
1

Requirements Elicitation and Analysis
for Micro-businesses based on Requirements Patterns

“μbRPs”

Universidad de Granada

Tesis doctoral elaborada para optar al título de:

Doctor por la Universidad de Granada

dentro del Programa de Doctorado en

Tecnologías de la Información y la Comunicación

Presentada por:

Ray James Perez Macasaet

Dirigida por:

Dr. José Luis Garrido Bullejos y Dra. María Luisa Rodríguez

Departamento de Lenguajes y Sistemas Informáticos

Universidad de Granada

Granada, 2022

Editor: Universidad de Granada. Tesis Doctorales
Autor: Ray James Perez Macaset
ISBN: 978-84-1117-421-3
URI: http://hdl.handle.net/10481/75943

http://hdl.handle.net/10481/75943

3

Dedicado a mi madre, Helen Perez Macasaet

4

5

AGRADECIMIENTOS

Quiero agradecer a las siguientes personas que están involucradas en esta tesis. Sin sus
apoyos y consejos, este trabajo sería inalcanzable.

 José Luis Garrido, mi director de tesis, co-autor.

 María Luisa Rodríguez, mi directora de tesis, co-autora.

 Manuel Noguera, mi co-autor, colaborador en promover las μbRPs por Action
Research en Everyware Technologies (España).

 Lawrence Chung, mi co-autor, colaborador en University of Texas at Dallas (UTD)

(Estados Unidos).

 Sam Supakkul, mi co-autor, colaborador en el proyecto Requirements Engineering
Tools (RE-Tools).

 Antonio Rico, colaborador en promover las μbRPs por Action Research en

Desarrollo TIC (España).

 Miguel Quesada, colaborador en promover las μbRPs por Action Research en Virus
Worldwide (Filipinas).

 Mila Lavarias, la responsable de la gestión de financiación que viene del Pentathlon

Systems Resources Incorporated (PSRI) (Filipinas).

 Los desarrolladores de software en PSRI que han promovido y están promoviendo
continuamente las μbRPs en los proyectos de software de las micro-empresas en
Filipinas – Kerwin Lim, Jerrick Velasco, Raymund Musa, DJ Ongmanchi, Michael
Don Cribe, Rudolph Martin, James Olegario, Bernard Sanchez, Jessie Siat, Dianne
Bersabe, John Raymund Calderon, Jonathan Guirigay, Sarah Jane Frias y Rodelio
Arcilla.

 María José Rodríguez Fórtiz, colaboradora de nuestro equipo de investigación.

 Carlos Ureña Almagro, anterior coordinador del Programa de Doctorado.

 Héctor Pomares, actual coordinador del Programa de Doctorado en Tecnología de la

Información y la Comunicación de la Universidad de Granada (UGR) para la
realización de esta tesis doctoral y mi obtención del título de Doctor.

6

El trabajo de investigación de esta tesis ha sido financiado parcialmente por:

● Spanish Ministry of Economy and Competitiveness under the research project

TIN2012-38600

● Spanish Ministry of Science and Innovation under the research projects TIN 2008-

05995/TSI and TIN 2007-60199

● Spanish Ministry of Science and Innovation through the

Project Ref. PID2019-109644RB-I00 /

SRA (State Research Agency) / 10.13039 / 501100011033

● Andalusian Innovation Office under the research project TIN-6600

● CEI BioTIC Granada under the research project 20F2/36

● European Regional Development Funds (FEDER)

● Pentathlon Systems Resources Incorporated (PSRI)

● Erik Jonsson School of Engineering and Computer Science at the University of Texas

at Dallas (UTD)

7

ÍNDICE GENERAL

Publicaciones relacionadas con esta tesis ……………………………………………… 15

Resumen ……………………………………………………………………………………….. 17

Summary ……………………………………………………………………………………….. 21

References …………………………………………………………………………………….. 24

Chapter I
The Micro-business Domain ………………………………………………………………… 25

1. Introduction …………………………………………………………………………………... 25

2. Requirements in Micro-business Software Projects …………………………………….. 28

 2.1. The differences between requirements in large versus micro-businesses … 28

 2.2. A gap in micro-business research ……………………………………………… 31

 2.3. Possibilities for micro-businesses in the future ………………………………. 33

3. Conclusions …………………………………………………………………………………. 34

Chapter References …………………………………………………………………………… 35

Chapter II
Related Literature …………………………………………………………………………… 39

1. The Process for the Review of Related Literature ……………………………………… 39

2. The Related Literature …………………………………………………………………….. 40

 2.1. Related Research Proposals ………………………………………………….. 41

 2.1.1. Research proposals related to (micro-)business processes ……. 42

 2.1.2. Research proposals related to requirements ……………………... 49

 2.1.3. Research proposals associated with software (components) …... 55

 2.1.4. Research proposals related to improving comprehensibility ……. 65

 2.1.5. Research proposals related to representing infrastructure ……... 76

 2.2 Related Evaluations of Research Proposals put into Practice ……………... 78

 2.2.1. Evaluations of research proposals using case studies ………….. 79

8

 2.2.2. Evaluations of research proposals using Action Research …….. 82

 2.2.3. Evaluations of comprehensibility in industry ……………………… 87

3. Conclusions ………………………………………………………………………………... 90

Chapter References …………………………………………………………………………. 94

Chapter III
Theory and Practicality of Modeling in the Domain of Micro-businesses ………. 103

1. The Practical use of the Business Process Modeling Notation ……………………… 103

2. Practicality with the Unified Modeling Language on the Same Note ……………….. 108

3. Practical Diagramming and Models for Non-Functional Requirements ……………. 111

4. A Practical Characterization and Description of Patterns in Software ……………… 114

 4.1. Characterization of Patterns ………………………………………………….. 114

 4.2. Description of a Pattern ……………………………………………………….. 116

5. Conclusions ……………………………………………………………………………….. 117

Chapter References …………………………………………………………………………. 118

Chapter IV
Micro-business Requirements Patterns “μbRPs” ……………………………………. 121

1. Characterization of a Micro-business …………………………………………………… 122

2. Conceptual Model ………………………………………………………………………… 125

3. The μbRP ………………………………………………………………………………….. 137

 3.1. The Description of a μbRP ……………………………………….……………. 137

 3.1.1. μbRP Table ………………………………………...………………….. 141

3.1.2. Functional Requirements Table Section…………...…….…..…….. 142

3.1.3. Non-Functional Requirements Table Section……………..……….. 144

3.1.4. BPMN, UML, and SIGs………………………………….……………. 145

3.1.5. Complementary Notes …………………………………………..……. 152

 3.2. Adapting SIGs models for the micro-business domain …………………….. 153

 3.2.1. Operationalizing Methods …………………………………………… 153

9

3.2.2. Catalog of Operationalizing methods ………………………………… 155

4. A Real-World Example of an μbRP in Practice ……………………………………….. 159

 4.1. Requirements Elicitation ………………………………………………………. 160

4.2. Modeling ………………………………………………………………………… 164

4.3. Instantiation …………………………………………………………………….. 167

4.4. Software Design ……………………………………………………………….. 171

4.5. Complementary Notes ………………………………………………………… 173

5. Managing μbRPs ………………………………………………………………………… 174

 5.1. Creating μbRPs ………………………………………………………………. 174

 5.2. Using μbRPs ………………………………………………………………….. 178

6. Tool Support for μbRP Modeling ………………………………………………………. 179

7. Conclusions ………………………………………………………………………………. 180

Chapter References ………………………………………………………………………… 181

Chapter V
μbRPs in Industrial Practice ……………………………………………………………… 185

1. The Suitability of Using μbRPs in Micro-business Software Projects ……………….. 185

2. Evaluating Comprehensibility ……………………………………………………………. 187

 2.1. Compilation of Interview Results ……………………………………………… 189

 2.2. Potential Benefits of using SIGs in μbRP Diagrams ………………………… 190

3. Evaluating Timelines and Affordability …………………………………………………… 193

 3.1. Units of Analysis ………………………………………………………………… 193

 3.2. Multiple Iterations ……………………………………………………………….. 194

 3.3. Grounded Theory ……………………………………………………………….. 196

 3.3.1. A Brief Background on Grounded Theory …………………………. 196

 3.3.2. Grounded Theory in the Practice of Action Research ……………. 197

4. Application of our Evaluation Approach in Other Contexts ……………………………. 199

 4.1. A Brief Background of the Scrum Framework ……………………………….. 200

10

 4.2. Just in Time Demos …………………………………………………………….. 202

 4.3. Evaluation of Just in Time Demos ……………………………………………. 203

5. Conclusions ………………………………………………………………………………… 206

Chapter References ………………………………………………………………………….. 207

Chapter VI
Conclusion ……………………………………………………………………………………. 211

1. Observable Strengths ……………………………………………………………………… 211

2. Discussion on Weaknesses and Limitations ……………………………………………. 213

3. Conclusions and Future Work ……………………………………………………………. 215

Capítulo VI
Conclusión …………………………………………………………………………………… 219

1. Fortalezas observables …………………………………………………………………… 219

2. Discusión sobre debilidades y limitaciones …………………………………………….. 221

3. Conclusiones y Trabajo futuro …………………………………………………………… 223

Appendix A
Catalogue of μbRPs ………………………………………………………………………… 227

1. Inventory ……………………………………………………………………………………. 227

2. Sales ………………………………………………………………………………………… 231

3. Logistics …………………………………………………………………………………….. 233

4. Production ………………………………………………………………………………….. 236

5. Customer Relationship Management “CRM” …………………………………………… 239

6. Human Resources ………………………………………………………………………… 242

7. Accounting …………………………………………………………………………………. 245

8. Management (Reports) …………………………………………………………………… 248

9. Restaurant …………………………………………………………………………………. 251

10. Online Retail Shop ………………………………………………………………………. 254

11

Appendix B
Languages and Notations in Practice ………………………………………………….. 261

1. The Business Process Modeling Notation (BPMN) …………………………………… 261

1.1 BPMN Concepts ………………………………………………………………… 261

1.2 BPMN Example ………………………………………………………………….. 269

2. Softgoal Interdependency Graphs (SIGs) ………………………………………………. 270

 2.1 SIGs Concepts …………………………………………………………………… 270

 2.2 SIGs Example ……………………………………………………………………. 280

3. Unified Modeling Language (UML) ………………………………………………………. 281

3.1 Class Diagrams ………………………………………………………………….. 281

 3.1.1 Class Diagrams Concepts …………………………………………… 281

 3.1.2 Class Diagram Example ……………………………………………… 286

 3.2 Component Diagrams …………………………………………………………… 287

 3.2.1 Component Diagram Concepts ……………………………………… 287

 3.2.2 Component Diagram Example ………………………………………. 289

Appendix C
Action Research Material for Micro-businesses ……………………………………….. 291

1. Sample Form used to Evaluate μbRP Diagram Comprehensibility …………………… 291

2. μbRP User Guide …………………………………………………………………………... 293

3. Tutorials ………………………………………………………………………………………. 308

4. BPMN Quick Reference Sheet (from bpmb.de) …….……………………………………. 315

5. SIGs Quick Reference Sheet ………………………………………………………………. 316

Bibliography …………………………………………………………………………………… 317

12

ÍNDICE DE FIGURAS

Figure II.1. The process for the Review of Related Literature …………………………… 40

Figure II.2. A Venn Diagram illustrating the common ground of all the related research
proposals and evaluations to this thesis ……………………………………………………. 41

Figure IV.1 Conceptual model ……………………………………………………………….. 125

Figure IV.2 Turning Goals into Requirements by Kotonya and Sommerville, 2003 …… 132

Figure IV.3 Overview of the Description of a μbRP showing prepared and to-be parts... 139

Figure IV.4 Transformation of FRs to business-like, question-answer format …………. 143

Figure IV.5 From question, to mode/option, to choice/answer …………………………… 144

Figure IV.6 BPMN Diagram for the Restaurant Micro-business (simplified) …………… 146

Figure IV.7 Combining BPMN and SIGs through an operationalization target link …… 148

Figure IV.8 Combining UML with BPMN and SIGs ………………………………………. 151

Figure IV.9 A UML Component Diagram showing required and provided interfaces … 152

Figure IV.10 Adapting SIGs for Micro-business Software Systems ……………………. 154

Figure IV.11 Model of the modes or “options” of the Online Retail Shop μbRP ………. 165

Figure IV.12 Linking μbRP Tables and Models …………………………………………… 166

Figure IV.13 Model of an Online Store μbRP instantiation with “choices” and
“priorities” ……………………………………………………………………………………… 169

Figure IV.14 A UML component deployment diagram from the instantiated
μbRP (in Figure IV.13) ………………………………………………………………………. 171

Figure IV.15 A BPMN model of the process of creating and using μbRPs ……………. 175

Figure IV.16 Grouping and Modeling Common Requirements and Turning
Requirements into a Question Format that can be Answered with Yes or No,
and corresponding BPMN diagram ………………………………………………………… 177

Figure IV.17 A screenshot of RE-Tools, showing multiple notations, BPMN, SIGs,
and UML at the same time ………………………………………………………………….. 180

Figure V.1. Evaluating the suitability of μbRPs for micro-business software projects … 187

Figure V.2. Sample Model Comprehensibility Form ……………………………………… 188

Figure V.3 A causal model showing grounded theories built from the Action
Research data ………………………………………………………………………………… 199

13

Figure V.4 Modification of the Scrum Framework in order to make way for JIT Demos … 203

Figure V.5 Using Grounded Theory to make a Causal Model of JIT Demos …………….. 205

14

ÍNDICE DE TABLAS

Table I.1 Various Characterizations of Micro-businesses ………………………………….. 27

Table I.2 Differences of Requirements between Large and Micro-businesses ………….. 31

Table II.1 Checklist of Related Literature ………………………………………………….… 91

Table II.2 Table of Related Literature ………………………………………………………… 92

Table III.1 Candidate BPMN Elements for this Thesis ……………………………………… 107

Table III.2 Candidate UML Elements for this Thesis ………………………………………... 110

Table III.3 Candidate SIGs Elements for this Thesis ……………………………………….. 112

Table III.4 Characterizations of Patterns in Software ………………………………………. 115

Table IV.1 Definition of Small to Medium Sized Enterprises by the European
Commission …………………………………………………………………………………….. 122

Table IV.2 Definition of Concepts in the Conceptual model ………………………………. 129

Table IV.3 Relationships in the Conceptual model ……………………..………………….. 135

Table IV.4 Description of the parts of a μbRP ……………………………………………… 139

Table IV.5 Restaurant μbRP FR Table Section (shortened) ……………………………… 142

Table IV.6 Restaurant μbRP NFR Table Section (shortened) ……………………………. 145

Table IV.7 Catalog of Operationalizing Methods …………………………………………… 158

Table IV.8 Online Retail Shop μbRP Requirements Elicitation Table Before Elicitation
Meeting ………………………………………………………………………………….………. 161

Table IV.9 Online Retail Shop μbRP Requirements Elicitation Table After Elicitation
Meeting …………………………………………………………………………….……………. 163

Table V.1 Summary of the Results of the 16 one-on-one interviews with
micro-business owners ……………………………………………………………………….. 190

Table V.2 Observing μbRPs in Industrial Practice Using Action Research …………….. 196

Table V.3 Units of Analysis and Multiple Iterations with JIT Demos …………………….. 204

15

Publicaciones relacionadas con esta tesis

Macasaet, R., Chung, L., Garrido, J., Rodriguez, M., & Noguera, M. (2011). An Agile
Requirements Elicitation Approach based on NFRs and Business Process Models for Micro-
businesses. In Proceedings of the 12th International Conference on Product Focused Software
Development and Process Improvement PROFES, (pp. 50-56). ACM New York, NY, USA.
doi: 10.1145/2181101.2181114

Macasaet, R., Noguera, M., Rodriguez, M., Garrido, J., Supakkul, S., & Chung, L. (2012).
Micro-business Behavior Patterns associated with Components in a Requirements Approach.
In Proceedings of the 2nd International Workshop on Experiences and Empirical Studies in
Software Modeling EESSMOD at the ACM/IEEE 15th International Conference on Model
Driven Engineering Languages & Systems MODELS, Article 7, (pp. 1-6). ACM New York, NY,
USA. doi: 10.1145/2424563.2424573

Supakkul, S., Chung, L., Macasaet, R., Noguera, M., Rodriguez, M., & Garrido, J. (2013).
Modeling and Tracing Stakeholders' Goals across Notations using RE-Tools. In Proceedings
of the 6th International i* Workshop iStar at the 25th International Conference on Advanced
Information Systems Engineering CAiSE, (pp. 128-130). Last accessed on October 9, 2013 at
http://ceur-ws.org/Vol-978/paper_23.pdf

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S. & Chung, L.
(2013). A requirements-based approach for representing micro-business patterns. In R.
Wieringa, S. Nurcan, C. Rolland & J.-L. Cavarero (eds.), Proceedings of the IEEE 7th
International Conference on Research Challenges in Information Science RCIS 2013, (pp.1-
12), IEEE. ISBN: 978-1-4673-2912-5. doi: 10.1109/RCIS.2013.6577703

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2014). Representing Micro-business Requirements Patterns associated with Software
Components. In RCIS’13 Special Issue of Top Ranked Papers, Journal of Information System
Modeling and Design IJISMD 5 (4), (pp. 71-90), IGI-Global.

Macasaet, R. J. (2017). The Project Start Review Group. In M. Brambilla, T. Hildebrandt (eds.),
Proceedings of the Industry Track of the 15th International Conference on Business Process
Management BPM, (pp. 81-87).

Macasaet, R.J. (2018). Just in Time Demos in the Scrum Framework. Proceedings of the 3rd
International Conference on System Reliability and Safety ICSRS, (pp.21-24).

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2019). Micro-business Requirements Patterns in Practice: Remote Communities in
Developing Nations. Journal of Universal Computer Science JUCS 25 (7), (pp. 764-787).

Macasaet, R. J., Rodriguez, M. L., Garrido, J. L., & Chung, L. Requirements Elicitation and
Analysis for Micro-businesses: A Pattern-based Approach in Practice. Submitted to the
Springer Computing Journal on March 25, 2022.

16

17

Resumen

Los requisitos malentendidos pueden causar muchos fracasos en numerosos proyectos

software (El Amam & Madhavji, 1995; Kauppinen et al., 2004; Davis et al., 2006). Algunos

investigadores (El Amam & Madhavji, 1995) mencionan que la elicitación y el análisis de

requisitos es el paso más importante en el desarrollo de software. En (Kauppinen et al., 2004)

indican que los requisitos son tan importantes que errores en este paso resultarán en

problemas durante el diseño de software e implementación. En (Davis et al., 2006) se

describe cómo aproximadamente el 90% de los fracasos en el desarrollo de software vienen

de errores en los requisitos.

Es imprescindible que todas las empresas hagan su elicitación y análisis requisitos bien,

no sólo las grandes empresas (Young, 2004). Aunque no todos los métodos/técnicas de

requisitos y/o la forma de aplicarlos para grandes empresas son útiles para las pequeñas y

microempresas. Por ejemplo, el método KAOS (Respect-IT, 2007; van Lamsweerde, 2001;

van Lamsweerde, 2009) que es uno de los más populares hoy en día, se usa normalmente

en proyectos que necesitan más de 100 días de trabajo. Sin embargo, faltan métodos de

requisitos ideados específicamente para microempresas.

Esta tesis propone una manera de llevar a cabo el proceso de elicitación y análisis de

requisitos para microempresas. Los requisitos intentan ser comprensibles para los

empresarios y otros participantes de las microempresas. Normalmente, los empresarios y

otros participantes en las microempresas no están habituados a usar términos técnicos y

prefieren usar sus idiomas nativos para expresar sus requisitos a los ingenieros. Esta tesis

propone que los términos técnicos no deben ser el tema central (Reijers et al., 2011) en los

procesos de ingeniería de requisitos para microempresas. En este sentido, los requisitos para

las microempresas deben ser elicitados y analizados mediante procesos ligeros y efectivos

(Ambler, 2002) ya que frecuentemente no son proyectos complejos los que se han de

desarrollar.

También, la manera de realizar el análisis de requisitos debe ser relevante técnicamente

para los analistas/desarrolladores de software. El análisis de requisitos puede acelerar el

desarrollo de software por el reuso de requisitos repetidos y consecuentemente también de

componentes software ya desarrollados. La comunicación entre ingenieros y empresarios de

18

las microempresas también mejora. La comprensión de los requisitos se mejora desde las

perspectivas de desarrolladores y los empresarios de microempresas.

Para conseguir estos objetivos de comprensibilidad y relevancia técnica, el proceso de

ingeniería de requisitos debe responder las siguientes dos preguntas:

(1) ¿Cómo modelamos los requisitos para que los analistas/desarrolladores y empresarios

de micro-empresas entiendan comprensiblemente los requisitos y para que los usen

técnicamente?

(2) ¿Cómo se aplica y se evalúa la manera de obtener y analizar los requisitos en la

práctica, día a día en el mundo actual?

Gestionar requisitos comprensibles y técnicamente relevantes a la vez son conflictivos y

por eso, hemos incluido en nuestra propuesta aportaciones para intentar alcanzar los dos

objetivos a la vez.

En el primer capítulo de esta tesis, introducimos el dominio de las microempresas.

Describimos que es una microempresa desde diferentes puntos de vista, los requisitos en

proyectos de software de microempresas, retos y restricciones en los proyectos de software

en microempresas y el futuro de las microempresas.

En el segundo capítulo, revisamos propuestas relacionadas con esta tesis. Analizamos

propuestas relacionadas con procesos de negocio, requisitos, componentes de software, la

mejora de la compresibilidad y la representación de infraestructura de sistemas de software.

También se resumen investigaciones empíricas relacionadas con la relevancia técnica acerca

de la comprensibilidad de los requisitos y del desarrollo del software.

En el tercer capítulo, nos enfocamos en estudiar y describir conceptos de modelado que

utilizamos para la propuesta de la tesis. Explicamos la Business Process Modeling Notation

(BPMN), los Softgoal Interdependency Graphs (SIGs) y hacemos un repaso de algunos

diagramas en el Unified Modeling Language (UML) – tales como diagramas de clases,

componentes y actividades.

En el cuarto capítulo, presentamos nuestra propuesta. En particular, presentamos nuestra

caracterización de una microempresa, el modelo conceptual, describimos lo que es nuestra

propuesta en base a patrones de requisitos de microempresa (acrónimo “μbRP” para

19

referirnos a Micro-business Requirements Pattern) que incluyen tablas, modelos (BPMN,

UML, SIGs) y notas complementarias para la implementación de software, y las herramientas

que se usan para apoyar la representación de los patrones de requisitos de microempresas.

Adicionalmente, presentamos cómo gestionar los μbRPs en la industria.

En el quinto capítulo, presentamos los resultados de la investigación experimental

realizada acerca del uso de los μbRPs durante el día a día, en el mundo actual. Evaluamos

la idoneidad de los patrones de requisitos de microempresas usando investigación de estilo

acción. Evaluamos mejoras en tiempo y coste usando los patrones de requisitos. Usando

entrevistas, evaluamos las mejoras en comprensibilidad cuando se usan los patrones de

requisitos. También, la aplicación de nuestra investigación de estilo acción se presenta en

otro contexto en la industria.

En el sexto capítulo, reflexionamos sobre los puntos fuertes y débiles del uso de los μbRPs.

También, presentamos conclusiones y propuestas de trabajo para el futuro.

En los apéndices, se presentan varios patrones de requisitos de microempresas, ejemplos

de los formularios que se usaron durante la investigación de estilo acción, las guías para usar

las notaciones (BPMN, UML y SIGs), tutoriales y la guía de usuario para el uso de los patrones

de requisitos de microempresas.

20

21

Summary

Misunderstood requirements can be the cause of failure in various software projects (El

Amam & Madhavji, 1995; Kauppinen et al., 2004; Davis et al., 2006). Some researchers (El

Amam & Madhavji, 1995) mention that requirements elicitation/analysis is the most important

step in software development. In (Kauppinen et al., 2004), the authors mention that the

requirements are so important that errors in this step will result in problems during software

design and implementation. In (Davis et al., 2006), the authors describe how approximately

90% of failures in software development come from errors in requirements.

It is imperative that all companies do their elicitation and analysis requirements well, not

just large companies (Young, 2004). Although not all the methods/techniques of requirements

and/or the way of applying them for large companies are useful for small and micro-

businesses. For example, the KAOS method (Respect-IT, 2007; van Lamsweerde, 2001; van

Lamsweerde, 2009), which is one of the most popular today, is typically used on projects that

need more than 100 man-days of work. However, requirements methods designed specifically

for micro-businesses are lacking.

This thesis proposes a way to carry out the process of elicitation and analysis of

requirements for micro-businesses. The requirements are intended to be comprehensible to

micro-business owners and stakeholders involved in micro-businesses. Typically, micro-

business owners and stakeholders involved in micro-businesses are not accustomed to using

technical terms and prefer to use their native languages to express their requirements to

software engineers. This thesis proposes to move away from the use of technical jargon

(Reijers et al., 2011) in requirements engineering processes for micro-businesses. In this

sense, the requirements process for micro-businesses must elicit and analyze requirements

through light and effective ways (Ambler, 2002) since the projects that have to be developed

are not always complex.

The way to perform the requirements analysis must also be technically relevant to the

software analysts/developers. Requirements analysis can speed up software development by

reusing recurring requirements and consequently software components that have already

been developed. Communication between engineers and micro-business owners also

improves. The comprehensibility of the requirements is enhanced from the perspectives of

both the developers and micro-business owners.

22

To achieve these goals of comprehensibility and technical relevance, the requirements

engineering process must answer the following two research questions:

(1) How should requirements be modeled so that they would be comprehensible for micro-

business owners and technically relevant for software developers/analysts?

(2) How could the proposed requirements approach be applied and evaluated in the real

world?

Managing comprehensible and technically relevant requirements are somehow conflicting

and for this reason, we have included contributions in our proposal to try to achieve both

objectives at the same time.

In the first chapter of this thesis, we introduce the domain of micro-businesses. We describe

a micro-business from different points of view, the requirements in micro-business software

projects, challenges and constraints in micro-business software projects, and the future of

micro-businesses.

In the second chapter, we review proposals related to this thesis. We analyze proposals

related to business processes, requirements, software components, the improvement of

comprehensibility, and the representation of software infrastructure. Evaluation approaches

for proposals related to technical relevance and comprehensibility are also reviewed.

In the third chapter, we focus on describing the modeling concepts that we use for the

thesis proposal. We explain the Business Process Modeling Notation (BPMN), Softgoal

Interdependency Graphs (SIGs), and review some diagrams in the Unified Modeling

Language (UML) – such as class, component, and activity diagrams.

In the fourth chapter, we present our proposal. In particular, we present our characterization

of a micro-business, the conceptual model, our proposal on micro-business requirements

patterns (acronym “μbRP”) that includes tables, models (BPMN, UML, GIS), and

complementary notes for software implementation, and the tools used to support the

representation of micro-business requirement patterns. Additionally, we present how to

manage μbRPs in industry.

