2 (15)

where yrw(j) =
1
N ∑

k∈sV−{j}
wPSA

k (j)yk, with wPSA
k (j) the PSA weight obtained from the sample sV − {j}

and yrw is the mean of values yrw(j).

Statistical matching

The statistical matching method was introduced by Rivers, D. (2007). The idea is to model the
relationship between yk and xk using the volunteer sample sV in order to predict yk for the reference
sample. That is, the matching estimator is given by:

ŶSM = ∑
sR

ŷkwRk

being ŷk the predict value of yk.

The key is how to predict the values yk. Usually ŷk = x′k β̂ being β̂ = ∑k∈sV
ykxk/ ∑k∈sV

x′kxk but
other methods can be considered as donor imputation (Rivers, D., 2007) or fractional donor imputation
(Kim, J.K and Fuller, W., 2004).

A major drawback of matching is that the precision of the non-probability sample reduces to
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the standard error of the reference sample (Buelens, Bart et al., 2018). These authors also justify
that matching is based on strong ignorability assumptions and can lead biased estimators if the
assumptions are not met.

InfoUP

The prediction approach is based on superpopulation models, which assume that the population
under study y = (y1, ..., yN)′ is a realization of super-population random variables Y = (Y1, ..., YN)′

having a superpopulation model ξ. To incorporate auxiliary information xk available for all k ∈ U on
assume a superpopulation for y built on some mean function of x:

Yk = m(xk) + ek, k = 1, ..., N. (16)

The random vector e = (e1, ..., eN)′ is assumed to have zero mean and a positive definite covariance
matrix which is diagonal (Yk are mutually independent).

Using a set of covariates, x, measured in sV and sV = U − sV it is possible to estimate the values
of y in sV with regression modeling such that the estimated value of y for an individual k can be
calculated through the following expression:

ŷk = Em(yk|xk) (17)

m alludes to the specific model which provides the expectation of yk, and xk are the values of the k-th
individual in the covariates x.

We can use the auxiliary information in several ways to define several estimators:

• the model-based estimator:

Ŷm = ∑
k∈sV

yk + ∑
k∈sV

ŷk (18)

• the model-assisted estimator:

Ŷma = ∑
k∈U

ŷk + ∑
k∈sV

(yk − ŷk)wVk (19)

• the model-calibrated estimator:
Ŷmcal = ∑

k∈sV

ykwCAL
k (20)

where wCAL
k are such that they minimize ∑k∈s G

(
wCAL

k , wVk
)
, where G(·, ·) is a particular

distance function, subject to

∑
k∈sV

wCAL
k ŷk = ∑

k∈U
ŷk.

Usually the linear regression model is used, Em(yk|xk) = x′kβ and the above estimators can be
rewritten as a type of regression estimators.

Prediction estimators need complete information about the auxiliary variables (InfoEP) and can
fail if the model is not true, but might potentially be fruitful to correct for selection bias in informative
sampling (Buelens, Bart et al., 2018).

Use of machine learning algorithms in non-probability samples

The emerging data sources like Big Data can be used in combination to traditional survey samples
for construct more valid inferences. Machine Learning (ML) methods can be used for the matter,
given their known advantages in high dimensional environments. There are several types of learning
algorithms but for this package we focus on classification and regression. Classification aims to
identify the category to which a new observation belongs while regression is used for prediction in
real-valuated variables. Both are trained with known observations to make predictions based on some
covariates.

There is a vast spectrum of classification and regression algorithms to take into account, starting
from the basic linear and logistic regressions and its extensions, like Ridge regression (Hoerl, Arthur E
and Kennard, Robert W, 1970). Other examples are decision trees which uses tree-like graphs , like
the C4.5 (Quinlan, J Ross, 1993). More modern approaches even build ensembles of decision trees
with outstanding results, like XGBoost (Chen, Tianqi and Guestrin, Carlos, 2016). During the last few
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years, deep learning models have been dramatically improving the state-of-the-art (LeCun, Yann et al.,
2015). However, many other techniques are still being widely used and developed, like some bayesian
methods (Park, Trevor and Casella, George, 2008). Having so many different options, choosing the
right learning algorithm for each problem is key for obtaining optimal results.

Regarding survey research, the use of ML algorithms has been studied in the last few years for
deriving model-assisted estimators (Montanari, Giorgio E and Ranalli, M Giovanna (2007); Baffetta,
Federica et al. (2009); Breidt, F Jay et al. (2017)). In the prediction approach ML algorithms uses
the sample to train a model capturing the behaviour of a target variable which is to be estimated,
and applies it to the nonsampled individuals to obtain population-level estimates. Applications of
machine learning algorithms in PSA for nonresponse propensity have been studied for classification
and regression trees (Phipps, Polly et al., 2012) and Random Forests (Buskirk, Trent D and Kolenikov,
Stanislav, 2015); their efficacy on reducing nonresponse bias in comparison to logistic regression
depends on the available covariates and the complexity of the relationships. (Chen, Jack Kuang Tsung
et al., 2019) use LASSO for calibrating non-probability surveys. (Buelens, Bart et al., 2018) review
existing inference methods to correct for selection bias and recommend adding ML methods to deal
with non-probability samples.

NonProbEst allows the use of a wide variety of classification and regression algorithms for model-
based, model-assisted and model-calibrated estimators, matching and PSA (which only works with
classification). It offers so many alternatives by relying on caret (Max Kuhn, 2018), a well known
machine learning package.

The R package NonProbEst

The package NonProbEst implements in R a set of techniques for estimation in non-probability
surveys, using various approaches which correspond to several frameworks. Functions in the pack-
age allow to obtain calibration weights via calib_weights, propensity scores via propensities and
matching predictions for a reference sample via matching. Propensity scores can be transformed
into weights by all of the approaches mentioned in previous sections via functions lee_weights,
sc_weights, valliant_weights, vd_weights. These weights can be used for estimation of total, mean
and proportion of a given target variable measured in a sample using functions total_estimation,
mean_estimation, prop_estimation. Alternatively, total and mean can also be calculated using a
model-based, a model-assisted or a model-calibrated approach with the functions model_based,
model_assisted and model_calibrated respectively. The variance of the estimators can be calculated
using the Leave-One-Out Jackknife method, this is, recalculating the set of weights after substracting
one unit or not, by means of the functions generic_jackknife_variance and jackknife_variance,
and without recalculating the weights via fast_jackknife_variance. Frequentist confidence intervals
of the estimates can be directly computed with the confidence_interval function.

Calibration weights are obtained using the calib function of the sampling package (Yves Tillé and
Alina Matei, 2016) for g-weights computation. calib_weights offers a wrapper for calculation of final
weights straight from the dataset. Functions that require prediction techniques, such as propensities,
matching, model_based, model_assisted, model_calibrated and jackknife_variance, use the train
function from the caret package (Max Kuhn, 2018). This function allows the user to use any of
the algorithms in the large list of functions which are covered by train, with the possibility of
optimizing hyperparameters for a better performance of the predictors. For propensity estimation,
only classification algorithms should be used as the target variable is binary (participation in the
probability sample vs participation in the non-probability sample). Case weights are used to balance
both classes (for models that accept them). For matching, model-based and model-assisted estimations,
algorithms should account for the type of variable of the target feature.

Note that weighting formulas for PSA from Lee, Sunghee (2006) and Valliant, Richard and Dever,
Jill A. (2011) require applying a stratification procedure. In both lee_weights and vd_weights the
same procedure is applied: the vector of propensities is sorted increasingly, and the individuals are
equally divided in g strata of the same length according to their position in the sorted vector. g is
defined by the user, and the procedure results in a vector with the strata number (from 1 to g) to
which a given individual corresponds. This stratification avoids errors that could arise from the lack
of unique values.

Three datasets are available in the package: sampleP, sampleNP and population. These fictitious
datasets were created as described in Ferri-García, Ramón and Rueda, Maria del Mar (2018); sampleP
represents a probability sample of size nr = 500 extracted by simple random sampling from a
frame covering the entire population, while sampleNP represents a non-probability sample of size
nv = 1000 extracted by simple random sampling from a frame covering only the subpopulation of
individuals who have access to Internet. The dataset of the complete population of size N = 50000 is
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available in population. Variables available in each dataset differ, with sampleNP having the largest
amount of variables. In the aforementioned dataset, three variables (vote_gen, vote_pens, vote_pir)
measuring whether an individual would vote to a given party ("gen", "pens" or "pir") in an election
or not. Probabilities of voting to party "gen", "pens" or "pir" are higher if the individual is a woman,
and elder person and has access to the Internet, respectively. These variables are only measured in
sampleNP, meaning that adjustment methods have to be applied in order to produce reliable estimates
of voting intentions. For the matter, the rest of the available variables in the dataset, which are also
included in sampleP (except for the language) and population, can be used. education_primaria,
education_secundaria, education_terciaria are three disjunct variables measuring the education
level of the individual (Primary, Secondary or Tertiary Education), while age and sex measures the
numeric age and the gender (0 female, 1 male). Finally, language measures whether the individual’s
native language is the official language or not. The absence of certain variables in the datasets accounts
for real situations where not all the information is available at individual level.

It must be mentioned that the use of jackknife_variance for calculating the variance of the estima-
tors via Leave-One-Out Jackknife will be computationally slower than the fast_jackknife_variance
alternative. Recalculating the weights in each iteration means that the weighting procedure has to
be repeated as many times as individuals are in the non-probability sample. If Propensity Score
Adjustment is used for weighting, the models have to be rebuilt in each iteration, resulting in larger
computation times which will depend on the computational costs of the algorithms used for propensity
estimation. Note that generic_jackknife_variance will behave similarly if the estimator passed as
argument involves predictive modelling algorithms or other costly procedures. To show the difference
of procedures, we calculated the Leave-One-Out Jackknife estimated variance of the estimator of the
mean for the variable vote_pir in a non-probability sample of size nv = 100 extracted by simple
random sampling on the sampleNP dataset, using a probability sample of size nr = 100 extracted by
simple random sampling on the sampleP dataset as the reference sample data. Considering a popula-
tion of N = 50000, variance estimates of the estimator weighted by PSA using different algorithms
were computed, measuring the computation elapsed time. All the calculations were performed in a
Intel(R) Core(TM) i7-3770 CPU up to 3.40GHz. Results can be consulted in Table 1

Weight recalculation PSA algorithm R function Elapsed time (seconds)

No Logistic regression glm 0.004999876
Yes Logistic regression glm 75.56034
Yes CART rpart 102.3409
Yes Random Forest rf 203.7737
Yes GBM gbm 453.731
Yes Neural Network nnet 719.733

Table 1: Total elapsed time of Leave-One-Out Jackknife variance estimation under recalculation of
weights in each iteration for a set of predictive models, with sample sizes of 100 for both the probability
and the non-probability sample

In this example, the variance estimation with recalculations takes more than 15000 times the
seconds that it takes without recalculations if logistic regression is the method used for propensity
estimation, and almost 144000 times if feed-forward neural networks are used. Time differences
might be different depending on the data, the estimator and the algorithm, but they will be largely
appreciable in all cases.

In order to ilustrate how the resources in the package can be used for estimation in non-probability
surveys, some examples of each adjustment covered by the package are developed in the following
section.

Inference in non-probability samples with NonProbEst

InfoTP: Calibration

Suppose that a non-probability sample of 1000 individuals recruited via online surveying is available
for estimating the vote intention in a given election. For the matter, sampleNP will be used as the
non-probability sample data.

> library(NonProbEst)
> head(sampleNP)
vote_gen vote_pens vote_pir education_primaria education_secundaria education_terciaria age sex language

1 0 1 0 1 0 0 66 1 1
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2 0 0 1 0 0 1 30 1 1
3 1 0 0 0 1 0 62 0 1
4 0 0 1 1 0 0 33 0 1
5 0 0 1 0 1 0 30 0 1
6 0 0 0 1 0 0 69 1 1

Some auxiliary information is available in the sample; more precisely, individual data on education,
age, gender and language (as described in the previous Section) can be used for mitigating the effects
of coverage error. Population totals are available for all of these auxiliar variables, as they have been
measured for the entire population. They can be retrieved from the population dataset:

> head(population)
education_primaria education_secundaria education_terciaria age sex language

1 0 1 0 39 1 1
2 0 0 1 55 0 1
3 1 0 0 35 0 1
4 1 0 0 58 1 1
5 1 0 0 36 1 1
6 0 1 0 61 1 1
> totals <- colSums(population)
> totals
education_primaria education_secundaria education_terciaria age sex language

25287 10546 14167 2539340 24430 45429

If the variables of which population totals are available are not disjunct, Raking calibration can
be applied in order to estimate cell counts and account for the lack of information. This can be done
with the calib_weights function; in this case, the Xs argument were the dataset sampleNP selecting the
auxiliar variables only. Other arguments involve the totals previously obtained and the initial weights,
which allows the user to specify whether sampling design weights were used or not. In the latter case,
unitary weights should be provided as a vector of ones of length equal to the number of individuals
in the non-probability sample. Population size and method to be used by the calib function from
sampling have to be specified.

> covariates <- colnames(sampleNP)[4:9]
> initial_weights <- rep(1, nrow(sampleNP))
> w <- calib_weights(sampleNP[, covariates], totals, initial_weights,

N = 50000, method = "raking")

Once we obtain the weights, estimates for the mean (proportion if the variable is binary) or the
total of any variable present in the non-probability sample can be obtained using mean_estimation or
total_estimation respectively. For example, the estimated proportion of votes for each party can be
obtained with the following code:

> mean_estimation(sampleNP, w, "vote_gen", N = 50000)
vote_gen

0.09824163
> mean_estimation(sampleNP, w, "vote_pens", N = 50000)
vote_pens
0.3726149
> mean_estimation(sampleNP, w, "vote_pir", N = 50000)
vote_pir
0.3905399

If these estimates are compared to those which would be obtained if no adjustment was used, the
effect of calibration is notorious. As the presence of "gen" voters in the sample is MCAR, estimates do
not differ, but in the case of "pens" voters whose presence is MAR, the calibration approach gives a
larger estimate which can be explained by the fact that the overrepresentation of younger people in
the sample has been corrected up to a point. To a much lesser extent, this correction is also noticeable
in the estimation of vote to "pir" (presence of their voters in the sample is NMAR).

> sum(sampleNP$vote_gen)/nrow(sampleNP)
[1] 0.096
> sum(sampleNP$vote_pens)/nrow(sampleNP)
[1] 0.346
> sum(sampleNP$vote_pir)/nrow(sampleNP)
[1] 0.404
> sum(sampleNP$vote_gen)/nrow(sampleNP) -
+ mean_estimation(sampleNP, w, "vote_gen", N = 50000)

vote_gen
-0.00224163
> sum(sampleNP$vote_pens)/nrow(sampleNP) -
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+ mean_estimation(sampleNP, w, "vote_pens", N = 50000)
vote_pens

-0.02661494
> sum(sampleNP$vote_pir)/nrow(sampleNP) -
+ mean_estimation(sampleNP, w, "vote_pir", N = 50000)
vote_pir

0.01346014

The variance of the estimates can be assessed through Leave-One-Out Jackknife, both with or
without reweighting in each iteration. In the former case, a function must be created by the user for
such a task. In the following lines, a function example is developed for estimating the variance on the
estimation of the proportion of votes for the "pir" party:

### Leave-One-Out Jackknife variance estimation with reweighting
> estimator <- function(s){

initial_weights <- rep(1, nrow(s))
w <- calib_weights(s[,covariates], totals, initial_weights, N = 50000,

method = "raking")
return(mean_estimation(s, w, "vote_pir", N = 50000))
}

> v_r <- generic_jackknife_variance(sampleNP, estimator, N = 50000)
> v_r
[1] 0.0003352199
### Leave-One-Out Jackknife variance estimation without reweighting
> v_nr <- fast_jackknife_variance(sampleNP, w,

estimated_vars = "vote_pir", N = 50000)
> v_nr

vote_pir
0.0003189449

These estimates of the variance can be used for the construction of confidence intervals for the
estimation of the proportion via confidence_interval function. This function requires the point
estimator and the standard deviation as arguments, with the option to fix the confidence level. If not
specified by the user, the confidence interval is calculated at 95% confidence level.

> ic_r <- confidence_interval(
mean_estimation(sampleNP, w, "vote_pir", N = 50000),
sqrt(v_r)
)

> ic_r
lower.vote_pir upper.vote_pir

0.3546549 0.4264249
> ic_nr <- confidence_interval(

mean_estimation(sampleNP, w, "vote_pir", N = 50000),
sqrt(v_nr)
)

> ic_nr
lower.vote_pir upper.vote_pir

0.3555368 0.4255429

InfoSP: Propensity Score Adjustment

Suppose that, in addition to the non-probability sample, a probability sample of the same target
population is available as auxiliary information. The target variable is not measured, but some other
variables which are also available in the non-probability sample have been measured on it. For the
matter, sampleP will be used as data from the probability sample.

> head(sampleP)
education_primaria education_secundaria education_terciaria age sex

1 1 0 0 35 1
2 0 0 1 64 0
3 1 0 0 55 1
4 0 1 0 61 1
5 0 0 1 35 0
6 1 0 0 51 1
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In order to reduce the selection bias, Propensity Score Adjustment can be used in this case for
reweighting. This procedure is implemented in the propensities function; it requires both samples,
the list of covariates to be used to build the models for propensity estimation, and three arguments
regarding technical aspects of the adjustment: the prediction algorithm (must match any of the list of
caret supported algorithms), a boolean indicating whether smoothing of propensities is applied or
not, and a vector of strings specifying the preprocessing procedures to be passed to train (by default,
preprocessing is not applied). Further arguments to be passed to train can be specified.

In this example, the propensity of participating will be estimated using k-Nearest Neighbors with
further smoothing and a parameter grid of all the odd numbers between 3 and 11 for optimization of k.
The covariates will be all the variables measured in sampleP. The result will be a list with two vectors:
the estimated propensities for individuals in the non-probability (convenience) and the probability
(reference) sample respectively.

> covariates <- colnames(sampleP)
> pi <- propensities(sampleNP, sampleP, covariates,

algorithm = "knn", smooth = T,
tuneGrid = data.frame(k = seq(3, 11, by = 2)))

> summary(pi$convenience)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3079 0.6249 0.6873 0.6834 0.7584 0.9995
> summary(pi$reference)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3079 0.5384 0.6388 0.6236 0.6998 0.9469

The propensities must be subsequently transformed into weights for their application in survey
estimation. Transformations available in NonProbEst include approaches developed by Lee, Sunghee
(2006) and Lee, Sunghee and Valliant, Richard (2009) in the lee_weights function, Valliant, Richard
and Dever, Jill A. (2011) in the vd_weights function, Schonlau, Matthias and Couper, Mick P. (2017) in
the sc_weights function and Valliant, Richard (2020) in the valliant_weights function. lee_weights
and vd_weights require propensities of both samples and a number of strata (5 by default), while
sc_weights and valliant_weights only require propensities of the non-probability sample.

For example, if we want to apply propensities via weights developed in Valliant, Richard and
Dever, Jill A. (2011) for the estimation of voting intention to party "pir", we can do it with the following
code:

> wi <- vd_weights(convenience_propensities = pi$convenience,
reference_propensities = pi$reference)

> summary(wi)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.233 1.376 1.493 1.505 1.632 2.011
> mean_estimation(sample = sampleNP, weights = wi,

estimated_vars = "vote_pir")
vote_pir
0.4006072
#Estimation of the 95% confidence interval
> estim <- mean_estimation(sample = sampleNP, weights = wi,

estimated_vars = "vote_pir")
> std_dev <- fast_jackknife_variance(sample = sampleNP, weights = wi,

estimated_vars = "vote_pir", N = 50000)
> confidence_interval(estimation = estim, std_dev = std_dev, confidence = 0.95)
lower.vote_pir upper.vote_pir

0.4001341 0.4010803

Note that for those weights that are calculated by means of propensity stratification, propensities of
the individuals in the convenience and reference sample are needed. If they are calculated by inverting
propensities, only those for the individuals in the convenience sample are needed. For example, if we
calculate weights via the formula developed in Schonlau, Matthias and Couper, Mick P. (2017), the
code is:

> wi <- sc_weights(propensities = pi$convenience)
> summary(wi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0004998 0.3185741 0.4549419 0.5044062 0.6003197 2.2479720

Apart from direct estimation, resulting weights can be used as inputs in the initial_weights
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argument of the calib_weights function for the estimation with PSA and calibration, or with the
package survey (Thomas Lumley, 2018) for more complex analysis.