23

In the fifth chapter, we present results from the evaluation on the use of μbRPs in day-to-

day practice. We assess the suitability of μbRPs using action research. We evaluate

improvements in time and cost when μbRPs are used. Using interviews, we assess

improvements in comprehensibility when using the requirement patterns. The application of

our action research approach in another context in industry is also presented.

In the sixth chapter, we reflect on the strengths and weaknesses of the use of μbRPs. We

also present conclusions and future work.

In the appendices, there is an initial catalogue of μbRPs, samples of the forms that were

used during Action Research, guides on how to use the notations (BPMN, UML, and GISs),

tutorials, and the User Guide for μbRPs.

24

REFERENCES

Ambler, S. (2002). Agile modeling. John Wiley and Sons

Davis, C.J., Fuller, R.M., Tremblay, M.C., & Berndt, D.J. (2006). Communication Challenges
in Requirements Elicitation and the Use of the Repertory Grid Technique. In Journal of
Computer Information Systems, 46, (5), 78. url:
http://www.uta.edu/faculty/richarme/MARK%205338/Davis%20repertory%20grid.pdf

Emam, K. E. & Madhavji, N. H. (1995). A field study of requirements engineering practices in
information systems development. Requirements Engineering, pp. 68-80, IEEE Computer
Society.

Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S. & Sulonen, R. (2004). Implementing
requirements engineering processes throughout organizations: success factors and
challenges. Information & Software Technology, 46, (pp. 937-953). doi:
10.1016/j.infsof.2004.04.002

Reijers, I., Mendling, J., & Dijkman, R.M. (2011) Human and automatic modularizations of
process models to enhance their comprehension. Information Systems, 36, (pp. 881-897). doi:
10.1016/j.is.2011.03.003

Respect-IT. (2007). KAOS Tutorial Version 1.0. Last Retrieved on December 31, 2021, from
http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: a guided tour. Fifth
IEEE International Symposium on Requirements Engineering. (pp. 249-262). doi:
10.1109/ISRE.2001.948567

van Lamsweerde, A. (2009). Requirements Engineering - From System Goals to UML Models
to Software Specifications. Wiley. ISBN: 978-0-470-01270-3

Young, R. (2004). The requirements engineering handbook. Artech House. ISBN: 978-1-
58053-266-2

25

Chapter I

The Micro-business Domain

In this chapter, we provide an introduction to the domain of micro-businesses. We discuss

the various characterizations made by several researchers on micro-businesses. We provide

an overview of how requirements in micro-businesses differ from requirements in large

corporations and discuss why it does not make sense to apply the requirements techniques

for large businesses on to micro-businesses.

1. INTRODUCTION

Micro-businesses are the smallest of small-to-medium size enterprises (SMEs), varying in

terms of ownership, structure, culture, motivation, and market orientation (Ghobadian &

Gallear, 1997; Wong & Aspinwall, 2004, Alonso et al., 2018). Micro-businesses share

characteristics with their larger counterparts, medium and large-scale enterprises, but there

are also several things that set them apart from the rest.

Just like larger businesses, the ownership and structure of a micro-business could be of

almost any kind, ranging from being a single proprietorship, an equal partnership, or a group

of individuals with unequal share distribution. A single proprietor is one person who is basically

running the entire day-to-day business. An equal partnership is a 50-50 split between two

individuals who are working towards the same business goal. A group of individuals could be

an incorporated company on a micro scale.

The culture in a micro-business can also vary a lot like in any business. Some of them could

be very casual while other ones could be very formal. A micro-business could be a casual

organization made up of recent music graduates from university who would like to make some

extra money by performing music gigs at their local pub. On the other hand, a micro-business

could be made up of some ex-executives from large corporations that would like to raise funds

to build a sports stadium in their city or neighborhood.

26

The motivation and market orientation of micro-businesses also vary like any other

business. Micro-business could be formed for the purpose of making profits like an online retail

store that sells furniture. A micro-business can be focused on a certain market segment like

supplying coconuts to restaurants in a local town. There could also be micro-businesses that

are one-hundred percent oriented towards society like one that focuses on planting trees to

improve the carbon footprint of the population. There are even micro-businesses that have the

format of a short-term project which would be crowdfunded like launching a novel product that

would not have gotten investment support from bigger investment houses.

Given the variety of micro-businesses, many researchers have characterized them in

several different ways (Merten et al., 2011). For example, (Nikula et al., 2000) say that (micro-

)businesses must be characterized based on their age – the younger and more fragile a

business is, the more “micro” it is. The store that just opened around the corner is more of a

micro-business than the supermarket near the town hall that has been operating for more than

a decade.

From another point of view, the (European Commission, 2013) and the (International

Organization for Standardization (ISO), 2011) say that micro-businesses must be

characterized based on the number of employees (ISO refers to micro-businesses as very

small entities or VSEs). Businesses with less than 10 people are considered to be micro-

businesses. If the supermarket near your town hall has less than ten employees but has been

operating for more than a decade, it may still be considered a micro-business by some

researchers.

In addition, the (European Commission, 2013) says that micro-businesses must be

characterized based on the annual revenue or annual balance sheet which should be less

than two million euros. Businesses with more than two million euros in annual revenue or more

than two million euros in their annual balance sheet are not considered micro-businesses. If

the jewelry store, five blocks from your house, has been in business for only one week but has

a balance sheet of more than two million euros then they are not considered a micro-business

according to this characterization.

There is the possibility of classifying a micro-business in terms of the number of teams and

its variety of customers (Aranda, 2010). The lesser the number of teams and the less variety

of customers are more characteristic of a micro-business. If you have three sales teams and

27

three different types of customers in different geographical locations then your business may

not be a micro-business anymore.

Aside from the age and the number of people in a micro-business, its software could also

be a basis for classifying it as a micro-business. (Jantunen, 2010) says that the ability to

collaborate in software projects should be the basis for characterization where less maturity

tends to be more of a micro-business than a larger business. If you have thirty employees in

your business but are unable to collaborate properly in a software project with a development

team, then some researchers may consider you as a micro-business.

(Aranda et al., 2007) say that the length of software projects describes (micro-)businesses

better. Businesses with shorter software projects tend to be classified as micro-businesses. If

you have a software project that does not last for more than a week then you may be operating

a micro-business according to some researchers.

 (Kamsties et al., 1998) contend that the adaptability of (micro-)businesses to software

projects must be the basis for characterization. Smaller businesses are seen to be more

adaptable to software projects. This means that if your business can adapt to a software

project easily then you may have a micro-business according to some researchers. We have

an overview of all these characterizations in a table below where you can find the various

characterizations that have been made for micro-businesses by various researchers around

the world.

Table I.1 Various Characterizations of Micro-businesses

Author(s) Criteria Characterization

Nikula et al., 2000 age the younger, the more micro

European Commission,

2013
number of employees less than 10

International Organization

for Standardization (ISO),

2011

number of employees less than 10

28

European Commission,

2013

annual revenue or annual

balance sheet
less than 2 million euros

Aranda, 2010 number of teams lesser teams, more micro

Aranda, 2010 variety of customers
the lesser the variety of

customers, the more micro

Jantunen, 2010
ability to collaborate in

software projects

the less mature, the more

micro

Aranda et al., 2007 length of software projects
the shorter the project, the

more micro

Kamsties et al., 1998
adaptability to software

projects

the more adaptable, the

more micro

There is still heated debate on how micro-businesses and SMEs should be characterized

these days. Despite the numerous heated debates, studies on micro-businesses are still rare

these days, especially in academia (Kelliher & Reinl, 2009). This thesis is a direct response to

the lack of studies being made on micro-businesses. In addition, we also propose our own

characterization of a micro-business in Chapter 4 to provide more clarity in the presentation

of this thesis.

2. REQUIREMENTS IN MICRO-BUSINESS SOFTWARE PROJECTS

2.1 The differences between requirements in large versus micro businesses

The way that requirements are done in micro-businesses and small companies nowadays

bear little resemblance to how requirements are done in larger companies, what the textbooks

say, or what is taught at universities (Aranda et al., 2007). Requirements are done for large

software projects in large multinational companies but requirements for micro-businesses are

not always done and, in some cases, totally neglected (Respect-IT, 2007; van Lamsweerde,

2001). There are several documented cases where small and micro-business software

projects have succeeded without formal requirements documentation (Aranda et al., 2007).

29

However, does this mean that we should not be doing requirements for small and micro-

businesses?

Due to their size and particularity, there is no thorough understanding of particular business

processes specifically for micro-businesses, e.g., inventory management for micro-

businesses in developing nations (Ahmad & Zabri, 2018). This lack of thorough understanding

brings us to our next point. (Aranda, 2010) argues that it is a serious omission for requirements

researchers to overlook small organizations and that these small organizations should not

attempt to emulate the processes and practices of large organizations. In order for the work

of requirements researchers to be applicable in the micro-business domain, it must be tailored

to suit its specific context (Kassab, 2021).

A concrete example is the Knowledge Acquisition in Automated Specification (KAOS)

requirements approach (Respect-IT, 2007; van Lamsweerde, 2001; van Lamsweerde, 2009),

one of the most popular requirements approaches nowadays. It has been used in large

industrial projects like hospital emergency service management systems, large-scale drug

delivery management systems, and large-scale information systems for daily newspaper firms

(van Lamsweerde, 2001). Albeit useful for large projects, “a KAOS-like requirements study is

worth the effort as soon as the project man power is more than 100 man-days” (Respect-IT,

2007). This means that for a four-man software development team, this project would last for

more than five weeks. Not all micro-businesses require this many man-days to implement

software for their business.

Another reason why requirements would be different for large organizations compared to

small and micro-businesses is because of bureaucracy and formalization (Blau & Schoenherr,

1971; Haveman, 1993). Large organizations are successful because they are predictable. This

is due to the inertia created from the formalization of their structures and processes (Hannan

& Freeman, 1989). In larger companies, requirements are done by specialists and are

documented formally. Changes to requirements are normally done with the approval of a

committee.

A specific example is the following. In a multinational organization working on a large

project, if there is one branch of the organization in one location, exactly in the same

geographical area, and there are two members of the organization sitting next to each other,

then communication between these two members would be as if they were in two different

30

cities, continents apart. Both of them simply cannot talk to each other and agree on changing

a requirement or two because they would need approval from several stakeholders.

It is in situations like this where formal requirements documentation is used (Allen, 1977).

In a micro-business with two people, the case would be entirely different. Requirements

information can be shared with everyone involved, informally, at almost any point in time. The

ability to have everyone in the same room sorting out requirements makes formal

documentation of requirements in small organizations completely unnecessary (Lethbridge et

al., 2003).

Aside from the absence of bureaucracy and formalization, micro-businesses can develop

rapport or working relationships with lesser effort as compared to their larger counterparts.

Agile software development methodologies advocate a close communication between the

developers and the customers. In this way, the development team can understand the needs

and the culture of their clients in a more intuitive manner, resulting in faster resolution of

technical and non-technical issues (Beck, 2005). Capitalizing on positive relationships and

culture provide benefits during requirements and the rest of the software project (Alsanoosy

et al., 2020).

The manner of communication differs between micro-businesses and large companies too.

Micro-business owners are normally not exposed to technical languages nor do they have the

extra time to learn software jargon (Kamsties et al., 1998) (Kauppinen et al., 2002). They would

comfortably use their internal “oral traditions” (Aranda, 2010), natural language, and drawings

to express their requirements. Using unfamiliar words and phrases causes misunderstanding

and communication breakdowns with stakeholders during requirements (Alsanoosy et al.,

2018). Hence, communicating micro-business software requirements must be done as

intuitively and as comprehensively as possible (Kruchten, 2003), with as little or no technical

software terms (Young, 2004). Requirements of this kind could be referred to as “lightweight

but effective” (Ambler, 2002).

The requirements models used in smaller firms are unlikely to be formal. Based on a recent

survey, small firms use semi-formal modeling three times more than formal methods and

informal modeling eight times more than formal methods (Kassab, 2021). This survey points

out that smaller firms tend to shy away from formal modeling and tend towards semi-formal

and informal modeling.

31

Given the differences between large and micro businesses and their software

requirements, it is also important to note that software systems are more and more intertwined

with business processes as well (Immes, 1993). This means that if the business processes

are different in large businesses as compared to small and micro-businesses then their

software systems and requirements would have differences as well. We present a table below

which shows the differences in requirements between large and micro-businesses.

Table I.2 Differences of Requirements between Large and Micro-businesses

Requirement Large Business Micro-business

Method

Standardized, defined,

bureaucratic, and

predictable

Intuitive

Author Specialized engineer Anyone

Communication Functional boundaries Direct rapport

Terminology Technical Jargon Lightweight but effective

Models Formal Semi-formal and Informal

2.2 A gap in micro-business research

As will be elaborated in the next chapter during the review of related literature, there are

software requirements techniques for large companies and little or hardly any for micro-

businesses which means that there is not much attention being given to software requirements

for micro-businesses. Despite this, small and micro-businesses must still take their software

requirements seriously because sloppy requirements eventually turn into problems during

software design, implementation (Kauppinen et al., 2004), acceptance, and essentially

threaten the overall success of projects (Davis et al., 2006). Proper requirements are essential,

no matter the size of the business (Young, 2004).

For the software developers working on micro-business projects, there are a specific set of

challenges to address. The style of communication with micro-business owners must be

32

“lightweight but effective” (Ambler, 2002) with as little or no technical software terms (Young,

2004). Most micro-business owners do not have the time to learn technical software jargon

(Kamsties et al., 1998; Kauppinen et al., 2002). Instead, they will always try to express their

requirements using their own natural language and illustrations.

If requirements are made as lightweight as possible, do they start to lose their technical

relevance for developers? After all these years, developers have been studying and working

with complex, technical systems with all the jargon and terminologies which help themselves

communicate effectively with each other.

Developers working on micro-business software projects need requirements that are

technically relevant. Analyzing information such as the technical requirements details, the

design of the software, and effort estimates are of value to the developers. The challenge is

to make requirements both technically relevant and comprehensible for micro-businesses.

Aside from comprehensibility and relevance, there are also resource constraints specific to

micro-businesses. All modern software development companies, in which close to 99% are

small-to-medium in context (Fayad et al., 2000), operate in a competitive market with time and

cost constraints (Cugola & Ghezzi, 1998). For example, the number of man days expended in

software projects (unit of time) multiplied by the daily rate for software developers equals direct

labor costs (unit of cost) for a software project. Hence, to lower costs and make software more

affordable for micro-businesses, developers must be timely and minimize the man days

expended in projects.

How could a software development company with micro-business software projects

minimize man days expended in projects and become more competitive in the market?

Software (component) reuse saves time and contributes to minimizing man days expended in

projects. One way to promote software (component) reuse is through patterns (Sommerville,

2004). We provide an extensive literature review on patterns in the next chapter.

There is not a lot of research on the way requirements elicitation is done in industry

(Palomares et al., 2021). Even with the existence of patterns in literature and given the specific

challenges for software requirements for micro-businesses, there are surprisingly almost no

requirements approaches specifically made for micro-businesses, also known as Very Small

Enterprises “VSEs” (International Organization for Standardization (ISO), 2011). If we found

33

some proposal in our review of related literature which could be suitable for micro-businesses,

it would have shortcomings that would prevent us from progressing in our research.

For example, there is the Modeling by Example (MbE) proposal by (Kalenborn, 2010). MbE

appears to be pragmatic and applicable enough in the micro-business domain although it still

falls short in terms of specifications as a requirements approach. Moreover, the MbE approach

does not prioritize dialogue with micro-business owners since it is more focused on winning

bids for software projects, where dialogue between the developers and the micro-business

owners is limited and involves conflicting goals. More details on the MbE and the shortcomings

of other research proposals is provided in the systematic review of related literature in the next

chapter.

2.3 Possibilities for micro-businesses in the future

Despite the lack of suitable requirements techniques for micro-businesses, software

process improvement efforts, particularly in the area of requirements (Villalón et al., 2002;

Bae, 2007; Pino et al., 2008), are continuously being made for SMEs (Dybå, 2003) up to this

day. The future of solutions and improvements is bright for micro-businesses although it is not

determined nor set in stone. (Richardson & Wangenheim, 2007) states that the challenges

faced by micro-businesses and their software projects involve:

● Managing and improving the software processes

● Dealing with rapidly changing technology

● Maintenance of products

● Operation in a global software environment

● Sustenance of the organization through growth

However, the last challenge which involves the growth or stagnation of micro-businesses

is still debatable. (Aranda, 2010) argues that “…many in the software industry assume that

the goal of a small firm should be growth, that size is a valid measure of success. To be sure,

a large size brings certain benefits: the appearance of stability, the ability to engage in greater

and more ambitious projects, the appeal of commanding the work of a large number of

employees. And yet there are many rewards for small organizations, rewards that often go

unnoticed and unclaimed in their push to become large by behaving as if they were already

large. Some of these rewards are psychological and even ethical, such as the joy of working

34

in closely-knit groups and a greater agency over one's own work. That kind of reward may be

significant enough to justify a preference for small groups…”

To say that the future of micro-businesses is - to grow, become bigger, and cease to be a

micro-business - is not one-hundred percent set in stone. Rather, the future of micro-

businesses is driven by the goals made by its founders, owners, and stakeholders. Not all of

them dream to be big. Some of them are perfectly happy where they are. Through the goals

of micro-business owners and software developers, we study their requirements in detail

throughout this thesis. We see what kind of future micro-business software projects may have

and more questions that may unfold before us in this domain.

3. CONCLUSIONS

In this chapter, we have provided an introduction to the domain of micro-businesses. We

have looked at the various characterizations made by several researchers on micro-

businesses and have seen that there is heated debate going on on how micro-businesses

should be characterized. For further clarity in this thesis, we provide our own characterization

of micro-businesses in Chapter 4.

Taking into consideration the objectives of this thesis, we have also provided an overview

of how to address requirements in micro-businesses in a more direct way than in large

corporations. Micro-business requirements are usually a subset of requirements found in more

complex systems developed for larger enterprises. Moreover, micro-business have far more

limitations than larger enterprises when it comes to the availability of resources. Hence,

requirements elicitation and analysis for micro-businesses could be made in a more specific

way using effective lightweight approaches. In this direction, as we elaborate in the next

chapter, we did not find enough proposals that are suitable for micro-businesses.

35

CHAPTER REFERENCES

Ahmad, K. & Zabri, S. (2018). The mediating effect of knowledge of inventory management
in the relationship between inventory management practices and performance: The case of
micro retailing enterprises. Journal of Business and Retail Management Research, 12, 2.
(pp. 83-93). doi: 10.24052/JBRMR/V12IS02/TMEOKOIMITRBIMPAPTCOMRE

Allen, T. (1977). Managing the Flow of Technology. MIT Press

Alonso, A., Kok, S., Sakellarios, N., & O’Brien, S. (2018). Micro-enterprises, self-efficacy and
knowledge acquisition: Evidence from Greece and Spain. Journal of Knowledge
Management 23 (3), (pp.419-438). doi: 10.1108/JKM-02-2018-0118

Alsanoosy, T,, Spichkova, M., & Harland, J. (2018). Cultural influences on the requirements
engineering process: lessons learned from practice. In: 2018 23rd International Conference
on Engineering of Complex Computer Systems (ICECCS). IEEE, (pp 61–70)

Alsanoosy, T., Spichkova, M. & Harland, J. (2020) Cultural influence on requirements
engineering activities: a systematic literature review and analysis. Requirements Eng 25,
(pp. 339–362). https://doi.org/10.1007/s00766-019-00326-9

Ambler, S. (2002). Agile modeling. John Wiley and Sons

Aranda, J., Easterbrook, S. M. & Wilson, G. (2007). Requirements in the wild: How small
companies do it. Requirements Engineering RE (pp. 39-48), IEEE. ISBN: 0-7695-2935-6.
doi: 10.1109/RE.2007.54

Aranda, J. (2010). Playing to the Strengths of Small Organizations. In Proceedings of the 1st
Workshop on RE in Small Companies RESC, (pp. 141-144). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Bae, D.-H. (2007). Software Process Improvement for Small Organizations. COMPSAC (1).
(p. 17). IEEE Computer Society. ISBN: 978-0-7695-2870-0.
doi:10.1109/COMPSAC.2007.193

Beck, K. (2005). Extreme Programming Explained: Embrace Change; 2nd Edition. Addison-
Wesley Professional

Blau, P. & Schoenherr, R. (1971). The Structure of Organizations. Basic Books

Cugola, G. & Ghezzi, C. (1998). Software processes: a retrospective and a path to the
future. Software Process: Improvement and Practice, 4, (pp. 101-123). doi:
10.1002/(SICI)1099-1670(199809)4:3$<$101::AID-SPIP103$>$3.0.CO;2-K

Davis, C.J., Fuller, R.M., Tremblay, M.C., & Berndt, D.J. (2006). Communication Challenges
in Requirements Elicitation and the Use of the Repertory Grid Technique. In Journal of
Computer Information Systems, 46, (5), 78. url:
http://www.uta.edu/faculty/richarme/MARK%205338/Davis%20repertory%20grid.pdf

Dybå, T. (2003). Factors of software process improvement success in small and large
organizations: an empirical study in the Scandinavian context. ESEC / SIGSOFT FSE (pp.
148-157), ACM. doi: 10.1145/940071.940092

36

European Commission. (2013). User Guide to the SME Definition. Last accessed on April 3,
2021 at
https://ec.europa.eu/regional_policy/sources/conferences/state-
aid/sme/smedefinitionguide_en.pdf

Fayad, M. Laitinen, M., & Ward, R. (2000). Thinking objectively: software engineering in the
small, Communications of the ACM 43, (pp. 115-118). doi: 10.1145/330534.330555

Ghobadian, A. & Gallear, D. (1997). TQM and organization size. International Journal of
Operations & Production Management, 17, pp. 121-163

Hannan., M., & Freeman, J. (1989). Organizational Ecology. Harvard University Press

Haveman, H. (1993). Organizational size and change: Diversification in the savings and loan
industry after deregulation. Administrative Science Quarterly, 38, pp 20-50

Immes, S. (1993). Wahrgenommenes Risiko bei der industriellen Kaufentscheidung, Trier

International Organization for Standardization (ISO). (2011). ISO/IEC DTR 29110-1:2011
Software Engineering – Lifecycle Profiles for Very Small Entities (VSEs) – Part 1: Overview.
ISO, Switzerland, 2011. Retrieved October 9, 2013, from
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Jantunen, S. (2010). The Benefit of Being Small: Exploring Market-Driven Requirements
engineering Practices in Five Organizations. In Proceedings of the 1st Workshop on RE in
Small Companies RESC, (pp. 131-140). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Kalenborn, A. (2010). Modelling by Example: Requirements engineering during the bidding
stage of dialog-oriented software projects. In Proceedings of the 1st Workshop on RE in
Small Companies RESC, (pp. 158-166). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Kamsties, E., Hormann, K., & Schlich, M. (1998). Requirements Engineering in Small and
Medium Enterprises: State-of-the-Practice, Problems, Solutions, and Technology Transfer.
In Conference on European Industrial Requirements Engineering CEIRE, London, United
Kingdom. url: http://prof.kamsties.com/download/ceire98.pdf

Kassab, M. (2021). How Requirements Engineering is Performed in Small Businesses? 29th
International Requirements Engineering Conference Workshops (REW), 2021, IEEE, (pp.
220-223), doi: 10.1109/REW53955.2021.00041.

Kauppinen, M., Kujala, S., Aaltio, T. & Lehtola, L. (2002). Introducing Requirements
Engineering: How to Make a Cultural Change Happen in Practice. RE (pp. 43-51). IEEE
Computer Society. ISBN: 0-7695-1465-0. doi: 10.1109/ICRE.2002.1048504

Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S. & Sulonen, R. (2004). Implementing
requirements engineering processes throughout organizations: success factors and
challenges. Information & Software Technology, 46, (pp. 937-953). doi:
10.1016/j.infsof.2004.04.002

Kelliher, F. & Reinl, L. (2009). A resource-based view of micro-firm management practice.
Journal of Small Business and Enterprise Development, 16 (3), (pp. 521-532). doi:
10.1108/14626000910977206

37

Kruchten, P. (2003). The Rational Unified Process: An Introduction. Boston, MA: Addison-
Wesley. ISBN: 0201707101

Lethbridge, T. C., Singer, J. & Forward, A. (2003). How software engineers use
documentation: the state of the practice. IEEE Software, 20, 35--39. doi:
http://dx.doi.org/10.1109/MS.2003.1241364

Merten, T., Lauenroth, K., & Bürsner S. (2011). Towards a New Understanding of Small and
Medium Sized Enterprises in Requirements Engineering Research. In Proceedings of the
17th International Working Conference on Requirements Engineering: Foundation for
Software Quality REFSQ (pp. 60-65). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-
19858-8_7

Nikula, U., Sajeniemi, J., & Kalvianen, H. (2000). A state-of-the-practice survey on
requirements engineering in small-and-medium-sized enterprises. In Telecom Business
Research Center Lappeenranta Research Report 1, Lappeenrata University of Technology.
url: https://www.uop.edu.jo/Homeworks/13544442010.pdf

Palomares, C., Franch, X., Quer, C., Chatzipetrou, P., Lopez, L., & Gorschek, T. (2021). The
state-of-practice in requirements elicitation: an extended interview study at 12 companies.
Requirements Eng 26, (pp. 273–299). doi: 10.1007/s00766-020-00345-x

Pino, F. J., García, F. & Piattini, M. (2008). Software process improvement in small and
medium software enterprises: a systematic review. Software Quality Journal, 16, (pp. 237-
261). doi: 10.1007/s11219-007-9038-z

Respect-IT. (2007). KAOS Tutorial Version 1.0. Retrieved on January 15, 2013, from
http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

Richardson, I. & Wangenheim, C.G. (2007). Why are small software organizations different?
IEEE Software, 24, (1), pp. 18-22

Sommerville I. (2004). Software Engineering. Addison-Wesley: Harlow, England.

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: a guided tour. Fifth
IEEE International Symposium on Requirements Engineering. (pp. 249-262). doi:
10.1109/ISRE.2001.948567

van Lamsweerde, A. (2009). Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley. ISBN: 978-0-470-01270-3

Villalón, J. A. C.-M., Agustín, G. C., Gilabert, T. S. F., de Amescua Seco, A., Sánchez, L. G.
& Cota, M. P. (2002). Experiences in the Application of Software Process Improvement in
SMES.. Software Quality Journal, 10, 261-273.

Wong, K. Y. & Aspinwall, E. (2004). Characterizing knowledge management in the small
business environment. Journal of Knowledge Management, 8, pp. 44-61

Young, R. (2004). The requirements engineering handbook. Artech House. ISBN: 978-1-
58053-266-2

38

39

Chapter II

Review of Related Literature

In this chapter, we provide a review of related literature and the current state-of-the-practice

which exposes the research gaps and justifies the need for our proposed requirements

approach today.

1. THE PROCESS FOR THE REVIEW OF RELATED LITERATURE

The review of related literature was performed using the following steps:

1. Search for manuscripts on Google Scholar, DBLP, and the University of Granada

Library. The keywords used to start the review of related literature are Micro-business,

Small Business, Business Process, Software Requirements, Comprehensibility, and

Evaluation.

2. Select relevant manuscripts based on title. For example, from the keyword “business

process,” we encounter the manuscript “Business process patterns and frameworks:

Reusing knowledge in process innovation” (Barros, 2007).

3. Select relevant manuscripts based on abstract. We read the abstract of the manuscript

based on title and if the information found on the abstract is relevant to our research,

we proceed to the next step.

4. Read relevant manuscripts.

5. If there are relevant citations in a manuscript that are related to our research then we

select the cited manuscript and repeat step 4. If there are none then proceed to step

6.

6. We summarize the relevant findings in the related literature in this chapter.

A diagram of the review of related literature process is presented in Figure II.1. The result

of the review of related literature, as stated in step 6, is presented in the next section of this

chapter.

40

Figure II.1. The process for the Review of Related Literature

2. THE RELATED LITERATURE

We have divided the results of the review of related literature into two parts: literature

related to other research proposals and literature related to the evaluations of proposals in

industrial practice. The first part aims to inform the reader of what is currently happening in

the research community while the second part aims to inform the reader of results and

observations when the research is applied in practice. These two parts are important because

the work of this thesis involves both a research proposal and putting the research proposal

into practice as well. We have provided a Venn diagram in Figure II.2 to illustrate the common

ground of all the related literature and our proposal.

41

Figure II.2. A Venn Diagram illustrating the common ground of all the related research

proposals and evaluations to this thesis

In the Venn Diagram in Figure II.2, the rectangles represent an area of related research.

The areas of research that are research proposals are: micro-business processes,

requirements, software components, representing infrastructure, and improving

comprehensibility. The areas of research that are evaluation are: case studies, (evaluation of)

comprehensibility, and Action Research. All of the rectangles intersect in the middle because

it is related to our proposal: micro-business requirements patterns.

At the end of the chapter, a summary of all the related proposals and evaluations are

presented in Table II.1 and a checklist of how each of the related proposals and evaluations

relate to our research work is presented in Table II.2.

2.1. Related Research Proposals

This subsection enumerates the related research proposals that we have encountered in

literature. They are related to our proposed requirements approach in terms of one or more of

the following: (micro-)business processes, requirements, software (component) reuse,

infrastructure representation, or are made to improve comprehensibility. Albeit related, each

42

proposal could be somewhat applicable but not entirely applicable to all the challenges we

have described in the previous chapter. We discuss the relationships and the shortcomings of

each proposal in the following subsections.

2.1.1. Research proposals related to (micro-)business processes

First, we enumerate research proposals related to (micro-)business processes and

applications. The Modeling by Example or “MbE” approach, proposed by (Kalenborn, 2010),

argues that requirements have to be done even before the project starts. The approach is

designed for use during the bidding stages of a software project.

The idea of this approach is to come up with requirements in a practical manner in

preparation for the actual bid (in order to win the software contract). The approach has to be

practical because the resources used during this preparation stage still cannot be justified with

full assurance. The chance that the software developer wins the contract would depend on

various factors such as their competence and creativity (Brennan et al., 2008), among others.

Moreover, if there are five bidders then the chance to win the contract would be 20%, assuming

that all bidders are equally competent and all have an equal chance of winning the software

contract. In any case, the practical manner of the approach makes it a semi-suitable

requirements approach for small and micro-businesses.

The objective of the approach is to write a bid as quickly as possible, relying on predefined

specifications. The information in the MbE-type requirements documents include project-

related costs, schedule, and visual representations of the actual product in terms of

screenshots or mock-ups where functional and technical specifications are assigned to each

element of the mock-up. The requirements are done using an MbE tool which sources

modules and templates to come up with the mock-ups for presentation to the client (micro-

business owner).

(Kalenborn, 2010) justifies the information in the requirements documents based on the

IKIWISI phenomenon “I-know-it-when-I-see-it” which is that software users do not understand

the requirements until they see them (Boehm, 2000). (Kalenborn, 2010) argues that decision

makers (which in this thesis are the micro-business owners) are often not able or not willing

to understand abstract models or descriptions and in many cases, the screenshots are the

only things understood by the decision makers because the technical details of an application

are so complex that only the software developers are capable of understanding and assessing

43

them. Hence, MbE is driven by the visualization of applications, which is particularly important

in web-based projects. This is also a strength of MbE as an approach.

Although the MbE has its practical merits (for micro-business software projects), we see

the lack of technical detail (for the software developers), the lack of dialogue between micro-

business owner and software developer, and its over emphasis on web-based projects as

caveats to the approach. Documents which are designed to win bids on a software project are

entirely different from documents which are designed to specify requirements correctly for a

software project. We argue that if technical requirements cannot be understood then the

solution should not be to remove them from the documents but instead, to explain the technical

issues better. Moreover, creating mock-ups should involve regular consultation with the micro-

business owner for feedback. Regular consultation during the bidding stages is not very

common since there are also other bidders who want to have regular consultations with a

micro-business owner who only has a limited amount of time.

In addition, if the MbE is designed for bidding purposes then the software developer and

micro-business owner are unlikely to be completely aligned in terms of goals, for there are

other bidders with other interests (and other requirements) in mind. There is a thin line

between requirements documents designed to win contracts and requirements documents

designed to specify requirements as correctly as possible. MbE’s lean toward the former.

Lastly, if the MbE is focused on web-based projects then software projects of different nature

and with varying NFRs would make the MbE approach not the most suitable for micro-

business software projects in general.

A research proposal based on business processes is one from (Barros, 2007) who

proposes business process patterns (BPP) which result in business object frameworks (BOF),

encapsulating high level business logic. The BPPs are reusable and can be applied to improve

business processes or to develop a (software) application to support a business process.

The use of patterns can be traced back to the work of (Alexander et al., 1977) in the field

of architecture. Subsequently, the use of patterns has become evident in several other

domains as will be detailed. For instance, using business patterns and finding out where the

patterns can be instantiated in specific business contexts makes the work of software analysts

and designers easier and more challenging (Kilov & Sack, 2009).

44

Patterns in the case of BPPs are generalized process models based on best practices

which include activities, flows, and logic. The best practices are based on empirical knowledge

of how the activities of a process in the best companies of a given domain are performed. In

order to delve into further detail in a BPP, a domain is specified and then the business logic

and flows are defined more precisely.

From the BPP models, flows, and logic, BOFs are derived which incorporate the knowledge

about the solution of relevant problems in a particular domain, resulting in its ability to provide

generalized solutions to the said problems. The mapping from BPPs to BOFs is based on the

following:

● The structure of the BPP system supports while the business logic of the domain

defines the BO classes that encapsulate the algorithms or heuristics that provide the

solutions to the problem in various cases in that particular domain.

● The BO structure is modeled with UML class diagrams where the operations or

methods for classes are defined based on business logic.

● The data in the business logic can be used for executing operations.

● Data can be structured into data classes that interact with BOs which can also be

expressed in UML.

When using a framework to develop a software application which will support a process in

a real-world case within the domain of the framework, the following procedures are performed:

● A relevant substructure of the framework which can be applied to the case is selected.

● The substructure is specialized based on the characteristics of the case, adding data

and logic when necessary.

● A detailed design for an appropriate technology is made.

● Coding commences.

The main advantage of the BPPs and BOFs are that they are able to offer pre-built solutions

that would allow developers to select, among several possibilities, the functionalities that will

solve their problem. The BPPs and BOFs could also be specialized if they do not have a

complete fit with the problem.

One of the shortcomings that we have noted with BPPs is its lack of connection with the

software components that would be needed to implement the solutions. Although the process

45

patterns may be reused, there was little or no mention of how the software solutions will be

put into place.

The resources, events, agents (REA) model has been extended by (Hruby, 2006) with

several structural and behavioral business patterns. The REA-based patterns are used to

develop business-related (software) applications by searching for business objects and

related modeling elements.

The idea of using REA is that one would be able to determine unknown pieces or links of

software design by using relationships between modeling elements. The argument is

compared to mathematical equations which would not change such as the e=mc2 equation by

Albert Einstein.

In the REA extension, the business relationships between resources, events, and agents

are assumed to be just as fixed, which in turn, gives rise to the REA-based patterns. The REA-

based patterns are those applied in day-to-day business management and development of

business (software) applications.

When we were reviewing REA to find ways to meet our challenges, it fell short when it

came to challenges specific to resourcing for micro-businesses. There was no mention of

optimizing resources such as software reuse and the reduction of software development

timelines.

Service-based cooperation patterns (SBCPs) are proposed by (Boukheduoma et al., 2013).

The SBCPs are used for recurring service-based inter-organizational workflows (IOWF) that

meet certain service-oriented architecture (SOA) paradigms, providing interoperability,

reusability, and flexibility required when developing business-related (software) applications.

The basic idea of the SBCPs is to deal with IOWFs flexibly. There are three main

dimensions of an SBCP. The first is the structuring of IOWFs into services. Each workflow

fragment is encapsulated into a single composite service (or set of services) depending on the

kind of IOWF architecture to meet. The workflows can be encapsulated because they have

both technical and conceptual similarities with services.

46

Second is the control of their execution. This is expressed through global and local

orchestration functions. The functional, behavioral, and interactional aspects of SBCPs are

provided in detail.

The third pertains to the structure of interaction with external services which are provided

by other partners taking part in the cooperation. These proposed SBCPs are applied on

process models during design time.

Upon reviewing SBCPs, they fell short when it came to its use for micro-businesses which

have limited resources. There is no mention of software reuse related to the business

processes specific to micro-businesses nor there is any mention of attempts to reduce the

timelines in software development projects.

Document-based patterns are proposed by (Glushko & Mcrath, 2002; Glushko & Mcrath,

2008). They introduce the discipline of “document engineering” and argue that document

exchange is the mother of all patterns. They cite an example of an Aramaic tax receipt which

was created over 2000 years ago and which is still preserved and considered documented up

to this day. They further argue that with careful design, the same documents can be reused in

different business processes.

The activity of document analysis ushers the discipline of document engineering. From

document engineering arise the document patterns. Based on a set of analysis and design

techniques, document-centric patterns can be created. The patterns are characterized as

tangible and easy to analyze and are (re-)usable when designing business processes.

These document patterns promote reuse, which results in reduced maintenance, better

consistency, and standardization. The patterns are also proposed to be in a library or a

repository so that they can be found easily. They propose that the document engineered

models be the front-end to the libraries because document-engineered artifacts provide the

metadata and query structure which will guide searches for the needed patterns.

The document patterns fell short when it came to how software developers would

communicate with micro-business owners. There was little or no attention paid to the difficulty

that micro-business owners will have when they start encountering the technical jargon in the

documents.

47

Domain-specific patterns for mobile service businesses are proposed by (Aleksy & Stieger,

2011). Four mobile service business patterns are proposed, as derived from two industrial

case studies, for the purpose of aiding in the integration of third-party partners, structuring

communication between mobile workers and the back office, support for offline processing

capabilities, and tailoring information support.

The mobile service business patterns were proposed in response to four pressing factors

in industrial service business sectors from high-wage countries: an aging workforce,

competition, product complexity, and partnerships. The ability to provide tailored information

support and usability is both an opportunity and a challenge faced in industrial field service

applications. Several companies have gained efficiency improvements in field service

processes via mobile technologies.

The four patterns are as follows. The first pattern is the container pattern and it is designed

to foster the integration of third parties by hiding the internal organization of the partner. The

second pattern is the mobile phone as a primary device pattern and it defines a primary

communication channel to structure the general way of communication between the back

office and mobile workers. The third pattern is the information package to go pattern and it is

designed to foster the offline working capability of mobile workers. Finally, the fourth pattern

is the pluggable information sources pattern and it is designed to provide tailored information

support to mobile knowledge workers.

The combined use of the mobile service business patterns can also be used to address

certain problems as well. For instance, for tailored information support for offline processing,

both the information package to go and the pluggable information sources pattern may be

used together. For enabling offline processing capabilities for third-party service staff, both the

container pattern and the information package to go pattern may be used together.

The mobile service business patterns proposed by (Aleksy & Stieger, 2011) are designed

to support industrial field service processes but they think that the patterns may also be used

outside this area such as in M-Business applications. Also, roles such as mobile service

engineer could be replaced with other agents such as insurance agents or real estate agents

in cases where similar problems arise.

When we were reviewing this proposal, there were no specific methods for instantiating the

patterns in other specific cases. Based on the examples, if similar industrial cases arise, such

48

patterns may be applied. Although this was not discussed in detail and would still be subject

to testing and evaluation in practice. The mobile service business patterns were also too

specific to be used in several cases especially with the variety of cases in the micro-business

domain.

A systematic way of capturing and reusing patterns based on their specific business

domains is proposed by (Seruca & Loucopoulos, 2003). Their approach to pattern

development is based on the analysis of domains and is process-oriented. This allows

increased understanding of a business domain and the identification of opportunities to

improve business processes.

(Seruca & Loucopoulos, 2003) stress the fact that patterns are not invented and they must

be found in existing models that characterize real-life business systems. Hence, the

development of patterns is essentially about identification, collection, and codification of

knowledge and not creation of patterns out of nothing. Also, the process of discovering

patterns is an empirical activity and that patterns are built by observing practice in a domain

and by trial-and-error.

Given the arguments just mentioned, (Seruca & Loucopoulos, 2003) propose a systematic

approach for collecting and analyzing business domain knowledge in order to support the

capture and development of business patterns. This approach is called the PattCar method.

This method is composed of two main procedures, namely pattern collection and pattern

reuse. The main purpose of the method is to design the patterns for reuse. According to

(Coplien, 1995a; Coplien 1995b), patterns must help us understand existing organizations and

also help us build new ones.

The steps of the PattCarr method and the resulting documents from the steps are as

follows:

● Define the domain and analyze the context, resulting in domain definitions and

business context models.

● Define domain core business process and vocabulary, resulting in domain vocabulary

and domain taxonomy of business processes.

● Describe Sub-domains in terms of existing generic business processes, resulting in

sub-domain process specialization.

49

● Develop Sub-domain enterprise models for a number of businesses, resulting in

process capability models, use case models, and object models.

● Define the patterns for the Sub-domain, resulting in commonality and variability

analysis and patterns defined in a template.

● Organize and interrelate the patterns, resulting in patterns classified in a hierarchy of

subjects, facets, and links to other patterns.

The PattCar method has been used in collaboration with a consulting firm and seven of

their clients, involving seven Portuguese SMEs in the clothing manufacturing domain. The

firms involved aimed to describe, evaluate, and redesign their business processes and

concepts.

The PattCar method is not designed as a substitute for creative or insightful pattern

creation. It is mainly designed to promote:

● A disciplined observation of practice in a business domain.

● The creation of domain models which match the knowledge and the experience

acquired.

● The discovery of business patterns from the study and analysis of the domain models.

The PattCar method falls short when it comes to resource management for software

projects for micro-businesses. Although there is mention of reuse in practice, there is no

mention of the reuse of the software or how the patterns could help in optimizing resources

such as reducing timelines in software projects for micro-businesses.

2.1.2. Research proposals related to requirements

Second, we enumerate the proposals related to requirements. Requirements patterns

capture solutions to recurring software requirements challenges. They are presented in a form

that can be understood by practitioners so that they can identify similar requirements in their

systems, select patterns that address those requirements, and instantiate solutions that

embody those patterns (Dwyer et al., 1999).

(Franch et al., 2010) propose 29 software requirements patterns (SRPs) which aim to be

used during requirements elicitation, documentation, and validation. The reuse of the SRPs

aim to help requirements engineers in eliciting, validating, and documenting software

50

requirements and as a result, come up with software requirements specifications which have

better quality in terms of content and syntax. There has been a great percentage of reuse of

NFR information in the SRPs in call-for-tender requirement specifications for selecting

commercial off-the-shelf (COTS) software.

The 29 SRP patterns proposed were all focused on NFRs since they were the least

sensitive to changes in the said problem domain. The 29 SRP patterns were based on a study

of 7 real-world software requirements specifications in real-world call-for-tender projects. The

structure of an SRP is made of:

● Goals: drives the elicitor in the selection of the pattern to be applied in a project

● Description: short phrases which describe the pattern, like an abstract

● Forms:

o Fixed Parts: expresses the pattern itself, the general purpose of the pattern,

and its identification

▪ Template

▪ Extended Parts Constraint: if not complied, proceeds to extended parts

o Extended Parts: extends the fixed parts and describe the technical elements of

a pattern

▪ Template

▪ Parameter(s): take on specific values when the pattern is applied.

Metrics are defined for each parameter

The application of an SRP is dependent on choosing and applying the most suitable form

dependent on the parameters. There are also relationships among the SRPs which are:

● Pattern relationships: the most general relationship and implies related patterns based

on the forms and the parts of the forms

● Form relationship: the relationship at the level of forms which implies all the parts of

the related forms

● Part relationships: the relationship which applies to two parts

In a related work by (Mendez-Bonilla et al., 2008) which also proposes the previously

mentioned SRPs, bases the SRPs on their experiences working in different projects in different

domains such as mail server systems, e-learning software, and web content management

systems. They observed similarities in requirements already being used among the projects.

51

The SRPs mainly pertained to FRs, NFRs, and non-technical requirements and aim to be of

use in COTS-based systems.

When we reviewed the SRPs from (Franch et al., 2010) and (Mendez-Bonilla et al., 2008),

we noticed that there was a lot of technical jargon which would not be suitable for the majority

of micro-business owners without technical backgrounds.

(Hoffman et al., 2012a; Hoffman et al., 2012b) propose SRPs based on user trust. The

SRPs are based on studies from the behavioral sciences, collecting antecedents that build

trust. The SRPs are used mainly in recommender system development projects.

The idea of the trust-based requirements patterns is based on the ability of users to adopt

trust and reduce social complexities which are caused by the lack of knowledge or information

about how information systems work. The trust-based patterns aim to translate the results

from research on the trust of users in new technologies into the said requirements patterns.

Antecedents that build trust are collected and then they are developed into a set of

requirements patterns. The requirements patterns are made to be functional enough to

support the antecedents. The trust-based SRPs are specified with:

● The name of the trust-based SRP

● The requirements engineering activity it pertains to, such as elicitation or specification

● Type of pattern

● Stakeholders involved in the pattern

● Goals

● Problems

● Forces

● A predefined requirement template which has a solution and which can be used for

further specification

● Examples of where the trust-based SRP can be applied

When we reviewed the trust-based SRPs, they had a very particular use case and were

comprehensible to micro-business owners however, there was no mention of improving

resource management for micro-business owners such as reducing timelines for software

projects.

52

Security requirements patterns are proposed by (Riaz & Williams, 2012). A security

requirement is somewhat a security policy and a security mechanism. A security policy states

what is and what is not allowed while a security mechanism is a method, tool, or procedure

which will be used to enforce the security policy (Bishop, 2003). Security requirements are

identified by analyzing assets, threats, and vulnerabilities while considering the multiple points

of views of users or attackers.

When systems have the same security objectives, security requirements may be reused.

Security requirements patterns capture common security requirements, document the context

in which a requirement manifests itself, and describe the trade-offs involved. Part of the

proposal of (Riaz & Williams, 2012) includes an outline for developing SRPs and strategies

for specifying reusable security requirements. In a related work, security test patterns are

proposed by (Ben & Williams, 2012) in order to aid in black box security testing.

(Álvarez et al., 2002) propose hierarchically structured parameterized and non-

parameterized templates for reusable security requirements. These templates comply with

IEEE standards for specifying quality requirements. Such quality attributes are NFR in nature

such as identification, priority, criticality, viability, risk, source, and traceability.

The elicitation process for the security requirements is largely based on the spiral model

for requirements engineering (SIREN) and states explicitly that the requirements are to be

reused. In this proposal, a repository for reusable requirements is maintained, with an

annotation to a domain and profile, for annotation for the possibility of reuse. For instance, if

the domain is in finance and the profile is information systems security then the requirement

may be reused if there is a match. What is lacking in the proposal is a step-by-step procedure

on instantiating the templates and the consequences when the requirements templates are

reused. (Firesmith, 2004) also proposes parameterized templates to model reusable security

requirements but lacks the step-by-step procedures on instantiating such templates.

(Schumacher et al., 2006) documents security requirements patterns as well, including

patterns for secure design and architecture. The catalog uses natural language and includes

security requirements patterns pertaining to Access control, Audit, Intrusion Detection, Non-

repudiation, and Accounting.

(Wen et al., 2011) propose security requirements patterns which have a focus on

Ownership, Authorization, Attack and Protection, Analysis of Assets, Threats, and Attacks.

53

The work of (Withall, 2007a; Withall, 2007b) on security requirements patterns covers 1-

Access control, in particular, the registration, authentication, and authorization, 2 - Audit, and

3 - Privacy, in particular, archiving and compliance with standards.

Connected closely to security is privacy. Privacy has been a concern of many when it

comes to software systems. There must be a systematic approach in order to meet privacy

requirements of a software system and (Peixoto & Silva, 2018) do just that. They propose a

framework for privacy modeling capabilities that must be addressed by requirements modeling

languages to better support privacy specification.

The privacy modeling capabilities are used to compare three goal-oriented modeling

languages, namely i*, NFR-Framework, and Secure-Tropos. The framework is based on a

conceptual foundation and model of privacy which was built from an analysis of a standard,

regulation, guidelines, and other bibliographical sources related to privacy. An example related

to health care is used to show how the framework can be used to compare the chosen

modeling languages.

The study involved fourteen privacy modeling capabilities which were defined in the

framework. They observed that the analyzed modeling languages do not fully support them.

The study concluded that the proposed framework contributes towards the consolidation of a

privacy conceptual foundation and that it can also be used to evaluate modeling languages

for privacy in requirements engineering. The comparison performed by using this framework

also indicates that Secure-Tropos is the most complete language to model privacy among the

analyzed goal-oriented modeling languages.

Although all the security and privacy requirements patterns were useful in specific cases,

they were limited when it came to their practical application to micro-businesses in general.

Their practicality when it came to resource management of micro-businesses was not evident,

especially when reducing timelines and software development time in micro-business projects.

Security and Privacy are just some types of NFRs and it would be unmindful not to mention

NFR patterns in general when it comes to the field of requirements engineering. Four NFR

patterns have been proposed by (Supakkul et al., 2010). The purpose of the NFR patterns is

to capture and reuse them in business-specific cases with the help of NFR visualizations and

representations. The four NFR patterns proposed are:

54

● Objective pattern: used to identify important NFRs for a context or capture a particular

definition of an NFR due to various interpretations stakeholders may have when it

comes to NFRs.

● Problem pattern: used for capturing the knowledge of soft problems. Soft problems are

problems without clear-cut resolution criteria (Supakkul & Chung, 2009).

● Alternatives pattern: pertains to two things: the alternative means for achieving a

softgoal and alternative solutions for mitigating a soft problem. The alternatives may

be captured along with one or more side effects.

● Selection pattern: used when faced with alternatives for a softgoal or soft problem and

the user of the pattern must choose an alternative that maximizes the positive while

minimizing the negative side effects.

The NFR patterns are organized as follows:

● The knowledge of an NFR which is captured in an NFR pattern may be specialized for

more specific situations using refinements, resulting in sub-patterns. The pattern

specialization relationships are of partial order, reflexive, anti-symmetric, and

transitive, which means as a result, a specialized pattern is further specialized by other

patterns.

● Pattern composition consists of pre-assembling multiple patterns into a new pattern in

order to form a larger chunk of knowledge. Again, the “part-of” relationship between a

pattern and its composite pattern is partial order, reflexive, anti-symmetric, and

transitive which means as a result, a composite pattern could be assembled to become

a part of another larger composite pattern.

● When instantiating the patterns, a piece of knowledge would be applicable in similar

situations. Pattern instantiation also allows a pattern to be used as a template when

creating another new pattern.

The NFR patterns proposed by (Supakkul et al., 2010) have been applied in an empirical

study. The objective was to find out whether the approach could capture and reuse relevant

NFR knowledge in a project or an organization which is similar in nature. The results were

positive, providing preliminary evidence that the patterns could help in capturing, organizing,

and reusing a big chunk of NFR knowledge in model and tool-based requirements

engineering.

55

NFR visualizations are also proposed by (Chung et al., 2013). The NFR visualizations are

geared towards combining goal-oriented requirements engineering techniques with

simulations for cloud computing cases, complementing qualitative goal models in the NFR

Framework (Chung et al., 2000) with quantitative approaches, and for the development of an

interactive, iterative, and interleaving simulation technique.

The NFR visualizations are applied in a case study involving a contactless smartcard

system. The smartcard system was created to automate and harmonize the ticketing in all the

public transportation channels in Victoria, the most densely populated state in Australia. The

public transportation system consists of trains, buses, and trams.

The proposed approach involving the NFR visualizations consists of the following steps:

● Identification of the stakeholders and goals

● Analysis of stakeholder goals, including the identification of conflicts

● Quantitative augmentation of the qualitative goal model using domain specific

information

The NFR visualizations involve the use of Softgoal Interdependency Graphs (SIGs) as

proposed in the NFR Framework (Chung et al., 2000). The SIGs are practical when it comes

to relating and diagramming the relationships between NFRs and operationalizations, e.g.

transforming goals into tangible, operational solutions for micro-businesses. However, the

NFR patterns and SIGs fell short when it came to optimizing resources for micro-businesses

such as reusing software components and reducing timelines for micro-business software

projects. SIGs are explained further and also adapted for the micro-business domain as will

be discussed in the next chapters.

2.1.3. Research proposals associated with software components

Third, we enumerate the proposals related to patterns in software (component) reuse.

According to (Schmidt et al., 1996), software patterns are a means of providing successful

solutions to common software problems. The software patterns community identifies several

benefits when patterns are used by practitioners, namely:

● Facilitation and the ease of reuse

● Identification and capture of abstract concepts

56

● Aid in defining interfaces and interactions

● Means of sharing documentation

● Construction of software with defined properties

● Provisions for a common vocabulary (as described in detail by (Budgen et al., 2008))

Software patterns are known to have been used in the following stages of software

development:

● Requirements, as has been described in the previous subsection

● Analysis (Fowler, 1997)

● Design (Gamma et al., 1995)

● Architecture (Fowler, 2002)

● Testing (Smith & Williams, 2012)

● Security (Yoshioka et al., 2008)

● Configuration Management (Berczuk, 2003)

(Crnkovic et al., 2002) propose the use of patterns in component-based software

engineering (CBSE), suggesting use in design, where reusable units are identified as pre-

existing components and in development, where components are developed based on the

design patterns.

The CBSE discipline is a combination of several different disciplines in software

engineering and computer science, including object-oriented programming, reuse, software

architecture, modeling languages, and formal specifications. The discipline of CBSE is still

growing and there are still several concepts that are still not formalized, terms which are not

clearly defined, and relationships which are still not explained very well. Even the term

“component” is still under discussion and has not yet been formally specified. Proposals in the

discipline of CBSE are discussed as follows.

(Kouroshfar et al., 2009) propose a generic process framework for component-based

development. This framework is based on what was commonly encountered in seven

component-based development methodologies. These seven component-based development

methodologies are the following:

57

● UML components is a UML-based methodology which aims to help developers use

COM+ and JavaBeans technologies for defining and specifying software components

(Cheesman & Daniels, 2003).