InfoUP: superpopulation estimators

In this case, in addition to the non-probability sample, the population itself is avaliable for some
covariates. However, the target variable is only measured in the non-probability sample. For the
matter, sampleNP will be used as the non-probability sample data and population will be used as the
population data.

The model-based estimator can be used to estimate the population total (or mean) for the target
variable. In this example, the expected number of votes for "pens" will be estimated with regularized
logistic regression as learning algorithm. This procedure is implemented in the model_based function.
It requires the sample, the population, the covariates names and the target variable as arguments. In
our example, the specific algorithm and a normalization preprocessing are passed to change default
behaviour. Since no optimization strategy is specified in this case, a default bootstrap will be applied.

> covariates <- c("education_primaria", "education_secundaria",
"education_terciaria", "age", "sex", "language")

> mySample = sampleNP
> mySample$vote_pens = factor(mySample$vote_pens, c(0, 1), c('F', 'T'))
> model_based(mySample, population, covariates, "vote_pens",

positive_label = 'T', algorithm = "glmnet",
proc = c("center", "scale"))

[1] 18282.51

If the proportion of votes has to be estimated, rather than the total, it would be as simple as adding
the estimate_mean argument as follows:

> model_based(mySample, population, covariates,
"vote_pens", positive_label = 'T', algorithm = "glmnet",
proc = c("center", "scale"), estimate_mean = TRUE)

[1] 0.366757

Alternatively, model-calibrated estimator can be used to achieve higher efficiency in some situa-
tions. In that case, design weights have to be specified in the argument "weights", in addition to the
rest of arguments previously described. If no sampling design was followed in data collection, which
is the case that we suppose in our example, we can specify unitary weights by turning the parameter
to 1, as it is done in the following code:

> model_calibrated(sample_data = mySample, weights = 1, full_data = population,
+ covariates = covariates, estimated_var = "vote_pens",
+ positive_label = 'T', algorithm = "glmnet",
+ proc = c("center","scale"), estimate_mean = TRUE)
[1] 0.365945

Conclusion and future developments

In this paper we show how the NonProbEst package can simplify the application of different weighting
methods to correct selection bias in non-probability surveys. This package is, to the best of our
knowledge, the first package that supports the user beyond estimation in PSA, PSA+calibration,
statistical matching or model-calibration. Another important feature is that a wide range of ML
techniques can be used to optimize the information provided by the auxiliary variables.

Additional features will be integrated in future versions of the package. Some simplified wrappers
will be developed for some methods so non-expert users can also easily apply them, more parameters
will be avaliable for estimation and further support for weighted models will be added. Also, other
techniques for variance estimation can be considered. Many of these features can already be applied
combining NonProbEst with the survey package, as noted before.

Regarding Machine Learning, methods for variable selection will be studied as well as the use
of more advanced deep learning libraries outside of caret’s scope. Variable selection would help
explaining the bias and choosing the best covariates for its correction. Better deep learning libraries
would allow the use of state-of-the-art algorithms.
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a b s t r a c t

The convenience of online surveys has quickly increased their popularity for data
collection. However, this method is often non-probabilistic as they usually rely on
selfselection procedures and internet coverage. These problems produce biased samples.
In order to mitigate this bias, some methods like Statistical Matching and Propensity
Score Adjustment (PSA) have been proposed. Both of them use a probabilistic reference
sample with some covariates in common with the convenience sample. Statistical
Matching trains a machine learning model with the convenience sample which is then
used to predict the target variable for the reference sample. These predicted values
can be used to estimate population values. In PSA, both samples are used to train a
model which estimates the propensity to participate in the convenience sample. Weights
for the convenience sample are then calculated with those propensities. In this study,
we propose methods to combine both techniques. The performance of each proposed
method is tested by drawing nonprobability and probability samples from real datasets
and using them to estimate population parameters.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Survey samplers have long been using probability samples from one or more sources to make valid and efficient
inferences on finite population parameters. Methods for combining two or more probability samples were also developed
to increase the efficiency of estimators for a given cost. Dual frame and multiple frame methods for survey estimation,
developed in [1] and [2] respectively, are an example of such techniques.

Due to technological innovations, large amounts of inexpensive data (commonly known as Big Data) and data from
non-probability samples are now accessible. Big data include administrative data, social media data, internet of things
and scraped data from websites, and satellite images. Big Data and data from web panels have the potential of providing
estimates in near real time, unlike traditional data derived from probability samples. Statistical agencies are now taking
modernization initiatives into account to find new ways to integrate data from a variety of sources and to produce ‘‘real-
time’’ official statistics. On the other hand, a review by [3] concludes that the potential of probability sampling cannot be
reached by nonprobability samples, even if correction methods are applied.

Inferences from Big Data and nonprobability surveys have important sources of error. Given the characteristics of
these data collection procedures, selection bias is particularly relevant. Following notation from [4], in a situation where
U is the target population to which survey results are supposed to be generalized, a nonprobability selection ensures
that sample individuals will be drawn from a population of potentially covered individuals, Upc ⊂ U . This is the case
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of internet and smartphone surveys, where the population with the necessary devices for taking part in the survey are
a subset of the total population. The bias produced by this issue is commonly known as coverage error. In addition, if
the participation in the survey is conditioned to a selection mechanism, the sample will be eventually drawn from an
actually covered population, Uac ⊂ Upc . Following the previous example, internet surveys with an opt-in scheme (such
as snowball samples in social media websites) would recruit volunteer respondents willing to participate, hence not all
of the potentially covered population would have a non-zero probability of being drawn. This is commonly known as
self-selection bias.

Some techniques to mitigate selection bias can be applied if a probability sample, drawn from U with a sampling design
(ds, ps) and negligible sources of bias, is available. From all of them, Propensity Score Adjustment (PSA) and Statistical
Matching have gained interest from the research community. PSA, originally developed for reducing selection bias in
non-randomized clinical trials [5], was adapted to nonprobability surveys in the works of [6] and [7]. This method aims
to estimate the propensity to participate in the survey of each individual by taking into account how would have the
sample been if it was drawn with a probability sampling design. Its efficacy at reducing selection bias has been repeatedly
proven [6–10], although requires a proper specification of the model and the variables to be included on it, and further
adjustments such as calibration. Statistical Matching [11,12] is a rather predictive approach; the nonprobability sample
is used to develop a prediction model on the target variable, which is subsequently used for prediction in the probability
sample. It remains unclear which of the methods is more efficient, although a recent experiment by [13] showed better
results for Statistical Matching in terms of efficiency.

In this study, we treat the problem of integrating the information provided by probability and nonprobability surveys
(or Big Data). We develop a set of procedures which combine the results provided by PSA and Statistical Matching to
obtain survey estimates, and compare their efficiency to that of the mentioned methods on their own. The combination
of results frommultiple sources has been studied in survey research, and the promising results provide some evidence that
the application of these methods could be fruitful in the nonprobability survey context. Furthermore, predictive modeling
allows to incorporate auxiliary information as training weights or parameter configuration, hence a two-step approach
can be applied. Our initial hypothesis is that the combination of multiple sources for estimation in nonprobability survey
sampling has the potential to overcome current methods in terms of bias reduction and efficiency of the estimators.

The remainder of the article is organized in four sections. After introducing the problem of estimation in Section 2,
in Section 3, new estimators are proposed based on different approach to integrate data. Some simulation experiments
are carried out to check the finite size sample properties of the proposed estimators in Section Section 4. Finally, Section
Section 5 presents the concluding remarks.

2. The problem of estimation with non-probability samples

Let U denote a finite population with N units, U = {1, . . . , k, . . . ,N}. Let sV be a volunteer non-probability sample of
size nV , self-selected from an online population UV which is a subset of the total target population U and sR a reference
probabilistic sample of size nrs selected from U under a sampling design (sd, pd) with πi =

∑
sr∋i pd(sr ) the first order

inclusion probability for the ith individual. Let y be the variable of interest in the survey estimation. Let xk be the value
taken on unit k by a vector of auxiliary variables. Covariates x have been measured on both samples, while the variable
of interest y has been measured only in the volunteer sample. We denote by wRk = 1/πk the original design weight of
the k individual in the reference sample.

A matching estimator is defined by:

ŶSM =

∑
sR

ŷkwRk

being ŷk the predicted value of yk.
The key is how to predict the values yk. Formal working linear regression models, relating the study variable y to

the vector of auxiliary variables are usually considered to develop efficient estimators of the total Y . Suppose a working
population model, Em(yi) = m(xi, β) = mi for i ∈ U is assumed to hold for the sample sV where Em denotes model
expectation and the mean function mi is specified. Using the data from the sample sV we obtain an estimator β̂ which
is consistent for β if the model is correctly specified and thus the estimator ŶSM is consistent if the model for the study
variable is correctly specified but the estimator will be biased if the model for the study variable is incorrectly specified.
Parametric models require assumptions regarding variable selection, the functional form and distributions of variables,
and specification of interactions. Contrary to statistical modeling approaches that assume a data model with parameters
estimated from the data, more advanced machine learning algorithms aim to extract the relationship between an outcome
and predictor without an a priori data model. These methods have been recently applied in the statistical matching context
in [13].

In recent years, propensity score adjustment (PSA) has increasingly been used as a means of correcting selection bias
in online surveys. The efficacy of PSA at removing selection bias from online surveys has been discussed in numerous
studies (see e.g. [6]; [7]; [8]; [9]).
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It is expected that a sample collected by online recruitment would not follow the principles of a probability sampling,
especially in those cases that the survey is filled by volunteer respondents. We can define an indicator variable I as follows:

Ii =
1 i ∈ sV
0 i /∈ sV

, i = 1, 2, . . . ,N (1)

Propensity scores, πi, can be defined as the propensity of the ith individual of participating in the survey, this is, the
probability that Ii = 1. The propensity score of the individual can be formulated, following notation in [14], as the expected
value of I conditional on her/his target variable and covariates’ value:

πi = E[Ii|xi, yi] = P(Ii = 1|xi, yi) (2)

The probability reflects the selection mechanism of the non-probability sample. Depending on the mechanism, the
conditional probability might vary. If the selection is Missing Completely At Random (MCAR), then P(Ii = 1|xi, yi) =

P(Ii = 1) and estimates obtained from sV would be unbiased. If the selection is Missing At Random (MAR), then
P(Ii = 1|xi, yi) = P(Ii = 1|xi). When the selection mechanism is Missing Not At Random (MNAR) or MAR, Propensity Score
Adjustment (PSA) can be applied to remove the bias induced by such mechanisms. Although the real propensity cannot be
obtained, it can be estimated if a reference survey is available. The reference survey must have been conducted on the same
target population than the online survey but collected in a more adequate manner regarding coverage and response issues.

The propensity for an individual to take part on the non-probability survey is obtained by training a predictive model
(often a logistic regression) on the dichotomous variable, IsV , which measures whether a respondent from the combination
of both samples took part in the volunteer survey or in the reference survey. Covariates used in the model, x, are measured
in both samples (in contrast to the target variable which is only measured in the non-probability sample), thus the formula
to compute the propensity of taking part in the volunteer survey with a logistic model, π , can be displayed as

π (x) =
1

e−(γ T x) + 1
(3)

for some vector γ , as a function of the model covariates.
We can use the inverse of the estimated response propensity as a weight for constructing the estimator [15]:

ŶPSA =

∑
k∈sV

wV kyk/π̂ (xk) =

∑
k∈sV

ykwPSA
k (4)

where π̂ (xk) is the estimated response propensity for the individual k of the volunteer sample as predicted using
covariates x.

3. Proposed estimators by combining probability and non-probability samples

In this section, we will explore new ways of doing the integration of data of probability and non-probability samples.

3.1. Shrinkage

Shrinkage is a natural way to improve the available estimates, in terms of the mean squared error. For example,
composite estimators are used in small area estimation (see [16,17]). [18] applies shrinkage in regression analysis and [19]
uses this technique to predict a binary response on the basis of binary explanatory variables. Similarly, [20] propose a
shrinkage calibration estimator in cluster sampling.

We propose an estimator based on composite information, as follows:
Ŷsrk = KŶSM + (1 − K )ŶPSA, where K is a constant satisfying 0 < K < 1.

Theorem 1. The optimum value for k in the sense of minimum variance into the class of estimators Ŷsrk is

kopt =
AV (ŶPSA) − cov(ŶSM , ŶPSA)

AV (ŶSM ) + AV (ŶPSA) − 2cov(ŶSM , ŶPSA)
. (5)

Proof. The variance of Ŷsrk is given by

V (Ŷsrk) = V (KŶSM + (1 − K )ŶPSA)

= K 2V (ŶSM ) + (1 − K )2V (ŶPSA) + 2K (1 − K )cov(ŶSM , p̂rq).

By denoting V1 = V (ŶSM ), V2 = V (ŶPSA) and C = cov(ŶSM , ŶPSA), the variance of Ŷsrk can be expressed as

V (Ŷsrk) = K 2V1 + (1 − K )2V2 + 2K (1 − K )C .

3
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The first derivative of V (Ŷsrk) with respect to K is

∂V (Ŷsrk)
∂k

= 2KV1 − 2(1 − K )V2 + 2(1 − 2K )C = 0;

Kopt =
V2 − C

V1 + V2 − 2C
.

The second derivative is

∂V (Ŷsrk)
∂2K

= 2V (ŶSM − ŶPSA) > 0,

and we conclude that Kopt really minimizes AV (Ŷsrk). □

Note. Usually samples sV and sp are independents, thus Kopt =
V2

V1+V2
.

The optimal coefficient Kopt depends on population variances, which are usually unknown in practice, and so Ŷsrkopt
cannot be calculated.

The following estimator can be defined

Ŷop = K̂opt ŶSM + (1 − K̂opt )ŶPSA

where K̂opt denotes that estimates are substituted for the variances and covariances in (5).

3.2. Double robust estimator

We assume a working population model, Em(yi) = µ(xi) = mi, i = 1, . . . ,N . A new estimator which combines
probability and non-probability samples can be defined by using the idea of the difference estimator ([21], pag. 222).

The total Y can be written as:

Y =

∑
U

ŷk +

∑
U

(yk − ŷk)

being ŷk = m̂k the predicted value of the yk under the population model. We estimate each term by using the weighted
estimator obtained from the reference probabilistic sample and the volunteer sample respectively:

ŶDR =

∑
sR

ŷkwRk +

∑
sV

wPSA
k (yk − ŷk).

The estimator ŶDR is double robust: it is consistent if either the model for the propensities or the model for the study
variable is correctly specified.

If the working outcome regression model for y is linear, Em(yi) = βx, this estimator coincides with the estimator
proposed by [14].

3.3. Training data with PSA weights

Most machine learning models allow considering weights for the training data. We also propose an estimator which
uses wPSA

k for k ∈ sV when training the model which predicts ŷk for k ∈ sR. The estimation would then be:
∑

sR
ŷkwRk

For example, if the chosen model is linear regression, a predictor for Statistical Matching would be obtained as

Em(yi|xi) = xTi β

where β coefficients are optimized in order to minimize the following Mean Square Error:

MSE(sV ) =

∑
sV
(ŷk − yk)2

nV

The proposed estimator would simply minimize the following weighted Mean Square Error instead:

MSE(sV ) =

∑
sV

wPSA
k (ŷk − yk)2∑
sV

wPSA
k

.

Thus the proposed estimator will be obtained with algorithm 1:

• Calculate wPSA
k for k ∈ sV by using some machine learning classification algorithm described in Ferri and Rueda

(2020).
• Train a model Em(yi|xi) using xk for k ∈ sV weighted with wPSA

k for k ∈ sV . Often, this means minimizing the weighted
Mean Square Error defined above. However, each machine learning model may have its own weighting mechanism.

• Obtain ŷk for k ∈ sR using the model trained in the previous step.
• Estimate the total as Ŷtr =

∑
sR
ŷkwRk

4
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4. Simulation study

4.1. Data

We have chosen 3 datasets for the simulation study. Also, for each one of them, 2 different non-probabilistic sampling
strategies are used for the volunteer sample. The probabilistic sampling strategy for the reference sample is always
a simple random sampling among the whole population. The volunteer samples include the target variable while the
reference samples do not contain that information.

The first population is the Hotel Booking Demand Dataset [22], denoted as P1. It contains booking information for a city
hotel and a resort hotel. In total, it consists of 119,390 bookings due to arrival between the 1st of July of 2015 and the 31st
of August 2017. The target is estimating the mean number of week nights (Monday to Friday) the guests book to stay at
the hotel. The first non-probabilistic sampling strategy, denoted as S1, is a random sampling where the bookings from the
resort hotel have 10 times more probability of being chosen than the bookings from the city hotel. The second sampling
strategy, denoted as S2, is a random sampling where the bookings from the city hotel have 5 times more probability of
being chosen than the bookings from the resort hotel. In both cases, 28 covariates were used. The only variables excluded
as covariates were the target, the hotel type, the reservation status and the reservation status date.

The second population is BigLucy [23], denoted as P2. It contains financial information about 85,396 industrial
companies. In this case, the target is estimating the mean annual income in the previous year. The first non-probabilistic
sampling strategy, denoted as S1, is a simple random sampling among the companies with SPAM options, excluding those
labeled as ‘‘small companies’’. The second sampling strategy, denoted as S2, considers a propensity to participate in the
volunteer sample calculated as Pr(taxes) = min(taxes2/30, 1), where taxes is the company’s income tax in the previous
year, among the companies with SPAM options. The covariates used are: the number of employees, the company’s income
tax, the size (small, medium or big) and whether it is ISO certified.

The third population, denoted as P3, consists of a study conducted in 2012 by the Spanish National Institute of
Statistics about the economic and life conditions of 28,610 adult individuals [24]. The target is estimating the mean
self-reported health on a scale from 1 to 5. For the first sampling strategy, denoted as S1, a simple random sample is
taken among the individuals with internet access. For the second one, denoted as S2, a propensity to participate defined
as Pr(yr) =

yr2−19002

19962−19002
, where yr is the year the individual was born, is added to the internet restriction. 56 health-related

covariates are used, avoiding those too correlated with the target variable like health issues in the last 6 months or chronic
conditions.

4.2. Simulation

We have performed simulations for the 4 proposed estimators, including both variants of shrinkage. For each one,
every dataset with their corresponding sampling strategies has been simulated 500 times for each sample size. 1000,
2000 and 5000 have been used as sample size, taking the same size for both samples (the volunteer and the reference
ones). The machine learning model chosen for every method is logistic regression, given its proven reliability [13].

In order to evaluate the results for the simulations, 3 metrics are calculated: the relative mean bias, the relative
standard deviation and the relative Root Mean Square Error. These metrics are defined as follows:

RBias (%) =

⏐⏐⏐⏐⏐
∑500

i=1 Ŷ
(i)

500
− Y

⏐⏐⏐⏐⏐ ·
100
Y

(6)

RStandard deviation (%) =

√∑500
i=1(Ŷ (i) −

ˆ̄Y )2

499
·
100
Y

(7)

RMSE (%) =

√
RBias2 + RSD2 (8)

with Ŷ (i) the estimation of Y in the ith simulation and ˆ̄Y the mean of the 500 estimations.
Finally, in order to compare each method, the mean and median efficiency is obtained as well as the number of times

it has been among the best. The efficiency of a method is defined as follows:

Efficiency (%) =
Baseline − RMSE

Baseline
· 100 (9)

where the baseline is the RMSE of using the unweighted sample mean for the estimation. Also, a method is considered
to be among the best when its RMSE differs from the best RMSE by less than 1%.
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Table 1
Relative mean bias (%) of each population and sample size for each method.

Baseline Matching PSA Training Chen K1 K2

P1S1 1000 18.9 4.5 5.5 4.5 4.6 5.2 5
P1S1 2000 18.9 4.9 5.5 4.8 4.9 5.1 5.2
P1S1 5000 18.6 4.8 4.6 4.7 4.8 4.9 4.7

P1S2 1000 9.2 5 4.1 4.1 4.1 4.5 5
P1S2 2000 9.2 4.9 4.2 3.9 4.1 4.4 4.4
P1S2 5000 9.1 4.7 3.9 3.6 3.8 4.3 4.3

P2S1 1000 70.6 24.4 67.7 23.6 24.4 46 35.2
P2S1 2000 70.4 24.6 68 23.7 24.5 46.2 35.4
P2S1 5000 70.4 24.7 68.1 23.7 24.5 46.3 35.3

P2S2 1000 32.7 12.6 15.1 10.9 11.9 13.7 13.7
P2S2 2000 32.6 12.7 15.1 10.9 11.9 13.6 13.7
P2S2 5000 32.9 12.7 15.1 11 12 13.7 13.8

P3S1 1000 8.4 2.6 3.4 2.3 2.3 2.9 2.9
P3S1 2000 8.5 2.4 3.5 2.2 2.3 3 3
P3S1 5000 8.5 2.5 3.5 2.1 2.3 3 3

P3S2 1000 12.9 4.7 5.6 4.1 4.5 5.2 5.2
P3S2 2000 12.8 4.7 5.8 4.1 4.3 5.2 5.2
P3S2 5000 12.8 4.6 5.8 4 4.2 5.1 5.1

Table 2
Relative RMSE (%) of each population and sample size for each method.