● Select Perspective (Rumbaugh et al., 1991) is the combination of object modeling

language with the Objectory use-case-driven process which was later integrated into

the Rational Unified Process (RUP).

● The Feature-Oriented Reuse Method (FORM) (Kang et al., 2002; Sochos et al., 2004)

provides a component-based development methodology by adding architectural

design and construction of object-oriented components to the Feature Oriented

Domain Analysis (FODA) (Kang et al., 1990) which presented the idea of using

features in requirements engineering in 1990.

● KobrA is a methodology aimed at developing high quality, component-based software

systems in a systematic manner. The methodology is based on several software

engineering technologies such as product-line engineering, frameworks, architecture-

centric development, quality modeling, and process modeling (Atkinson, et al., 2002;

Atkinson et al., 2000).

● Adaptive Software Development (ASD) was introduced in 1997 and is an agile method

that promotes component-based development (Ramsin & Paige, 2008).

● Catalysis is a component-based approach which is based on object-oriented analysis

and design and provides a framework for component-based software development

(Ramsin & Paige, 2008).

● The Rational Unified Process (RUP) is a use-case-driven, architecture-centric, object-

oriented methodology which incorporates specific guidelines for component-based

development (Ramsin & Paige, 2008). RUP has recently evolved into a method

engineering framework called Rational Method Composer (RMC).

The proposed generic framework as a result of noting the similarities of these seven

component-based methodologies is as follows:

● The Analysis Phase is when the requirements of the system are elicited. During this

phase, the infrastructure of the project is defined and a preliminary project plan and

schedule is outlined. During this phase, the applicability of component-based software

development is assessed.

● The Design Phase is when the components of the system are identified and specified

based on their interactions with one another.

58

● The Provision Phase is when components are classified as being retrievable from a

repository of reusable components or needed to be written from scratch. Components

are also tested during this phase.

● The Release Phase is when components are assembled in order to form the final

system. A system test is conducted and then the final system is deployed live.

The generic process framework of (Kouroshfar et al., 2009) provided strong connections

and relationships between requirements and software development although such framework

must be further specialized when used for micro-businesses. There is still much technical

jargon which may not be suitable for micro-business owners.

(Stepan & Lau, 2012) propose controller patterns which are abstractions for defining

coordination in the context of CBSE. The patterns are used in component-based development

for control software for reactive systems. Reactive systems are systems which continuously

react to their environment (Harel & Pnueli, 1985). The behavior of a reactive system is

described as an infinite cycle involving the following steps:

● Reading inputs from the environment

● Computing the reaction of the system

● Outputting the reaction back to the environment

Some examples of reactive control systems are cruise control systems in cars and control

systems which prevent meltdowns in nuclear power plants. The controller patterns which aid

in the component-based development of such systems are composed of an interface and

constructors.

The interface determines the interactions in the system architecture and is composed of

the following:

● Data ports which define the entry and exit points for the data routed by the connectors,

which are further defined by constraints in terms of type and directionality.

● Control ports which are the center of control coming from a superior coordinator.

● Control parameters which are connected to subordinates.

The constructors in the controller patterns are used to build up the connectors and are

composed of the following mechanisms:

59

● Aggregation which is the way of composition in which control and data flows are

defined, without any interaction between flows.

● Composition via data ports is the way of composition in which data flows are defined

by a data connector.

● Composition via control ports is the way of composition for the control connectors.

● Hierarchies are used for complex controller patterns which consist of other simpler

patterns that are useful on their own.

The controller patterns are demonstrated in a case study using a prototype tool and have

proven to be useful in providing (reusable) abstractions suitable for the construction of

controllers in reactive software systems.

The controller patterns of (Stepan & Lau, 2012) demonstrate a strong relationship between

requirements and software components although they have a lot of technical jargon and would

not be suitable for requirements elicitation for micro-business owners without technical

backgrounds.

A component specification structure which is based on analysis and design patterns is

proposed by (Paludo et al., 2011). The purpose of the specification is to document, retrieve,

and capture composition functionalities of the components in order to achieve software reuse.

The integration of the patterns and the components leverage the software reuse process

through the creation of the documentation structure and a component repository capable of

supporting software developers.

One of the problems that this proposal addresses is the ability to find reusable components

(Alnusair & Zhao, 2010). Even when there is a component repository available to the

developers, it does not automatically mean that the components are easily discoverable. If it

took significant effort to discover the components then trying to reuse the components could

be even more difficult than writing the components from scratch.

The other problem that this proposal addresses is that when trying to achieve reuse,

software architecture must be considered. Software architecture is the basis for an entire

family of systems which is built using common assets. A mistake that is made by most software

development organizations is treating the architecture of a family of systems across an

enterprise with the same levels of abstraction (Allen, 2001). According to (Clements et al.,

60

2002), software architecture is an organizational asset which is created at a considerable

expense and should be reused.

Given the aforementioned challenges, (Paludo et al., 2011) propose the following

component specification which would aid in reuse. The specifications involve:

● The name of the component

● Alternative names for the component

● Properties of the component, considering its type, subtype, and level

● Type of the component, being creational, behavioral, structural, or system

● Subtype of the component, relating to specification, implementation, execution, or

deployment

● Level of the component, being unit, component, or architectural

● Purpose and context, explaining the scope and the environment under which the

component exists

● Problem which is a brief description of the problem to be treated by the component

which includes presentation of the design issues which are faced by the developer. In

this specification, an example would be helpful.

● Applicability of the component which includes the pros and cons, including the

drawbacks, when the component will be used

● Description of the component which includes a detailed discussion of the component,

what the component does and how it behaves.

● Structure Solution of the component which is a class diagram including the basic

solution structure and a sequence diagram which represents a dynamic model

● Solution Strategy which presents the ways that a component can be implemented

● Interfaces of the component which is the way the component makes its service

available where common multiple interfaces may be provided in response to various

points of access

● Forces of the component which include a list of the rational and motivational aspects

that affect the problems and the solutions. Points that may be included in this

specification are reasons why one would choose to use the component and

justifications on why the component would be used.

● Quality characteristics and sub-characteristics addressed by the component and if

possible, accepted software product quality metrics could be provided

● Sample code for the component could be provided if possible

● Variants of the component could be provided for alternate implementations

61

● Related components which are basically other components which are associated

internally or externally from the perspective of the repository

Based on specifications like this, (Alnusair & Zhao, 2010) propose search methods which

would involve one or more of the following: semantics, keywords, and signatures. With an

effective search method, reuse of components would be promoted.

The component specification structure proposed by (Paludo et al., 2011) makes it easier to

reuse software components by making them more searchable in a repository or a database.

However, such a specification still uses a lot of technical jargon and would not be suitable for

eliciting requirements for micro-business owners who have limited technical backgrounds.

It is important in the design of software that future changes and extensions may be easily

incorporated without severely affecting other quality attributes so that the software may be

more maintainable. (Kouskouras et al., 2008) investigate how the adoption of design patterns

and aspect-oriented programming techniques could be useful in fulfilling this purpose. The

investigation was done in the telecommunications industry because of the size and the

evolution of systems in this field. As a result, several alternatives were proposed and they are

the following:

● Naming patterns could be used which would force any new command and parameter

class to adopt a specific naming pattern which would be included in a specific package.

● Registry patterns are proposed in order to overcome design limitations. The registry

patterns could be used with or without aspect-oriented programming techniques. Such

design limitations address awkward provisioning of different customizations like

couplings between new command classes and other classes in the module

representing their functional area.

Implementing one component and another component altogether does not necessarily

mean that both components would work together seamlessly. Hence, (Elizondo & Lau, 2010)

propose a catalog of component connectors, describing the connectors as the “glue” which

piece together components in CBSE. The purpose of the component connectors is to support

the process of software development with the idea of reuse, alongside the use of design,

architectural, and workflow patterns.

62

In order to promote the reuse of components and the component connectors, it is important

that the component connectors be treated with importance and adequate descriptions and

specifications are made for them (the connectors). Hence, (Elizondo & Lau, 2010) propose

the following catalogue of component connectors to support development with reuse.

The first group of component connectors is the adaptation connectors. They are the

following:

● Guard connectors are used to “guard” the execution of the computation in the adapted

component in accordance to the evaluation of a Boolean expression

● Condition controlled loop connectors are used for repeating the execution of

computations in the adapted component according to the evaluation of a Boolean

expression

● Counter-controlled loop connectors are used to repeat the execution of the

computation in the adapted component a specific number of times

● Delay connectors are used for delaying the execution of computation in adapted

components for a specific period of time

The second group of component connectors is the composition connectors. They are the

following:

● Sequencer connectors provide a composition scheme where the computation in the

composed components is executed sequentially one after the other

● Pipe connectors provide a composition scheme where computation in the composed

components is executed sequentially one after another and the output of an execution

is the input of the next one and so on and so forth

● Selector connectors provide a composition scheme where the computation in only one

of the composed components is executed based on the evaluation of a Boolean

expression

The third group of component connectors is the composite composition connectors. They

are the following:

● Observer connectors provide a composition mechanism where once the computation

in the ‘‘publisher” component has been pre-formed, the computation in a set of

”subscribers” components is executed sequentially

63

● Chain of responsibility connectors provide a composition mechanism where more than

one component in a set can handle a request for computation

● Exclusive choice sequencer connectors provide a composition mechanism where once

the computation in a ‘‘predecessor” component has been pre-formed, the computation

of only one component in a set of ‘‘successor” components is executed

● Exclusive choice pipe connectors are a version of the exclusive choice sequencer

connector with internal data communication among the ‘‘predecessor” and the

‘‘successor” components

● Simple merge sequencer connectors provide a composition mechanism where once

the computation in only one component in a set of ‘‘predecessor” components has

been pre-formed, the computation in a ‘‘successor” component is executed

● Simple merge pipe connectors are a version of the simple merge sequencer with

internal data communication between the ‘‘predecessor” and the ‘‘successor”

component

All these thirteen proposed component connectors have been defined by taking into

consideration the syntax semantics of new component models. Also, the feasibility of

implementing this proposed catalogue in industrial practice has been demonstrated.

The component connectors proposed by (Elizondo & Lau, 2010) could be useful for the

software architecture and design of software systems. However, they are more oriented to

larger software systems and not to micro-business software systems.

In line with component connectors, (Bhuta et al., 2007) proposes a framework for selecting

component connectors. They discuss a framework for selecting commercial-off-the-shelf

(COTS) software components and connectors with the goal of ensuring that they are

interoperable. Standard definitions for COTS components and connectors are used in this

framework. A COTS system, adapted from the SEI COTS-Based System Initiatives definition

(Albert et al., 2002) could be:

● Sold, leased, or licensed to the general public

● Offered by a vendor trying to profit from it

● Supported and evolved by the vendor, who retains the intellectual property rights

● Available in multiple identical copies

● Used without source code modification

● Open-source where code may be modified by users (Bhuta et al., 2007)

64

If a component is defined as a unit of computation or data store (Medvidovic & Taylor, 2000)

and may be as small as a single procedure or as large as an entire application, then the

component connectors are defined as architectural building blocks which are used to model

interactions among components and rules that govern those interactions (Medvidovic &

Taylor, 2000).

Piecing together available Open-source components and COTS components is very

different from traditional development. While the latter has a requirements-design-develop-

test-deploy process, the former has an assessment-selection-composition-integration-test-

deploy process (Albert & Brownsword, 2002; Ballurio et al., 2003; Boehm et al., 2003;

Comella-Dorda et al., 2002; Yang et al., 2005). The assessment and selection steps of the

former are important and are composed of:

● assessing both functional and non-functional requirements for the COTS system

● assessing the interoperability to ensure that the selected COTS components would

interact with each other properly

The first assessment has a fair share of solutions (Albert & Brownsword, 2002; Ballurio et

al., 2003; Boehm et al., 2003; Comella-Dorda et al., 2002; Yang et al., 2005) while the second

assessment continues to be puzzling for researchers. For instance, in a study conducted by

(Garlan et al., 1995), a base set of four reusable software components were used to construct

a software system. Prototyping the COTS interactions as it would occur in the conceived

system became time and effort intensive. In the interest of limited resources, developers are

compelled to neglect the interoperability issue altogether, simply hoping that there will be no

problems during integration or are compelled to neglect interoperability until the number of

COTS combinations are reduced to a manageable number. Both of these cases increase

project risk dramatically.

Under the assumption that interoperability is completely neglected, developers could end

up writing tons of glue code (connector code) which in turn expends resources. In software

architecture, the connectors are the embodiment of the interactions and associations between

software components and must be dealt with importance (Shaw et al., 1996). Hence, (Bhuta

et al., 2007) propose an attribute-driven framework that attempts to address the selection of

COTS components and connectors so that they would be interoperable. The proposed

framework is composed of:

65

● COTS interoperability evaluator

● COTS representation attributes

● Integrations Rules

The result of applying the framework is an interoperability assessment report. This

proposal is also automated and enables the evaluation of a large number of architectures and

COTS combinations, able to analyze large trade-off spaces for COTS component and

connector selection. Since COTS characteristics are evolving constantly, this kind of

framework must be constantly updated.

The interoperability of software components and the attribute-driven framework proposed

by (Bhuta et al., 2007) are focused on minimizing resource expenditure on software projects

through proper reuse of software components and their connectors. However, the systems

that this proposal addresses are for large software systems and not for micro-businesses

which are way less complex.

2.1.4. Research proposals related to improving comprehensibility

Fourth, seeing proposals with a lot of technical jargon in the previous subsection, we

enumerate the proposals related to patterns which improve comprehensibility, including

proposals which involve patterns in the comprehension of software modeling languages and

notations.

(Lakhal et al., 2013) propose patterns for Unified Modeling Language (UML) profiles. Four

aspects of the patterns are identified, relating to the change, impact, reusable solutions, and

in relation to other evolving patterns. The patterns are meant to make adaptation to evolving

UML profiles less costly. The pattern-based approach has the following objectives:

● Distinguish atomic evolutions from complex evolutions. An atomic evolution is when

one independent change is applied on one profile element while a complex evolution

is a combination of atomic changes with dependency links. The proposal consists of

analyzing changes in order to identify the atomic operations groups which describe the

recurrent complex evolutions.

● Identify the evolution patterns and their formalization. In order to achieve this objective,

an empirical study is made on the evolution of two automobile domain profiles.

66

● Classify the patterns so that there will be faster adaptation of the patterns. As

(Buschmann & Meunier, 1995) would say, it is important to provide a guide when

selecting a pattern for a particular design situation. The classification scheme must

have categories for criteria or design issues that play a significant role in software

development. With an evolution pattern classification according to impact criteria is in

place, there could be a reduction in overall costs to achieve adaptation (of the

patterns).

The proposed pattern catalog must offer:

● The ability to identify recurrent evolution issues

● The ability to formalize specific relations towards and between patterns in an

understandable format

● The ability to classify the evolution pattern in order to facilitate their access and their

reuse in different instantiations

In order to meet such objectives, four aspects of evolution patterns are proposed and

specified as follows:

● The interface has all the elements which allow for selecting a pattern. The elements

are:

o The name is used to name the evolution treated in the pattern and the

associated solution

o The problem is used to describe the context of the evolution and the problem

which is resolved by the pattern

o The keywords are used to cite all the profile elements invoked in the pattern

and the kind of evolution. The kind of evolution could be addition, removal,

modification, among others

o The classification parameters are used to reference the key parameter of each

element implied in the pattern and their key values used to classify the pattern.

● The solution M2 has all the elements which are needed to describe the evolution at a

profile level, meaning the meta-operation instantiations which are needed to describe

the evolution. The elements are:

o The change representation which specifies the evolution by the group of the

change operations as defined in the delta model

67

o The informal describes the elements in which the pattern is applied and the

context in which it is executed, using natural language

o The formal describes the sequence of operations needed to realize an

evolution, the function call, and the settings filling, using formal language

o The visual describes the evolution treated in the pattern using a profile diagram

● The solution M1 with category defines the solution and the instantiation for

adaptation of the instance models to the new profile version. This aspect is used for

identifying different solutions for the same pattern. The elements are:

o The informal is a description of the evolution where in each category,

parameters that have an impact and values which belong to the category are

expressed.

o The formal describes the informal using formal language

o The visual describes the result of the pattern solution on the models using a

representation of the model before and after the evolution

● The relations define the relation between patterns in order to organize the patterns

catalog. Four kinds of relations are based on the following:

o Use

o Required

o Alternative

o Refine

This proposal for evolution patterns in UML has been tested on a prototype named Papyrus

Profile Evolution (P2E) in order to implement an entire catalog in an industrial case study.

Although it was difficult to cover all possible profile evolutions, the formalism enabled

extensions and explanations in relation to how the patterns were used in combinations and

instantiations.

The UML profiles proposed by (Lakhal et al., 2013) have attempted to make technical

notations such as UML to be more comprehensible to more users. However, such profiles are

still not oriented for the domain of micro-businesses.

A rigorous and practical technique for specifying pattern solutions in UML, which also

serves as a supporting guide for the development of related tools, is proposed by (France et

al., 2004).

68

Formal pattern specification using mathematical languages are capable of providing the

necessary concepts to precisely describe pattern solutions (Eden, 1999; Lano et al., 1996).

The problem with formalities is that sophisticated mathematical skills are needed in order to

use these kinds of patterns. Hence, patterns with specification languages that are based on

familiar software modeling concepts such as UML would more likely be used by software

developers (France et al., 2004). The reasons for using UML are the following:

● UML is considered to be the de facto standard for object-oriented modeling which

means that design patterns using UML models would be relevant.

● Model-driven architecture (MDA) is being promoted by the Object Management Group

(OMG). In MDA, models are used as the primary artifacts for development. MDA has

raised the level of abstraction for which complex software systems are developed and

tools to support the models and patterns have become necessary. The tools would

require that patterns be precisely specified in modeling notations such as UML.

In order to specialize the UML meta-model for pattern specifications, the following must be

done:

● The abstract syntax must be specialized by subtyping UML meta-model classes and

by making well-formed-ness rules more restrictive. This would result in an abstract

syntax for models describing the pattern solutions.

● Parameterized Object Constraint Language (OCL) (Warmer & Kleppe, 1999) must be

defined. These would be the constraint templates which represent constraints that

must be expressed in models characterized by the specialized meta-model. The

semantic properties of the patterns are captured using the parameterized constraints.

The pattern specification as proposed by (France et al., 2004) would consist of a structural

pattern specification (SPS) and a set of interaction pattern specifications (IPSs). The SPSs,

which are the core of the pattern specification, would specify the class diagram view of the

pattern solutions. The SPS notation would consist of the following:

● A classifier role, which consists of three parts, namely:

o The label of the form, also known as the name of the meta-model class

o The declaration of the form, indicating the name

69

o Realization multiplicities which are used to restrict the number of classifiers

playing the role in a conforming class diagram. Multiplicities may be omitted if

the number of conforming classifiers does not have any constraints. In UML,

this would be denoted with an *.

● A structural feature role is used to specify the properties represented by structural

features of conforming classifiers, such as an attribute or a query.

● A behavioral feature role is used to specify behavioral properties which are associated

with conforming classifiers, such as an operation.

The IPSs specify the interactions among the pattern solutions and its definitions would be

based on the terms and roles defined in an SPS. The SPS roles are used to specify the

participants in an interaction pattern. IPSs are specified with:

● The invocation of an operation of a subject. This is an operation that conforms to the

feature roles, resulting in calls to the operation in each observer linked to the subject.

● Each operation, calling an operation in the subject.

Based on the SPSs and IPSs, (France et al., 2004) have been able to fully develop pattern

specification for the following design patterns (France et al., 2002), namely:

● Abstract factory

● Bridge

● Decorator

● Singleton

● Observer

● Composite

● Visitor

These pattern specifications have been presented and used by graduate students in a

software engineering course in order to develop the specifications of the design patterns. All

the students were familiar with UML and patterns based on their previous courses.

The pattern specification proposed by (France et al., 2004) could be used as a base for

tools that support the creation and the evolution of pattern and for a rigorous application of

design patterns to UML models. Also, this UML-based notation, which is tool-independent,

could facilitate the sharing of design patterns among UML modeling tools.

70

In relation to UML-related patterns, (Kim et al., 2004) propose a role-based meta-modeling

language (RBML) which is primarily used for expressing domain-specific patterns. The RBML

is a sub-language of UML and can be used by developers when creating UML diagrams. The

RBML is demonstrated using a check-in-check-out (CICO) application for use at rentals such

as car rentals, book rentals, and video rentals.

The work of (France et al., 2004) and (Kim et al., 2004) show that UML can be made more

comprehensible when modeling patterns. However, there would always be those who would

argue that UML is complex and not easy to adapt and learn. Specifically, (Siau & Cao, 2002)

say that UML is 2-11 times more complex than other modeling methods. Since UML is a

technical language, micro-business owners without technical backgrounds would have a

difficult time communicating with software developers if only UML-based diagrams are used.

(Oliveira & Belo, 2012) have chosen BPMN to express their patterns because of its clarity

and simplicity in process representation. BPMN is expressive, very capable for

implementation, and could control tasks within models. Business process modeling notation

(BPMN) patterns which can be used for extract-transform-load (ETL) systems are proposed

by (Oliveira & Belo, 2012).

The ETL-BPMN patterns are designed to map standard data warehousing ETL processes

and test them before deploying final systems. The work of (Oliveira & Belo, 2012) extends and

builds on the ETL-BPMN work done by (Akkaoui & Zimány, 2009; Akkaoui et al., 2011). ETL

systems are known to be complex yet could be specified conceptually, in a very concrete way,

and subsequently, the models could be validated when running the model defined in BPMN.

In order to properly model ETL processes, the different flows of control and data between

various tasks must be reflected (in the model). BPMN is capable of including the specific

features for the representation and description of data flows.

The proposal of (Oliveira & Belo, 2012) allows the creation of models that can be defined

as containers of operations in which their specifications depend on an input of data or tasks.

The output is a set of pre-established activities. (Oliveira & Belo, 2012) use the Bizagi tool

(Bizagi, 2013) for demonstrating their work. Although the patterns of (Oliveira & Belo, 2012)

use a more business-oriented notation, such concepts like ETL continue to be technical and

71

oriented to developers and would not be the most suitable way of communicating with micro-

business owners.

In relation to other BPMN-based patterns, Workflow Activity Patterns (WAPs) in BPMN are

proposed by (Thom et al., 2011). The objective of their proposal is two-fold:

● Easy adoption of WAPs when using BPMN tools. BPMN is already becoming a well-

known standard notation for business process modeling. BPMN is also suitable for

modeling WAPs.

● Use of WAPs in business process design which would help in the automation and

facilitation when designing process models, reducing process modeling time and cost,

improving process model quality, and enabling the reuse of captured process

knowledge.

Based on their previous work (Thom et al., 2009a; Thom et al., 2009b), 200 real-world

process models were analyzed in order to confirm the existence of the following seven WAPs:

● Approval Pattern is a pattern which involves the approval of a single role or multiple

roles either concurrently or iteratively

● Question-Answer pattern is a pattern which involves sending to one or multiple roles

and actors respectively

● Uni-directional Performative is a pattern which involves activity execution requests

being sent to one or multiple actors, waiting for a response from one end is not

necessary

● Bi-directional Performative is a pattern which involves activity execution requests being

sent to one or multiple actors, waiting for a response from one end is necessary

● Notification is a pattern which involves notifications sent to one or multiple actors

● Informative Request is a pattern which involves information requests sent to one or

more multiple actors

● Decision is a pattern which involves a final decision based on the results of an activity

or a set of activities

WAPs (in BPMN) are ideal for designing processes from different application domains and

organizations and could be used as a conceptual framework for building workflow patterns in

the micro-business domain. However, they must still be more lightweight for the micro-

business owner to understand.

72

In some cases, a new definition language may have to be designed to fulfill a particular

purpose. For example, a design pattern definition language (DPDL) for representing software

design patterns has been proposed by (Khwaja & Alshayeb, 2013). The objectives of the

DPDL are to be:

● Easy to understand and to use. If the DPDL is understood by the designers easily then

it should be easy to use

● Unambiguous which means that the DPDL should be as clear as possible because

any ambiguity would result in bugs in software production and eventually reducing the

quality of the software product

● Extensible because since technology changes and progresses, the DPDL must be

able to accommodate extensions

● Based on existing technology so that it would be able to get wider and faster

acceptance

● Supportive of graphical output so that quick overviews of the design patterns may be

done. Even if the language is text-based, it should be able to support graphics

The DPDL design patterns are made up of three parts:

● Attributes define the different properties that are related to the design pattern. They

are:

o The Pattern Name (which is mandatory) is used as a handle to describe a

design problem, its solutions, and the consequences in a few words.

o The Owner Name which is the name of the person who first introduced the

design pattern.

o The Author Name is the name of the person who is designing the design

pattern.

o The Design Pattern Version allows the design pattern to be identified

specifically since it is possible to have different versions of the pattern.

o Intent is a short statement which answers the following questions:

▪ What is this design pattern supposed to do?

▪ What is the rationale of this design pattern?

▪ What are the design issues of problems that this pattern addresses?

73

o Motivation is the scenario that illustrates the design problem and how the class

and object structure in the pattern solve the problem.

o Applicability answers the following questions:

▪ In what situations may the design patterns be applied?

▪ What are some examples of poor designs that the pattern can address?

▪ How is it possible to recognize these situations?

o Known Uses provides examples of the design pattern when found in practical

applications and in real-world systems

o Related Patterns are a list of patterns which are closely related to the pattern

o Consequences pertain to the results and the trade-offs that have to be made

when applying the design pattern. It is important that design alternatives, costs

and benefits, and other implementation issues be addressed when applying the

pattern

o Language is if the design pattern is created for a specific application. In these

cases, the language of the application could be mentioned as an attribute. A

graphical output tool could also be used with this attribute to display the correct

diagram for the design pattern

● Structural Attributes represent the static view of the pattern which shows the elements

of the pattern in terms of classes and the relationship between these elements. It is

important to note that the schema is designed so that both the template of the design

pattern and the particular instance of the design pattern are taken into consideration.

The main elements of the structural attributes are as follows:

o Classes Elements are a list of all the participant class elements. The DPDL will

be able to handle all the possible instances of the particular design pattern.

▪ Sub group elements help in making a template of the design pattern,

enabling the handling of variations of the design pattern in a clear and

concise manner.

▪ Class elements are used to describe classes in the design pattern and

all the details about the classes of a design pattern are defined in this

class element.

o Operations Elements are containers with all the functions and operations in the

design pattern. There are two sub elements:

▪ Sub Group Op Element handles the templates for the design patterns.

When defining a particular instance of a pattern, functions may be

74

described in a single Sub Group Op, enabling the creation of a simple,

extensible, and easily understandable hierarchy for grouping the

operations. This element is optional because the instance of the design

pattern can be created using DPDL without using these attributes.

▪ Function elements contain all the details of the actual functions.

o Object Elements are the containers for all the objects in the design pattern. It

has two main elements:

▪ Sub Group Ob Element is used in the design pattern template. Its

attributes are optional as the instance of the design pattern can be

created in DPDL without using these attributes.

▪ Object Element is a defined single object where the attributes of the

particular object are described in the object element.

o Relationship Elements are the relationships between the classes. This is

important especially for the structure of the design pattern. The relationships

basically tell how the different classes interact with each other. This element

includes:

▪ Sub Group R Element which is included in the design pattern template.

This is optional because the instance of the design pattern could be

created in DPDL without the use of the attribute.

▪ Relationship Element is the individual unique relationship between two

classes and is described in the relation element of the scheme. This

describes the relationship accurately, completely, simply, and as easily

as possible.

● Behavioral Attributes are attributes which represent the dynamic view of the pattern,

showing how the elements of the pattern communicate. The sub elements of the

behavioral attribute are as follows:

o Set Object Element is used for assigning a variable or an object to another

object, like typecasting one object into another object or object type, which is

common when using different design patterns.

o Call Element is the most used behavioral element and is used when capturing

a function which is invoked in a design pattern.

o Create Element is used for depicting the creation of some objects in the design

pattern, defining the creation properties.

o Loop Element pertains to all the loops that are part of the design pattern

75

o Condition Element is used to manage the sequencing of the design patterns,

where conditions would be used to modify the sequencing

● In each of the behavioral attributes are special common attributes and they are:

o In Group Id is used when an action is dependent on another structural part

where the attribute identifies the independent group

o For Each is used to identify which structural part of the behavioral attribute is

repeated

o In Each is used to handle the situation when the user wants to describe a

particular behavioral action which is present in all the classes of the subgroup.

In order to go into further detail and specifications, the complete DPDL schema is made

available at (DPDL, 2013). A prototype has been developed in order to validate the DPDL

where two Open-source tools were extended to represent the structural and behavioral views

of patterns. DPDL is a text-based description language and although it has graphical support,

the descriptions involve a lot of technical information which would not make it suitable for

micro-business owners without technical backgrounds.

(El Boussaidi & Mili, 2012) propose patterns based on the problems they solve, prioritizing

comprehensibility and applicability. Although the description of the proposed patterns is

informal at best, it is the explicit representation of the problem solved by a pattern which is

important. The proposed patterns consist of triples <MP, MS, T> where MP is a model of the

problem solved by the pattern, MS is a model of the solution proposed by the pattern, and T

is a model transformation of an instance of the problem into an instance of the solution. Proper

use within a development context requires that the proposed patterns (i) must be understood,

(ii) applicable or relevant to the problem at hand, and (iii) faithfully applied.

In a similar fashion, (Hsueh et al., 2008) propose a systematic and objective approach to

verify pattern design, where the design pattern indicates the problem to be solved and the

solution. Their approach aims to provide the following benefits:

● An evaluation approach which could help pattern developers check if a design pattern

is properly designed

● A quantitative method which could measure the effectiveness of the quality

improvement of a design pattern

76

In order to realize such benefits, the design patterns are characterized as a tuple {IF, IN, Q,

SF, SN, T} where:

● IF is a functional requirement intent which describes what the pattern does. This is a

textual description

● IN is a non-functional requirement intent which describes how well the pattern can

contribute to the quality attributes like reusability, maintenance, or extensibility. This is

a textual description

● Q is quality focus which represents the quality focus from IF to IN

● SF is the functional requirement structure which represents the structure that can

realize the functional requirement intent or IF

● SN refers to the non-functional requirement structure and it represents the structural

model that can enhance the non-functional requirement intent IN

● T is the transformation which represents the transformation function from SF to SN

In order to verify the consistency between the intent and the structure of the design

patterns, an object-oriented quality model is used. The idea is that if the intent of the pattern

maps to an object-oriented property, then its structure should support that property. The

object-oriented property of a structure could be evaluated using object-oriented metrics such

as the coupling factor (COF) (Brito & Abreu, 1995).

Both (El Boussaidi & Mili, 2012) and (Hsueh et al., 2008) have problem-solving-oriented

patterns. However, such patterns have not been made to solve problems that are focused on

the micro-business domain. The “triples” or “tuples” may not be the right factors to determine

whether a pattern is applicable in a micro-business problem.

2.1.5 Research proposals related to representing infrastructure

Fifth, this subsection enumerates a variety of proposals which involve the representation

of infrastructure requirements in relation to software in several contexts, from large-scale

enterprise systems to smaller systems. After enumerating these research proposals, an

explanation is provided on why this group of proposals would not be totally applicable to the

domain of micro-businesses.

(Boer et al., 2012) propose RadioMarché, a voice- and web-based market information

system aimed at stimulating agricultural trade in Sahel countries. They represented

77

infrastructure elements such as the internet, power supplies, local radio, and the local

population (intrinsically representing literacy, the ability of the local population to read and

write). Two subsequent works related to the RadioMarché proposal were also reviewed. (Gyan

et al., 2013) represent the internet as infrastructure in rural Africa and (Bon et al., 2013)

represent radio stations as infrastructure in Mali.

(Wouters et al., 2009) propose a patient monitoring system which would support home-

based health care in South African rural communities using Unstructured Supplementary

Service Data (USSD) technology. The infrastructure represented in their work includes the

internet, human resources, and USSD facilities.

(Bhimani et al., 2013) demonstrate different methods for creating and curating collaborative

content in and over remote locations. Their infrastructure representations involve live

cameras, dedicated networks, projectors, cloud servers, and human resources, particularly

the users.

The work of (Izumi et al., 2007) demonstrated how a vehicle probe system (which they also

refer to as the Floating Car Data “FCD” System) functions in its environment. The

infrastructure representations involve a global positioning system (GPS), communication

platforms, and machinery in detail such as car lights, car wipers, and speedometers.

(Supakkul et al., 2010) modeled infrastructure related to NFRs in a credit card theft case.

The infrastructure representations involved human resources, telecommunications, the

internet, and hardware in detail such as cashiers, laptops, desktops, and corporate servers.

(Chung et al., 2011) propose Goal-Oriented Software Architecting (GOSA) which they

applied in a specific case, the London Ambulance Service computer-aided dispatch system.

The infrastructure representations involved tracking devices for rescue vehicles (ambulances

and helicopters), telecommunications networks, and human resources (particularly focusing

on their roles in the system).

In a subsequent work, (Chung et al., 2013) use goals, particularly SIGs, to model large-

scale infrastructure in a contactless smartcard system which automates the ticketing on all

channels of public transport in Victoria, the most populated state in Australia. The

infrastructure representations involved mobile phones, kiosks, personal computers, vehicles

(mainly public transportation such as trains), data centers, and human resources.

78

When representing infrastructure and software (systems and components) altogether (their

architecture), The Open Group Architecture Framework (TOGAF) (The Open Group, 2009)

must be mentioned as related literature since it is currently being considered as the standard

way of developing and deploying modern IT systems in enterprises (Dietz & Hoogervorst,

2011). TOGAF models infrastructure on an enterprise level, mainly representing the

interaction of software systems with its environment.

Although there are clear benefits of using TOGAF in large enterprises, its use in SMEs is

still questionable (more so for micro-businesses) (Alm & Wißotzki, 2013). The use of TOGAF

is accompanied by corresponding manpower, maintenance, and training costs, which may not

be apt for the majority of micro-businesses.

These seven ways of representing infrastructure and software systems are very context-

specific. The advantage of using these pre-built infrastructure requirements is that they are

applicable if the case is almost exactly the same as the case from which the infrastructure

requirement is built from. However, the infrastructure requirements are a disadvantage when

taking the entire domain of micro-businesses into context. Unguided or “one-size-fits-all”

requirements representation approaches (like TOGAF) would not be fitting (Quispe et al.,

2010; Aranda et al., 2007; Bürsner & Merten, 2010). In addition, given the limited technical

exposure and limited resources of micro-business stakeholders (Laukkanen et al., 2007;

Buonanno et al., 2005), a proposal involving a step-by-step, “lightweight but effective” (Ambler,

2002) infrastructure requirements representation technique which micro-business owners and

developers could adapt and use in their software projects is needed.

From our review of related work, we have not found proposals which have (requirements)

patterns that have all of the following: involving (micro-)business processes, based on

requirements, represents infrastructure, and balancing the priorities of software (component)

reuse for developers and comprehensibility for micro-business owners, factors which make

(requirements) patterns suitable specifically for the domain of software systems for micro-

business.

2.2. Related Evaluations of Research Proposals put into Practice

(Requirements) patterns for micro-businesses can be technically relevant for developers

and comprehensible for micro-business owners in practice. We identified related works that

79

evaluate research proposals using case studies and Action Research. In addition, there is also

a subsection that covers evaluations specific to comprehensibility in practice.

2.2.1. Evaluations of research proposals using case studies

The following are evaluations of research proposals using case studies. They are relevant

because they provide an up-close, in-depth, examination of the research proposal being put

into practice.

As mentioned in the previous subsection related to component-based software

engineering, a result of combining component-based software development and reusing

software architecture has led to the notion of software product lines (Bosch, 2000).

(van Gurp et al., 2010) compared four software projects using case studies, comparing

both integration-oriented SPLs and open source projects. Although all of the case studies were

successful, they wanted to understand which practices were suitable in which context. Based

on their findings, they found out that large-scale open software development can be performed

successfully using practices that differ substantially from SPL practices.

The trends in the case studies suggest that several software organizations find themselves

a part of an increasingly large ecosystem that develops the software they productize and

consequently, a more compositional style of development would be more appropriate. The

evaluation that they performed is considered an important step towards empirical evaluation

methods for software processes.

(Zhao & Zou, 2011) evaluated the use of clustering algorithms to derive software modular

structures from business processes using a case study. Business processes describe the

operations of a business in an organization and are capable of capturing business

requirements. These business processes are composed of a set of interrelated tasks which

are joined together by data flow and control flow constructs. The data flows describe the inputs

into tasks and outputs generated from the tasks. Data items are abstract representations of

information flowing through the tasks. Control flow constructs specify the order of the

execution of tasks such as being sequential, alternative, or iterative.

A software modular structure represents the structure of a business application and

represents the distribution of functionality among software components. Software modular

80

structures are widely used to bridge the gap between business requirements and business

applications. Software modular structure refers to the logical view of software architecture and

it represents the structure of a business application using software components, the

interactions between and among the software components otherwise known as the

connectors, and the constraints on the components and the connectors.

Within the software modular structure are components which capture particular

functionalities. The connectors of the components define the control and the data transitions

among the components. The constraints specify the properties of the components and the

connectors and how they are combined.

The problem with business processes and software modular structures is that design

approaches rely on the craftsmanship of the software architects which means in large scale

business applications which need to satisfy thousands of business requirements, a manual

design approach would be inefficient and would lead to inconsistency between business

requirements and business applications.

Hence, (Zhao & Zou, 2011) propose an approach which consists of clustering algorithms

that automatically generate software modular structures from business processes. The

clustering algorithms analyze dependencies among data and tasks captured in a business

process and group the strongly dependent tasks and data into a software component. There

are two major steps in their approach:

● Derive the software components from business processes to fulfill the functional

requirements

● Apply the software architectural styles and design patterns to address the quality

requirements

(Zhao & Zou, 2011) conducted a case study to evaluate the effectiveness of their proposed

approach. There are five steps in their case study:

● Generate software modular structures from business processes of the subject

business systems

● Recover the as-implemented software modular structures from various sources such

as documentations or source code of the subject business systems

81

● Compare the generated software modular structures with the as-implemented software

modular structures to assess the authoritativeness of the generated software modular

structures

● Analyze the extent to which the generated software modular structures are affected by

the changes in the business processes in order to examine the stability of the proposed

approach

● Evaluate the modularity of the generated software modular structures

This five-step approach was used on two large-scale business systems, the IBM

WebSphere Commerce (WSC) server (IBM WSC, 2012) and Opentaps (Opentaps, 2013).

The result of the experiment was successful, showing that based on the proposal, meaningful

software modular structures with high modularity can be derived from business processes

using the clustering algorithms.

(Crnkovic & Larsson, 2002) evaluated the challenges arising from evolving component-

based systems in a case study involving the ABB Advant control system (ABB, 2013), an

industrial control system. According to the study, the success of this system in the market is

primarily due to its appropriate functionality and quality. The success in the development,

maintenance, and continued improvement of the system is a result of careful architecture

design, where the main goal is component reuse.

There are several advantages when the goal of design is component reuse. In order to

reap the benefits, there must be a systematic approach in design planning, extensive

development, support for more complex maintenance processes, and more consideration

given to components. Also, if a more reusable component is to be developed, then there would

be a more complex development process and more required support from the organization.

Several factors are examined in the case study, including evolving requirements and its

management, architecture, and other business-related factors such as marketing issues. One

of the main problems highlighted in the case study are unpredictable extra costs. ABB had to

pay extra costs for a change to a Windows NT platform, which was not given sufficient

consideration during the project.

Another problem that was highlighted in the case is the movement from old to new

technologies, requiring the re-creation of components or the inclusion of standard components

which are available in the market. According to the experience in the case study, the process

82

of replacing proprietary components with standard components available from third parties is

unavoidable and it is important to have a plan for migrating from old components to newer

ones. In a related work, (Crnkovic & Larsson, 2000) specifically present the successful

implementation of the ABB industrial process component-based system in a case study as

well.

(Ampatzoglou & Chatzigeorgiou, 2007) evaluated the use of object-oriented (OO) design

patterns in game development. The patterns were applied in a game development case study.

Two Open-source games were studied: namely Cannon Smash Version 0.6.6 and Ice Hockey

Manager Version 0.2.

The results of the study of the two games showed that using the patterns reduces

complexity, decreases decoupling (of software components), and increases cohesion of the

overall (game) software. However, the study also showed that the size of the project increased

when the design patterns were used. In any case, with the evolving nature of games,

(Ampatzoglou & Chatzigeorgiou, 2007) still believe that the appropriate employment of design

patterns should continue to be encouraged in the programming and development of games.

Evaluating these research proposals using case studies provided us insight on how to

observe the implementation of software projects in the micro-business domain in practice.

However, merely observing how micro-businesses operate in practice may not be enough to

complete the objectives of our thesis since we may have to influence the software

developers or micro-business owners in our work. Hence, we look at Action Research in

the next subsection.

2.2.2. Evaluations of research proposals using Action Research

In case studies or field experiments, the influence of the researcher is at a minimum or

even non-existent. Action Research is when a research proposal is applied into practice and

the researchers are actively participating. Action Research has a lot of variants (Goldkuhl,

2008) (Goldkuhl, 2012) (Bilandzic and Venable, 2011) which is why we detail our Action

Research step-by-step in the later chapters. Based on an initial survey, the use of Action

Research has been increasing in the field of software engineering (dos Santos & Travassos,

2009), despite representing only a small fraction of the studies being conducted in software

engineering. In this section, we enumerate related evaluations using Action Research.

83

(Grant & Ngwenyama, 2002) evaluated the usefulness of a manufacturing information

system development (ISD) methodology at a manufacturing technology company using Action

Research. The Action Research provided the theoretical framework for the intervention of the

ISD into the organization and the Action Research also guided the investigation and critical

analysis of the problem situation. The Action Research consisted of five stages, namely:

diagnosis, action plan, action taken, evaluation, and learning.

The Action Research methodology and the ISD methodology were used to solve five

technical and organizational problems which were identified in the engineering release

function of the company. The five problems were: lack of shared understanding, lack of

communication and coordination among departments, insufficient throughput and long cycle

time, inconsistencies in documentation, and duplication of effort.

Based on the study, it appears that the application of an ISD methodology would depend

on three factors: the original design of the methodology, the background knowledge and

motivation of those applying the methodology, and the organizational climate and culture

Given this, the same ISD methodology could lead to several different outcomes based on

whether developers apply an ISD with different orientations and under varying organizational

circumstances. By using Action Research, it was established that the ISD methodology could

be successful in the case organization. This means that success in other settings is not

guaranteed.

The study found that the culture of the organization, its power structure, climate, and

management philosophies were factors that contributed to the success of the ISD

methodology. The company had a history of using planning approaches and several of the

executives served in the military, having strict discipline. The results of the Action Research

showed reductions in product cycle time from 12 to 3 days, work-in-process reductions by

approximately 75%, and rework reductions by approximately 30% when the ISD methodology

was applied.

It is important to note that even if the results of the Action Research were unsuccessful

(that the ISD methodology did not produce as astounding results), results from Action

Research could still be useful for two reasons: important lessons are learned from failed

projects if the results are reported to the research community through scholarly journals

(Lyytinen & Robey, 1999) and the success of Action Research is not only measured by its

84

practical success but also by its ability to add to the stock of knowledge of the research

community.

(Roost et al., 2013) evaluated business architecture development by students working in

socially networked groups using Action Research. The focus of the study was on the social

interactions of one group of medical technology students and another group of IT students.

In this case, Action Research is described as a collaboration between a “client system” and

a “change agent” (which is the opposite of a traditional “observer”). In this Action Research

study, the client system is a concrete enterprise, a medical laboratory with a laboratory

information management system. The change agents were composed of medical technology

students forming one group and IT students forming the other group. In this Action Research

study, it is noted that every agent in the context of the enterprise was seen as a change agent.

The students of medical technology played the dual roles of core business process owners

and business analysts who are supposed to be knowledgeable of the problem at hand. The

IT students played the roles of business designers who are knowledgeable on IT-enabled

possible solutions for the problem. The relationships between and within these two groups

was managed using Google Sites social software.

The lessons learned from the Action Research study are as follows:

● The approach that they wanted to test (social self-development (SSD) of evolutionary

information systems) showed to be applicable in collaborative learning contexts that

are similar to the student project although richer supporting infrastructure is required.

● The use of the Google Sites social software based on blogs has shown to be useful in

the tested contexts.

● In similarity to pair programming, it was also possible to perform strategic analysis and

design effectively in pairs composed of a business person (like a student of medical

technology) and an IT person (like an IT student).

● If continuous community-based modeling activities involving the SSD is removed, the

approach would not work.

(Millman & El-Gohary, 2011) evaluated how the marketing practices of a micro-business

can take advantage of digital media using Action Research. The Action Research was made

to answer two main questions: what are the factors that can influence the innovative activities

85

of micro-businesses, especially marketing practices? and how can a small firm use new digital

media to improve their marketing practice?

Using Action Research, a qualitative approach was applied. The review of related literature

allowed an in-depth view in diagnosing the problems and the issues which are encountered

by the micro-business practitioners. In order to illustrate the process of actions taken, a

longitudinal study is conducted.

The results of the Action Research showed that in practice, much of the marketing activities

in micro-businesses are driven by incremental innovation, emphasizing that integrating new

technologies (such as digital media) in marketing requires that marketers take an active

managerial role beyond their traditional role.

(Lee, 2002) evaluated the relationship between the national IT infrastructure (of Korea) and

the success of a digital library using Action Research. The Action Research consisted of five

stages: diagnosing, action planning, action taking, evaluation, specifying learning.

Surveys, evaluating user satisfaction in the newly established national digital library, were

made part of the Action Research. As a result of the Action Research and the additional

surveys, the following observations were made:

● There were times when the system was slow due to the large number of users logged

on to the system.

● Usage of a bulletin board system was low because of the lack of trust of users for the

system. Koreans are distrustful of authority because of a long history of oppressive

military dictatorship.

● A lot of users were experiencing difficulty obtaining the full texts of requested articles

(as the survey results have shown).

From the Action Research, (Lee, 2002) recommended the following critical success factors

for the digital library to succeed:

● People must be able to find some useful content in the digital library which may or may

not be available in a physical library.

● The digital library must have an interface which is easy to use so that people would

use it.

86

● The digital library must be fast enough so that people would use it.

(dos Santos & Travassos, 2011) evaluated subjective decision-making made by software

developers using Action Research. The context of the Action Research was in the refactoring

of source code to improve source code quality. The practice of Action Research does not

always go as planned and of course, its application comes with a variety of challenges. The

researchers noted several difficulties in using Action Research as a methodology during their

study. These difficulties are as follows:

● Guidelines are lacking on how to use Action Research in software engineering as

evidenced by the absence of technical papers on the theme ((dos Santos & Travassos,

2011) conducted a systematic literature review as part of the work).

● There is difficulty in perceiving the difference between an Action Research study and

a case study when selecting an evaluation method. The main difference would be that

if there is more emphasis on observation then a case study would be apt. If there is

more emphasis on intending to change organizational practices then Action Research

would be more apt. Determining whether a case study or Action Research should be

done is difficult to assess, especially when the decision has to be made in the middle

of planning and diagnosing a problem.

● Collecting data in Action Research is difficult because it is difficult to identify what data

should be collected. There would obviously be unplanned events that happen during

Action Research studies. Although Action Research accommodates these unplanned

events, registering and justifying the events in the data has to be done by the

researcher.

● Conditions of collaborations in Action Research would not always be met. It would be

ideal if professionals would always genuinely collaborate with the goals of the

researcher and vice versa but this is not always the case. Hence, diplomatic abilities

of the researcher (and professional) are needed in order to benefit fully from Action

Research. Communication plays an important role in Action Research because it is

the conducting medium that enables the collaboration among the participants of the

Action Research study.

● There are also ethical issues to address when conducting Action Research. There are

two main ethical issues:

o It is difficult for a researcher to fulfill scientific goals such as publishing in

conferences and journals while at the same trying to address the real problem

at hand, the reason why Action Research is being conducted.

87

o Some organizations would participate in Action Research but would not be

compelled to publish their data. The freedom of consent to publish results will

not always be achieved. There are organizations that wish to protect their

privacy.

These five evaluations of research proposals using Action Research have provided us a

lot of insight on how we would conduct the evaluations of our research proposal in practice.

More details of our Action Research are detailed step-by-step in the later chapters.

2.2.3. Evaluations of comprehensibility in industry

For the remainder of the review of related work, we enumerate evaluations of

comprehensibility in industry. Evaluations of comprehensibility are important to our research

proposal because the ease of communicating with micro-business owners is vital to the

success of our research proposal when applied in practice.

A recent study was conducted by (Weitlaner et al., 2013) regarding the comprehensibility

of process models. In the first part of the study, a pen and paper experiment which involved

43 participants was performed, where four process archetypes were used. The results of the

experiment showed that formal business process management (BPM) is still not yet fully

accepted and considered as useful in industry. This is because flowcharts are mostly used for

designing processes.

The second part of the study involved a survey of 77 employees regarding the

comprehensibility of BPM languages. The survey examined to what extent process models

were understood by individuals.

The findings of the study were that comic representation storyboard design was intuitive

and more easily understood. BPMN and UML were also comprehensible but not as

comprehensible as the storyboards. Hence, from the study, the recommendation made by

(Weitlaner et al., 2013) is to use storyboards in field BPM.

(Reinhartz-Berger et al., 2011) evaluated the comprehension of variability issues in UML in

the field of software product line engineering (SPLE). SPLE deals with two main activities:

domain engineering where a family of software products called product lines are analyzed,

88

designed and implemented, and application engineering where particular software products

and applications are customized and developed.

An important topic in SPLE is that a software artifact could be (re-)used in several different

contexts for the purpose of increasing productivity. There are several proposals which have

this goal in mind and are referred to as variability modeling methods. A significant proportion

of these proposals are expressed in UML.

The UML-based methods would normally introduce profiles in order to specify a set of

required and optional elements, while identifying dependencies between the elements, and

also modeling the variation points and possible variants. The comprehensibility and utilization

of UML in these methods is evaluated.

An evaluation framework is created which allows the comparison of different aspects of

variability specification. Variability specification is important because it helps create valid

applications in specific domains. A specific UML-based method (for variability specification)

was chosen for evaluation which was the Application-based Domain Modeling (ADOM).

ADOM is based on five stereotypes where the range of elements in a product artifact can be

classified as the same element in the core asset. Each element in the core asset may be

defined as a variation point.

 The evaluation framework examined how advanced information systems students

understood and utilized the (ADOM) model. The results of the evaluation showed that the

different means for specifying variability were only utilized and understood to a limited extent.

Also, the variation points were also the least comprehensible among the variability

specification means. One possible solution to improving the adaptability of variability

languages is the use of the Common Variability Language (CVL) (Haugen et al., 2008).

A quantitative evaluation of different design alternatives expressed in UML would aid in

understanding system performance and would also aid in the design of complex systems.

(Pokozy-Korenblat et al., 2004) propose a tool called BioSpi which provides quantitative

analysis of the performance of UML specifications without the complexities of formal

descriptions. The BioSpi tool allows users to maintain a full record of the evolution of each

process in the system. Such a record specifies all the communications, including the

processes involved, the time and the channel where they occurred, the communication

partner, and the process which results from each communication.

89

The feasibility of the approach is demonstrated in an application of the tool in a web-based

micro-business case study. The steps of the evaluation process are as follows:

● UML activity, sequence, and deployment diagrams are enriched with supplementary

quantitative parameters.

● The simulation is performed using the BioSpi tool.

● Based on the simulation, performance curves are derived which characterize the

influence of the given quantitative measures on the behavior of the entire system.

Based on the quantitative data, the performance analysis using the BioSpi tool resulted in

the following findings:

● The global system showed sensitivity to the number of available sellers (in the micro-

business).

● Authentication time depended on the number of parallel requests and on the

complexity of the cryptographic algorithms used for the secure transmission of data.

● If the encryption took more than half a second to run then the most influential factor is

the time needed to serve concurrent requests.

Aside from comprehensibility studies on business process models and UML, evaluating

comprehensibility in different software notations, specifically Use Case and Tropos, has been

done by (Hadar et al., 2013). The objective of their work is to compare the comprehensibility

of requirements models which are expressed in different but comparable modeling

approaches from the perspective of a requirements analyst.

The comprehensibility of a requirements model is measured in the context of three types

of tasks which are: the mapping between textual descriptions and model elements, the reading

and understanding of the model, irrespective of the original textual description, and the

modification of the model.

The experimental evaluation is conducted within a family of controlled experiments for the

purpose of comparing Use Case, a scenario-based method, and Tropos, which exploits goal

modeling. Three runs of the experiment are performed involving 79 information systems

students. The data for each experiment was analyzed separately followed by a meta-analysis.

90

The results of the experiment show that Tropos models are more comprehensible with

respect to the three types of requirements analysis tasks but take more time to make as

compared to the Use Case models. The ability to measure the comprehensibility of models

based on a series of controlled experiments shows that measuring comprehensibility of

models is feasible, despite the fact that both Tropos and Use Case are different modeling

approaches.

The work of (Hadar et al., 2013) is only one of many rare studies. It is difficult to find

empirical studies related to the comprehensibility of requirements models, especially if the

languages and notations belong to different modeling approaches.

Based on our review of related literature, we have found that the use of Softgoal

Interdependency Graphs SIGs as proposed by (Chung et al., 2000) could be a vital piece in

our proposal. However, we have not found any comprehensibility studies where SIGs are

applied in practice. We provide a comprehensibility study of SIGs in practice in the later

chapters and also consider this as one of our unique contributions to literature.