Baseline Matching PSA Training Chen K1 K2

P1S1 1000 19.1 5.6 6.3 5.4 5.5 6 5.8
P1S1 2000 18.9 5.4 5.9 5.3 5.3 5.5 5.6
P1S1 5000 18.7 5 8.6 4.9 5.6 5.9 6.3

P1S2 1000 9.5 5.9 5.7 5 5.3 5.5 5.9
P1S2 2000 9.3 5.3 4.8 4.4 4.7 4.9 4.9
P1S2 5000 9.2 4.8 4.2 3.8 4 4.5 4.4

P2S1 1000 70.6 24.4 67.8 23.7 24.4 46 35.3
P2S1 2000 70.4 24.6 68.1 23.7 24.5 46.2 35.4
P2S1 5000 70.5 24.7 68.1 23.7 24.5 46.3 35.4

P2S2 1000 32.8 12.7 15.2 11.1 12 13.8 13.8
P2S2 2000 32.7 12.7 15.1 11 12 13.7 13.8
P2S2 5000 32.9 12.7 15.2 11 12 13.7 13.8

P3S1 1000 8.5 3 3.7 2.8 2.7 3.3 3.3
P3S1 2000 8.5 2.6 3.6 2.4 2.5 3.1 3.1
P3S1 5000 8.5 2.5 3.5 2.2 2.3 3.1 3.1

P3S2 1000 12.9 5.1 6 4.6 4.9 5.6 5.6
P3S2 2000 12.9 4.9 6 4.4 4.6 5.3 5.3
P3S2 5000 12.8 4.7 5.9 4.1 4.3 5.2 5.2

4.3. Results

The results obtained for the bias and RMSE can be consulted in Tables 1 and 2 respectively. Table 3 contains the
summary comparing each method. Both shrinkage estimators are referred to as K1, for K1 = sr/(sr + sv), and K2, for
K2 = V (θ̂PSA)/(V (θ̂PSA)+V (θ̂SM )). The double robust estimator is referred to as Chen. The estimator which uses PSA weights
when training the Statistical Matching model is referred to as Training.

As it can be observed, Training always obtains the best estimations. Even though its difference from Matching is small,
the most interesting point is that even in the case where PSA outperforms Matching, Training is still better. Chen offers
very similar results, although slightly worse.

Shrinkage simply produces values between Matching and PSA. Also, there is not much difference between both variants
because the variance of Matching and PSA is usually similar.

5. Conclusions

Selection bias, a growing issue in survey sampling and empirical sciences due to new questionnaire administration
methods, appears when a sample is drawn from a potentially covered population which is different on its composition
to the target population. If a sample drawn from the target population is available, some methods can be applied to
adjust for selection bias in the nonprobability sample. Propensity Score Adjustment (PSA) and Statistical Matching are the

6
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Table 3
Mean and median efficiency (%) of each method and times it has been among the best.

Mean Median Best

Training 65.8 66.4 18
Chen 64 65.2 18
Matching 61.8 64.2 14
K2 57.3 58 10
K1 55 58.2 10
PSA 46.6 53.9 6

most important methods up to date, both of them showing an increase in efficiency when applied to the estimation of
a population parameter. In this context, it is feasible that a combination of both methods could result in an advantage
in terms of bias and error reduction, especially given that they can be complemented as they have different outcomes
(weights in PSA and predictions in Matching). Previous work by [14] proved that a doubly-robust estimator could provide
acceptable results, with good properties.

In this study, shrinkage methods to combine two estimates, doubly-robust estimation and the use of PSA weights in the
training of models to be used for Statistical Matching are compared in terms of bias and RMSE. The results are obtained
from simulations with three different datasets to enable the study of the behavior of such methods under different
conditions. Results show a certain advantage of the training method developed in this paper over the model-assisted
estimator, and an advantage of both of them over Statistical Matching. Shrinkage and PSA stand far below, although they
offer competitive results under certain circumstances.

The advantage of the training method is that it gives more importance in the prediction to those individuals who
are more likely to appear in the population. By default, a model trained in a biased dataset might also produce biased
predictions; however, if this bias is corrected by methods such as PSA, it is expected that the relationships established
by the prediction model and its results are more similar to those present in the target population. This also applies to
the model-assisted estimator, where the prediction errors in the nonprobability sample with the largest importance are
those with a higher probability of being present in a random sample from the target population.

Our study has some limitations to be noted: first, although a variety of datasets have been used, the suitability of
each method might be influenced by the data itself. The results presented here need further replicability in a wider range
of datasets and scenarios in order to have the full picture. Secondly, only one prediction algorithm (linear regression
models) was used in the study. Previous research showed that modern Machine Learning prediction techniques can be
advantageous in removing selection bias with PSA [25], although it remains unclear for Statistical Matching [13]. Further
research could introduce these algorithms in the adjustment methods presented here and compare them to the linear
regression case. Finally, the theoretical properties of some of the methods proposed here (shrinkage and training) have
to be developed, although these properties should not be very different from those of the dual frame estimation (in the
case of shrinkage) or those from the Statistical Matching estimator (in the case of training).
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Abstract: In the last years, web surveys have established themselves as one of the main methods in
empirical research. However, the effect of coverage and selection bias in such surveys has undercut
their utility for statistical inference in finite populations. To compensate for these biases, researchers
have employed a variety of statistical techniques to adjust nonprobability samples so that they
more closely match the population. In this study, we test the potential of the XGBoost algorithm
in the most important methods for estimation that integrate data from a probability survey and a
nonprobability survey. At the same time, a comparison is made of the effectiveness of these methods
for the elimination of biases. The results show that the four proposed estimators based on gradient
boosting frameworks can improve survey representativity with respect to other classic prediction
methods. The proposed methodology is also used to analyze a real nonprobability survey sample on
the social effects of COVID-19.

Keywords: nonprobability surveys; machine learning techniques; propensity score adjustment;
survey sampling

1. Introduction

Survey sampling theory, since its foundation in the 20th century with the works
of Jerzy Neyman [1,2], has been the gold standard for applied research in the empirical
sciences. Its methods have been primarily developed for contexts where a probability
sampling is feasible; under this assumption, survey sampling methods allow us to ob-
tain reliable estimates from a sample of a population, with an associated measure of the
variability that arises from the randomness of the sample.

Traditional questionnaire administration modes, such as face-to-face or telephone
surveys, have met (to a large extent) the conditions that guarantee probability sampling for
a long time. However, in the last few years the winds of change have brought other data
sources into the picture in response to the growing issues of those traditional modes (such
as drops in response rates or increase of costs). The increasing prevalence of nonprobability
surveys, such as web panels, interception surveys or large volume datasets collected
automatically that are often used in big data (e.g., lists of tweets or transactions), has
brought positive aspects like reducing survey time and cost per respondent, as well as
enabling more possibilities for questionnaire design. On the other hand, collecting a
strict probability sample using such methods is largely difficult because of the frame
undercoverage that arises from drawing the sample from a subset of the target population
(such as internet users) and the fact that the respondents are self-selected for many of those
methods. These issues make methods for nonprobability samples even more important.

When using the aforementioned data sources for finite population inference, adjusting
for selection bias should be considered. Among the various techniques to remove bias
in web surveys, we could underline propensity score adjustment (PSA). This method,
originally developed for reducing selection bias in non-randomized clinical trials [3], is
commonly used for dealing with missing data [4], and was adapted to nonprobability
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surveys in the work of [5,6]. Among the alternatives, we could mention the statistical
matching method, which is also known as mass imputation in the literature, which was
developed in [7] as a technique to address selection bias in web surveys by means of
predictive modelling.

These methods are often used using logistic models (to estimate the propensity to
participate in the survey of each individual) and linear regressions (to predict the values
of the interest variable), which may entail several disadvantages for large populations in
comparison to modern prediction methods such as ML algorithms.

In recent decades, numerous machine learning (ML) methods have emerged that
have proven to be more suitable for regression and classification than linear regression
methods. Although there has been an exponential increase in the use of these techniques
in many areas [8–10], their application in the context of sampling in finite populations
has been limited. A model-assisted estimator based on a neural network with skip-layer
connections was developed in [11] . A design-based model-assisted estimator using KNN
(K-nearest neighbor method) was developed in [12,13]. Spline regression and random
forests in post-stratification were used in [14]. The effects of bagging on non-differentiable
survey estimators including sample distribution functions and quantile were invesigated
in [15].

Recently, ML algorithms have been considered in the literature for the treatment
of nonprobability samples. A simulation study using certain ML predictive algorithms
(decision trees, k-nearest neighbors, Naive Bayes, Random Forest and Gradient Boosting
Machine) is performed in [16]. Their findings showed that ML methods have the potential
to remove selection bias in nonprobability samples to a greater extent than logistic regres-
sion in some scenarios. This view had been previously supported by [17]. The use of linear
models and some ML algorithms in PSA to estimate propensities and in imputation for
statistical matching was compared in [18]. Other recent papers that use Regression Trees
and boosting algorithms to remove bias in web surveys are [19,20].

A common machine learning algorithm under the Gradient Boosting framework is
XGBoost [21]. The use of this algorithm is motivated by the promising results obtained
with boosting algorithms in general and Gradient Boosting Machines (GBM) in particular;
for instance, the simulation study from [16] showed that Gradient Boosting Machines can
lead to selection bias reductions in situations of high dimensionality, or where the selec-
tion mechanism is Missing At Random (MAR). Boosting algorithms have been applied in
propensity score weighting for non-randomized experiments, including Gradient Boosting
Machines [22–27], showing on average better results than conventional parametric regres-
sion models. Given its theoretical advantage over GBM, which could lead to even better
results in a broader range of situations, XGBoost will be used for this research to test its
adequacy for mitigating selection bias in volunteer samples and lay a baseline performance
result. We will apply this algorithm for several estimators based on different approaches.

The paper is organized as follows. In Section 2, the existing methods for correcting
selection bias in volunteer samples using a reference probability sample are described.
In Section 3, the XGBoost method is presented and its use for estimating population mean
in our context is proposed. The results from several simulation studies are presented in
Section 4. An application to a real survey is presented in Section 5. Finally, the findings
and their implications are discussed in Section 6.

2. Context

Let U denote a finite population of size N, U = {1, . . . , i, . . . , N}. Let sV be a conve-
nience (or volunteer) nonprobability sample of size sV . Let y be the variable of interest in
the survey estimation.

The population mean, Y, can be estimated with the naive estimator based on the
sample mean of y in sV :

Ŷ = ∑
i∈sV

yi
nV

(1)
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If the convenience sample sV suffers from selection bias, this estimator will provide
biased results. This can happen if there is an important fraction of the population with
zero chance of being included in the sample (coverage bias) and if there are significant
differences in the inclusion probabilities among the different members of the population
(selection bias) [28,29].

Let sR be a reference sample of size nR selected from U under a probability sampling
design (sR, pR) with πi = ∑sR3i pR(sR) (where sR denotes the samples which contain the
unit i) the first order inclusion probability for individual i, we denote by di = 1/πi the
design weights for the units in the reference sample. Let xi be the values presented by
individual i for a vector of covariates x. Those covariates are common to both samples,
while we only have measurements of the variable of interest y for the individuals in the
convenience sample.

In this context, propensity score adjustment (PSA) can be used to reduce the selection
bias that would affect the unweighted estimates. This approach aims to estimate the
propensity of an individual to be included in the nonprobability sample by combining
the data from both samples, sR and sV , and training a predictive model on the variable δ,
with δi = 1 if i ∈ sV and δi = 0 if i ∈ sR. PSA assumes that the selection mechanism of sV
is ignorable and follows a parametric model:

P(δi = 1|xi) = pi(x) =
1

e−(γ′xi) + 1
(2)

for some vector γ. The procedure is to estimate the parameter γ by using logistic regression
and transform the estimated propensities to weights by inverting them wlog

i = 1/ p̂i where
p̂i = p̂i(xi) = (e−(γ̂′xi) + 1)−1 is the estimated propensity for the individual i ∈ sV based
on logistic regression. Thus the inverse propensity score weighting estimator (IPSW) [30] is:

Ŷ IPSW =
1

∑i∈sV
wlog

i
∑

i∈sV

yiw
log
i (3)

Propensities can be transformed into weights using other procedures, such as stratify-
ing the vector of propensities to form groups of individuals with similar propensities and
assign all individuals in a group the same weight [6,31].

If the design weights are used in the computation of γ, the estimator Ŷ IPSW is valid
provided the participation rate is small, given that the optimization procedure leads to the
pseudologlikelihood function developed in [32] which provides an unbiased and consistent
estimator of the propensities except for an extra term that depends on the size of sV relative
to U, and therefore can be considered as negligible if U � sV . A modification of PSA is
the TrIPW estimator developed in [19], that uses a modified version of the Classification
And Regression Trees (CART) algorithm [33], and does not require the participation rate
to be small. Although IPSW and TrIPW can be considered PSA approaches, the method-
ology of the latter is slighty different, as it takes into account design weights in the tree
building by definition, while in the IPSW approach it is not required to use design weights.
The propensity for each individual i ∈ sV is estimated as:

p̃i
CART =

#(l(i) ∩ sV)

#(l(i))
(4)

where l(i) represents the terminal node of the CART algorithm trained on U in which
i-th individual of sV lies. The formula above represents the proportion of population
individuals that would be classified in the terminal node 1 and also belong to sV . Given
that U − sV is not available, the propensity described above has to be estimated from the
information contained in the available samples using a modified CART algorithm and
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estimating proportions by taking design weights into account to be used for estimating
population and subpopulation sizes as follows:

p̂i
CART =

#(l(i) ∩ sV)

#̂(l(i))
=

#(l(i) ∩ sV)

∑j∈l(i)∩sR

1
πj

(5)

where πj is the first order inclusion probability for individual j in sR. The equation above
substitutes the unknown number of individuals from the population that would fit in l(i)
by its estimated value through the sum of the sampling weights of individuals from sR that
belong to l(i). These values p̂i

CART are now used to construct a Hajek type estimator of
Y as:

ŶTrIPW =
1

∑i∈sV
wCART

i
∑

i∈sV

yiwCART
i (6)

where wCART
i = 1/ p̂i

CART . This non-parametric approach shows acceptable results under
non-linearity conditions [19].

In a similar way to PSA, propensity scores are used to measure the similarity between
the covariates of the probabilistic and nonprobability samples. The new approach is called
Kernel Weighting [34]. These propensity scores were made through the use of logistic
regression, as explained previously.

For j ∈ sR we compute the distance of its estimated propensity score from each i in
the nonprobability sample (whose result varies from −1 to 1) as:

d(xi, xj) = p̂i(xi)− p̂j(xj) (7)

Then, a zero-centered kernel function is applied to smooth distances. Thus, the pseu-
doweights can be calculated:

kij =
K
{

d(xi, xj)/h
}

∑j∈sV
K
{

d(xi, xj)/h
} (8)

where K(·) is the applied kernel function (i.e., Gaussian):

K
(
d(xi, xj); h

)
∝ exp

(
−d(xi, xj)

2

2h2

)
(9)

and h is the bandwidth. To calculate the optimal bandwidth, Silverman’s method is
used [35]:

h = 0.9 min
(

σ̂,
IQR
1.34

)
n
−

1
5 (10)

where σ̂ is the square root of the variance, IQR is the interquartile range and n is the length
of the distances vector. Finally the KW weight is given by:

wi = ∑
j∈sR

kijdj (11)

and the KW estimator of the population mean is:

ŶKW =
1

∑i∈sV
wKW

i
∑

i∈sV

yiwKW
i . (12)



Mathematics 2021, 9, 2991 5 of 23

Another variation of KW is Boosted Kernel Weighting. Its only difference is the usage
of machine learning instead of logistic regression to get the propensities [20]. These authors
use four ML methods: model-based recursive partitioning, conditional random forests,
gradient boosting machines and model-based boosting to estimate propensities and deduce
in their simulation study that boosting methods result in KW with lower bias in several
settings without increasing variance.

PSA is often used for reducing selection bias in nonprobability surveys, but empirical
evidence of its effectiveness is mixed. A study with four web panel surveys was devel-
oped in [36], showing that the reduction in bias is likely to be partial and unpredictable .
Alternative methods for selection bias adjustment are based in superpopulation models.
Statistical matching (SM) is an approach developed by [7] and applied to nonresponse
treatment in [37]. This method aims to predict y in the probability sample (where y has not
been measured) using covariates x and the volunteer sample sV to fit the models that will
be used to predict values of y in the reference sample. SM assumes that y is a realization of
a superpopulation random variable Y, which follows a functional relationship with the set
of covariates x such that:

yi = m(xi) + ei, i = 1, 2, . . . , N, (13)

It is often assumed that the relationship between y and x is linear, meaning that
m(xi) = βxi, the random vector e = (e1, . . . , eN)

′ is assumed to have zero mean and the
coefficients β can be estimated by the usual methods in linear regression such as Ordinary
Least Squares or maximum likelihood. The matching estimator is then given by:

ŶSM =
1

∑i∈sR
di

∑
sR

ŷidi (14)

where ŷi the imputed value of yi and di the design weight of the individual i in sR.
It remains unclear which of the two methods (PSA or SM) is more efficient, although a

recent experiment by [18] showed a higher efficiency of statistical matching.
Recently, [32] proposed a new doubly robust estimator based on the previous linear

model (13), and showed that this estimator can be conveniently used for inferences from
nonprobability samples. The estimator is defined as:

ŶDR =
1

∑i∈sR
di

∑
sR

ŷidi +
1

∑i∈sV
1/ p̂i(xi)

∑
i∈sV

(yi − ŷi)/ p̂i(xi) (15)

This estimator follows the idea of the model-assisted generalized difference estimator
given in [38] and has the property of being robust to modelling misspecifications either in
the propensity estimation or in the matching imputation.

Alternatively, a more direct method has been proposed in [39] to combine SM and PSA.
The main idea is to use PSA weights in the predictive models used in Statistical Matching,
given that those models use the nonprobability sample as training data. This is a feasible
strategy given that most machine learning algorithms allow the weighting of the training
data. For example, the previous linear model (13) can minimize a weighted Mean Square
Error instead. Let ŷti the value of yi imputed by a model trained that uses 1/ p̂i(xi), i ∈ sV
as training weights. The proposed estimator will be:

ŶWT =
1

∑i∈sR
di

∑
sR

ŷtidi. (16)

In the next section we introduce a powerful machine learning technique that can be
used both for predicting the unknown values in the probability sample (which can be
used to obtain the imputed values in the estimators described previously) and also for
calculating the propensity scores.
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3. XGBoost Estimators

We assume that covariates x have been measured on both samples, while the variable
of interest y has been measured only in the volunteer sample, sR.

We will use XGBoost to obtain the imputed values in the matching estimator. XGBoost
is a widely known state-of-the-art machine learning system for several problems. For ex-
ample, it was used in 17 out of 29 winning solutions published during 2015 at Kaggle,
a famous machine learning platform for hosting competitions [21].

It works as a decision tree ensemble. Decision trees set split points based on xi until
reaching a final estimation ŷi of yi.

As described in the original paper [21], when they work as an ensemble model the
final prediction is defined as follows:

ŷxgi = φ(xi) =
K

∑
k=1

fk(xi), fk ∈ F (17)

where K is the number of trees forming the ensemble and F = { f (x) = ωq(x)}; with
q : Rm → T representing the structure of each tree which, given xi, returns its corresponding
final node and ωi the score on the i-th final node. The final prediction is the sum of the
scores obtained.

The trees fk, k = 1, . . . , K, are built aiming to minimize the following regularized
objective function:

L(φ) = ∑
i

l(ŷxgi, yi) + ∑
k

Ω( fk) (18)

where the first term l is a differentiable convex function which measures the error of the
estimations. For example, when estimating a quantitative variable, the squared error can
be used:

l(ŷ, y) = (ŷ− y)2 (19)

The second term regularizes the function penalizing complex trees. It penalizes having
too many final nodes (T) and returning too high scores:

Ω( f ) = γT +
1
2

λ‖ω‖2 (20)

where γ and λ are hyperparameters which control how much is this regularization priori-
tized to control overfitting [40] over minimizing the error for the training set.

The objective function is minimized iteratively with the Gradient Tree Boosting
method [41]. For the t-th iteration, ft is added in order to minimize the following objective:

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
xgi + ft(xi)) + Ω( ft) (21)

where ŷ(t)xgi is the estimated value of y for the i-th unit in the t-th iteration. This objective is
optimized via second-order approximation [42]:

L(t) '
n

∑
i=1

[l(yi, ŷ(t−1)
xgi ) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω( ft) (22)

where gi = ∂
ŷ(t−1)

xgi
l(yi, ŷ(t−1)

xgi ) and hi = ∂2
ŷ(t−1)

xgi

l(yi, ŷ(t−1)
xgi ).
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In practice, it is impossible to evaluate every possible tree structure q. The loss
reduction caused by a potential split point is calculated instead as:

Lsplit =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ (23)

where IL and IR are the sets of units corresponding to the left and right side of the split,
and I = IL ∪ IR. Split points are added iteratively based on this formula.

XGBoost implements Gradient Tree Boosting with several techniques which improve
its efficiency and efficacy. These include shrinkage (in order to limit the influence of each
individual tree) and advanced strategies for finding split point candidates, among oth-
ers [21].

By imputing missing values in the target variable for individuals in the probability
sample with their corresponding predicted value, we propose the following SM estimator
for the population mean Y:

ŶXGM =
1

∑i∈sR
di

∑
sR

ŷxgidi, (24)

where ŷxgi the predicted value of yi.
Other possibility to make estimators is to consider the idea of generalized difference

estimator [43] where an additional term is added to the ŶXGM estimator that takes into
account the error made in the estimates given by the model from the nonprobabilistic
sample (since in this sample we have the true and the estimated values for y).

Following this idea we propose the estimator:

ŶXGD =
1

∑i∈sR
di

∑
sR

ŷxgidi +
1

∑i∈sV
1/ p̂i(xi)

∑
i∈sV

(yi − ŷxgi)/ p̂xgi(xi) (25)

where p̂i = (e−(γ̂′xi) + 1)−1. This estimator is similar to the the doubly robust estimator
by [32], but they use parametric regression models for estimating yi.

XGBoost also allows weighting the training data. First we estimate the propensities
by logistic regression. Then, the model is trained using the weights wlog

i = 1/ p̂i; i ∈ sV in
the objective function. Let ŷxgti be the value of yi imputed by said model. Finally, we make
the XGT-estimator:

ŶXGT =
1

∑i∈sR
di

∑
sR

ŷxgtidi. (26)

Finally, a new kernel weighting estimator ŶXKW can be considered, as detailed
in (12), but using XGBoost for estimating propensities. That is, the proposed estimator is
formulated as:

ŶXKW =
1

∑i∈sV
wXKW

i
∑

i∈sV

yiwXKW
i . (27)

where wXKW
i = ∑j∈sR

kWijdj and kWij are calculated as in (8) but the propensities pi are
estimated using the XGBoots method as

p̂iX = ϕ(zi) =
K

∑
k=1

gk(zi), gk ∈ G (28)

where G representing the structure of each tree and zi the covariates used for modelling the
propensities (that may or may not coincide with the variables used to predict the outcome
variable y).
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The proposed XGBoost estimators (24)–(27) are computationally similar, given that
the algorithm does the same work in all of them. However, the XGBoosted kernel weight-
ing variant will be computationally preferable when there are many variables to estimate
because only one model has to be trained in order to calculate the weights. Even though XG-
Boost models are more expensive to train than linear models, training time is insignificant
for a single model in any modern processor. However, the difference could be significant
when many models have to be trained. The efficiency of each method can be studied
by analyzing the variance of the resulting estimator; however, that variance cannot be
developed in simple form. Alternatively, resampling methods can be applied to each of the
proposed estimators to estimate the variance (see [44]).

3.1. Hyperparameter Optimization

The XGBoost algorithm contains several tuning hyperparameters which determine its
functioning for each specific case. Its default values may be used. However, poor results
may be obtained due to the fact that said default values are not suitable for some cases.
In order to determine its real potential, we will also consider a hyperparameter optimization
process for the matching estimator ŶXGM and for the Boosted Kernel Weighting estimator
ŶBKW . This will also determine how relevant these kind of optimizations can be.

The process will be carried out via the Tree-structured Parzen Estimator (TPE) al-
gorithm [45]. Each tested hyperparameters set will be validated calculating its Rooted
Mean Squared Error for several simulations in order to determine the optimal values. In a
real case scenario, simulations cannot be carried out and therefore this strategy should be
replaced with cross-validation techniques [46].

Among the wide variety of parameters considered by XGBoost, we have selected the
most important ones for the search space:

• Number of estimators ∈ [10, 400]: How many trees form the ensemble. The default
value is 100.

• Learning rate ∈ [0.01, 1]: How much weight shrinkage is applied after each boosting
step. The default value is 0.3.

• Maximum depth ∈ [1, 60]: How many splits can each tree contain. The default value
is 6.

• Minimum child weight ∈ [1, 6]: How much instance weight is needed in total to
consider a new partition. The default value is 1.

4. Simulation Study
4.1. Simulated Populations

Several simulation experiments are performed in order to demonstrate how much
XGBoost can improve the estimations obtained with classic logistic/linear regression.

The first experiment replicates the simulated populations used in the study by [47].
The populations and propensities proposed are replicated, but XGBoost is introduced as
the machine learning algorithm used for each estimator proposed. This way, its perfor-
mance can be compared with the results obtained using logistic/linear regression (the
algorithm used in the original paper). The methodological rationale behind the use of
this study is to explore the behavior of XGBoost in those situations where the relationship
between covariates and target variables is non-linear, and therefore cannot be represented
by linear regression if it is not explicitly stated by the practitioner when specifying the
model. XGBoost (and other Machine Learning algorithms) are able to represent those
non-linearities via boosted decision trees based on learning from data. On the other hand,
using artificial data allows us to control the selection mechanisms and the relationships
between variables, as well as assess their relevance in the final results. When using real
data, these relationships can only be drawn in a conjectural way, although the results might
be more representative of real world situations.
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Therefore, three finite populations are generated following these models:

ξ1 : yi = 1 + 2x1i + 2x2i + 2x3i + σaεi, i = 1, 2, ..., N; (29)

ξ2 : yi = 1 + 2x1i + 2x2i + 2x3i + 0.2x4
3i + σbεi, i = 1, 2, ..., N; (30)

ξ3 : yi = 1 + 2x1i + 2x2i + 2x3i + 0.5x4
3i + σcεi, i = 1, 2, ..., N; (31)

where N = 20,000, x1i = z1i, x2i = z2i + 0.3x1i and x3i = z3i + 0.3(x1i + x2i); with z1i ∼
Bernoulli(0.5), z2i ∼ Uni f orm(0, 2) and z3i ∼ N(0, 1). εi ∼ N(0, 1) is the error term,
controlled by σa, σb and σc. Their values are adjusted in order to set the correlation
coefficient, ρ, between y with and without the error term at some desired level.

The propensities πA
i for the nonprobabilistic samples are generated following these

three models:

q1 : log
{

πA
i /(1− πA

i )
}
= θa + 0.3x1i + 0.3x2i + 0.3x3i, i = 1, 2, . . . , N; (32)

q2 : log
{

πA
i /(1− πA

i )
}
= θb + 0.3x1i + 0.3x2i + 0.3x3i + 0.1x2

3i, i = 1, 2, . . . , N; (33)

q3 : log
{

πA
i /(1− πA

i )
}
= θc + 0.3x1i + 0.3x2i + 0.3x3i + 0.2x2

3i, i = 1, 2, . . . , N; (34)

where θa, θb and θc are set such that ∑N
i=1 πA

i = nV for each case, with nV the target
sample size.

The probabilistic samples are obtained using inclusion probabilities proportional to
zi = c− x2i, with c such that max zi/ min zi = 30.

Using the described probabilities, a nonprobabilistic sample sV of size nV = 500 and a
probabilistic sample sR of size nR = 1000 are repeatedly drawn from the chosen population.
The proposed estimators are applied with said samples so the metrics, relative bias (%RB)
and mean square error (MSE), are obtained as follows:

%RB =
1
B

B

∑
b=1

µ̂(b) − µy

µy
× 100, MSE =

1
B

B

∑
b=1

(
µ̂(b) − µy

)2
(35)

where µ̂(b) is the mean estimated from the b-th sample and B = 2000.
The estimators considered are: the unweighted sample mean (Ŷ), IPSW with logistic

regression (Ŷ IPSW), Tree-Based Inverse Propensity Weighted estimation(ŶTrIPW), Kernel
Weighting (ŶKW), Matching with linear regression (ŶSM), Doubly Robust with linear regres-
sion for Matching and logistic regression for PSA (ŶDR), Training with linear regression
for Matching and logistic regression for PSA (ŶWT), XGBoosted kernel weighting (ŶXKW),
Matching with XGBoost (ŶXGM), Doubly Robust with linear regression for PSA and XG-
Boost for Matching (ŶXGD) and Training with linear regression for PSA and XGBoost
for Matching (ŶXGT). For those using XGBoost, only its default hyperparameters are
considered in this simulation.

The results for every possible population/propensities combination, with different
values of the correlation coefficient ρ, can be consulted in Figures 1–6.
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Figure 1. MSE, simulated case, correlation coefficient: 0.3.
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Figure 2. MSE, simulated case, correlation coefficient: 0.6.
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Figure 3. MSE, simulated case, correlation coefficient: 0.9.
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Figure 4. Relative bias (%), simulated case, correlation coefficient: 0.3.
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Figure 5. Relative bias (%), simulated case, correlation coefficient: 0.6.
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Figure 6. Relative bias (%), simulated case, correlation coefficient: 0.9.
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Models ξ1 and q1 are linear models. Therefore, linear/logistic regression is theoret-
ically unbeatable for those models. However, it can be observed that XGBoost can also
effectively remove the bias in those cases. The difficulties of linear/logistic regression arise
as the non-linearity of the models is increased. XGBoost is, however, still able to learn the
model in those scenarios. The decrease in bias and MSE of the XGBoost technique with
respect to linear/logistic regression is very noticeable in the case of the ξ3 and q3 model,
and it is observed how this good behavior is accentuated as the correlation between the
variables increases.

That is not the case for the ŶTrIPW or ŶXKW estimators. They seem to be suffering
from overfitting [40]. Further analysis from simulations considering real populations and
hyperparameter optimization will determine if their performance can be fixed.

Regarding doubly robust estimators, again the high learning capacity of Matching
with XGBoost causes that combining it with PSA does not necessarily improves the results.
In practice, the complexity of real data models may change that fact.

4.2. Real Populations

Following the experiment described in the previous section, the study is repeated with
real populations. The same estimators are considered. Default XGBoost hyperparameters
are used for an initial simulation. The relative bias is kept as a metric but the mean squared
error is replaced by the relative rooted mean squared error (%RRMSE) in order to obtain
comparable results.

%RRMSE =

√√√√ 1
B

B

∑
b=1

(
µ̂(b) − µy

)2
/

µy × 100 (36)

Two datasets are used following two different sampling strategies for each one. In each
simulation run, three possibilities for sample sizes, nV = nR = 1000, nV = nR = 2000 and
nV = nR = 5000, are considered.

The first population, denoted as P1, corresponds to the Hotel Booking Demand
Dataset [48]. It includes the data of bookings for a resort hotel and a city hotel due to arrive
between the 1 July 2015 and 31 August 2017. In total, it has 119,390 bookings of which 34%
are from the resort hotel and 66% from the city hotel. For the first nonprobability sampling
strategy, denoted as S1, resort bookings have 10 times more probability of being chosen
than city bookings. For the second nonprobability sampling strategy, denoted as S2, city
bookings have five times more probability of being chosen than resort bookings. The target
variable is the mean number of weeknights (Friday included) which are booked. In order
to estimate it, a probability sample sR is also obtained via a simple random sampling.
The remaining variables included in the dataset are used as covariates, excluding the
reservation status and the reservation status date, with a total of 28 covariates.

The second population, denoted as P2, is the Adult Dataset [49]. It includes census
income information for 32,561 adult individuals from the 1994 Census database of the
United States. For the first nonprobability sampling strategy, denoted as S1, individuals
who make over $50K a year have double the probability of being chosen. For the second
nonprobability sampling strategy, denoted as S2, individuals who make over $50K per
year have a propensity to participate multiplied by Pr(a) = 2a2, where a is the individual’s
age. The target is estimating the proportion of individuals who make over $50K per year.
Therefore, in this case, the target variable in the dataset is binary instead of continuous. Also,
in this scenario, the propensities depend on the target variable itself and this dependance
may not even be linear. Every other variable in the dataset is used as covariate, for a total
of 14 covariates. The probabilistic samples are obtained via simple random sampling.

The bias and relative rooted mean squared error results for each case with each
estimator can be viewed in Tables 1 and 2 respectively.
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Table 1. Relative bias (%) for each real population case.

Ŷ Ŷ IPSW ŶTrIPW ŶKW ŶSM Ŷ DR ŶWT ŶXKW ŶXGM ŶXGD ŶXGT

P1S1 1000 18.9 5.5 11.1 3.7 4.5 4.6 4.5 0.2 3.5 3.5 3.3
P1S1 2000 18.9 5.5 10.9 4 4.9 4.9 4.8 −11.9 2.8 2.8 2.5
P1S1 5000 18.6 4.6 10.1 4.2 4.8 4.8 4.7 −7.5 2.2 2 1.7

P1S2 1000 −9.2 −4.1 −5.4 −2.1 −5 −4.1 −4.1 −13.4 −2.6 −2.5 −2.5
P1S2 2000 −9.2 −4.2 −5.5 −2 −4.9 −4.1 −3.9 −7.5 −1.9 −1.8 −1.8
P1S2 5000 −9.1 −3.9 −5.2 −2.4 −4.7 −3.8 −3.6 1.4 −1.4 −1.3 −1.3

P2S1 1000 60 34.4 37 33.5 33.2 33.2 30 8.9 25.9 25.8 24.8
P2S1 2000 58.7 33.3 36 33.1 30.8 30.5 29.2 −12 25 24.7 24
P2S1 5000 54.8 31.3 33.7 30.7 31.1 27.9 27.6 −11.8 23.4 23.2 22.8

P2S2 1000 78.3 34.8 39.8 33 34.9 33.8 31 −5.6 26.4 25.9 24.4
P2S2 2000 76.5 33.9 39.1 32.4 32.2 31.2 30.2 −31.1 25 24.9 23.6
P2S2 5000 71.1 31.7 36.6 30.3 30.6 28.5 28.2 −19.4 23.3 23 22.4

Table 2. Relative RMSE (%) for each real population case.

Ŷ Ŷ IPSW ŶTrIPW ŶKW ŶSM Ŷ DR ŶWT ŶXKW ŶXGM ŶXGD ŶXGT

P1S1 1000 19.1 6.3 11.7 5.4 5.6 5.5 5.4 17.4 4.7 4.7 4.6
P1S1 2000 18.9 5.9 11.2 4.9 5.4 5.3 5.3 20.6 3.6 3.6 3.4
P1S1 5000 18.7 8.6 10.3 4.4 5 5.6 4.9 8.8 2.5 2.5 2.2

P1S2 1000 9.5 5.7 5.9 5.9 5.9 5.3 5 20 3.9 3.9 3.9
P1S2 2000 9.3 4.8 6 4.2 5.3 4.7 4.4 19.5 2.8 2.7 2.7
P1S2 5000 9.2 4.2 5.4 3 4.8 4 3.8 11 1.9 1.8 1.8

P2S1 1000 60.3 35 37.6 34.2 33.8 33.9 30.7 77 26.9 26.7 25.7
P2S1 2000 58.9 33.5 36.3 33.4 31.1 30.8 29.5 39.6 25.4 25.1 24.4
P2S1 5000 54.9 31.4 33.8 30.9 31.8 28 27.7 15.8 23.5 23.3 22.9

P2S2 1000 78.5 35.4 40.4 33.7 35.4 34.3 31.6 69.4 27.2 26.8 25.3
P2S2 2000 76.6 34.2 39.4 32.7 32.5 31.5 30.5 40.2 25.4 25.4 24.1
P2S2 5000 71.1 31.8 36.7 30.4 30.9 28.7 28.3 20 23.5 23.2 22.6

Again, as it happened with the simulated data, a significant improvement in the
estimations can be observed when using XGBoost instead of linear or single tree regressors.
This improvement is more relevant now since the datasets are more complex and closer
to real scenarios. The results are also better, as more data is avaliable. In the majority of
cases, the Matching based variants obtain the best results. However, for some specific
cases, XGBoosted Kernel Weighting is better. This probably happens where the algo-
rithm is not overlearning. This assumption is confirmed by later simulations considering
hyperparameter optimization in which the methods always behave reliably.

Regarding doubly robust estimators, combining SM with PSA may yield slightly more
accurate estimations in these cases with XGBoost as well. This improvement can be more
noticeable if a more direct approach like ŶXGT is applied instead of a basic combination
like ŶXGD.

Some of these results may be improved by applying variable selection, specifically
those using linear of logistic regression. Tree based algorithms like XGBoost or CART apply
variable selection internally by themselves.

Finally, as explained in Section 3.1, hyperparameter optimization is also considered via
the Tree-structured Parzen Estimator (TPE) algorithm [45], as implemented in the software
package Optuna [50]. The TPE algorithm is able to quickly discard inappropiate settings, so
a wide search space may be specified. We have run simulations for the boosted matching
estimator ŶXGM and for the XGBoosted kernel weighting estimator ŶXKW . The sample size
for this scenario is 1000 since it is the hardest case. Each hyperparameter set evaluated by
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the algorithm is validated measuring its Mean Squared Error among 50 sub-simulations.
Once the best values for each specific case are selected with this procedure, they are used
for a new simulation in the same conditions as the one without optimization. Every real
population and sampling strategy is considered.

The results can be observed in Tables 3 and 4. The optimization considerably improves
the estimations. In some cases, this improvement is so significant that the method which
was the worst one without optimization is now the best alternative. Therefore, the impor-
tance of applying this kind of procedure is confirmed in order to obtain reliable results,
especially for those estimators that have shown to suffer greatly from overlearning.

Table 3. Relative bias (%) for each optimized case.

Non Optimized Optimized

Ŷ ŶXKW ŶXGM ŶXKW ŶXGM

P1S1 1000 18.9 0.2 3.5 0.4 1.2
P1S2 1000 −9.2 −13.4 −2.6 −1.1 −1.5
P2S1 1000 60.0 8.9 25.9 5.2 25.1
P2S2 1000 78.3 −5.6 26.4 2.0 25.5

Table 4. Relative RMSE (%) for each optimized case.

Non Optimized Optimized

Ŷ ŶXKW ŶXGM ŶXKW ŶXGM

P1S1 1000 19.1 17.4 4.7 4.0 3.2
P1S2 1000 9.5 20.0 3.9 4.1 3.4
P2S1 1000 60.3 77.0 26.9 10.6 26.2
P2S2 1000 78.5 69.4 27.2 7.8 26.5

5. Application to a Survey on Social Effects of COVID-19 in Spain

This section illustrates the estimation procedures that we have empirically described in a
web survey in which respondents were selected by targeting Internet ads at specific profiles.

ESPACOV [51] is a survey that was conducted in Spain in the fourth week of the strict
lockdown imposed on 14 March 2020, and provides information on the living conditions
of the population, acquired habits, health and consequences of the state of alarm and home
confinement. ESPACOV was run by the Institute for Advanced Social Studies (IESA) and
the sample was collected via paid advertisements on Google Ads and Facebook/Instagram
(nonprobability sampling). A total of 1881 interviews were completed.

Table 5 compares unweighted sample distributions by age group and sex and by
education level with Spanish population data [52,53].

Due to coverage and participation bias, people with tertiary education are over-
represented, and less educated people vastly under-represented. There are also representa-
tion issues in the different age groups for each sex.