3. CONCLUSIONS

In this chapter, we discussed several research and studies related to our proposal in terms

of their field of study: business processes, patterns, requirements, software components,

reuse, comprehensibility, representing infrastructure, evaluations with case studies, Action

Research, and evaluations on comprehensibility. We have also discussed both the weak and

strong points of each proposal in relation to the proposal we will present in this thesis. A

checklist and table of the comparisons we have made are shown in Table II.1 and Table II.2.

We build on the strong points from other proposals and address the weaknesses of other

proposals as we discuss the development of the thesis in the subsequent chapters. In the next

chapter, we will discuss the fundamental concepts that are related to our proposal.

91

Table II.1 Checklist of Related Literature

92

Table II.2 Table of Related Literature

93

94

CHAPTER REFERENCES

ABB. (2013). ABB Automation Products. Last accessed on October 6, 2013 at
http://www.abb.com/

Akkaoui, Z. E. & Zimányi, E. (2009). Defining ETL workflows using BPMN and BPEL. In I.-Y.
Song & E. Zimányi (eds.), DOLAP (pp. 41-48): ACM. ISBN: 978-1-60558-801-8

Akkaoui, Z. E., Zimányi, E., Mazón, J.-N. & Trujillo, J. (2011). A model-driven framework for
ETL process development. In I.-Y. Song, A. Cuzzocrea & K. C. Davis (eds.), DOLAP (pp. 45-
52): ACM. ISBN: 978-1-4503-0963-9

Albert, C. & Brownsword, L. (2002). Evolutionary Process for Integrating COTS-Based
Systems (EPIC). CMU/SEI Technical Report CMU/SEI-2002-TR-005, 2002
url: ftp://ftp.sei.cmu.edu/public/documents/02.reports/pdf/02tr005.pdf

Aleksy, M. & Stieger, B. (2011). Mobile Service Business Patterns. In Proceedings of the
IEEE 25th International Conference on Advanced Information Networking and Applications
AINA (pp. 62-68). IEEE. doi: 10.1109/AINA.2011.74

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S.
(1977). A Pattern Language. Oxford University Press, New York.

Alm, R. & Wißotzki, M. (2013). TOGAF Adaption for Small and Medium Enterprises. In W.
Abramowicz (ed.), BIS (Workshops) (p./pp. 112-123): Springer. ISBN: 978-3-642-41686-6.
doi:10.1007/978-3-642-41687-3_12

Álvarez, J. A. T., Nicolás, J., Moros, B. & Garcia, F. (2002). Requirements Reuse for
Improving Information Systems Security: A Practitioner's Approach. Requir. Eng., 6, 205-
219.

Allen, C. (2001). Realizing e-business with components. Addison-Wesley, Harlow, Boston

Alnusair, A., & Zhao, T. (2010). Component Search and Reuse: an ontology-based
approach. In proceedings of the IEEE International Conference on Information Reuse and
Integration (IRI 2010), pp. 258-261

Ambler, S. (2002). Agile modeling. John Wiley and Sons

Ampatzoglou, A. & Chatzigeorgiou, A. (2007). Evaluation of object-oriented design patterns
in game development. Information and Software Technology, 49 (May (5)), (pp. 445–454),
Elsevier. doi:10.1016/j.infsof.2006.07.003.

Aranda, J., Easterbrook, S. M. & Wilson, G. (2007). Requirements in the wild: How small
companies do it. Requirements Engineering RE (pp. 39-48), IEEE. ISBN: 0-7695-2935-6. doi:
10.1109/RE.2007.54

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., & Zettel, J. (2002). Component based product line engineering with
UML. Addison-Wesley.

Atkinson, C., Bayer, J., Laitenberger, O., Zettel, J. (2000). Component-based Software
Engineering: The KobrA Approach. In 22nd International Conference on Software

95

Engineering (ICSE 2000), 3rd International Workshop on Component-based Software
Engineering, Limerick, Ireland

Ballurio, K., Scalzo, B. & Rose, L. (2002). Risk Reduction in COTS Software Selection with
BASIS. In J. C. Dean & A. Gravel (eds.), ICCBSS (p./pp. 31-43), Springer. ISBN: 3-540-
43100-4

Barros, O. (2007) Business process patterns and frameworks: Reusing knowledge in
process innovation. Business Process Management Journal, 13 (1), (pp. 47-69). doi:
10.1108/14637150710721122

Berczuk, S.P., (2003). Software Configuration Management Patterns: Effective Teamwork,
Practical Integration. Addison-Wesley Professional, 2003

Bilandzic, M. & Venable, J. (2011). Towards Participatory Action Design Research: Adapting
Action Research and Design Science Research Methods for Urban Informatics. J. Community
Informatics, 7. Last accessed on October 9, 2013 at http://ci-
journal.net/index.php/ciej/article/view/786/804

Bizagi. (2013). Bizagi Business Process Management. Last accessed on October 6, 2013 on
https://www.bizagi.com/

Bhimani, J., Nakakura, T., Almahr, A., Sato, M., Sugiura, K. & Ohta, N. (2013). Vox populi:
enabling community-based narratives through collaboration and content creation. In P.
Paolini, P. Cremonesi & G. Lekakos (eds.), EuroITV (p./pp. 31-40), ACM. ISBN: 978-1-4503-
1951-5. doi: 10.1145/2465958.2465976

Bhuta, J., Mattmann, C., Medvidovic, N. & Boehm, B. W. (2007). A Framework for the
Assessment and Selection of Software Components and Connectors in COTS-Based
Architectures. Working IEEE/IFIP Conference on Software Architecture WICSA. (p. 6). IEEE
Computer Society. ISBN: 978-0-7695-2744-4. doi: 10.1109/WICSA.2007.2

Bishop, M. (2003). Computer Security: Art and Science. Addison Wesley

Boehm, B. W. (2000). Requirements that Handle IKIWISI, COTS, and Rapid Change. IEEE
Computer, 33, 99-102.

Boehm, B. W., Port, D., Yang, Y., Bhuta, J. & Abts, C. (2003). Composable Process
Elements for Developing COTS-Based Applications. ISESE (p./pp. 8-17), IEEE Computer
Society. ISBN: 0-7695-2002-2

Bon, A., de Boer, V., Gyan, N.B., Aart, C., De Leenheer, P., Tuyp, W., Boyera, S.,
Froumentin, M., Grewal, A., Allen, M., Tangara, A., & Akkermans, H. (2013). Use Case and
Requirements Analysis in a Remote Rural Context in Mali. In 19th International Working
Conference on Requirements Engineering: Foundation for Software Quality, REFSQ, 2013,
Essen, Germany, April 8-11, 2013, pp 331-346. doi: 10.1007/978-3-642-37422-7_24

Bosch, J. (2000). Design and use of software architectures. Addison-Wesley, England

Boukheduoma, S., Oussalah, M., Alimazighi, Z., & Tamzalit, D. (2013). Adaptation Patterns
for Service-Based Inter-Organizational Workflows. In Proceedings of the IEEE 7th International
Conference on Research Challenges in Information Science RCIS, (pp. 1-10). IEEE. doi:
10.1109/RCIS.2013.6577722

96

Brennan, R., Canning, L., & McDowell, R. (2008). Business-to-Business-Marketing, Sage
Publications Limited, London

Brito, F. & Abreu, E. (1995). The MOOD metric set. In proceedings of ECOOP ’95 Workshop
on Metrics

Budgen, D., Turner, M., Brereton, P., & Kitchenham, B. (2008). Using mapping studies in
software engineering. in 20th Annual Psychology of Programming Interest Group
Conference, PPIG. Lancaster University, United Kingdom

Buonanno, G., Faverio, P., Pigni, F., Ravarini, A., Sciuto, D. & Tagliavini, M. (2005). Factors
affecting ERP system adoption: A comparative analysis between SMEs and large
companies. J. Enterprise Inf. Management, 18, 384-426. doi: 10.1108/17410390510609572

Bürsner, S., & Merten, T. (2010). RESC 2010: 1st Workshop on Requirements Engineering
in Small Companies. In workshop proceedings of Requirements Engineering for Software
Quality REFSQ 2010, ICB-Research Report no. 40, October 2010, p. 128-130. url:
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Buschmann, F., & Meunier, R. (1995). A System of Patterns. Pattern Languages of Program
Design, 1, May, 1995, pp. 325-343

Cheesman, J., Daniels, J. & Szyperski, C. (ed.) (2001). UML Components - A Simple
Process for Specifying Component-Based Software. Addison-Wesley.

Chung, L., Hill, T., Legunsen, O., Sun, Z., Dsouza, A. & Supakkul, S. (2013). A goal-oriented
simulation approach for obtaining good private cloud-based system architectures. Journal of
Systems and Software, 86, (pp. 2242-2262). doi: 10.1016/j.jss.2012.10.028

Chung, L., Nixon, B., Yu, E. & Mylopoulos, J. (2000). Non-functional Requirements in
Software Engineering. Boston, Dordrecht, London. Kluwer Academic Publishers.

Chung, L., Supakkul, S., Subramanian, N., Garrido, J. L., Noguera, M., Hurtado, M. V.,
Rodríguez, M. L. & Akhlaki, K. B. (2011). Goal-Oriented Software Architecting. In P.
Avgeriou, J. Grundy, J. G. Hall, P. Lago & I. Mistrík (ed.), Relating Software Requirements
and Architectures (pp. 91-109). Springer. ISBN: 978-3-642-21000-6. doi 10.1007/978-3-642-
21001-3_7

Clements, P., Kazman, R., & Klein, M. (2002). Evaluating software architectures: methods
and case studies. Addison-Wesley, Boston

Comella-Dorda, S., Dean, J. C., Morris, E. & Oberndorf, P. (2002). A Process for COTS
Software Product Evaluation. In J. C. Dean & A. Gravel (eds.), COTS-Based Software
Systems, First International Conference, ICCBSS <p> 2002, Orlando, FL, USA, February 4-
6, 2002, Proceedings (p./pp. 86--96), Berlin, u.a.: Springer Verlag.

Coplien, J.O. (1995a). A development process generative pattern language, AT&T Bell
Laboratories. url: http://www.bell-labs.com/people/cope/Patterns/Process/index.html last
accessed on October 6, 2013

Coplien, J.O. (1995b). A generative development-process pattern language. In: Coplien,
J.O., Schmidt, D.O. (Eds.), Pattern Languages of Program Design. Addison Wesley,
Reading, MA, pp 183-237

97

Crnkovic, I., Hnich, B., Johnson, T., Kiziltan, Z., (2002). Specification, implementation, and
deployment of components. Communications, Association of Computing Machinery 45
(October (10)), (pp. 35–40). doi: 10.1145/570907.570928

Crnkovic, I. & Larsson, M. (2000). A Case Study: Demands on Component-based
Development. ICSE'2000 -- International Conference on Software Engineering (pp. 23--31),
Limerick, Ireland. doi: 10.1109/ICSE.2000.870393

Crnkovic, I. & Larsson, M. (2002). Challenges of component-based development. Journal of
Systems and Software, 61, (pp. 201-212). doi: 10.1016/S0164-1212(01)00148-0

de Boer, V., Leenheer, P. D., Bon, A., Gyan, N. B., van Aart, C., Guéret, C., Tuyp, W.,
Boyera, S., Allen, M. & Akkermans, H. (2012). RadioMarché: Distributed Voice- and Web-
Interfaced Market Information Systems under Rural Conditions. In J. Ralyté, X. Franch, S.
Brinkkemper & S. Wrycza (eds.), CAiSE (p./pp. 518-532), Springer. ISBN: 978-3-642-31094-
2. doi: 10.1007/978-3-642-31095-9_34

Dietz, J. L. G., Hoogervorst, J. A. P. (2011). A critical investigation of TOGAF - based on the
enterprise engineering theory and practice. In Albani, A., Dietz, J.L.G., Verelst, J. (eds.),
EEWC 2011, pp. 76-90, Springer. ISBN: 978-3-642-21057-0. doi: 10.1007/978-3-642-21058-
7_6

DPDL. (2013). Design Pattern Definition Language DPDL. Last accessed on October 6,
2013 on http://alshayeb.com/DPDL/

dos Santos, P. S. M. & Travassos, G. H. (2009). Action Research use in software
engineering: An initial survey. ESEM (pp. 414-417). ISBN: 978-1-4244-4842-5. doi:
10.1109/ESEM.2009.5316013

dos Santos, P. S. M. & Travassos, G. H. (2011). Action Research Can Swing the Balance in
Experimental Software Engineering. Advances in Computers, 83, (pp. 205-276). doi:
10.1016/B978-0-12-385510-7.00005-9

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1999). Patterns in Property Specifications for
Finite-State Verification. In B. W. Boehm, D. Garlan & J. Kramer (eds.), ICSE (pp. 411-420).
ACM. ISBN: 1-58113-074-0. DOI: 10.1145/302405.302672.

Eden, A. (1999). Precise Specification of Design Patterns and Tool Support in Their
Application. PhD Thesis, University of Tel Aviv, Israel, 1999.

El-Boussaidi, G. & Mili, H. (2012). Understanding design patterns - what is the problem?
Software: Practice and Experience, 42, (pp. 1495-1529). doi: 10.1002/spe.1145

Elizondo, P. V. & Lau, K.-K. (2010). A catalogue of component connectors to support
development with reuse. Journal of Systems and Software, 83, (pp. 1165-1178). doi:
10.1016/j.jss.2010.01.008

Firesmith, D. (2004). Specifying Reusable Security Requirements. Journal of Object
Technology, 3, 61-75.

Fowler, M. (1997). Analysis patterns: Reusable Object Models. Addison Wesley Longman,
Inc.

98

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley
Professional

France, R., Kim, D.-K., Ghosh, S. & Song, E. (2004). A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering, 30, (pp. 193-206). doi:
10.1109/TSE.2004.1271174

France, R., Kim, D., Song, E., Ghosh, S. (2002). Role-Based Modeling Language (RBML)
Specification v1.0. Technical Report 02-106, Computer Science Department, Colorado State
University, Fort Collins, Colorado, June, 2002

Franch, X., Palomares, C., Quer, C., Renault, S. & Lazzer, F. D. (2010). A Metamodel for
Software Requirement Patterns. In R. Wieringa & A. Persson (eds.), Requirements
Engineering for Software Quality REFSQ, pp. 85-90, Springer. ISBN: 978-3-642-14191-1.
doi: 10.1007/978-3-642-14192-8_10.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley.

Garlan, D., Allen, R. & Ockerbloom, J. (1995). Architectural Mismatch or Why It's Hard to
Build Systems Out of Existing Parts. In D. E. Perry, R. Jeffrey & D. Notkin (eds.), ICSE
(p./pp. 179-185): ACM. ISBN: 0-89791-708-1

Glushko, R.J. & McGrath, T. (2002). Document engineering for e-business. ACM
Symposium on Document Engineering, pp. 42-48, ACM

Glushko, R.J. & McGrath, T. (2008). Document Engineering – Analyzing and Designing
Documents for Business Informatics and Web Services. Cambridge, MA, USA. MIT Press.

Goldkuhl, G. (2008). Practical Inquiry as Action Research and Beyond. In W. Golden, T. Acton,
K. Conboy, H. van der Heijden & V. K. Tuunainen (eds.), ECIS (pp. 267-278). Last accessed
on October 9, 2013 at http://aisel.aisnet.org/ecis2008/118

Goldkuhl G. (2012). From Action Research to practice research. Australasian Journal of
Information Systems, 17, 2, (pp. 57-78). url:
http://dl.acs.org.au/index.php/ajis/article/view/688.

Grant, D. & Ngwenyama, O. K. (2003). A report on the use of Action Research to evaluate a
manufacturing information systems development methodology in a company. Inf. Syst. J.,
13, (pp. 21-36). doi: 10.1046/j.1365-2575.2003.00137.x

Gyan, N. B., de Boer, V., Bon, A., van Aart, C., Akkermans, H., Boyera, S., Froumentin, M.,
Grewal, A. & Allen, M. (2013). Voice-based web access in rural Africa. In H. C. Davis, H.
Halpin, A. Pentland, M. Bernstein & L. A. Adamic (eds.), WebSci (p./pp. 122-131), ACM.
ISBN: 978-1-4503-1889-1. doi: 10.1145/2464464.2464496

Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F. & Susi, A. (2013). Comparing
the comprehensibility of requirements models expressed in Use Case and Tropos: Results
from a family of experiments. Information & Software Technology, 55, (pp. 1823-1843). doi:
10.1016/j.infsof.2013.05.003.

Harel, D. & Pnueli, A. (1985). On the Development of Reactive Systems. Logics and models
of concurrent systems, pp. 477-498

99

Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., & Svendsen, A. (2008). Adding
Standardized Variability to Domain Specific Languages. In Proceedings of the 12th
International Software Product Line Conference SPLC, pp. 139–148. doi:
10.1109/SPLC.2008.25v

Hoffmann, A., Söllner, M. & Hoffmann, H. (2012a). Twenty Software Requirement Patterns to
Specify Recommender Systems that Users will Trust. ECIS. (p. 185) Last accessed on
October 9, 2013 at http://aisel.aisnet.org/ecis2012/185

Hoffmann, A., Söllner, M., Hoffmann, H. & Leimeister, J. M. (2012b). Towards trust-based
software requirement patterns. RePa, pp. 7-11, IEEE. ISBN: 978-1-4673-4374-9

Hruby, P. (2006). Model-Driven Design Using Business Patterns. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

Hsueh, N.-L., Chu, P.-H. & Chu, W. C. (2008). A quantitative approach for evaluating the
quality of design patterns. Journal of Systems and Software, 81, (pp. 1430-1439). doi:
10.1016/j.jss.2007.11.724

IBM WSC. (2012). IBM WebSphere Commerce. Last accessed on October 6, 2013 at
http://pic.dhe.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

Izumi, M., Sato, M. & Sunahara, H. (2007). Requirements for Protection Methods of
Personal Information in Vehicle Probing System. SAINT Workshops (p./pp. 70): IEEE
Computer Society. ISBN: 0-7695-2757-4. doi: 10.1109/SAINT-W.2007.92

Kalenborn, A. (2010). Modelling by Example: Requirements engineering during the bidding
stage of dialog-oriented software projects. In Proceedings of the 1st Workshop on RE in
Small Companies RESC, (pp. 158-166). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson, S. (1990). Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-21). Software Engineering Institute,
Carnegie Mellon University

Kang, K. C., Lee, J. & Donohoe, P. (2002). Feature-Oriented Project Line Engineering. IEEE
Software, 19 (4), (pp. 58-65), doi: 10.1109/MS.2002.1020288

Khwaja S. & Alshayeb M. (2013). Towards design pattern definition language. Software:
Practice and Experience, 43, (pp. 747-757). doi: 10.1002/spe.1122.

Kilov, H. & Sack, I. (2009). Mechanisms for communication between business and IT
experts. Computer Standards & Interfaces, 31(1), (pp. 98-109). doi:
10.1016/j.csi.2007.11.001

Kim, D., France, R. & Ghosh, S. (2004). A UML based language for specifying domain-specific
patterns. Journal of Visual Languages and Computing, 15(3-4): (pp.265-289) doi:
10.1016/j.jvlc.2004.01.004

Kouroshfar, E., Shahir, H. Y. & Ramsin, R. (2009). Process Patterns for Component-Based
Software Development. In G. A. Lewis, I. Poernomo & C. Hofmeister (eds.), CBSE (pp. 54-
68). Springer. ISBN: 978-3-642-02413-9. doi: 10.1007/978-3-642-02414-6_4

100

Kouskouras, K., Chatzigeorgiou, A., & Stephanides, G. (2008). Facilitating software
extension with design patterns and Aspect-Oriented Programming. Journal of Systems and
Software 81 (October (10)), (pp. 1725–1737), Elsevier. doi: 10.1016/j.jss.2007.12.807

Lakhal, F., Dubois, H., & Rieu, D. (2013). Pattern-based Methodology for UML profiles
evolution management. In Proceedings of the IEEE 7th International Conference on Research
Challenges in Information Science RCIS. IEEE. (pp. 1-12) doi: 10.1109/RCIS.2013.6577681

Lano., K., Bicarregui, J., & Goldsack, S. (1996). Formalising Design Patterns. In Processing
of the 1st BCS-FACS Northern Formal Methods Workshop, Electronic Workshops in
Computer Science, 1996.

Laukkanen, S., Sarpola, S., & Hallikainen, P. (2007). Enterprise size matters: objectives and
constraints of ERP adoption. J. Enterprise Inf. Management, 20, 319-334. doi:
10.1108/17410390710740763

Lee, O. (2002). An Action Research report on the Korean national digital library. Information
& Management, 39, (pp. 255-260). doi: 10.1016/S0378-7206(01)00094-5

Lyytinen, K. & Robey, D. (1999). Learning failure in information system development.
Information Systems Journal, 9, 85–101.

Mendez-Bonilla, O., Franch, X., & Quer, C. (2008) Requirements Patterns for COTS Systems.
In Proceedings of the 7th International Conference on Composition-Based Software Systems
ICCBSS (pp. 232-234). IEEE. doi: 10.1109/ICCBSS.2008.34

Medvidovic, N. & Taylor, R. N. (2000). A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software Engineering,
26, 70--93.

Millman, C. & El-Gohary, H. (2011). New Digital Media Marketing and Micro Business: A UK
Perspective. IJOM, 1, (pp. 41-62). doi: 10.4018/978-1-4666-1598-4.ch076

Oliveira, B. & Belo, O. (2012). BPMN Patterns for ETL Conceptual Modelling and Validation.
In L. Chen, A. Felfernig, J. Liu & Z. W. Ras (eds.), ISMIS (pp. 445-454), : Springer. ISBN:
978-3-642-34623-1. doi: 10.1007/978-3-642-34624-8_50

Opentaps. (2013). Opentaps. Last accessed on October 6, 2013 at http://www.opentaps.org/

Paludo, M., Reinehr, S. S., Malucelli, A., Bruzon, L. & Pinho, P. (2011). Applying pattern
structures to document and reuse components in component-based software engineering
environments. IRI (pp. 378-383), IEEE Systems, Man, and Cybernetics Society. ISBN: 978-
1-4577-0964-7. doi: 10.1109/IRI.2011.6009577

Peixoto, M. & Silva, C. (2018). Specifying privacy requirements with goal-oriented modeling
languages. In Proceedings of the 32nd Brazilian Symposium on Software Engineering (SBES
'18). ACM, New York, NY, USA, 112-121. doi: 10.1145/3266237.3266270

Pokozy-Korenblat, K., Priami, C. & Quaglia, P. (2004). Performance Analysis of a UML
Micro-business Case Study. In C. Priami & P. Quaglia (eds.), Global Computing (pp. 107-
126), Springer. ISBN: 3-540-24101-9. doi: 10.1007/978-3-540-31794-4_7

101

Quispe, A., Marques, M., Silvestre, L., Ochoa, S. F. & Robbes, R. (2010). Requirements
Engineering Practices in Very Small Software Enterprises: A Diagnostic Study. In S. F. Ochoa,
F. Meza, D. Mery & C. Cubillos (eds.), SCCC, pp. 81-87, IEEE Computer Society.

Ramsin, R. & Paige, R. F. (2008). Process-centered review of object-oriented software
development methodologies. ACM Comput. Surv., 40 (1), Article 3, (pp. 1- 89)

Reinhartz-Berger, I., Sturm, A. & Tsoury, A. (2011). Evaluating Comprehension and
Utilization of Variability Aspects in UML-Based Models. In S. Nurcan (ed.), CAiSE Forum
(Selected Papers) (pp. 156-171), Springer. ISBN: 978-3-642-29748-9. doi: 10.1007/978-3-
642-29749-6_11

Riaz, M. & Williams, L. (2012). Security requirements patterns: understanding the science
behind the art of pattern writing. RePa (pp. 29-34): IEEE. ISBN: 978-1-4673-4374-9. doi:
10.1109/RePa.2012.6359977

Roost, M., Taveter, K., Rava, K., Tepandi, J., Piho, G., Kuusik, R., & Õunapuu, E. (2013).
Towards Self-development of Evolutionary Information Systems: An Action Research of
Business Architecture Development by Students in Socially Networked Groups. Proceedings
of the International Workshop on Approaches for Enterprise Engineering Research AppEER
2013 at the 25th International Conference on Advanced Information Systems Engineering
(CAiSE). Vol 148. doi: 10.1007/978-3-642-38490-5_1

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,, Lorensen, W. (1991). Object-Oriented
Modeling and Design.

Schmidt, D.C., Fayad, M., & Johnson, R.E. (1996). Software Patterns. Communications of
the ACM, October, 1996

Schumacher, M., Fernandez-Buglioni, E., Hyberston, D., Buschmann, F., & Sommerlad, P.
(2006). Security Patterns: Integrating Security and Systems Engineering. John Wiley &
Sons, Limited

Seruca, I. & Loucopoulos, P. (2003). Towards a systematic approach to the capture of patterns
within a business domain. Journal of Systems and Software, 67 (1). (pp. 1-18) doi:
10.1016/S0164-1212(02)00083-3

Shaw, M. & Garlan, D. (1996). Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall

Siau, K. & Cao, Q. (2002). How Complex Is the Unified Modeling Language? In Advanced
Topics in Database Research, Vol. 1 (pp. 294-306)

Sochos, P., Philippow, I. & Riebisch, M. (2004). Feature-Oriented Development of Software
Product Lines: Mapping Feature Models to the Architecture. In M. Weske & P. Liggesmeyer
(eds.), Net.ObjectDays (p./pp. 138-152), Springer. ISBN: 3-540-23201-X

Smith, B. H. & Williams, L. (2012). On the Effective Use of Security Test Patterns. SERE
(p./pp. 108-117), IEEE. ISBN: 978-0-7695-4742-8

Stepan, P. & Lau, K.-K. (2012). Controller patterns for component-based reactive control
software systems. In V. Grassi, R. Mirandola, N. Medvidovic & M. Larsson (eds.), CBSE (pp.
71-76). ACM. ISBN: 978-1-4503-1345-2. doi: 10.1145/2304736.2304749

102

Supakkul, S. & Chung, L. (2009). Extending Problem Frames to deal with stakeholder
problems: An Agent- and Goal-Oriented Approach. In S. Y. Shin & S. Ossowski (eds.), SAC
pp. 389-394, ACM. ISBN: 978-1-60558-166-8

Supakkul, S., Hill, T., Chung, L., Tun, T., & Sampaio do Prado Leite, J.C. (2010). An NFR
Pattern Approach to Dealing with NFRs. In Proceedings of the 18th IEEE International
Requirements Engineering Conference RE (pp. 179-188). IEEE. doi: 10.1109/RE.2010.31

The Open Group. (2009). TOGAF Version 9. Van Haren Publishing, Zaltbommel

Thom, L. H., Lazarte, I. M., & Iochpe, C. (2009a). Activity patterns in process-aware
information systems: basic concepts and empirical evidence. IJBPIM 4 (2), 93-110, 2009

Thom, L. H., Lazarte, I. M., & Iochpe, C. (2009b). On the Support of Workflow Activity
Patterns in Process Modeling Tools: Purpose and Requirements. In 3rd WBPM, 2009, Brazil

Thom, L. H., Lazarte, I. M., Iochpe, C., Priego-Roche, L.-M., Verdier, C., Chiotti, O. &
Villarreal, P. D. (2011). On the Capabilities of BPMN for Workflow Activity Patterns
Representation. In R. M. Dijkman, J. Hofstetter & J. Koehler (eds.), BPMN (pp. 172-177).
Springer. ISBN: 978-3-642-25159-7. doi: 10.1007/978-3-642-25160-3_18

van Gurp, J., Prehofer, C. & Bosch, J. (2010). Comparing practices for reuse in integration-
oriented software product lines and large open-source software projects. Software: Practice
and Experience, 40, (pp. 285-312). doi: 10.1002/spe.955

Warmer, J. & Kleppe., A. (1999). The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley

Weitlaner, D., Guettiner, A., & Kohlbacher, M. (2013). Intuitive Comprehensibility of Process
Models. S-BPM ONE 2013, pp. 52-71. doi: 10.1007/978-3-642-36754-0_4

Wen, Y., Zhao, H. & 0001, L. L. (2011). Analysing security requirements patterns based on
problems decomposition and composition. RePa (p./pp. 11-20), IEEE. ISBN: 978-1-4577-
1020-9

Withall, S. (2007a). Software Requirement Patterns. O’Reilly

Withall, S. (2007b). Software Requirement Patterns. Microsoft Press

Wouters, B., Barjis, J., Maponya, G., Maritz, J., & Mashiri, M. (2009). Supporting Home
Based Health Care in South African Rural Communities Using USSD Technology. In R. C.
Nickerson & R. Sharda (eds.), AMCIS (p./pp. 410), Association for Information Systems. url:
http://aisel.aisnet.org/amcis2009/410/

Yang, Y., Bhuta, J., Boehm, B. & Port, D. N. (2005). Value-Based Processes for COTS-
Based Applications. IEEE Software, 22, 54--62.