We have considered the April 2020 Barometer of the Spanish Center for Sociological
Research [54] as the source of auxiliary information. The barometers are probability surveys
carried out on a monthly basis, and their main objective is to measure Spanish public
opinion at that time. They involve interviews with approximately 2500 randomly-chosen
people from all over the country, with extensive social and demographic information on
them being gathered for analysis as well as their opinions. The survey follows a multi-stage,
stratified cluster sampling, with selection of the primary sampling units (municipalities)
and of the secondary units (census sections) randomly with proportional allocation, and of
the last units (individuals) by random routes and sex and age quotas. The barometer
dataset is often viewed as a reliable source of official statistics and contains a number of
common variables with the ESPACOV dataset. More precisely, these include gender, age,
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province, municipality size, education level, working status and self-positioning in the
ideological scale (10-point Likert, where 1 represents “far left” and 10 “far right”).

Table 5. Obtained sample distributions by sex and age group and by education level, and comparison
with population parameters.

ESPACOV Sample Spanish Population

Age group
Men
18–29 9.7 7.6
30–44 9.3 12.9
45–64 11.3 17.6
65+ 16.1 10.3

Women
18–29 10.6 7.3
30–44 13.7 12.9
45–64 17.9 17.9
65+ 11.6 13.5

Education
Obligatory or less 16.2 45.6

Secondary 33.8 21.7
Tertiary 49.6 32.7

We apply the proposed methods to estimate the population mean of the variable “Rate
the government action to control the pandemic, from 0 to 10”. The values of the estimators
Ŷ IPSW , ŶTrIPW , ŶKW , ŶSM, ŶDR, ŶWT , ŶXKW , ŶXGM, ŶXGD and ŶXGT are computed for
each variable. The unadjusted simple sample mean Ŷ from the nonprobability sample is
also included. Results from using the common set of covariates which are available in both
datasets are presented in Table 6.

Table 6. Estimates of the population mean of the variable measuring the rating (1–10) of the Spanish
government action to control the COVID-19 pandemic.

Estimator Mean S. Deviation

Ŷ 5.52 0.08

Ŷ IPSW 5.04 0.10

ŶTrIPW 5.13 0.09

ŶKW 4.95 0.12

ŶSM 5.18 0.09

ŶDR 5.21 0.09

ŶWT 5.38 0.09

ŶXKW 5.33 0.72

ŶXGM 4.91 0.10

ŶXGD 4.92 0.10

ŶXGT 4.89 0.09

The results generally show that the application of bias correction techniques provides
an important shift (towards a lower mean rate) with respect to the unweighted estimate,
especially for those which were the most reliable ones during the simulations (ŶXGM, ŶXGD

and ŶXGT). Standard deviations were estimated via bootstraping [44]. 2000 resamples with
replacement are obtained in order to calculate the deviation for each method. They show a
small and expectable increase in variance from the unweighted case except for the ŶXKW
estimator. As seen in the simulations, this behavior is to be expected and should be solved
via hyperparameter tuning.
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However, the chosen variable is closely related to the ideological scale covariate. We
also apply the methods to estimate the population means of the variables, rating, from 1
to 5, the confidence in the following groups/institutions to manage the current health
crisis: health workers, the armed forces, the police, the Spanish government and scientists.
The results are presented in Table 7. They show that the differences are not as significant
when the target variables are not related to the covariates used.

Table 7. Estimates of the population means of the variables measuring the rating (1–5) of the confidence in different
groups/institutions to manage the current health crisis.

Variable Ŷ Ŷ IPSW ŶTrIPW ŶKW ŶSM Ŷ DR ŶWT ŶXKW ŶXGM ŶXGD ŶXGT

Health workers 4.48 4.41 4.45 4.4 4.45 4.43 4.43 4.39 4.44 4.43 4.44
Armed forces 4.01 3.99 4.12 3.99 3.99 3.97 3.92 4.1 4.03 4.03 4.03

Police 4.04 4.05 4.14 4.07 4.05 4.04 4 3.92 4.07 4.07 4.04
Spanish government 2.94 2.7 2.77 2.68 2.76 2.78 2.87 2.55 2.61 2.62 2.62

Scientists 4.18 4.12 4.11 4.1 4.13 4.14 4.18 3.95 4.03 4.03 4.04

6. Conclusions

A long and ongoing literature is concerned with the evaluation of selection bias in
web surveys. Propensity scorse and matching estimators based on linear models are the
established workhorses in this literature. The emerging literature in statistical learning
might help to increase the precision of the estimates obtained by these methods.

Although machine learning methods have many well-documented advantages in
prediction and classification, it is not obvious that using them for propensity scores and
matching estimation in a nonprobability framework will reduce the bias in the estimation
of parameters. In this work we present four different methods to estimate parameters
based on the use of an important ML technique, the XGBoots method, to predict the values
of the target variable in the probability sample and also to determine the propensities of
participating in the nonprobability sample.

Our work contributes to the literature in evaluating the performance of classical and
machine learning based PSA estimators, matching estimators as well as other methods of
estimation from web survey data that are more innovative.

To be as close as possible to other recent estimation works in nonprobability surveys,
we have replicated the experiment carried out by [47]. When comparing results from
both simulations, we observe that estimators involving XGBoost provide better results
overall in certain non-linear situations in comparison to the case where linear models are
used. These results are relevant considering that, in practice, models will rarely be linear.
In fact, they will likely be much more complex than the ones considered in this simulation.
For this reason, we compare the different estimators in two real datasets. We compared
performance of XGBoost to a classical regression approach, with the former providing
good results in terms of bias and Mean Square Error reduction.

Our findings are mixed. Our evidence suggests the usage of XGBoost is more powerful
at removing selection bias in nonprobability samples than traditional linear regression mod-
els in scenarios where the propensity model is not linear and the auxiliary variables used
for adjustments are related to both the propensity and the variable of interest. In addition,
the simulations also show the efficiency of the use of recent training techniques like [34,39]
compared to the alternatives of PSA, matching, and double robust [32] techniques.

However, these results can also be unreliable when the algorithms suffer from over-
fitting. Hyperparameter optimization has shown to be highly effective at controlling this
issue. These kind of procedures are therefore important when producing estimations. We
will look further into this matter in future works.

The proposed method is also used to analyze a nonprobability survey sample on
the social effects of COVID-19. The results of this application show that selection bias
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correction techniques have the potential to provide substantial changes in the estimates of
population means in nonprobability samples.

In conclusion, the improved learning capacity of XGBoost is capable of significantly
reducing bias and MSE in certain scenarios according to our simulations, but it is important
to explore its limits with real use cases. Generally speaking, our results illustrate several
methods to do inference with nonprobability samples and highlight the importance and
usefulness of auxiliary information from probability survey samples. Propensity Score
Adjustment and model-based methods are recommended when the sample can be subject to
strong selection bias. XGBoost can yield more accurate predictions when the data behavior
is more complex, which typically occurs in situations with high dimensionality. Those are
the scenarios where we could particularly benefit the most from Xgboost, although it is
suitable for most of the situations.
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Summary. Healthcare statistical services worldwide have used probability surveys to re-
spond to such information needs. The Health Care and Social Survey (ESSOC) research
project arises from the need to provide data on the evolution of the COVID-19 impact
that can be considered when making decisions to prepare and provide an effective Pub-
lic Health response in the different affected populations. This survey has an overlapping
panel design with 4 measurements throughtout 1 year. The problem of non-response is
particularly aggravated in the case of panel surveys, due to the fatigue of the popula-
tion to be repeatedly surveyed. In this work, we test a new method to reweighting that
produces estimators that are suitable for survey data affected by non-response. In each
measurement, missing units are substituted by new surveyed units, allowing the obtention
of cross-sectional and longitudinal estimates. The weights are the result of two-step pro-
cess: the original sampling design weights are corrected during a 1st phase by modeling
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the non-response with respect to the longitudinal sample obtained in a previous measure-
ment using machine learning techniques. Then, during a 2nd phase, they are calibrated
using the auxiliary information available at the population level. The proposed method is
applied to the estimation of totals, proportions, differences between measurements as well
as gender gaps in the ESSOC.

Keywords: Public health, COVID-19, panel surveys, sampling, machine learning,
non-response

1. Introduction

The urgent need to control the expansion rate of COVID-19 requires a quick and efficient
assessment of the situation, based on predicting and quantifying the main parameters
involved in this phenomenon. Healthcare statistical services worldwide have used proba-
bility surveys to respond to information needs concerning the social, economic and health
impact of the disease, or on its seroprevalence and evolution or on the characteristics of
the infected population, especially those most vulnerable to the virus due to their age,
risk of exclusion, health conditions or dependency. These surveys allow valid inferences
to be made about the population without having to incorporate hypotheses into the
models, which is of great practical benefit.

The Health Care and Social Survey (ESSOC, Encuesta Sanitaria y SOCial) research
project arises from the need to provide data on the evolution of the COVID-19 impact
that can be considered when making decisions to prepare and provide an effective Public
Health response in the different affected populations, especially in the most vulnerable
ones, such as, among others, the elderly, the chronically ill, or persons at risk of exclusion
(Sánchez-Cantalejo et al., 2021). The objective of this survey is to determine the mag-
nitude, characteristics, and evolution of the impact of COVID-19 on overall health and
its socioeconomic, psychosocial, behavioral, occupational, environmental, and clinical
determinants in the general population and that with greater socioeconomic vulnera-
bility. The study is based on a Real-World Data design integrating observational data
extracted from multiple sources including information obtained from different surveys
and clinical, population, and environmental registries. The surveys have an overlap-
ping panel design (Kalton and Citro, 1995) to ensure there are both cross-sectional and
longitudinal estimates, and to include population-based probability samples. Thus, the
ESSOC is made up of a series of measurements broken down into a new sample and a
longitudinal sample for each measurement.

Panel designs are used in practice for studies whose objective is to see the evolution
of certain characteristics over time, but have the problem that the lack of response grows
with the number of occasions or measurements, due, among others, to the fatigue of the
panelist to be repeatedly interviewed. For this reason, partial replacement of units is
common to guarantee a minimum number of units in the final sample. Estimation from
data obtained with this structure is not easy, especially if one wants to take into account
the biases produced both by the lack of response, as well as by the lack of coverage and
representativeness of the sample. Some methods of handling wave nonresponse in panels
are provided in Kalton et al. (1985), Lepkowski (1989) and Kalton and Brick (1995).
Another set of studies focuses on modeling different types of response patterns in panels.
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Kern et al. (2019) compare the usage of different Machine Learning (ML) methods
for modeling nonresponse in the German Socio-Economic Panel Study (GSOEP) and
recently Kern et al. (2021) propose a general framework for building and evaluating
nonresponse prediction models with panel data, but this study is focused on model
building and evaluation without utilizing the obtained predictions to correct the bias in
the estimations.

Nonresponse in panel studies has traditionally been tackled by using nonresponse
weights. Although there are reweighting methods to deal with these types of biases, they
have been proposed fundamentally for the case of cross-sectional surveys and there are
few studies that provide a formal methodology for their treatment in this type of panel.
In Rendtel and Harms (2009), the authors discuss adjustments for nonresponse and how
calibration can be carried out in panel studies in general and what effects it creates.
They consider three possible ways of calibration: initial calibration (at the beginning
of the panel, the weights of the units in the panel are calibrated), final calibration (at
measurement t the weights of the individuals in the sample are adjusted by calibration)
and initial and subsequent final calibration (both, initial as well as final calibration, are
carried out). Several approaches are tested in Arcos et al. (2020) to produce calibration
estimators that are suitable for survey data affected by non response where auxiliary
information exists at both the panel level and the population level. These authors
consider non-overlapping panels.

In this work we propose weighting methods for estimating totals, proportions and
change or differences of a population characteristic, from overlapping panel survey data,
using various combined methods such as Propensity Score Matching, machine learning
and calibration. The reweighting methods are formulated based on the ESSOC structure
but can be adapted to any other type of overlapping panel design.

The paper is organized as follows. First, in Section 2 we review the estimation in
overlapping panels to set the framework and the notation. We present cross-sectional
and longitudinal estimators in Sections 3 and 4 and we show how to use machine learning
methods to reweighting for non-response based on the data of previous occasions. In
Section 5, we apply some of the estimators developed and proposed methods to a specific
variable (self-perceived general health) from a real survey about COVID-19: the Health
Care and Social Survey. Finally, we highlight the most relevant findings and conclusions
in Section 6.

2. Sampling setup in overlapping panels

Let U denote a finite population of size N , U = {1, . . . , i, . . . , N}. We want to estimate
a population parameter of a variable of interest, y.

On the first measurement (t = 1) a sample s(1) of size n(1) is selected from the
population U by random stratified sampling. Let h be the stratum to which unit i

belongs, (h = 1, ...L) and s
(1)
h be the sample corresponding to stratum h on occasion 1.

There is a total lack of response in the sample s(1) which is divided into

s
(1)
rh = {i ∈ s(1)/respond in stratum h }
s

(1)
fh = {i ∈ s(1)/missing in stratum h },
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Let m
(1)
h denote the number of the observations obtained form the n

(1)
h sampled units,

that is
∑

hm
(1)
h is the size of s

(1)
r .

In each of the following measurements t = 2, 3, ..., k we denote by s
(t)
rh the sample

of respondents in measurement t in stratum h of the original sample s(1). The size of

which we denote by m
(t)
h . To complete the sample, a new sample s

(t)
new is selected from

the population U by stratified sampling independently of the sample s(1). We verified

that the samples s
(t)
new and the sample s(1) have an empty intersection. Let n

(t)
hnew be

the size of the sample s
(t)
new in stratum h and denote by m

(t)
hnew the size of the sample

of respondents in this stratum, s
(t)
rhnew. Thus, the total sample of respondents in each

stratum and measurement would be m
(t)
htotal = m

(t)
h +m

(t)
hnew.

Let y
(t)
i be the value of the target variable associated to the i-th unit in measurement

t, and let di be the design weight associated to the i-th unit equal to the inverse of the
inclusion probability in the initial sample, an estimation of the total of Y in the first
occasion is given by:

Ŷ
(1)
ht =

∑

h

∑

i∈s(1)rh

dihy
(1)
ih (1)

This estimator is called the Horvitz-Thompson (H-T) estimator. In the case of strat-
ified simple random sampling design for unit i belonging to stratum h is dih = Nh

n
(1)
h

.

Design weights should be adjusted to consider non-response in order to reduce the
possible bias of resulting estimates, which may arise when there is a different propensity
in answering for different groups. In the first occasion a response rate is determined in
each class and a new weight is defined as the product of the design weight and the inverse

of the response rate. The response rate in stratum h is evaluated as rh =
m

(1)
h

n
(1)
h

. Then

the initial weight of unit i in stratum h dih is replaced with the new weight d
(1)
ih = dih

rh
and the estimator is given by

Ŷ (1) =
∑

h

∑

i∈s(1)rh

d
(1)
ih y

(1)
ih (2)

For the following measurements, cross-sectional and longitudinal estimators can be
obtained from the new sample obtained in each measurement and from the longitudinal
samples of the previous measurements. The process to obtain them is shown below.

3. Cross-sectional estimation

The objective of most cross-sectional surveys is to produce unbiased estimates of totals
or means at a given time point, and, in the case of repeated surveys, to produce estimates
of the net change that occurred in the population between two time points.

In order to improve the cost-effectiveness of surveys on can derive cross-sectional
estimates from longitudinal survey data assuming that the survey design takes this



5

possibility into account, and that estimation procedures are developed to satisfy cross-
sectional as well as longitudinal requirements.

Point estimation of parameters of the cross-sectional population based on data from
longitudinal surveys has been studied by Lavallee (1995) among others and the problem
of formal comparison of the estimates from two years, which requires variance estimation
for the difference of the estimates, is considered in Kovacevic (2001). We will follow a
methodology similar to that used in these works. We will elaborate a cross-sectional
weighting scheme that includes a non-response adjustment, an optimal combination of
the two samples, and a calibration for completing representativeness of the population
at a given time. This proposal is described below.

First, we adjust the basic weights of the H-T estimator by the fraction of non-response
n

(t)
hnew

m
(t)
hnew

obtaining the total estimator for the new sample in measurement t:

Ŷ (t)
n =

∑

h

∑

s
(t)
rhnew

Nh

n
(t)
hnew

n
(t)
hnew

m
(t)
hnew

y
(t)
ih =

∑

h

∑

s
(t)
rhnew

d
(t)
ihny

(t)
ih (3)

In a similar way, from the sample s
(t)
r we can estimate the total as:

Ŷ (t)
r =

∑

h

∑

i∈s(t)rh

Nh

n
(1)
h

n
(1)
h

m
(t)
h

y
(t)
ih =

∑

h

∑

i∈s(t)rh

d
(t)
ihry

(t)
ih (4)

Combining these estimators we considered the following estimator

Ŷ (t) = α1Ŷ
(t)
r + α2Ŷ

(t)
n (5)

where α1 and α2 are nonnegative constants such that α1 + α2 = 1.

Next, we consider the problem of selection of the best coefficients.

We denote the values V (Ŷ
(t)
r ), V (Ŷ

(t)
n ) by V1, V2 respectively. Thus, the variance of

Ŷ (t) is:

V (Ŷ (t)) = α2
1V1 + (1− α1)2V2

=
[
V1 + V2] ·

[
α2

1 −
2α1V2

V1 + V2

]
+ V2 =

=
[
V1 + V2

]
·
[
α1 −

V2

V1 + V2

]2

+
V2 · V1

V1 + V2
≥

≥ V2 · V1

V1 + V2
= Vmin(Ŷ (t)) (6)
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Because V1 + V2 ≥ 0, equality holds if and only if

α1 = 1− α2 =
V2

V1 + V2
(7)

But the values V1 and V2 are unknown, one possibility is to estimate them from the
sample and substitute them in the previous expression to calculate the coefficients α but
that does not ensure their optimality. A simple solution is to weight each estimator by
the weight that sample has in the total sample available at the time t. In this way we
consider the self-weighted total estimator

Ŷ (t)
sw =

∑

h

∑

i∈s(t)rh

m
(t)
h

m
(t)
h +m

(t)
hnew

Nh

m
(t)
h

y
(t)
ih +

∑

h

∑

i∈s(t)rhnew

m
(t)
hnew

m
(t)
h +m

(t)
hnew

Nh

m
(t)
hnew

y
(t)
ih

=
∑

h

Nh

m
(t)
h +m

(t)
hnew

(
∑

i∈s(t)rh

y
(t)
ih +

∑

i∈s(t)rhnew

y
(t)
ih ) =

∑

h

∑

i∈s(t)rh∪s(t)rhnew

d
(t)
ichy

(t)
ih (8)

The weights d
(t)
ich are the same for all units included in stratum h, so the sample within

each stratum is self-weighted.
Besides the modification of weights for handling non-response, weights adjustment

may also be carried out to take into account of auxiliary information. Calibration Deville
and Särndal (1992) is the most used technique for weights adjustment and can have
the aim to insure consistency among estimates of different sample surveys and some
improvement in the precision of estimators may be achieved (Rueda et al. (2006), Kott
and Liao (2015), Cabrera-León et al. (2015), Devaud and Tillé (2019)).

Let x∗(t) be a set of auxiliary variables related to y such that their population totals

at the stratum level are known at measurement t, X
∗(t)
h =

∑
Uh

x
∗(t)
kh .

The calibration total estimator is obtained as:

Ŷ
(t)
cal =

∑

h

∑

i∈s(t)rh∪s(t)rhnew

w
(t)
ih y

(t)
ih (9)

where the weights w
(t)
ih , are as close as possible, with respect to a given distance G, to

the weights d
(t)
ich:

min
ωk

∑

i∈s(t)rh∪s(t)rhnew

G
(
w

(t)
ih , d

(t)
ich

)
(10)

fulfilling the calibration condition

∑

i∈s(t)rh∪s(t)rhnew

wt
ihx
∗(t)
ih =

∑

Uh

x
∗(t)
ih (11)

for all stratum h.
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A parameter of interest is the absolute change from one measurement to the first
measurement of the variable and we denote by θ(t) = Y (t) − Y (1) this parameter. Varia-
tions over time are measured more accurately with overlapping samples with respect to
the case where samples on different occasions do not overlap (see Särndal et al. (2003)).
An estimator of this parameter for measurement t based on the previous calibration
total estimators can be obtained as follows:

θ̂
(t)
abs = Ŷ

(t)
cal − Ŷ

(1)
cal (12)

Other parameter of interest in panel surveys is the relative change θ
(t)
rel = Y (t)−Y (1)

Y (1)

between measurement 1 and measurement t, which is estimated as:

θ̂
(t)
rel =

θ̂(t)

Ŷ (1)
(13)

The estimator is a quotient of two estimators of the total based on two different
samples, meaning that its properties are not equivalent to those of the ratio estimator
commonly used in survey sampling, but its theoretical properties can be derived by using
Taylor linear approximation.