Yoshioka, N., Washizaki, H., & Maruyama, K. (2008). A survey on security patterns.
Progress in Informatics, Special Issue: The future of software engineering for security and
privacy, pp. 13

Zhao, X., & Zou, Y. (2011). A business process-driven approach for generating software
modules. Software: Practice and Experience, 41, (pp. 1049–1071). doi: 10.1002/spe.1068

103

Chapter III

Theory and Practicality of Modeling in the Domain of Micro-businesses

Having reviewed the literature and identified the main contributions both in theory and in

practice in the previous chapter, this chapter analyzes and discusses work related to the

practical use of the fundamental symbols, languages, concepts, and elements of the models

that can be useful candidates to be used to strengthen our proposal in the next chapter. In

particular, the focus is on the modeling of the business processes and their associated

software components in the domain of micro-businesses.

Since the objectives of this thesis are to come up with a proposal which is comprehensible

and technically relevant both for micro-business owners and software developers, we try to

avoid the presence of too many concepts and elements in the models that would unnecessarily

increase the cognitive load both for the modelers and those who would use the models

(Chandler & Sweller, 1991). Our rationale is to propose candidate concepts and elements

which are easy-to-use, relevant for the practitioners in the micro-business domain, and

comprehensible for the micro-business owners with limited technical backgrounds.

On the same note of practicality, prior research on the trade-off between complexity and

communication clarity (Gemino & Wand, 2005) further suggests that in practice, modeling

method users would prefer efficient (i.e., non-complex) modeling methods over effective (i.e.,

highly expressive but complex) ones. This means that in industry, a user would choose a

simpler and more efficient modeling method such as a simplified library of the Business

Process Modeling Notation “BPMN” over using an effective and expressive modeling method

such as the complete BPMN specification as originally defined by (Object Management Group,

2008). In addition, a recent survey also showed that when requirements engineering practices

are employed, smaller businesses tend to adopt the easier techniques (Kassab, 2021).

1. THE PRACTICAL USE OF THE BUSINESS PROCESS MODELING NOTATION

The Business Process Modeling Notation “BPMN” aims to be a notation that is readily

understandable by all business users, from the business analysts that create the initial drafts

104

of the processes, to the technical developers responsible for implementing the technology that

will perform those processes, and finally, to the business people who will manage and monitor

those processes (Object Management Group, 2008).

In a study made by (Recker, 2008) about the factors explaining and predicting user

acceptance of BPMN, he found that user acceptance of BPMN is primarily dependent on two

factors: instrumentality (usefulness and performance of BPMN for process modeling) and

easiness (complexity of creating BPMN models). Both instrumentality and easiness, in turn,

relate to two main characteristics of any modeling language:

(1) Expressiveness: the possibility to model everything that has to be shown in a model

(2) Complexity: how hard it is to choose and specify the correct representations

These findings are a clear call for standardization bodies to produce standards that are not

only technically sound but also likable and manageable by the people who are meant to use

them in practice.

To assess the quality of the symbols and elements of BPMN, (Wahl & Sindre, 2005)

evaluated BPMN using the Semiotic Quality Framework by (Krogstie & Sølvberg, 2003). They

concluded that BPMN excels in its comprehensibility because of its construct specializations

and type aggregations which make it suitable for use for business process modeling in

general. We evaluate the suitability of using BPMN in the domain of micro-businesses in the

subsequent chapters.

BPMN talks about 38 different language constructs and attributes which are grouped into

four basic categories of elements. They are:

(1) Flow Objects: include events, activities and gateways and are the most basic elements

for creating Business Process Diagrams.

(2) Connecting Objects: used for connecting the Flow Objects through different types of

arrows.

(3) Swim lanes: group activities into separate categories for different functional capabilities

or responsibilities such as various roles or departments.

105

(4) Artefacts: added to a diagram for additional information, e.g., relevant data,

complementary notes.

Based on the Workflow Patterns Framework by (van der Aalst et al., 2003), (Wohed et al.,

2005) evaluated BPMN based on its capability to express a series of control flow, data and

resource patterns. They found that BPMN supports the majority of the control flow patterns,

nearly half of the data patterns, and a few resource patterns. This means that BPMN is meant

more for modeling flows than showing data and resource structures.

In the Appendix B.1 of this thesis, some of the most basic BPMN elements from the

complete BPMN specification are explained in detail. We only include these basic BPMN

elements in our proposal to minimize the cognitive load required by the users because too

much theoretical information curtails usefulness. Our selection of the most basic BPMN

elements make our proposal more practical in the domain of micro-businesses.

Understanding the trade-offs between theoretical limitations and practical advantages of

BPMN help us in the reasoning for using BPMN in the micro-business domain. A theoretical

model by (Recker et al., 2006) predicted nine different propositions regarding the limits and

shortcomings of BPMN. The empirical investigation, however, revealed that not all the

theoretical predictions constitute critical problems in process modeling practice. Despite these

theoretical limitations of BPMN, there have been studies of BPMN use in practice which show

its advantages. For instance, BPMN is currently being supported by more than 60 commercial

and academic process modeling products and is finding rapid adoption in industry (Recker,

2010).

According to a study made by (Recker, 2010), BPMN has quickly become a de facto

standard for graphical process modeling. No other notation has seen such an uptake in such

a short time as BPMN has. It is widely supported by both free and commercial process

modeling tools such as SparxSystems, itp-commerce, Websphere, Sungard, Intalio, Tibco,

IBM, Pega, and Telelogic. BPMN has integrated into the curriculum of education providers like

Queensland University of Technology, Widener University, Howe School of Technology

Management, and part of the offerings of modeling coaches and consultants such as BPM-

Training.com, BPMInstitute.org, and Object Training. Other standardization bodies such as

the Workflow Management Coalition have also revised their standard development efforts to

include BPMN in 2008.

106

In a study of BPMN modeling in practice, a typical BPMN diagram contains less than 10

symbols and that the frequency of symbol use follows a long-tail distribution, similar to the use

of words in natural language (zur Muehlen & Recker, 2008). A possible conjecture that follows

from this observation is that users deliberately reduce the complexity of the language by

restricting its vocabulary and consequently the rules governing the unused parts of the

vocabulary. Following such conjecture in the micro-business domain, limiting the use of

symbols and elements in BPMN to just the most basic and practical ones would allow the

notation to be even more readily understandable to micro-business owners and the software

developers they work with, just like restricting language in its most basic and practical form.

BPMN uses intuitive shapes and icons for its graphical elements so that they can be readily

understandable for everyone. In our case, everyone refers to every user in the micro-business

domain. There is a trend of companies using mostly BPMN core elements (Recker, 2010).

These core elements are Normal Flow, Task, Start/End Event, Pools, and Data-Based

Decisions. For use in our proposal, we explain these core shapes and icons of BPMN and

some other basic elements as specified in the original BPMN (Object Management Group,

2008) in Appendix B.1 of our thesis.

In addition, as a response to the shortage of BPMN training and skilled BPMN users in the

market nowadays as described by (Recker, 2010), a User Guide and tutorials for BPMN are

found in the Appendices C.2 and C.3 of this thesis and are also made available to the public

for those who intend to use our proposal in practice. The User Guide and tutorials are also a

concrete response to the research question posed by (Recker, 2010): “What is the beginner

BPMN course supposed to look like?”.

The purpose of the User Guide and tutorials are not to make BPMN experts out of the users

but to get them started in the use of BPMN. The key is to make the first-time users understand

basic BPMN elements without overcomplicating it. On the same note, understanding the

BPMN elements in the User Guide and tutorials would be key to understanding our proposal

in the next chapter. A table of the BPMN elements found in our User Guide and tutorials are

listed below:

107

Table III.1 Candidate BPMN Elements for this Thesis

Symbol Name

Sequence Flow

Default Flow

Conditional Flow

Start Event

End Event

Activity

Activity with Sub-Process

Data Object

Data Store

108

Pools and Lanes

Exclusive Gateway

Inclusive Gateway

Parallel Gateway

Event-Based Gateway

Complex Gateway

2. PRACTICALITY WITH THE UNIFIED MODELING LANGUAGE ON THE SAME NOTE

Like BPMN, the Unified Modeling Language “UML” has achieved widespread adoption in

industry practice (Dobing & Parsons, 2006) (Recker, 2010). UML is complex and some

researchers even claim that UML is 2-11 times more complex than other modeling methods

(Siau & Cao, 2002). However, there are also studies that acknowledge the complexity of UML

but also note that UML is more often used informally and not as intended by its developers

(Siau & Cao, 2001) (Siau et al., 2005) (Dobing & Parsons, 2006) (Siau & Tian, 2009).

109

(Siau et al., 2005) introduced and coined the terms “theoretical complexity” and “practical

complexity” of modeling methods and argued that the use of modeling methods in the field

might be very different from the use as advocated by the developers of such methods. A

possible conjecture is that the practical complexity of BPMN and UML is expected to be lower

than the theoretical complexity (Recker et al., 2009). Based on this conjecture, we expect that

our practical use of UML would also be lower than its theoretical complexity and that UML

would also be suitable for use in the domain of micro-businesses.

We could use this analogy of theoretical complexity and practical complexity in operating a

motorized vehicle. When applying for a license to operate a motorized vehicle, understanding

the theoretical complexity on how the vehicle works, its maintenance, and also how it should

be used on public roads could go on and on, for several pages. A theoretical driving manual

can go into so much detail, even up to the explanation of how to convert psi to bar for

measuring tire pressure or how braking distance does not increase linearly as the speed of

your vehicle increases. It could become quite complex for someone who is new to motorized

vehicles.

The practical complexity of operating a motorized vehicle does not necessarily involve strict

mathematical formulas or sophisticated physics theory. A person can simply enter the vehicle,

switch the vehicle on, select the right gear, drive from point A to point B, park the vehicle, and

then leave the vehicle. You only need to understand some practical matters to use the vehicle

for its purpose.

We use UML version 2.2 (Object Management Group, 2009) and select the elements that

we use in our proposal as discussed in the next chapter. The UML specification models

behavior or structure. For our use, among the structural models, we use the most basic

elements of the class diagrams and the most basic elements of component diagrams in order

to avoid increasing the cognitive load for the stakeholders involved in the use of our models.

Understanding the basic elements of these two UML specification models are fundamental in

comprehending our proposal:

(1) For Class Diagrams: a class is an extensible program-code-template for creating

objects, providing initial values for state (member variables) and implementations of

behavior (member functions or methods) (Gamma et al., 1995).

110

(2) For Component Diagrams: components are considered autonomous, encapsulated

units within a system or subsystem that provide one or more interfaces (Object

Management Group, 2009).

In a similar fashion, we explain the UML elements that we use in our proposal in the

Appendix B.3 of this thesis. A User Guide and tutorial for the UML elements are provided for

those who intend to apply our proposal in practice. Below is a table of the most basic UML

elements that are discussed in the User Guide, tutorials, and used in our proposal in the next

chapter.

Table III.2 Candidate UML Elements for this Thesis

Symbol Name

Class

Container (Composition)

Container (No Composition)

Inheritance

Action

One-to-One Relationship

111

One-to-Many Relationship

Many-to-One Relationship

Many-to-Many Relationship

Component

Provided Interface

Required Interface

Connecting Interfaces

3. PRACTICAL DIAGRAMMING AND MODELS FOR NON-FUNCTIONAL

REQUIREMENTS

To understand how Non-Functional Requirements “NFRs” are used in practice, it is

important to understand how to diagram and illustrate Softgoal Interdependency Graphs

“SIGs.” SIGs were first proposed by Lawrence Chung, the head of our research team in the

United States of America, in the NFR Framework (Chung et al., 2000). SIGs are used to

diagram and illustrate NFRs.

112

While BPMN is used to model processes and UML is used to model components in

practice, SIGs are used to model NFRs in real-world cases (Supakkul et al., 2010; Chung et

al., 2011; Chung et al., 2013). The practical use of SIGs in the real world makes SIGs an ideal

choice for use in the micro-business domain. In a similar fashion, SIGs per se may be complex

with all of its theoretical elements but we use SIGs in a practical way to make it suitable for

the micro-business domain. Hence, we choose a selection of the most basic elements in SIGs

for use in our proposal in this thesis in order to minimize the cognitive load for the stakeholders

involved in the use of our proposal. A more detailed discussion of SIGs can be found in the

original manuscript of (Chung et al., 2000).

In Appendix B.2 of this thesis, we provide a detailed explanation of the SIG elements that

we use in our proposal. There is also a detailed explanation of SIGs in the User Guide and

tutorials for those who would be putting our proposal into practice. Below is a table of the most

basic SIG elements we have selected for use in our proposal in the next chapter.

Table III.3 Candidate SIGs Elements for this Thesis

Symbol Name

Softgoal

Refinement “AND”

Refinement “OR”

Direct / Explicit Relationship

Indirect / Implicit Relationship

Positive Direct Dependency

Positive Indirect Dependency

113

Strong Positive Direct Dependency

Strong Positive Indirect Dependency

Negative Direct Dependency

Negative Indirect Dependency

Strong Negative Direct Dependency

Strong Negative Indirect Dependency

Operationalizing Method

Operationalization Target Link

Target System

Design Decision Link to

Functional Requirement

114

4. A PRACTICAL CHARACTERIZATION AND DESCRIPTION OF PATTERNS IN

SOFTWARE

Aside from the notations and languages that are theoretically complex at the onset, the

idea of patterns has also become complex and when applied in practice, rely heavily on expert

development skills (Serrato-Barrera et al., 2020). There are so many different

characterizations and descriptions of patterns in software that the idea of using patterns could

be more confusing than helpful for a micro-business owner and software developer who simply

want to get things done without complicating matters.

4.1 Characterization of Patterns

For example, one of the first characterizations of patterns in software was made by

(Alexander et al., 1977) and he characterizes a pattern as a description to a problem that

occurs again and again in our surroundings, and also a solution for this problem, in a way that

the solution could be used a million times without changing it even twice. This characterization

is simple and straightforward and could be readily understood by the users in the micro-

business domain. However, many researchers after him believed that this characterization

was insufficient and needed to be refined even more.

One of the more popular characterizations of patterns was made by (Gamma et al., 1995)

as mentioned in the related literature in the previous chapter. They say that patterns are a set

of classes and objects which are ready to solve a design problem in a particular context. Such

a definition has become very popular among software practitioners but may not be the most

practical definition to use in the micro-business domain because of a lot of technical jargon,

e.g., class, object.

There are also popular characterizations of patterns such as the one made by (Riehle and

Züllighoven, 1996). They say that a pattern is an abstraction of a concrete form that repeats

itself in various contexts. Although this definition may seem easier to understand for micro-

business owners than the definition of (Gamma et al., 1995), the word “abstraction” could lead

to confusion among micro-business owners.

115

Limiting the use of technical jargon is essential to arrive at a practical characterization of

patterns in software for micro-businesses. Aside from the straightforward characterization of

(Alexander et al. 1977), two more characterizations could be suitable for the micro-business

domain. One of the characterizations is from (Fowler, 1997) and he says that a pattern is an

idea that has been useful in a particular context and probably useful in others. Like the

characterization of (Alexander et al., 1977), it is a simple, straightforward, and uncomplicated

way of talking about patterns in the micro-business domain.

There is another characterization of patterns in software that would be apt for the micro-

business domain and would even be simpler and more straightforward than those provided by

(Alexander et al., 1977) and (Fowler, 1997). It is a characterization that even the least

technically-inclined micro-business owner would understand. It is as simple and classic as a

characterization that can be found in the official dictionary of your day-to-day language. The

(Real Academia Española, 2003) defines a pattern as a model which serves as an example

to make another same thing. The various definitions and characterizations of patterns in

software made by different researchers are shown in Table III.4.

Table III.4 Characterizations of Patterns in Software

Author Characterization

Alexander et al., 1977 Every pattern describes a problem that

occurs again and again in our surroundings,

and also a solution for this problem, in a way

that the solution could be used a million

times without changing it even twice

Gamma et al., 1995 Patterns are a set of classes and objects

which are ready to solve a design problem in

a particular context

Riehle and Züllighoven, 1996 A pattern is an abstraction of a concrete form

that repeats itself in various contexts

Fowler, 1997 A pattern is an idea that has been useful in a

particular context and probably useful in

others

116

Real Academia Española, 2003 A pattern is a model which serves as an

example to make another same thing

On top of characterizing a pattern for the micro-business domain, it would also be important

to characterize what kind of pattern we would be proposing. There are some popular pattern

classifications such as the one made by (Riehle and Züllighoven, 1996). They mainly classify

patterns as: Conceptual Patterns, Coding Patterns, and Design Patterns.

Conceptual patterns help in constructing the conceptual model of the software system.

Coding patterns help in writing the code for the software system. Design patterns help in

designing the software system. There are also Analysis patterns as described by (Fowler,

1997) which help in analyzing the software system.

The technical characterizations and classifications of a pattern in software possibly add to

the cognitive load to the users of our proposal. Hence, we try to be as practical as possible in

the micro-business domain by referring to a pattern in software by using natural language:

reusable solutions to recurring requirements in the micro-business domain. The patterns

we propose would help in analyzing and designing micro-business software as will be

explained in the next chapter.

4.2 Description of a Pattern

The description of a pattern in software in the micro-business domain must be

comprehensible and structured for the practical use of micro-business owners and software

developers. A pattern description made by (Meszaros and Doble, 1998) could be used as a

starting point for describing patterns in software for the micro-business domain. They say that

patterns in software are described with the following mandatory elements:

(a) Name: the identifier which the pattern is referred to and fitting for what it models

(b) Context: the state and circumstances surrounding the pattern

(c) Problem: what the patterns plans to solve

(d) Factors: constraints and considerations to bear in mind when using the pattern

(e) Solution: how the problem is solved considering various factors

They also say that patterns in software are also described with optional elements such as:

117

(a) Indicators: these are signs, symptoms, or hints which suggest applying the pattern

(b) Resulting Side Effects: these are outcomes that could occur when the pattern is

applied and could be resolved using other patterns

(c) Related Patterns: other patterns that may solve the problem

(d) Examples: a demo on the use of the pattern

(e) Code samples: lines of code showing the application of the pattern

(f) Rationale: a thorough description of the purpose of the pattern and why it works in a

certain situation

(g) Aliases: alternative names which the pattern is known

(h) Acknowledgments: list of contributors to the pattern

From both these mandatory and optional elements, there is still a lot of information that

unnecessarily increases the cognitive load for the users of the pattern. Hence, we simplify the

description of patterns in software so that it would be more practical and suitable for the micro-

business domain. Such users are more focused on getting things done with the least

complexity possible. We present our pattern description in detail in the next chapter.

5. CONCLUSIONS

In this chapter, on the basis of a discussion and analysis of previous related work on the

modelling of business processes and their associated software components in the domain of

micro-businesses, we have presented the fundamental candidate elements, concepts, and

characterizations in the models that we plan to use in our proposal in the next chapter. The

main motivation for the selection of the chosen elements and characterizations is to minimize

the cognitive load for the stakeholders who are mainly involved in requirements

elicitation and analysis. Reducing unnecessary cognitive load allows our proposal to be

practical and suitable for the micro-business domain where stakeholders are not normally

exposed to technical jargon and would rather use their natural language to express and

understand their software requirements. Stakeholders in the micro-business domain are also

focused on getting things done with the least complexity as possible.

118

CHAPTER REFERENCES

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S.
(1977). A Pattern Language. Oxford University Press, New York.

Chandler, P., & Sweller, J. (1991). Cognitive Load Theory and the Format of Instruction.
Cognition and Instruction (8:4), (pp. 293-332)

Chung, L., Nixon, B., Yu, E. & Mylopoulos, J. (2000). Non-functional Requirements in Software
Engineering. Boston, Dordrecht, London. Kluwer Academic Publishers.

Chung, L., Supakkul, S., Subramanian, N., Garrido, J. L., Noguera, M., Hurtado, M. V.,
Rodríguez, M. L. & Akhlaki, K. B. (2011). Goal-Oriented Software Architecting. In P. Avgeriou,
J. Grundy, J. G. Hall, P. Lago & I. Mistrík (ed.), Relating Software Requirements and
Architectures, pp. 91-109. Springer. ISBN: 978-3-642-21000-6.

Chung, L., Hill, T., Legunsen, O., Sun, Z., Dsouza, A. & Supakkul, S. (2013). A goal-oriented
simulation approach for obtaining good private cloud-based system architectures. Journal of
Systems and Software, 86, (pp. 2242-2262). doi: 10.1016/j.jss.2012.10.028

Dobing, B., & Parsons, J. (2006). How UML is Used. Communications of the ACM 49:5, (pp.
109-113)

Gemino, A., & Wand, Y. (2005). Complexity and Clarity in Conceptual Modeling: Comparison
of Mandatory and Optional Properties. Data & Knowledge Engineering 55:3, (pp. 301-326)

Fowler, M. (1997). Analysis patterns: Reusable Object Models. Addison Wesley Longman,
Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley.

Kassab, M. (2021). How Requirements Engineering is Performed in Small Businesses? 29th
International Requirements Engineering Conference Workshops (REW), 2021, IEEE, (pp.
220-223), doi: 10.1109/REW53955.2021.00041.

Krogstie, J. & Sølvberg., A. (2003). Information Systems Engineering - Conceptual Modeling
in a Quality Perspective. Kompendiumforlaget, NTNU, Trondheim, Norway.

Meszaros, G. & Doble, J. (1998). A pattern language for pattern writing. In Martin, Riehle and
Buschmann (eds.), Pattern Languages of Program Design 3, pp. 529-574. Reading, MA,
Addison-Wesley

Object Management Group, Inc. (2008). Business Process Modeling Notation Version 1.1.
Last accessed on March 10, 2011 at http://www.omg.org/spec/BPMN/1.1/PDF

Object Management Group, Inc. (2009). Unified Modeling Language Version 2.2. Last
accessed on March 10, 2011 at
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/changebar

Real Academia Española. (2003). Diccionario de la Lengua Española. 22nd Edition. Espasa
Calpe

119

Recker, J. (2008). Understanding Process Modelling Grammar Continuance: A Study of the
Consequences of Representational Capabilities. Faculty of Information Technology,
Queensland University of Technology, Brisbane.

Recker, J., zur Muehlen, M., Siau, K., Erickson, J., & Indulska, M. (2009). Measuring method
complexity: UML versus BPMN. In: 15th Americas Conference on Information Systems, 6-9
August, 2009, San Francisco, California.

Recker, J. (2010). Opportunities and constraints: the current struggle with BPMN. Business
Process Management Journal, Vol. 16 No. 1, (pp. 181-201),
https://doi.org/10.1108/14637151011018001

Riehle, D. & Züllighoven, H. (1996). Understanding and Using Patterns in Software
Development. Theory and Practice of Software Systems, 2 (1): 3-13

Serrato-Barrera, R., Rodríguez-Gómez, G., Pérez-Sansalvador, J.C., Pomares-Hernández,
S., Flores-Pulido, L., and Muñoz, A. (2020). Software system design based on patterns for
Newton-type methods. Computing 102, pp. 1005–1030

Siau, K., & Cao, Q. (2001). Unified Modeling Language: A Complexity Analysis. In Journal of
Database Management, 12:1, (pp. 26-34)

Siau, K. & Cao, Q. (2002). How Complex Is the Unified Modeling Language? In Advanced
Topics in Database Research, Vol. 1 (pp. 294-306)

Siau, K. & Tan, X. (2005). Improving the Quality of Conceptual Modeling Using Cognitive
Mapping Techniques. In Data & Knowledge Engineering 55:3, (pp. 343-365)

Siau, K. & Tian, Y. (2009). A Semiotics Analysis of UML Graphical Notations. Requirements
Engineering 14:1, (pp. 15-26)

Supakkul, S., Hill, T., Chung, L., Tun, T., & Sampaio do Prado Leite, J.C. (2010). An NFR
Pattern Approach to Dealing with NFRs. In Proceedings of the 18th IEEE International
Requirements Engineering Conference RE (pp. 179-188). IEEE. doi: 10.1109/RE.2010.31

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B. & Barros, A.P. (2003). Workflow
Patterns. Distributed and Parallel Databases, 14 (1), 5-51

Wahl, T. & Sindre, G. (2005). An Analytical Evaluation of BPMN Using a Semiotic Quality
Framework. In Proceedings of the CAiSE'05 Workshops. Volume 1, Castro, J. and E.
Teniente, Eds., (pp. 533-544), FEUP, Porto, Portugal.

Wohed, P., van der Aalst, W.M.P., Dumas, M. & ter Hofstede, A.H.M. (2005). Pattern-based
Analysis of BPMN - An extensive evaluation of the Control-flow, the Data and the Resource
Perspectives. In BPM Center Report No. BPM-05-26. BPMcenter.org.

zur Muehlen, M., & Recker, J. (2008). How Much Language is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation. In Léonard, M., and Bellahsène, Z.
(Eds.) Advanced Information Systems Engineering - CAiSE 2008, Montpellier, France. (pp.
465-479). Springer

120

121

Chapter IV

Micro-business Requirements Patterns

“μbRPs”

In this chapter, we propose the Micro-business Requirements Patterns (μbRPs) which

are patterns of recurring requirements models in micro-business software projects. This

proposal is a response to the research questions of coming up with a comprehensible and

technically relevant requirements proposal for micro-businesses. The μbRPs aim to help

micro-business owners express and comprehend their software requirements better and aim

to assist software analysts/developers when aligning on requirements and technical matters

such as software analysis, design, and component reuse.