The impact of the COVID-19 in the social determinants of health might have been
widely different between genders. For this reason, it is of great interest to define the
estimators of the gender gaps observed in the absolute and relative changes defined in
previous sections, both in absolute and relative terms as well, in order to observe if the
changes were significantly larger among people of a given gender in comparison to their
counterpart.

Let Gen = {M,W} be the variable measured in s(t), t = 1, 2, 3, ..., k which reflects
whether a respondent is a man (M) or a woman (W ). We define the two indicator
variables: IMih = 1 if the unit i in stratum h is a man and 0 elsewhere, and IWih in a
similar way.

We start by defining the absolute gender gap estimator in the absolute change as
follows:

ˆGGabs
(t)

abs = θ̂
(t)
W − θ̂

(t)
M =

= (
∑

h

∑
i∈s(t)rh∪s(t)rhnew

w
(t)
ih y

(t)
ih I

W
ih −

∑
h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

W
ih )−

(
∑

h

∑
i∈s(t)rh∪s(t)rhnew

w
(t)
ih y

(t)
ih I

M
ih −

∑
h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

M
ih )

(14)

The estimator ˆGGabs
(t)

abs is defined as the linear combination of two estimators in
certain domains, hence its theoretical properties can be easily derived (see section 5.4
in Särndal et al. (2003). This estimator is the most simple one can build on the gender
gap and can tell the difference in the absolute change between men and women between
measurement t and measurement 1. However, this estimator is subject to the base rate
on each variable. For this reason, we define the relative gender gap estimator in the
absolute change as follows:

ˆGGabs
(t)

rel =
ˆGGabs

(t)

abs

θ̂
(t)
M

=
θ̂

(t)
W − θ̂

(t)
M

θ̂
(t)
M

(15)
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The estimator ˆGGabs
(t)

rel allows us to observe the gender gap in the growth between
measurement 1 and measurement t taking into account the base rate of the given target
variable, but its theoretical properties are more difficult to develop as it is a nonlinear
combination of two estimators from non-overlapping samples.

We define the absolute gender gap in the relative change as follows:

ˆGGrel
(t)

abs = θ̂
(t)
relW − θ̂

(t)
relM =

θ̂
(t)
W∑

h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

W
ih

− θ̂
(t)
M∑

h

∑
i∈s(1)rh

w
(1)
ih y

(1)
ih I

M
ih

(16)

The estimator ˆGGrel
(t)

abs allows us to observe the difference in percentage points in
the relative growth of a given variable between women and men. We define the relative
gender gap in the relative change as follows:

ˆGGrel
(t)

rel =
ˆGGrel

(t)

abs

θ̂
(t)
relM

(17)

Thus, for the study variables of each ESSOC measurement, we start from the H-T
estimator (1) that is adjusted for non-response (4), combined from the cross-sectional
and longitudinal samples (8) and, finally, calibrated to increase the representativeness
of the sample (9). This estimator serves as the basis for calculating the absolute (12)
and relative (13) change estimators between measurement t and 1, which are also used
to obtain the different estimators to measure the absolute and relative gender gap in the
absolute and relative changes of a measurement with respect to the first (14 and 15, and
16 and 17, respectively).

4. Longitudinal estimation

The primary objective of panel surveys is the production of longitudinal data series that
are appropriate for studying the gross change in the population between collection dates,
and for research on causal relationships among variables.

Definition of weights for each measurement may require specific computation when
using panel surveys. Evaluation of weights for each occasion of the survey follows the
standard steps: determination of a design weight equal to the inverse of the inclusion
probability and subsequent adjustment for non-response and for improving estimators.
We are going to detail these reweighting procedures below.

After the first measurement, determination of weights for the following measurements
should take attrition into account. Then, at each subsequent measurement the first
operation should consist in adjusting the weights for non-response due to attrition. In

the sample s
(t)
r we have the values of the variables in the previous measurements and

we can use these values to model the lack of response and adjust the weights in a more
efficient way. For this we are going to use the popular Propensity Score Adjustment
(PSA) method (Rosenbaum and Rubin (1983),Ferri-Garćıa and Rueda (2018), Ferri-

Garćıa and Rueda (2020)) to model the probability that a unit of the sample s
(1)
r responds

on occasion t.
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For each sample unit s
(1)
r let be δ

(t)
k = 1 if k ∈ s(t)

r and δ
(t)
k = 0 if k ∈ s(1)

r − s(t)
r . We

assume that the selection mechanism of response is ignorable, this is:

π
(t)
k = P (δ

(t)
k = i|yk,xk) = P (δk = i|xk), i = 0, 1; k ∈ s(t)

r (18)

We also assume that the mechanism follows a parametric model:

P (δ
(t)
k = 1|yk,xk) = ft(xk) (19)

We use a state-of-the-art machine learning method: XGBoost Chen and Guestrin

(2016) for estimating π
(t)
k . This technique builds decision trees ensembles which optimize

an objective function via Gradient Tree Bosting Friedman et al. (2000). Kern et al. (2019)
has shown the effectiveness of this technique when studying nonresponse in the GSOEP
panel. Ferri-Garćıa and Rueda (2020) showed that Gradient Tree Bosting can lead
to selection bias reductions in situations of high dimensionality or where the selection
mechanism is Missing At Random (MAR). Lee et al. (2010, 2011); McCaffrey et al. (2004,
2013); Tu (2019); Zhu et al. (2015) have applied boosting algorithms in propensity score
weighting showing better results than conventional parametric models.

In order to obtain the estimated propensities π̂
(t)
k , we train a model with s

(1)
r where

xk includes every available variable observed in s
(1)
r . Said model minimizes the logistic

loss for δ
(t)
k ; k ∈ s(1)

r . This logistic loss is measured as:

l(π̂(t)) =
∑

k∈s(1)r

−δ(t)
k log(π̂

(t)
k )− (1− δ(t)

k )log(1− π̂(t)
k )

Since the values we are interested in, π̂
(t)
k for k ∈ s

(1)
r ∩ s(t)

r , are a subset of the

values used for training, δ
(t)
k for k ∈ s

(1)
r , overfitting is likely to happen. This means

we will obtain values extremely close to 1 instead of real propensities. Hyperparameter
optimization is essential in order to avoid this issue.

The estimated propensities for each unit i of sample s
(t)
rh , π̂

(t)
ih , are used to reweighting

for nonresponse, and we define an estimator for θ(t) from the sample of respondents on
occasion t by:

θ̂
(t)
l =

∑

h

∑

i∈s(t)rh

d
(1)
ih

1

π̂
(t)
ih

(y
(t)
ih − y

(1)
ih ) =

∑

h

∑

i∈s(t)rh

d
(t)
ihPSA(y

(t)
ih − y

(1)
ih ) (20)

As population is subject to changes, it is important to modify weights to reflect these
changes, as well. If updated totals are available then calibration to new totals can reduce
presence of bias. Thus, in the next phase, calibration is applied to change the weights.

So we get some weights v
(t)
ih , minimizing:

∑

i∈s(t)rh

G
(
v

(t)
ih , d

(t)
ihPSA

)
(21)

subject to
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∑

i∈s(t)rh

vtihx
∗(t)
ih =

∑

Uh

x
∗(t)
ih (22)

for all stratum h. The final calibrate estimator is given by

θ̂(t)
c =

∑

h

∑

i∈s(t)rh

v
(t)
ih (y

(t)
ih − y

(1)
ih ) (23)

The researcher may also be interested in estimating the change from occasion t to
the occasion t− 1, θ(t,t−1) = Y (t) − Y (t−1). In this situation the estimator is calculated
in the same way but modeling the non-response with respect to the sample obtained in
the previous occasion, that is, we estimate the new propensities:

P (δ
(t,t−1)
k = 1|yk,xk) = gt(xk) (24)

being δ
(t,t−1)
k = 1 if k ∈ s(t)

r and δ
(t)
k = 0 if k ∈ s(t−1)

r − s(t)
r .

The estimated propensities for each unit i of sample s
(t)
rh , π̂

(t,t−1)
ih , are used in the first

stage to reweighting for adjusting the nonresponse, and in the second stage, calibration

is applied to reweight these weights and obtain new ones, v
(t,t−1)
ih , so as to obtain better

representativeness of the population. The longitudinal estimator of θ(t,t−1) = Y (t) −
Y (t−1) can be defined as follows:

θ̂(t,t−1)
c =

∑

h

∑

i∈s(t)rh

v
(t,t−1)
ih (y

(t)
ih − y

(t−1)
ih ) (25)

The longitudinal nature of the estimator allows us to define new estimators on the
number of population individuals whose value of y increases, decreases or remains the
same between t−1 and t. Let A be a subset of interest (R+, R− or 0 if we are interested
in the units whose value of y increases, decreases or remains the same respectively); the
estimator of the number of population individuals for which y(t) − y(t−1) ∈ A can be
estimated as follows:

θ̂
(t,t−1)
cA =

∑

h

∑

i∈s(t)rh

v
(t,t−1)
ih IA, IA =

{
1 y

(t)
ih − y

(t−1)
ih ∈ A

0 y
(t)
ih − y

(t−1)
ih /∈ A

(26)

We can also obtain the estimator of the rate of people whose value in y has decreased
between t − 1 and t, in reference to the people whose value in y has increased between
t − 1 and t. If the variable y measures health status, this rate can be considered a
deterioration/improvement rate, DIRate. The formula can be defined as follows:

D̂IRate
(t,t−1)

c =
θ̂

(t,t−1)
cAR−

− θ̂(t,t−1)
cAR+

θ̂
(t,t−1)
cAR+

=

∑
h

∑
i∈s(t)rh

v
(t,t−1)
ih IAR− −

∑
h

∑
i∈s(t)rh

v
(t,t−1)
ih IAR+

∑
h

∑
i∈s(t)rh

v
(t,t−1)
ih IAR+

,

(27)
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where

IAR+ =

{
1 y

(t)
ih − y

(t−1)
ih > 0

0 y
(t)
ih − y

(t−1)
ih ≤ 0

and

IAR− =

{
1 y

(t)
ih − y

(t−1)
ih < 0

0 y
(t)
ih − y

(t−1)
ih ≥ 0

Based on previous estimators, we can define estimators of the gender gap of the
change between t− 1 and t can be defined as follows:

ˆGGlong
(t)

abs = θ̂
(t,t−1)
cW −θ̂(t,t−1)

cM =
∑

h

∑

ı∈s(t)rh

v
(t,t−1)
ih (y

(t)
ih −y

(t−1)
ih )IWih −

∑

h

∑

i∈s(t)rh

v
(t,t−1)
ih (y

(t)
ih −y

(t−1)
ih )IMih

(28)

ˆGGlong
(t)

absA = θ̂
(t,t−1)
cAW − θ̂(t,t−1)

cAM =
∑

h

∑

ı∈s(t)rh

v
(t,t−1)
ih IAI

W
ih −

∑

h

∑

h

∑

i∈s(t)rh

v
(t,t−1)
ih IAI

M
ih (29)

ˆGGlong
(t)

rel =
ˆGGlong

(t)

abs

θ̂
(t,t−1)
cM

(30)

ˆGGlong
(t)

relA =
ˆGGlong

(t)

absA

θ̂
(t,t−1)
cAM

(31)

Several techniques can be used for obtaining variance estimates of these proposed
estimators. The variance estimation problem in longitudinal surveys is addressed in
Kovacevic (2001) for Canada’s Survey of Labour and Income Dynamics within a Tay-
lor linearization approach and a bootstrap method (named pseudo-ordinated bootstrap
method). We have used the first of these techniques for calculating the errors of the
estimates in the ESSOC survey described of the next section.

5. Application to the Health Care and Social Survey (ESSOC)

5.1. The ESSOC Study Framework
In this section, we apply the proposed methods to a real survey about COVID-19: the
Health Care and Social Survey (ESSOC, Encuesta Sanitaria y SOCial). It provides a
follow-up over time on the impact of the pandemic, and its resulting lockdown, on the
population of Andalusia (Spain) over the age of 16.

As shown in Figure 1, the ESSOC study includes four measurements. The first one,
s(1), coincides with the beginning of the Spanish State of Alarm on April 2020, while
the 2nd measurement s(2) was carried out in June and July (a month after the 1st
interview, coinciding with the de-escalation), the 3rd measurement s(3) in November
and December (6 months after the 1st interview and coinciding with the 2nd wave of the
pandemic), and the 4th measurement s(4) in April and May 2021 (12 months after the
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Fig. 1. Temporal scope, response rates (RR) and effective sample size for each measurement
in ESSOC
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Evolution of:

Longitudinal sample 1
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Longitudinal samples:

Mar 14: Starting the alarm state

May 10: De-escalation: mobility with restrictions

Jun 21: End of state of alarm

Sep 11: Mobility restrictions

Oct 09: Starting the alarm state

Dic 23: Family reunification permit

Jan 06: End of permit

Apr 29: Opening mobility between provinces

May 08: End of state of alarm

Key dates:

Description of the ESSOCgeneral measurements (overlapping panel design) and evolution of the SARS-COV-2
pandemic in Andalusia during 2020 and 2021

m: Effective total, cross-sectional and longitudinal samples for each measurement
RR: Response rates of each total, cross-sectional and longitudinal sample in the corresponding measurement (calculations are based on the refusals)
AIDT: Active Infection Diagnostic Tests (Source: Andalusian Institute of Statistics and Cartography)
s(t): sample of the measurement t

1st interview, coinciding with the opening of mobility and the end of the state of alarm).
All the theoretical samples have a size of 5000 people. They were obtained using an
overlapping panel design so the individuals from the previous measurement are sampled
again. However, the non-response is compensated with another sample including new
individuals. The details of this non-response and the effective sample size for each
measurement can be consulted at Figure 1. That figure also provides a description
of the evolution of the SARS-COV-2 pandemic in Andalusia during 2020 and 2021 in
terms of active infection diagnostic tests and deaths. The sampling method is stratified
by province and degree of urbanization. A detailed description of the protocol followed
for this survey can be seen in Sánchez-Cantalejo et al. (2021).

5.2. Calibrating the representativeness of the sample
In relation to the observed bias, Figures 2 and 3 depict the differences between the
sample and the population at measurement 4 of the ESSOC according to the cross of
the sex variable with age, province, degree of urbanization and nationality. Thus, with
respect to age, the largest differences between the values observed from the sample and
those from the population are found in youngest men (under 30 years old), in middle-
aged women (between 35 and 54 years old) and in oldest women and men (over 70 years
old), with higher differences as age increases. As for the other segmentation variables,
the largest differences were found among people with a nationality other than Spanish,
especially among men. These results show a lower participation of these population



13

Fig. 2. Observed biases for the calibration variables in measurement 4 (age and sex)
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groups in the ESSOC and therefore justify the need to adjust the sample weights. Thus,
the weights are calibrated using truncated linear calibration with 0.1 to 10 limits and the
total population size for the cross of the sex variable with province, age, urbanization
grades and nationality as auxiliary information. The data for said totals are obtained
from the 2020 Municipal Register of Inhabitants (Andalusian Institute of Statistics and
Cartography (IECA, Spanish acronym), 2020).

5.3. Modeling the non-response
The non-response at s

(t)
r , π

(t)
k for k ∈ s

(t)
r , is modeled with PSA considering every

variable of s
(1)
r . In order to ensure that the XGBoost model is learning properly, we

have considered the following hyperparameters:

• Number of estimators ∈ [10, 400]: The number of trees forming the ensemble.

• Learning rate ∈ [0.01, 1]: the weight shrinkage applied after each boosting step.

• Maximum depth ∈ [1, 60]: The maximum number of splits that each tree can
contain.

• Minimum child weight ∈ [1, 6]: The minimum total of instance weights needed to
consider a new partition.

The accuracy of the algorithm is tested with cross-validation. Therefore, training data
is partitioned into 5 complementary subsets so that each one has the same proportion

of δ
(t)
k = 1 and δ

(t)
k = 0 as the total. Then 5 models are trained leaving each one of the
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Fig. 3. Observed biases for the calibration variables in measurement 4 (sex-province, sex-
urbanization and sex-nationality)
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subsets out of the training data. For each model, the logistic loss is calculated for its
corresponding remaining subset. The mean logistic loss is the estimated error.

The values for the hyperparameters minimizing this estimated error are obtained
using the Tree-structured Parzen Estimator (TPE) algorithm Bergstra et al. (2011)
Bergstra et al. (2013). TPE is implemented in Optuna Akiba et al. (2019), an optimiza-
tion library for Python, as its default method.

5.4. Cross-sectional results
Table 1 shows, for measurement 4, the percentages with corresponding confidence in-
tervals at 95% as well as the sample size and population estimations for each original
category of the self-perceived general health variable grouped by sex and age. It may be
observed from the chart that the percentages for the ’excellent’ or ’very good’ categories
do not follow a clear pattern throughout measurements for the population between 16
and 34 years old, neither for men nor for women. However, the excellent or very good
self-perceived health decreases for the population older than 35 years as the pandemic
advances. This can be observed more as age increases, especially in women. This re-
duction results in an increment for the ’fair’ and ’bad’ categories. However, the ’good’
general health category stays stable throughout the pandemic for each sex and age group.

Based on these results, we dichotomized that variable with the categories ’excellent
and very good’ and ’good, fair and bad’. Figure 4 shows the percentages and confidence
intervals given in table 1 not only for measurement 4, but also for all other ESSOC mea-
surements. Table 2 shows, for each measurement of the ESSOC, the percentages and
confidence intervals at 95% of the dichotomized self-perceived general health variable as
described in the previous paragraph. These results can be seen at figure 5, where it can
be observed that the excellent and very good self-perceived health decreased in mea-
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Fig. 4. Estimated percentages grouped by sex and age for the original categories of self-
perceived general health at measurement 4
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surements 3 and 4, with the decrease being slightly larger among women than among
men. Regarding age groups, the evolution has been stable throughout the pandemic
since the lockdown for the population between 16 and 34 years old, for men as well as
for women. However, for the population above 35 years old, the evolution worsens as the
age increases and the pandemic advances, especially in women. Therefore, this subpop-
ulation got the lowest ’excellent or very good’ general health values at the beginning of
the lockdown for every age group above 35 years old and, also, it was when the difference
with respect to men was bigger.

Fig. 5. Evolution of percentages and confidence intervals at 95% level of people with excellent
or very good self-perceived general health with respect to age and sex
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Table 3 and Figure 6 shows the relative percentage changes and 95% confidence
intervals for each measurement with respect to measurement 1 for the ’excellent or very
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Fig. 6. Evolution of relative percentage changes and 95% confidence intervals for people with
excellent or very good self-perceived general health in each measurement (M) with respect to
measurement 1.
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good’ self-perceived general health variable. It could be observed that excellent or very
good general health decreased in the general population by a 4.6% (CI95%=[-6.3;-3] in
measurement 4 with respect to measurement 1. In addition, the decrease among women
was of double the decrease among men (-6.1 and -3.2% respectively) and this gap was
larger in older people, specially for women, except for women between 16 and 24 years
old, where an increase was observed in all measurements with respect to measurement
1.

Tables 2 and 3 incorporate absolute gender gaps on absolute and relative changes
respectively, i.e. the absolute difference (in percentage points) between men and women
of absolute and relative changes of a given measurement with respect to measurement 1.
Their interpretation would be that a positive value indicates that women showed a larger
change (absolute or relative) in comparison to men in their ’excellent or very good’ self-
perceived general health. Therefore, this result could be seen as a positive gender gap
(i.e., better result or favorable to women) in the corresponding measurement compared
to the first one. On the contrary, a negative value indicates that women showed a smaller
change (absolute or relative) in comparison to men in their ’excellent or very good’ self-
perceived general health, which could be seen as a negative (or unfavourable to women)
gender gap. These results are visualized in Figure 7; it can be observed that, for example,
the gender gap was negative along the pandemic, confirming an increasingly negative
impact on women with respect to men in relation to self-perceived general health. The
gender gap went from positive in measurement 2 with respect to measurement 1, by 1.65
percentage points, to negative and statistically significant in measurement 4 by -2.87
percentage points. Results by age reveal that negative gender gaps were observed in
people over 35 years old in measurement 4 (with respect to measurement 1), with the
group between 45 and 54 years old showing the largest gender gap, of almost 8 percentage
points (relative change).
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Fig. 7. Gender gap for the change on the excellent or very good self-perceived health from one
measurement with respect to the first measurement
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5.5. Longitudinal results
Table 4 shows estimates of better, equal or worse self-perception of health in the po-
pulation for a given measurement with respect to the same population in the previous
measurement. 20.75% of the andalusian population below 16 years old improved their
self-perceived general health in measurement 2 with respect to measurement 1, but this
percentage was slightly smaller in the following measurements, specially in measure-
ment 4 with respect to measurement 3. On the contrary, 24.29% of this population
group presented a worse self-perceived general health in measurement 2 with respect
to measurement 1, with this percentage being slightly greater in next measurements.
When we analyze these results by sex, it can be observed that it is the women that
experiment that decrease in the improvement of general health, as well as the increase
in the deterioration of self-perceived general health. Regarding the age, the decreases
in the improvement of general health along the pandemic are observed among women
between 25 and 54 years old, and the increase in deterioration percentages are observed
in those women between 45 and 54 years old. On the other hand, the percentage of
people that remained with the same self-perceived general health status, in a given mea-
surement with respect to the previous one, did not vary along the pandemic, except for
the population below 24 years old that did experiment increases in the aforementioned
percentage, going from 44.26% in measurement 2 to 57.08% in measurement 4. These
results are visualized in Figure 8.

If we calculate the ratio of the population that worsens their general health (in a
given measurement with respect to the previous one) and the population that improves
it, a positive value means that there are more people whose self-perceived general health
has deteriorated than people whose health has improved, as seen at Figure 9. In relative
terms, it could be observed that, in measurement 2 with respect to measurement 1, there
was 17.06% more population with worse health than with better health; this percentage
increased to 23.32% and 34.88% in measurements 3 and 4 with respect to measurements
2 and 3 respectively. These differences are greater in women, reaching values of 64.08%
and 52.32% in measurements 3 and 4 respectively. If the ratio is analyzed according
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Fig. 8. Percentage of population whose self-perceived general health improves, deteriorates or
remains the same between a measurement and the previous one
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Fig. 9. Percentage of population whose health worsens from one measurement to the previous
one compared to the population whose health improves
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to the age of the individuals, we can spot different patterns in men and women. In
this sense, more men population under 55 years old perceived a deterioration in their
health in measurement 2 with respect to measurement 1, while this was only observed in
women above that age in the women population. Regarding measurement 3 with respect
to measurement 2, deterioration of health was more frequently observed in women of any
age, with almost no changes between age groups in men. Finally, deterioration of health
in measurement 4 with respect to measurement 3 was more frequently observed in men
population between 25 and 64 years old, something that was also observed in women
population above 25 years old.

Table 4 also shows absolute and relative gender gaps in the improvement, in staying
the same or in the deterioration of self-perceived general health in a measurement with
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respect to the previous one in the same population. On the one hand, absolute gender
gap is the absolute difference (in percentage points) between women and men with a
better, equal or worse perceived health in a measurement with respect to the previous
one, and on the other hand relative gender gap is the relative difference (in percentage)
between women and men with a better, equal or worse perceived health. This means
that a positive value in the gap (absolute or relative) indicates that the population
percentage of women that improved, stayed the same or worsened their self-perceived
general health was greater than the corresponding percentage in men population. A
negative value would indicate that the percentage was smaller in women. Regarding
deterioration of health , we observe at Figure 10 that the percentage of women population
whose self-perceived health was worse in measurement 2 than in measurement 1 was 8%
lower than its men population counterpart. However, this relative gender gap on health
deterioration became positive in next measurements, i.e. the deteriorating percentages
were greater among women in measurement 3 and in measurement 4. This result was
observed across all age groups, except for the population younger than 24 years old and
the population between 55 and 64 years old.

Fig. 10. Negative Gender Gap in the difference of a measurement with respect to the last one
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6. Conclusions

The rapid evolution of the COVID-19 pandemic has forced researchers to provide timely
estimates on the impact of the disease in the population. This has often lead to the
establishment of survey studies which did not meet the criteria to be considered proba-
bilistic, entailing many sources of error that may have affect the final estimates obtained
from them. For this reason, the ESSOC survey is particularly valuable in the sense
that its overlapping probability panel design offers the possibility of obtaining reliable
estimates, both cross-sectional and longitudinal, on the impact of COVID-19 on health
and its determinants. However, the analysis of the survey has not been exempt from
statistical adjustments to correct for attrition and survey nonresponse.

The two-step adjustment procedure has been established in this study to remove
the two main sources of error in the sampling design: the population nonresponse,
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understood as people who did not take part in the survey despite having been selected in
the sample, which was treated in the calibration step, and panel nonresponse, understood
as people who participated in some of the measurements but did not follow up in further
ones. Panel nonresponse has been treated using PSA, which is a technique often used
for addressing selection bias in online surveys (Lee, 2006) but which can also be used for
nonresponse; in fact, it was originally adapted from Rosenbaum and Rubin (1983) for
that matter (Little, 1986).

In our study, the XGB technique has been used to model the lack of response from
one measurement to another. Other ML methods (as logistic regression, decision trees,
random forests, ...) could be used, but several papers show (Kern et al. (2021), Castro-
Mart́ın et al. (2020), Ferri-Garćıa and Rueda (2020)) that the set of predictor variables
used in general mattered more than the type of ML technique. The application developed
in this work is one example where techniques of the machine learning field have to be
combined with other important techniques in survey research as calibration and PSA,
when studying nonresponse in a panel setting.

Tables 5 and 6 summarise the name, table, figure, formula and interpretation related
to the estimators developed throughout this paper for the cross-sectional and longitudinal
samples, respectively.

The results observed in the different estimates obtained from the survey show that
the impact of the pandemic has hit differently across age groups and genders. More
precisely, the self-perceived general health seems to have decreased more notably in older
age groups and women, both according to the evolution of cross-sectional estimates and
longitudinal estimates. The gender gap, both in absolute and relative terms, has mostly
grown as the pandemic advanced, meaning that the changes (mostly decreases in self-
perceived general health) have been larger and worse in women in comparison to men.
The variable of interest has been the self-perceived general health. It is a well-known
fact that subjective variables usually entail measurement errors, as the response given in
such questions by the interviewee may depend on many unmeasurable factors unrelated
to the matter of study but that move the final response away from the objective value
that should be given. Further studies should consider the measurement of such variables
using validated instruments for a more objective understanding of the matter.

The descriptive results for the general health self-perception variable are an exam-
ple applied to this paper in order to show the different estimators, tables and figures
developed. All these are extended to the more than 400 ESSOC variables through the
web platform developed at www.researchprojects.com/ESSOC. On this website, after
selecting the set of variables to be described, the estimators to be shown and the seg-
mentation variables to be considered (sex and age or sex and degree of urbanisation),
the user obtains the corresponding interactive figures to help the interpretations for
the selected variables. This will allow the scientific community not only to access the
descriptive results for all the variables of the ESSOC, but also to carry out their own
analyses.
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Abstract
Web surveys have replaced Face-to-Face and CATI as the main mode of data collection in most coun-

tries. This trend was reinforced as a consequence of Covid-19 pandemic related restrictions. However, this
mode still face significant limitations in obtaining probability-based samples of the general population. For
this reason, most web surveys rely on non-probability survey designs. Whereas probability-based designs
continue to be the gold standard in survey sampling, non-probability web surveys may still prove useful
in some situations. For instance, when small sub-populations are the group under study and probability
sampling is unlikely to meet sample size requirements, complementing a small probability sample with a
larger non-probability one may improve the efficiency of the estimates. Non-probability samples may also
be designed as a mean for compensating for known biases in probability-based web survey samples by pur-
posely targeting respondent profiles that tend to be underrepresented in these surveys. This is the case in the
Survey on the impact of the COVID-19 pandemic in Spain (ESPACOV) that motivates this paper.

In this article we propose a methodology for combining probability and non-probability web-based sur-
vey samples with the help of machine learning techniques. We then assess the efficiency of the resulting
estimates by comparing them with other strategies that have been used before. Our simulation study and
the application of the proposed estimation method to the second wave of the ESPACOV survey allow us to
conclude that this is the best option for reducing the biases observed in our data.

Key words: Machine learning techniques; Non-probability surveys; Propensity score adjustment;
Survey sampling; COVID19.

1 Introduction

Ten years have passed since the American Association for Public Opinion Research (AAPOR) appointed
a taskforce to evaluate non-probability survey sampling methods that were more and more frequently used
in applied research contexts at the time (11). During the last decade, non-probability sampling designs
have continued to grow as the use of Big Data and web surveys spread (27). The lockdowns that followed
the onset of the COVID-19, together with the need of quick data to grasp the impacts of the pandemic and
to inform policymakers decisions, further bolstered non-probability sampling designs (22). Web surveys
mushroomed during COVID-19 related confinements and have further displaced traditional survey modes,
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such as Face to Face and CATI, that still face important restrictions due to social distancing rules and
population fear to COVID-19 infection.

Web surveys conducted during this time have relied mostly on online convenience samples using social
media and/or river sampling to recruit participants or on quota samples selected from online access panels
(36). However, the use of these sampling methods comes at the cost of adding non-coverage and self-
selection to the array of potential sources of sampling bias and applying complex estimation procedures to
the resulting data (2), (38).

In spite of these challenges, non-probability web surveys may provide useful information that would
not be available otherwise (27). In other cases, where small sub-populations are the group under study
and probability sampling is unlikely to meet sample size requirements (14), (33), complementing a small
probability sample with a larger non-probability one may improve the efficiency of the estimates (40).
Non-probability samples may also be designed as a mean for compensating for known biases in probability-
based web survey samples by purposely targeting respondent profiles that tend to be underrepresented in
these surveys. This is the case in the Survey on the impact of the COVID-19 pandemic in Spain (ESPA-
COV) that motivates this paper (31).

Survey statisticians have provided different methods for combining information from multiple data
sources. Current reviews of statistical methods of data integration for finite population inference can be
seen in (37), (3), (29). Among the most important methods we could mention inverse probability weighting
(23; 24), mass imputation (32), doubly robust methods (8), kernel smoothing methods (39) or statistical
matching combined with PSA (5). (42) provide a good review of some of these techniques. Most of these
works assume that the variable of interest is only available in the non-probability sample, whereas other
auxiliary variables are present in both data sources. However, as described above, there are other scenarios
where both the probability and non-probability-based samples share the same questionnaire and measures,
meaning that it is possible to combine both of them in order to maximize the efficiency of the estimates.

Most surveys that integrate probability and non-probability samples simply pool the samples and make
inference using the Horvitz-Thompson or Hàjek estimator assuming the entire sample is probabilistic (31).
This method is rarely appropriate because usually non-probability samples are not distributed proportion-
ally with respect to demographic or other relevant subgroups in the population. Some efforts have been
undertaken to combine both probability and non-probability samples to make inference while dealing with
the different sources of bias. (15) studies a composite estimator that is a linear combination of an unbiased
sample mean estimate from a probability sample and a biased sample mean estimate from a convenience
sample. The weight of the mean estimator based on the probability sample is determined by the ratio of
its Mean Squared Error (MSE) to the sum of that term and the MSE of the convenience sample mean.
(14) propose an alternative procedure using calibration. These authors combine the previously calibrated
probability sample with the non-probability sample and then recalibrate overall to the probability samples
benchmarks from the previous step. Their simulation study shows that calibrating non-probability samples
with probability samples using early adopter questions minimizes bias in the resulting estimates in the
larger combined sample. Recently (33) proposed weighting techniques that enable the two datasets to be
analysed as a single one (i.e., a blended sample) by assuming four conditions for the probability and non-
probability samples. Authors consider four separate methods for blending based on propensity score meth-
ods or on calibration weighting and warn on the challenges of integrating both kind of samples. Finally,
(35) propose a Bayesian approach to combine information from probability and non-probability samples.
Data from the non-probability sample is used to build an informative prior distribution that is subsequently
used to inform the estimates from the probability sample. The simulation study and the application with
real data suggests that resulting Bayesian estimates are more efficient than estimates exclusively based in
probability samples, even when their sample sizes are quite small.

In this paper we explore other alternatives that combine some of these ideas with the help of machine
learning methods. Our main contributions to this area of research are the development of a new estimation
method for integrating data from probability and non-probability samples in those situations where the
variables of interest are observed in both samples. We then assess the efficiency of the resulting estimates
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by comparing them with other strategies that have been used before. The application of this method to the
second wave of the Survey on the impact of the COVID-19 pandemic in Spain allows us to conclude that
the estimation method that we propose is the best option for reducing observed biases in our data.

This article is structured as follows. Section 2 introduces the ESPACOV II survey that is our motivating
case study. Section 3 establishes notation and describes the proposed methods for integrating probability
and non-probability samples. Section 4 reports the results of an extensive simulation study run on a set
of synthetic populations in which the performance of the proposed estimators is analysed for finite size
samples. The proposed methods are applied in a real-world scenario in Section 5. Finally, the implications
of our findings are discussed in Section 6.

2 Motivating case study

This new estimation technique was designed to analyse the data obtained in a web survey on the effects
of the COVID-19 pandemic in Spain (ESPACOV Survey) that used a mixed multiphase sampling design
inspired by the responsive approach (18). This survey was designed, implemented and funded by the
Institute for Advanced Social Studies at the Spanish National Research Council (IESA-CSIC) (31). There
were two editions of the survey: the first one was fielded from April 4th through April 11th in the fourth
week of the lockdown, that in Spain began on March 14th. The second edition was conducted from January
18th to 25th, almost one year into the pandemic. Both questionnaires addressed the opinions and attitudes
of the Spanish population regarding the COVID-19 crisis, as well as the assessments of its management
and its consequences, either anticipated (ESPACOV I) or endured (ESPACOV II)1

Both editions of the ESPACOV Survey were web based and followed a sampling design that com-
bined the use of SMS invitations to take part in the survey -sent to a list of randomly generated mo-
bile phone numbers- (probability-based sample) with the publication of Facebook, Instagram and Google
Ads segmented to purposely oversample the socio-demographic profiles that were underrepresented in the
probability-based sample (non-probability sample). In the first edition of the ESPACOV survey both sam-
pling procedures were applied sequentially so that the outcomes of the probability-based sample informed
the design of the purposive sample. In the second edition both samples were fielded simultaneously taking
advantage of the knowledge acquired in the previous edition. An in-depth explanation and justification of
this methodology is provided in (31).

This article focuses on the measurement of the direct impact of the COVID-19 pandemic in terms of
infection and severity of the disease and the consequences of the pandemic on the overall physical and
mental health self-perception as well as the economic situation in the respondents households. For that
reason, we use data from the second edition of the survey that allows to assess the situation almost one
year after the beginning of this major health crisis.

66,439 SMS invitations with links to the questionnaire were sent in January 2021 for the probability-
based sample in this edition, of which 51.3% were delivered. The effective sample size after eight days
in fieldwork was n=973 (2.97% of delivered SMS). Invitations to complete the survey were advertised
via Facebook, Instagram and Google ads from January, 18th to 22nd. The invitation reached 1,054,301
impressions and 7,647 clicks for a total number of 671 completed interviews.

As shown in table 1, this survey design partially accomplished its aim of maximizing representativeness
of the Spanish resident population aged 18 and more. The distribution of the unweighted blended survey is
more similar to the population than those of the individual samples (with the exception of gender). More-
over, the profiling of ads worked as intended oversampling respondents aged 65 and more and reducing,

1 The research data and related documentation of both editions of the survey can be retrieved at the Spanish Research Council
institutional repository: https://digital.csic.es/handle/10261/211271 (ESPACOV I) and https://digital.csic.es/handle/10261/233224
(ESPACOV II).
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although less than needed, the proportion of employed respondents and those with higher education. Con-
trary to expectations, the profiling resulted in a significant overrepresentation of women in the blended
sample.

Table 1 Population Data Sources: 1Continuous population register, official population data as of 1st

January 2021 and 2Economically active population survey (EAPS), 1st quarter 2021. National Statistics
Institute of Spain (INE).

Probability Non-probability Blended Sample (Unweighted) Population
Gender1 Male 48.4% 40.7% 45.3% 48.5%

Female 51.6% 59.3% 54.7% 51.5%
Age1 18 to 29 18.2% 3.3% 12.1% 15.0%

30 to 44 33.0% 15.8% 26.0% 25.4%
45 to 64 41.3% 37.4% 39.7% 35.9%
65 or more 7.5% 43.5% 22.2% 23.7%

Age (mean) 45 61 52 51
Education level2 First degree 21.0% 20.7% 20.9% 17.1%

Second degree 18.7% 26.1% 21.7% 49.1%
Higher ED 60.3% 53.2% 57.4% 33.8%

Labour Status2 Employed 69.2% 41.3% 57.8% 48.5%
Unemployed 9.1% 6.4% 8.0% 9.2%
Inactive 21.7% 52.3% 34.2% 42.3%

The next section develops the methods followed for correcting biases in both probability and non-
probability samples and blending the data so that they can be analysed as a single dataset.

3 Methods

3.1 Context and survey design

Let U denote a finite population of size N , U = {1, . . . , i, . . . , N}. Let sr be a probability sample of
size nr selected from U under a probability sampling design (sr, pr) with πi =

∑
sr3i pr(sr) the first

order inclusion probability for individual i. Let sv be a non-probability (volunteer) sample of size nv ,
self-selected from U . Let y be the variable of interest in the survey estimation and let xi be the values
presented by individual i for a vector of covariates x. The variable of interest and the covariates have been
measured in both samples.

The population total, Y , can be estimated via the Horvitz-Thompson estimator:

ŶR =
∑

i∈sr

yi
πi

=
∑

i∈sr
diyi (1)

which is design-unbiased of the population total if there is not lack of response. The design-based variance
of this estimator is given by:

Vp(ŶR) =
N∑

i,j=1

yi
πi

yj
πj

(πij − πiπj) . (2)

where πij are the second order probabilities of the sampling design pr.
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Y can be also estimated with the naive estimator based on the sample mean of y in sv:

Ŷ v = N
∑

i∈sv

yi
nv

(3)

If the convenience sample sV suffers from selection bias, this estimator will provide biased results. This
can happen if there is an important fraction of the population with zero chance of being included in the
sample (coverage bias) and if there are significant differences in the inclusion probabilities among the
different members of the population (selection) (10; 16).

3.2 Estimating propensities in the non probability sample

In this context, Propensity Score Adjustment (PSA) can be used to reduce the selection bias that would
affect the unweighted estimates. This approach aims to estimate the propensity of an individual to be
included in the non-probability sample by combining the data from both samples, sr and sv .

Propensity scores, πvi, can be defined as the propensity of the i-th individual of participating in the
survey, this is, the probability that Ivi = 1, being Ivi the indicator variable for unit i being included in the
sample sv

Ivi =

{
1 i ∈ sv
0 i ∈ U − sv , i = 1, ..., N. (4)

PSA assumes that the selection mechanism of sV is ignorable and follows a parametric model:

πvi = P (Ivi = 1|xi) = pi(x) = m(γ,xi) i = 1, ..., N (5)

for some known function m(·) with second continuous derivatives with respect to an unknown parameter
γ.

The procedure is to estimate the propensity scores by using data of both, the volunteer and the prob-
ability sample. The maximum likelihood estimator (MLE) of πvi is m(γ̂,xi) where γ̂ maximizes the
log-likelihood function:

l(γ) =
∑

U

(Ivilog(m(γ,xi)) + (1− Ivi)log(1−m(γ,xi)) =

∑

sv

log
m(γ,xi)

1−m(γ,xi)
+
∑

U

log(1−m(γ,xi)). (6)

As is usual in survey sampling, we consider the pseudo-likelihood since we do not observe all units in
the finite population:

l̃(γ) =
∑

sv

log
m(γ,xi)

1−m(γ,xi)
+
∑

sp

1

πi
log(1−m(γ,xi)). (7)

Once the MLE of πvi has been obtained, we transform the estimated propensities π̂vi = m(γ̂,xi) to
weights by inverting them (37) and obtain the inverse probability weighted IPW estimator:

ŶIPW =
∑

i∈sV
yi/π̂vi =

∑

i∈sV
yidvi (8)

The properties of the IPW estimators (under both the model for the propensity scores and the survey
design for the probability sample) are developed in (8). These authors prove that under certain regularity
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conditions and assuming the logistic regression model for the propensity scores, the IPW estimator ŶIPW is
asymptotically unbiased for the population total (ŶIPW − Y = Op(n

−1/2
v )) and they obtain an asymptotic

expression for its variance:

V (ŶIPW ) =
N∑

i=1

(yi/π̂vi − bT1 xi)
2(1− π̂vi)π̂vi + bT1Db1 (9)

where bT1 =
∑N
i=1(1 − π̂vi)yix

T
i /
∑N
i=1 π̂vi(1 − π̂vi)xix

T
i , and D = Vp(

∑
i∈sr diπ̂vixi) where Vp

denotes the design-based variance under the sampling design p.

3.3 Combining the probability and the non-probability samples

We are going to consider the situation in which there are no coverage biases in either the probability or the
non-probability sample. Let Ur and Uv be two sampling-frames, in this situation Ur and Uv coincide with
the population under study U .

A simple estimator is calculated by weighting the estimators obtained from each sample:

Ŷcom = αŶR + (1− α)ŶIPW (10)

where α is a nonnegative constant such that 0 ≤ α ≤ 1.

We denote the values of the variance of ŶR and the mean squared error of the estimator of ŶIPW by V1,
V2 respectively. Since frames Ur and Uv are sampled independently, the MSE of Ŷcom is given by

MSE(Ŷcom) = α2V1 + (1− α)2)V2 (11)

where the first component of the right hand side is computed under the sampling design pR and the second
one under the selection mechanism model.

Next, we consider the problem of selection of the best coefficients. The value of α that minimizes the
variance in (11) is given by

α =
V2

V1 + V2
(12)

but the values V1 and V2 are unknown. One possibility is to estimate them from the sample and substi-
tute them in the previous expression to calculate the coefficients αo. Other solutions are to weight each
estimator by the weight that sample has in the total sample αn = nr/(nr + nv) or αe = 0.5.

The resulting estimator 10 can be rewritten as:

Ŷcom =
∑

i∈s
yid

?
i (13)

being s = sr
⋃
sv and

d?i =

{
αdi if i ∈ sr
(1− α)dvi if i ∈ sv (14)

Besides the modification of weights for handling selection bias, other adjustments may also be carried
out to take into account auxiliary information. Calibration (12) is the most used technique for weights ad-
justment, aiming at ensuring consistency among estimates of different sample surveys and some improving
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the precision of estimators ((34), (13)). Calibration weighting was previously used in this context by (14)
who proposes calibrating auxiliary information in the non-probability sample with that in the probability
sample, so that after calibration the weighted distribution of the non-probability sample is similar to that
of the target population.

Using the calibration paradigm, we wish to modify, as little as possible, basic weights d?i to obtain new
weights w?i , for i ∈ s to account for auxiliary information and derive a more accurate estimation of the
total Y . Let z

¯i
= (z1i, . . . , zpi) be the value taken on unit i by a vector of auxiliary variables z

¯
of which

we assume to know the population total t
¯z

=
∑N
k=1 z

¯k
and that is available for the units of each sample.

The vector of calibration variables z
¯i

does not have to match the vector x used in the propensity model.
A general calibration estimator can be defined as

ŶCAL =
∑

k∈s
w?i yk (15)

where w?i is such that

min
∑

k∈s
G(w?i , d

?
i ) s.t.

∑

k∈s
w?i z

¯k
= t

¯z
, (16)

where G(w, d) is a distance measure satisfying the usual conditions required in the calibration paradigm.
Given the set of constraints, different calibration estimators are obtained by using alternative distance
measures. If we take the Euclidean type of distance function G(w?i , d

?
i ) = (w?i − d?i )2/2d?i , we can obtain

an analytic solution that produces the linear calibration estimator:

ŶCAL =
∑

i∈s
w?i yi. (17)

The asymptotic properties of this calibration estimator can be obtain by adapting the asymptotic frame-
work of (20), to the case of the dual-frame finite population as in (28).

3.4 Using Machine Learning Techniques

Logistic models are often used to estimate the propensity to participate in the survey of each individual. In
recent decades, numerous machine learning (ML) methods have been considered in the literature for the
treatment of non-probability samples and have proved to be more suitable for regression and classification
than linear regression methods (17; 4; 9; 21).

Among the most important ML methods are boosting algorithms. Boosting algorithms have been ap-
plied in propensity score weighting (25; 26) showing on average better results than conventional parametric
regression models. A common machine learning algorithm under the Gradient Boosting framework is XG-
Boost (7). Given its theoretical advantage over Gradient Boosting, which could lead to even better results
in a broader range of situations (6), we propose the use of this method for estimating propensities that will
be used to define the estimators previously proposed.

However, the importance of choosing the right hyperparameters has also been underlined for the proper
functioning of the algorithm. Therefore, a grid search of the optimal parameters is also performed before
training. Each considered set is validated with cross-validation (30). The grid includes the following
hyperparameters:

(i) Maximum depth: The depth limit which is applied to each tree forming the ensemble. The considered
values are 1, 2 and 3.

(ii) Number of rounds: The number of boosting iterations which are computed. The considered values
are 50, 100 and 150.
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(iii) Learning rate: A step size shrinkage rate used in order to avoid overfitting. The considered values are
0.3 and 0.4.

(iv) Colsample by tree: The ratio of variables considered when training the trees. The variables are chosen
by simple random sampling independently for each tree. The considered values are 0.6 and 0.8.

(v) Subsample: The ratio of training data considered by simple random sampling at each boosting itera-
tion. The considered values are 0.5, 0.75 and 1.

4 Simulation study

We carry out a simulation study to see which of the proposed estimators works best.
We simulate a population of size 500,000 in which we have two target variables y1, and y2 and eight auxil-
iary variables to perform the PSA algorithms and the calibration, x1, . . . , x8. Four variables (x1, x3, x5, x7)
follow a Bernouilli distribution with p = 0.5 and four others (x2, x4, x6, x8) follow Normal distributions
with a standard deviation of one and a mean parameter dependent on the value of the previous Bernoulli
variable for each individual

x1i, x3i, x5i, x7i ∼ B(0.5), i ∈ U
xji ∼ N(µji, 1), i ∈ U, j = 2, 4, 6, 8

µji =

{
2, if x(j−1)i = 1
0, if x(j−1)i = 0

, i ∈ U, j = 2, 4, 6, 8

(18)

The target variables were simulated as follows:

y1i = N(10, 4) + 5πi, i ∈ U
y2i = N(10, 4) + 2(x7i = 1)− 2(x7i = 0) + x8i + 5πi, i ∈ U (19)

2,000 iterations are carried out and in each one of them we draw a probability sample of size nP = 250
and a non-probability sample of sizes nNP = 500; 1, 000; 2, 000. The probability sample is drawn by
simple random sampling without replacement (SRSWOR) from the full population. The non-probability
sample is drawn according to an unequal probability sampling design where π is the vector of inclusion
probabilities. This probability was made dependent on x5, x6, x7 and x8 (which allowed the experiment to
cover Missing At Random situations) as:

ln

(
πi

1− πi

)
= −0.5 + 2.5(x5i = 1) +

√
2πx6ix8i − 2.5(x7i = 1), i ∈ U. (20)

The evaluated estimators are the following:

(i) Reference estimator (ŶREF ): the two samples are joined and calibration is performed to obtain the
final estimator.

(ii) Elliott and Haviland estimator (ŶEH ): we join the probabilistic and non-probabilistic sample and
obtain the final estimator using the formulas proposed in the article by Elliott and Haviland (2007).

(iii) Based on the article by (33) we calculate four estimators:

(i) the disjoint propensity score (DPS) weights estimator ( section 2.1.1. of (33)): ŶRDR1
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(ii) the simultaneous weights estimator (section 2.1.2. of (33)): ŶRDR2

(iii) the disjoint calibration (DC) weights estimators (section 2.2 of (33)):ŶRDR3

(iv) the combined calibration estimator (section 2.2 of (33)) ŶRDR4

(iv) Propensities estimator (ŶPPSA): the probability and non-probability sample propensities are ob-
tained, both samples are merged and calibration is performed to obtain the final estimator using the
inverse of propensities as initial weights.

(v) Calibration - PSA estimator (ŶCPSA): calibration is performed in the probability sample and in the
non-probability sample we calculate the propensities. To obtain the final estimator, we combine them
in several ways, considering α0.5, αn and α0 and them we do the calibration. We will denote these
estimators ŶCPSA−0.5, ŶCPSA−n and ŶCPSA−α0

.

In all the estimators in which the propensities are calculated we use both XGBoost and logistic regression
methods to see if there are differences in the results derived from the classification method used. We use x
for XGBoost and l for logistic regression in the subscripts to distinguish among methods.

The procedure is repeated across 500 iterations, and finally the Relative Bias (RB) and Root Mean
Square Error (RMSE) is obtained for each method.

RB =
1

B

∑B
i=1 Ŷi − Y
Y

∗ 100

RMSE =

√√√√ 1

B

(∑B
i=1 Ŷi − Y
Y

)2

∗ 100
(21)

where B is the number of iterations.
In Tables 2 and 5 values of RB and RMSE can be seen for each of the proposed estimators.
It can be observed that calibration in both samples is not enough to completely remove selection bias,

although this approach provides smaller RB and RMSE than other methods. The method proposed by
(15) is vastly efficient at removing part of the selection bias that exists in the simulation data, where the
selection mechanism of the non-probability sample could be considered Missing At Random.

The combination of calibration and PSA (propensity weights are used as base weights in calibration)
reduces bias and RMSE, particularly when the algorithm used in PSA is XGBoost, although the advantage
of this algorithm vanishes as the non-probability sample size increases.

The behavior of the estimators considered in (33) is very diverse. In some cases, particularly ŶRDR1,
the relative bias is even larger than the case where only calibration is used. This could happen because
some of the assumptions made for these estimators do not apply in our simulation study. On the other
hand, ŶRDR2 and ŶRDR3 are able to reduce RB and RMSE in comparison to ŶREF , as long as XGBoost
is used; in fact, they seem to be particularly sensitive to the algorithm used for propensity estimation.

Finally, the behavior of the proposed estimators ŶCPSA depends on the factor used in weighting. The
best estimator in our simulator has been, by a huge margin, ŶCPSA−α0

, which is the estimator that weights
the samples by the MSE.

It is worth mentioning that the results on RB and RMSE are very similar between methods and sample
sizes. This can be explained by the fact that the target variables y1 and y2 have a very similar behavior, only
varying because of the relationship between y2 and the variables x7 and x8. The Missing At Random nature
of both variables, which means that the ignorability assumption of PSA applies in this study, explains why
the application of adjustment methods can lead to substantial reductions in bias and RMSE.
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Table 2 Target variable y1

nP=250, nNP=500 nP=250, nNP=1000 nP=250, nNP=2000
RB RMSE RB RMSE RB RMSE

ŶREF 4.0089 4.2325 3.9975 4.1746 4.0150 4.1862
ŶEH 1.8829 2.3656 1.7167 2.2035 1.8847 2.3331
ŶPPSA−x 2.0657 2.5444 2.6950 3.3292 3.6646 4.4649
ŶPPSA−l 3.6414 3.9105 3.6438 3.8654 3.6862 3.8695
ŶRDR1−x 4.9785 5.1669 7.6796 7.7483 9.4612 9.4882
ŶRDR1−l 4.9785 5.1669 7.6796 7.7483 9.4612 9.4882
ŶRDR2−x 2.2063 2.6275 2.6684 3.1008 2.9175 3.2960
ŶRDR2−l 5.3830 5.5579 7.2005 7.2753 8.3981 8.4328
ŶRDR3−x 3.0664 3.4212 2.6377 2.9739 1.9837 2.3745
ŶRDR3−l 4.3508 4.5603 4.3532 4.5194 4.3759 4.5263
ŶRDR4−x 3.3407 3.7062 3.1919 3.5298 2.2949 2.7083
ŶRDR4−l 5.2964 5.4696 6.6016 6.6844 7.5067 7.5478
ŶCPSA−0.5−x 3.2861 3.6344 2.8010 3.1304 2.1006 2.4880
ŶCPSA−0.5−l 4.3928 4.6010 4.3621 4.5244 4.3960 4.5426
ŶCPSA−n−x 4.3127 4.6285 4.4216 4.7102 3.4650 3.8981
ŶCPSA−n−l 5.8100 5.9651 6.9818 7.0578 7.7466 7.7861
ŶCPSA−α0−x 1.7371 2.1937 1.6253 2.0568 1.6617 2.0761
ŶCPSA−α0−l 1.7677 2.2334 1.6677 2.1159 1.7663 2.2183

5 Application to a survey on the social effects of COVID-19 in Spain

In this section, we apply the estimation method proposed in section 3, ŶCPSA, to several variables that
assess the impact of the COVID-19 in Spain and compare the results with the measurements obtained
when both probability and non-probability-based samples are merged and calibrated to correct observed
deviations from population benchmarks in relevant socio-demographic variables, ŶREF .

Tables 2 and 5 show the outcomes of several variables measuring these direct and indirect effects of
the pandemic in Spain considering probability and non probability-based samples separately as well as the
integrated file using the estimation methods described above. The variables analyzed are the following:

(i) COVID-19 infection (respondent) (V1)

(ii) COVID-19 infection (close relatives) (V2)

(iii) Severity of infection No symptoms (V3)

(iv) Severity of infection Mild symptoms (V4)

(v) Severity of infection Serious symptoms (V5)

(vi) Severity of infection Hospital admission (V6)

(vii) Self-assessed health status (V7)

(viii) Mood self-assessment (V8)

(ix) Household income decreased as a result of COVID-19 pandemic (V9)
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Table 3 Target variable y2

nP=250, nNP=500 nP=250, nNP=1000 nP=250, nNP=2000
RB RMSE RB RMSE RB RMSE

ŶREF 4.4896 4.6836 4.4295 4.5954 4.4039 4.5376
ŶEH 2.2969 2.8396 2.2355 2.8294 2.1261 2.6716
ŶPPSA−x 2.1424 2.6954 2.7771 3.4387 3.6646 4.4232
ŶPPSA−l 3.0467 3.4685 2.9805 3.4032 2.9749 3.3381
ŶRDR1−x 6.4868 6.6735 9.3444 9.4275 11.1084 11.1396
ŶRDR1−l 6.4868 6.6735 9.3444 9.4275 11.1085 11.1397
ŶRDR2−x 2.1913 2.6276 2.5367 3.0326 2.7151 3.1543
ŶRDR2−l 5.4169 5.7445 7.6562 7.8112 9.0623 9.1459
ŶRDR3−x 3.2944 3.6588 2.8563 3.2279 2.0788 2.5324
ŶRDR3−l 4.0923 4.3647 4.0599 4.3128 3.9509 4.1784
ŶRDR4−x 3.5544 3.8934 3.3697 3.7363 2.2891 2.6838
ŶRDR4−l 4.9899 5.2172 6.1594 6.2886 6.9170 6.9871
ŶCPSA−0.5−x 3.4837 3.8161 2.9433 3.3008 2.0841 2.4774
ŶCPSA−0.5−l 4.1404 4.4017 4.0628 4.2905 4.0024 4.1855
ŶCPSA−n−x 4.5550 4.8456 4.6472 4.9614 3.4805 3.9333
ŶCPSA−n−l 5.4627 5.6568 6.5150 6.6299 7.1407 7.2063
ŶCPSA−α0−x 1.7518 2.2293 1.7182 2.1520 1.6122 2.0024
ŶCPSA−α0−l 1.7717 2.2576 1.7495 2.1984 1.7052 2.1117

The main differences between both samples in the survey are the infection rate and the severity of the
disease. The proportion of respondents that have suffered the infection is more than three points higher
in the probability-based sample. Also, hospitalisation seems to be less likely for COVID-19 patients in
this sample, although the difference is not statistically significant. Both trends may be explained by the
differences in the age structure of both samples, with the non-probability sample being considerably older
than the probability-based (61 vs. 45). Those differences are consistent with what we already know
regarding disease severity, with elders more at risk of developing serious illness, and compliance with
COVID-19 preventative measures (41).

Similarly, the age distribution of samples would explain the difference, statistically significant, on the
assessment of the impact of the pandemic on household income. This evaluation is considerably worse
in the probability-based sample where the weight of employment incomes is most important. In all these
cases, the estimator that seems to correct best the impact of the differences in age structure between both
samples is the estimator that we develop in section 3. As shown in the simulation presented in the preceding
section, this estimator is very efficient at reducing biases in the integrated dataset.

6 Conclusions

With more than 8 million official cases and almost 91,000 casualties as of mid-January 2022, Spain is one
of the EU countries that has been worst affected by COVID-19. Spanish GDP declined by 10.8% in 2020
and working hours for the equivalent of 2 million of jobs were lost according to ILO data. Using a design
that combines probability and non-probability-based sampling methods and proper estimation techniques,
the second edition of the ESPACOV survey fully reflects the relevance of this impact. According to main
survey estimators, 11% of the Spanish population had had COVID-19 and 30% had witnessed the infection
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Table 4 Estimates of selected variables on the direct impact of COVID-19 in Spain from integrated data
using a new estimation method based on calibration and XGBoost PSA (ŶCAL−PSA) and direct calibration
of the integrated sample (ŶREF ).

Individual samples Integrated sample
Probability Non-probability YCAL−PSA YREF

Variable Estimation CI Estimation CI Estimation CI Estimation CI
V1 0.1264 0.1066-0.1484 0.0939 0.0736-0.1177 0.1101 0.0862-0.1344 0.1220 0.1018-0.1422
V2 0.3001 0.2719-0.3295 0.2846 0.2515-0.3197 0.3038 0.2641-0.3436 0.2852 0.2577-0.3128
V3 0.1474 0.0871-0.2288 0.1458 0.0677-0.2651 0.2024 0.1197-0.2851 0.1860 0.1130-0.2589
V4 0.7158 0.6196-0.7990 0.6875 0.5484-0.8048 0.6745 0.5483-0.8006 0.6605 0.4838-0.8372
V5 0.1158 0.0631-0.1914 0.1042 0.0409-0.2133 0.0983 0.0340-0.1625 0.1041 0.0188-0.1895
V6 0.0211 0.0044-0.0658 0.0417 0.0088-0.1270 0.0194 0.0000-0.0579 0.0367 0.0000-0.0880

Table 5 Estimates of selected variables on indirect effects of COVID-19 in Spain from integrated data
using a new estimation method based on calibration and XGBoost PSA (ŶCAL−PSA) and direct calibration
of the integrated sample (ŶREF ).

Individual samples Integrated sample
Probability Non-probability YCAL−PSA YREF

Variable Estimation CI Estimation CI Estimation CI Estimation CI
V7 0.0668 0.0524-0.0838 0.0760 0.0578-0.0979 0.0657 0.0449-0.0865 0.0750 0.0581-0.0919
V8 0.2754 0.2481-0.3041 0.2340 0.2031-0.2671 0.2705 0.2290-0.3122 0.2607 0.2336-0.2879
V9 0.4162 0.3856-0.4474 0.2996 0.2658-0.3350 0.3950 0.3583-0.4318 0.4026 0.3738-0.4314

of close relatives until January 2021, 10 months after the World Health Organization (WHO) declared the
novel coronavirus (COVID-19) outbreak a global pandemic. Although the majority of those infections
were asymptomatic or endured with mild symptoms (87.7%), the pandemic was taking a huge toll on the
economy of families (39.5% declared that household income had decreased) and on mental wellbeing, with
more than one in four (27%) assessing their mood as very bad or bad.

The estimates suggested in literature that could be applied to the data from this survey were based on
the simple union of both samples. In this article we address the problem of how to improve these estimates.
We introduce four methods for calculating weights that blend probability and convenience samples; these
methods combine calibration and propensity score adjustment using machine learning techniques for those
situations where the variables of interest are observed in both samples.

Before their application to the survey, we evaluate the behavior of the proposed estimators against other
techniques for integrating probability and non-probability samples used in the literature. As in many simu-
lation studies, the number of simulation conditions we have generated is limited. However, we considered
a simulation study with several sample sizes to cover different Missing At Random situations and we com-
pared the performance of standard logistic regression model with a machine learning algorithm (XGBoost)
when estimating the propensity score. Our simulation study shows that the proposed estimator based on
calibration and PSA techniques is very efficient at reducing self-selection bias and RMSE with this kind of
data. In our simulations, the best performing techniques for the estimation of the propensity scores were
those based on boosting, which guaranteed considerably lower bias and RMSE in comparison to a similar
estimator based on logistic regression and other techniques considered in the study.

Before applying ML techniques we have considered hyperparameter tuning. The simulation proved that,
in the context of integrating probability and non-probability data, tuning is data-dependent and therefore we
strongly suggest that researchers consider tuning parameters before using ML techniques in this context.
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Finally, based on the simulation results, we consider the use of the proposed estimator ŶCAL−PSA−α0

(which is the estimator that weights the samples by the MSE) as an alternative to the usual estimators for the
estimation of the effects of the COVID-19 pandemic in Spain. The application of this method to ESPACOV
II Survey provides the best correction of the impact of the deviations from population parameters in both
samples.
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