Reusing recurring requirements models in real-world micro-businesses grounds our μbRPs

as they are based on actual industry practice. This is a strong argument which could be used

by industry practitioners when applying μbRPs. As will be shown in our μbRPs, we focus on

facilitating the real-world communication between the micro-business owners and the

analysts/developers since it is not guaranteed that everyone in the micro-business domain

would understand the technical jargon which engineers have been accustomed with

throughout their years of education and work experience.

We discuss μbRPs step-by-step in this chapter in the following subsections. First, we

provide our characterization of a micro-business, describing it in relation to the other

characterizations of micro-businesses mentioned in the first chapter. Then, we present the

conceptual model which covers the main concepts and the relationships among them, the

description of μbRPs with its corresponding parts (models and notes), a demonstration of

μbRPs using a real-world example, and a supporting tool which is available for the users of

μbRPs. Finally, we discuss the activities for managing the μbRPs, including its creation and

day-to-day use.

122

1. CHARACTERIZATION OF A MICRO-BUSINESS

As elaborated in Chapter 1, Section 1, there are various ways of defining or characterizing

a micro-business, e.g., from micro-businesses based on headcount to micro-businesses

based on the amount of capitalization involved. The different ways to characterize a micro-

business can be confusing if we do not come up with a working characterization of a micro-

business. Hence, we find it necessary to arrive at a working characterization of micro-

businesses for clarification in this thesis.

Based on our ongoing research and from our industry experience working with micro-

business software systems, it could be clearer if we would refer to a micro-business as the

smallest kind of business, using arithmetic criteria. This could avoid confusion from the

point of view of researchers and from the point of view of the practitioners who would use our

proposal in industry. If we refer to micro-businesses with arithmetic, we could avoid problems

when identifying them and filtering what a micro-business is and what it is not from the crowd.

Arithmetic can be used as a guide to identify micro-businesses. However, of course additional

analysis may be needed in order to determine if the proposal could be applied to other specific

cases.

Hence, we refer to a micro-business by using the combined characterizations made by

the European Commission and our work in this thesis. The European Commission refers to

a micro-business as a business which employs fewer than 10 people and whose annual

turnover or annual balance sheet total does not exceed 2 million Euros (European

Commission, 2013). In Table IV.1, the European Commission differentiates micro-businesses

from other enterprises using arithmetic.

Table IV.1 Definition of Small to Medium Sized Enterprises by the European Commission

Enterprise Size Headcount Annual Revenue Annual Balance Sheet

Medium < 250 people < 50 million Euros < 43 million Euros

Small < 50 people < 10 million Euros < 10 million Euros

Micro < 10 people < 2 million Euros < 2 million Euros

123

It is important for the European Commission to provide arithmetic criteria for determining

whether a business is a micro-business or not because of the kind of help and assistance

provided by the European Commission to them. Micro-businesses will have different aids and

different registration and application procedures as opposed to Medium-sized businesses.

In addition, we also use arithmetic as a guide to determine whether a micro-business

could be one or not. If a micro-business has a software implementation of less than 10-man

days and a software system design that involves less than 10 software components then

we could characterize this business as a micro-business. (Macasaet et al., 2014; Macasaet

et al., 2019).

The idea of having an upper bound of 10-man days of software implementation for micro-

businesses and an upper bound of 10 software components for software system design is to

limit the complexity of the implementation when applying our proposal in practice. We have

observed that when a software implementation exceeds 10-man days and more than 10

software components, the complexity of the software implementation usually increases

significantly and this may need a different requirements approach than the one we are

proposing in this thesis. It is important to note that if a micro-business is unable to adhere to

the arithmetic criteria, an additional analysis may be needed to decide if our approach could

still be applied or not.

As part of our characterization of a micro-business, it is also important to understand what

a software component is. Software components could be characterized as defined units of

computation or data which could be as small as a single procedure or as large as an entire

application (Medvidovic and Taylor, 2000).

We characterize a software component as an encapsulation of a certain set of

functions and data which vary in granularity as long as they could be updated,

replaced, or modified without affecting other software components in a system.

Examples of such software components would range from an off-the-shelf customer

management system, a website template, or a simple JavaScript line of code.

A Commercial-off-the-Shelf “COTS” customer management system can be bought in-a-box

from your local electronics store, installed on the computer at your office, and ready-to-go from

there. You could replace, update, or modify this system without affecting other software

124

systems it is connected to. This same logic applies to a website template that you download

from the internet, use for your website, and then replace it afterwards with another template.

All this is done without affecting the original code of your website.

A simple JavaScript line of code can also exhibit the characteristics of a component. If the

simple JavaScript line of code calculates Year 2020 Black Friday discounts with a special

formula, then the line of code can be easily replaced with another that calculates Year 2021

Black Friday discounts without affecting the rest of the system.

The characterization of micro-businesses and its associated components could be used in

a concrete, real-world example. For instance, let us have a first micro-business with the

following characteristics: it is a bakery with five employees, five basic business processes

being followed, and five hundred thousand euros of annual revenue. A second micro-business

would be an online retail store with three employees, three basic business processes being

followed, but has two and a quarter million euros of annual revenue. Both micro-businesses

would like to implement a basic inventory system that only takes two-man days of effort and

two software components. If you would use the ability of a business to collaborate on software

projects as the yardstick to characterize a micro-business (Jantunen, 2010), then how would

you characterize whether the first or second is a micro-business? Trying to answer this

question with arithmetic could quickly assist the stakeholders.

If we apply our proposed characterizations then we could point out that the first business

could be a micro-business. However, the second micro-business may have a bit more revenue

than what the European Union would classify as a micro-business. Even after careful

consideration and discussions, the second micro-business could still be classified as one.

Arithmetic could actually serve as a guide to proceed with the application of our proposal but

there could always be exceptions.

125

2. CONCEPTUAL MODEL

On top of providing a characterization for micro-businesses and their associated software

components, it is also important to provide the context and an overview of all the concepts

related to μbRPs. The rationale for providing this perspective is to provide an understanding

of the concepts in our approach, how they relate to each other, and how such perspective

could help make modeling requirements for micro-businesses more practical. We show the

conceptual model of our μbRP proposal in Figure IV.1 which serves as a metamodel in our

proposal.

Figure IV.1 Conceptual model

We describe each and every concept in detail in the next paragraphs. As we have

mentioned, we try to characterize a micro-business as a business in the real world that has

less than 10 employees, less than 2 million euros in annual revenue or annual balance sheet,

with a software implementation that requires less than 10-man days of effort and less than 10

associated software components. A possible example of a micro-business would be a

restaurant with 3 employees, five hundred thousand euros in annual revenue, and in need of

a point-of-sale software system that requires 2 software components and would take one man

day to implement.

126

A goal is an objective that a micro-business would like to achieve. It is a motivation for the

micro-business to exist. For example, a restaurant may want to reach an annual revenue

target of six hundred thousand euros next year. This goal is set by the micro-business owner

or any relevant stakeholder and is an objective or target that everyone working at the micro-

business will strive for.

Goals can be refined. For instance, if the annual revenue target of the restaurant was six

hundred thousand euros for next year, then the goal can be refined to be two hundred

thousand euros of revenue next year coming from appetizers, three hundred thousand euros

of revenue next year coming from main dishes, fifty thousand euros of revenue next year

coming from desserts, and fifty thousand euros of revenue next year coming from beverages.

A requirement is a condition or capability needed by a user to solve a problem or achieve

an objective (IEEE Computer Society, 1990). For example, in order for a restaurant to reach

its goals of revenue for appetizers, main meals, desserts, and beverages, it would need to

know how much customers have spent on each item. The requirement could be stated as

follows: “I need to know how much my customers are spending on every item in my restaurant”

or “As a micro-business owner, I want to know how much my customers are spending on items

in my restaurant so that I am aware of my business reaching its revenue goals.”

A Functional Requirement, abbreviated as FR, is a type of requirement that specifies an

operation or function needed by the system and can be fully satisfied (Chung et al., 2000). For

example, the requirement of knowing how much a customer spent on each item in the

restaurant is a Functional Requirement because you can know, with absolute certainty, how

much a customer spent on each item in the restaurant. If the customer spent five euros on a

beverage in the restaurant, then the receipt and the records will show that the customer spent

five euros on a beverage in the restaurant. There will be no grey area or anything debatable

about this.

A Non-Functional Requirement, abbreviated as NFR, is a type of requirement that

describes quality attributes of the system which can not be fully satisfied but only “satisficed,”

i.e., satisfied sufficiently (Chung et al., 2000). For example, in order for the restaurant to reach

its annual revenue objective of six hundred thousand euros, it would need to improve customer

experience. Part of the customer experience could include the speedy billing of customers.

The requirement of having speedy billing of customers is a quality attribute of the system and

is not a requirement that can be completely satisfied because it would be impossible to

127

ascertain whether a customer is having a speedy billing experience or not. Since experience

varies from one person to another, it would be very difficult to pinpoint if this requirement is

fully satisfied or not. Hence, this requirement can only be “satisficed,” i.e., satisfied sufficiently

A priority is the arrangement of requirements in terms of their importance. In practice, this

would be the ranking of importance of NFRs made by the micro-business owner. Priorities

could be useful in managing trade-offs among NFRs. For example, the micro-business owner

of the restaurant may want to speed up the billing of customers with the software and make it

a top priority in order to improve the overall customer experience. Integrating faster and more

ways of billing customers could mean that the system may be more complex and difficult to

maintain. Hence, the micro-business owner may have to prioritize the trade-offs of having few

and fast ways of billing customers over a variety of ways, both fast and slow, of billing

customers.

Micro-business Requirements Patterns, abbreviated as μbRPs, are patterns of

recurring requirements models in micro-business software projects. In the case of the

restaurant micro-business owner, there could be an μbRP for the way digital payments are

collected from customers. For instance, the credit/debit card payment method has evolved

from swiping to contactless over the past few years. The micro-business owner of the

restaurant could take advantage of a contactless payment μbRP for his/her business.

A μbRP process is a procedure for developing micro-business requirements patterns. A

phase is a stage or a step in the development of the μbRP process. As will be explained later

in this chapter, these phases would be the observation of micro-businesses, the creation of

the μbRP, the use of the μbRP, and then the reuse of the μbRP in other instances in the micro-

business domain. For example, the contactless payment μbRP for restaurants would have

started as an observation by software developers that kept repeating itself over and over again

in various micro-business restaurants. Eventually, the μbRP could be created, used, and

reused for other restaurants.

A model is a representation of some system whose form and content are chosen based

on a specific set of concerns (Object Management Group, 2010). The representations can be

in graphical form, textual form, or a combination such as a graph or a table. For example, you

could show the contactless payment μbRP for restaurants using a table by listing down its

requirements and how they could be met. You could also show the contactless payment μbRP

for restaurants using a diagram with the flow of activities from the customer selecting his or

128

her contactless card up to the point where the waiter or waitress asks if the customer needs a

receipt for the meal.

A table is an informal representation of requirements in a tabular template. A template is a

combination of placeholders and linguistic formulas used to describe something in a particular

domain, e.g., templates facilitate communication among practitioners and provide a helpful

guide for beginners (Segura et al., 2017). In the micro-business restaurant, you could list

down the requirements of the micro-business owner and how they would be met. In a μbRP,

this would be made up of a tabulation of questions, options, choices, and priorities.

Softgoal Interdependency Graphs (Chung et al., 2000), abbreviated as SIGs, is a semi-

formal notation for modeling NFRs. In the restaurant micro-business, you could represent the

quickness of the billing of customers with a softgoal model.

An operationalization is a measurable (or estimate-able) element which satisfices refined

Softgoals. They are solutions in the form of operations, processes, (infra)structures, that would

satisfice the NFRs (Chung et al., 2000) and contribute to the reuse or development of software

components that satisfy the FRs. In the restaurant micro-business, for instance, the

speediness of customer payment softgoal could be operationalized using a touch-free

payment device which forms part of the software system. The touch-free payment device

would have measurable characteristics such as processor speed that would then contribute

to the performance of the software components of the system.

The Unified Modeling Language (Object Management Group, 2009), abbreviated as

UML, is a semi-formal notation used to model software components in this thesis. In the

restaurant micro-business, UML could be used to model the software components that would

facilitate the collection of payments from customers in a contactless manner.

A (software) component is an encapsulation of a certain set of data and functions which

vary in granularity as long as they could be updated, replaced, or modified without affecting

other software components in a system (Medvidovic and Taylor, 2000). An example of a

component in the restaurant micro-business would be the contactless payment component

interfacing as a provider to a required interface connection in the point-of-sale system.

The Business Process Modeling Notation (Object Management Group, 2008),

abbreviated as BPMN, is a semi-formal notation to model business processes in this thesis. A

129

business process is a step-by-step procedure of a business which achieves a particular

objective. The BPMN models in this thesis attempt to model the business processes from the

point-of-view of the customer (customer-centric view). An example of a business process in

the restaurant micro-business which can be modeled with BPMN would be the step-by-step

procedure of activities for collecting payment from a customer in a contactless manner. A

summary of the concepts as definitions is provided in Table IV.2.

Table IV.2 Definition of Concepts in the Conceptual model

Concept Definition

Micro-business

A business in the real world that has less

than 10 employees, less than 2 million

euros in annual revenue, with a software

implementation that requires less than 10-

man days of effort and less than 10

associated software components

Goal
An objective that a micro-business would

like to achieve

Requirement

A condition or capability needed by a user

to solve a problem or achieve an objective

(IEEE Computer Society, 1990)

FR

A functional requirement of the system

which can be fully satisfied (Chung et al.,

2000)

NFR

A non-functional requirement about the

quality of the system which can not be fully

satisfied but only “satisficed,” i.e., satisfied

sufficiently (Chung et al., 2000)

Priority The arrangement of elements in terms of

importance. This would be the ranking of

130

importance of NFRs made by the micro-

business owner.

μbRP

The abbreviation for Micro-business

Requirements Pattern which are patterns of

recurring requirements models in micro-

business software projects

μbRP process A procedure for managing μbRP

Phase A stage or step in the μbRP process

Model

A representation of some system whose

form and content are chosen based on a

specific set of concerns (Object

Management Group, 2010)

Table

An informal representation of requirements

in a tabular template. In an μbRP, this

would be the tabulation of questions,

options, choices, and priorities.

SIG

Softgoal Interdependency Graph (Chung et

al., 2000) is a semi-formal way of modeling

NFRs

Operationalization

A measurable (or estimate-able) element

which satisfice refined Softgoals. They are

solutions in the form of operations,

processes, structures, that would satisfice

the NFRs (Chung et al., 2000) and further

connect to the FRs.

UML

The Unified Modeling Language (Object

Management Group, 2009) is a semi-formal

way of modeling software components

131

Component

An encapsulation of a certain set of data

and functions which vary in granularity as

long as they could be updated, replaced, or

modified without affecting other software

components in a system (Medvidovic and

Taylor, 2000)

BPMN

The Business Process Modeling Notation

(Object Management Group, 2008) is a

semi-formal notation of modeling micro-

business processes

Business Process
A step-by-step procedure of a business

which achieves a particular objective

After defining the concepts, let us now discuss the relationships among them. The Micro-

business - Goal relationship is characterized by having many Goals motivating many Micro-

businesses. In the example of the restaurant micro-business, the micro-business owner could

have many goals, one of which would be that he or she wants to achieve six hundred thousand

euros of annual revenue in the next year. Another micro-business such as a clothes retail

store could also have this goal of achieving six hundred thousand euros of annual revenue

next year.

The Goal - Requirement relationship is characterized by having many requirements that

are motivated by many Goals. There are techniques that aid in turning goals into requirements

(Kotonya & Sommerville, 2003) (Respect-IT, 2007) and vice-versa (Cardoso et al., 2011). An

example of how goals are turned into requirements is provided on pp. 128 of (Kotonya &

Sommerville, 2003) and in the goal modeling section of (Respect-IT, 2007) and an excerpt is

shown below in Figure IV.2. Our conceptual model stems from the review, study, and analysis

of these previous works.

132

Figure IV.2 Turning Goals into Requirements by Kotonya and Sommerville, 2003

An example of turning goals into requirements in the restaurant micro-business would be

the goal of obtaining six hundred thousand euros of annual revenue next year, being refined

into the goal of obtaining three hundred thousand euros of annual revenue next year from

main dishes, and then finally into the requirement of being able to identify how much

customers spent on main dishes.

The Requirement - FR relationship is characterized by the possibility that a requirement

could be a functional requirement. At the same time, the Requirement - NFR relationship is

characterized by the possibility that a requirement could be a non-functional requirement. An

example of this in the micro-business restaurant is that if you come up with a list of

requirements for this micro-business, a requirement would either be functional or non-

functional. The requirement of being able to identify how much customers spent on main

dishes is a functional requirement while the requirement of having speedy billing is a non-

functional requirement.

The NFR - Priority relationship can be characterized by the non-functional requirement

never being able to be fully satisfied and instead being prioritized to further clarify the

requirement. An NFR could have a priority. For example, in the restaurant micro-business, the

133

speediness of billing could take priority over the variety of billing methods for customers. This

way, the focus is more on faster payments from customers over the ability of the customer to

pay with several methods.

The NFR - Operationalization relationship can be characterized by many

Operationalizations satisficing many NFRs. An example in the micro-business restaurant

would be the operationalization of the quickness of customer payment NFR. There could be

several touch-free devices that could contribute to the quickness of customer payment and at

the same time, a touch-free device could also be an operationalization that satisfies another

NFR such as variety of customer payment.

The FR - Business Process relationship can be characterized by many Business

Processes modeling many Functional Requirements. An example in the micro-business

restaurant would be the business process of collecting payment with contactless methods as

a model for several functional requirements such as the customer must be able to pay with

his or her credit card in a contactless manner and another requirement that the customer must

be able to pay with his or her mobile phone in a contactless manner.

The FR - Component relationship can be characterized by many Components satisfying

many FRs. An example of this in the micro-business restaurant would be the requirement that

the customer must be able to pay with his or her credit card in a contactless manner and the

software components which satisfy this requirement are the point-of-sale system and the

contactless payment component. In addition, a software component such as the point-of-sale

system can satisfy several FRs such as the customer must be able to pay with his or her credit

card in a contactless manner and that the micro-business owner must be able to see what

items customers are paying for the most.

The Business Process - Component relationship can be characterized by many

Components supporting many Business Processes. In the micro-business restaurant

example, the business process could be the process of collecting payment in a contactless

manner and the supporting components would be the point-of-sale system and the contactless

payment component. In addition, the point-of-sale system can support several business

processes such as the process of collecting payment in a contactless manner and the process

of collecting order information made by each customer.

134

The Component - Operationalization relationship can be characterized by many

Components implementing many Operationalizations. In the micro-business restaurant

example, speediness of customer payment could be operationalized with a touch-free device

which will contribute to the speediness of the point-of-sale software system.

The Micro-business - μbRP Process relationship can be characterized by many micro-

businesses being developed by many μbRP processes. In the restaurant micro-business

example, the μbRP process of collecting payment in a contactless manner could be used to

develop several micro-businesses. Some of which could be the restaurant micro-business

itself or a clothes retail store micro-business that would also like to accept contactless forms

of payment when customers purchase at their store.

The μbRP Process - Phase relationship can be characterized by a μbRP process made

up of many phases. In the restaurant micro-business example, the μbRP process could be

made up of phases such as: observation of the payment collection in a contactless manner,

creation of the payment collection in a contactless manner μbRP, and the use and reuse of

the payment collection in a contactless manner μbRP.

The Phase - Model relationship can be characterized by a Phase being modeled in many

ways. In the restaurant micro-business example, the use and reuse of the payment collection

in a contactless manner μbRP could be modeled, depending on the phase, using a table to

help decide on choices and priorities, a BPMN diagram to model the payment process, or a

UML activity diagram to show the selected component to be reused.

The μbRP - Model relationship can be characterized by a defined μbRP resulting in several

usable models as mentioned in the Phase-Model relationship. In the restaurant micro-

business example, there could be a point-of-sale μbRP that could be modeled using a table,

BPMN, UML, and SIGs diagrams.

The Table - Requirement relationship can be characterized with requirements that can be

placed in a table in many different ways. In the restaurant micro-business example, the

requirement that the customer must be able to pay with his or her credit card in a contactless

manner could be placed in a table in many different ways. You could state the requirement

as-is, in the form of a User Story as done in Agile Methodologies, i.e., “As a role, I would like

to do an action, for this reason,” or in a question-answer form as will be discussed in Section

3.1.2 of this Chapter.

135

The BPMN - Business Process relationship could be characterized with business

processes being modeled in many ways using BPMN. In the restaurant micro-business

example, the business process of collecting payment in a contactless manner could be

modeled using BPMN in many different ways, from left to right, top to bottom, and even using

different icons to express the process to the readers.

The SIG - Operationalization relationship could be characterized by operationalizations

being modeled in many ways using SIGs. In the restaurant micro-business example, the NFR

of the speediness of customer payment which is operationalized with a touch-free payment

system can be modeled using SIGs in many different ways, from refinements from one NFR

such as the speediness of customer payment or a refinement from several other NFRs such

as the ability of the customer to pay in several different ways.

The UML - Component relationship could be characterized by a component that could be

modeled in many ways using UML. In the restaurant micro-business example, the contactless

payment component could be modeled in several different ways in UML. The contact payment

component could be modeled as a component with a provided interface or a required interface,

depending on how it connects to the other components in the system. Also, some UML

component diagrams are more detailed than others and the modeler could decide how much

detail should be put in the UML component diagram, depending on the kind of readers or users

of the diagram. The relationships among all these concepts are provided in Table IV.3.

Table IV.3 Relationships in the Conceptual model

Relationship Definition

Micro-business - Goal
Many Goals motivate Many Micro-

businesses

Goal - Requirement

Many Requirements are motivated by Many

Goals. Requirements could be turned into

goals (Cardoso et al., 2011) and vice-versa

(Kotonya & Sommerville, 2003) (Respect-

136

IT, 2007). A detailed description of this

relationship is explained in the text.

Requirement - FR
A requirement can be a functional

requirement

Requirement - NFR
A requirement can be a non-functional

requirement

NFR - Priority

Since a non-functional requirement can not

be fully satisfied, they could be prioritized

instead to further clarify the requirements

and manage trade-offs. An NFR can have a

priority.

NFR - Operationalization
Many Operationalizations can satisfice

Many NFRs

FR - Business Process
Many Business Processes are modeled for

Many Functional Requirements

FR - Component Many Components satisfy many FRs

Business Process - Component
Many Components support many Business

Processes

Component - Operationalization
Many Components could implement many

Operationalizations

Micro-business - μbRP Process
Many Micro-businesses can be developed

with many μbRP processes

μbRP Process - Phase
A μbRP process is made up of many

phases

Phase - Model A Phase can be modeled in many ways

137

μbRP - Model A μbRP can be modeled in many ways

Table - requirement
Requirements can be placed in a table in

many different ways

BPMN - business process
A business process can be modeled using

BPMN in many ways

SIG - operationalization
An operationalization can be modeled using

SIGs in many ways

UML - component
A component can be modeled using UML in

many ways

3. THE μbRP

This section will provide a detailed description of a μbRP, its structure and characteristics,

using the restaurant micro-business example. To help describe solutions, an adaptation of

SIGs for the micro-business domain and a proposed catalog of operationalizing methods are

also described in this section.

3.1 The Description of a μbRP

A μbRP is made up of:

(1) Name: A word or set of words by which a μbRP is known, addressed, or referred to.

The name is usually placed in the first section of the table or in the BPMN model of the

μbRP.

(2) Context: A brief way of describing the μbRP in business language by stating some of

its business activities, e.g., restaurant micro-business makes food for customers. The

context description(s) is usually placed in the first section of the table.

(3) Keywords: A word or words by which a μbRP can be indexed and then searched in a

repository. This is usually found in the first section of the table.

138

(4) Problem: The description of the problem in natural language including the main goals

and requirements that have to be satisfied (or satisficed) with the application of the

pattern solution. The problem can be presented informally with tables and notes and

semi-formally with BPMN. There are factors, e.g., constraints (e.g., maximum payment

time), considerations/conditions (e.g., restaurant peak hours), circumstances (e.g.,

ability to hire additional people during peak hours), NFRs (e.g., responsiveness), etc.,

in the problem that affect and guide to the feasible alternatives, i.e., choices of

options/modes, for the solution.

(5) Solution: The tables, models, and notes that plan to satisfy (or satisfice) the

requirements of the micro-business and eventually determine the system and software

to be implemented for the micro-business based on certain factors. The solution

involves a table with FRs and BPMN models that show options/modes on how to

satisfy the FRs, NFRs identified and ranked made by the micro-business owner and

software developer/analyst to help prioritize the NFRs. A catalog of operationalizing

methods is also proposed to help in modeling the NFRs. The operationalizing methods

support systems and software components which could possibly be reused and

contribute to faster implementation. Notes are also made throughout the requirements

analysis to help in providing solutions for the problems.

The parts that make up a μbRP are explained in further detail in the next paragraphs. To

provide an overview, the parts are shown in Figure IV.3 and summarized in Table IV.4, which

are later explained in detail in the following paragraphs.

139

Figure IV.3 Overview of the Description of a μbRP showing prepared and to-be parts

Table IV.4 Description of the parts of a μbRP

Part Description

Prepared Parts
Parts of the μbRP that are ready before the

requirements elicitation meeting

To-be Parts
Parts of the μbRP that will be chosen,

decided, or noted during the requirements
elicitation meeting

Description Table Section
Provides the name, overview, context, and

keywords of the μbRP

Name
A word or set of words by which a μbRP is

known, addressed, or referred to

Overview/Context A brief way of describing the μbRP in

140

business language by stating some of its
business activities

Keywords
A word or words by which a μbRP can be
indexed and then searched in a repository

Functional Requirements Table Section

Questions, possible answers, and
responses which are easy to understand
and fill up for the micro-business owner.
The purpose of this part is to understand

the “hard” problem better.

Questions
Functional requirements which are in a

question form that is easy to understand for
micro-business owners

Options/Modes

Possible ways or manners of functional
requirements which a micro-business owner
can select from. These alternatives are also

influenced by factors.

Answers/Choices

Possible ways or manners of functional
requirements which a micro-business owner
has selected to support the micro-business.
The selection is used for the instantiation of

the pattern.

Non-Functional Requirements Table
Section

Priorities which are set by the micro-
business owner given the constraints. The
purpose of this part is to understand the

“soft” problem better.

List of NFRs

List of quality requirements of the system
that are important but however, can not be

fully satisfied but instead, “satisficed” or met
“good enough”

Priority of NFRs
The rank of priorities for the micro-business

owner, software analyst/developer, and
other stakeholders

Complementary Notes
Additional information provided by the

micro-business owner and developers that
will aid in the software implementation

BPMN Models
Business process models that help

developers understand the μbRP solution

SIGs Models
Models of Non-Functional Requirements

that help developers understand the μbRP
solution

UML Models
Software component models that help

developers understand the μbRP solution

141

3.1.1 μbRP Table

We first describe the μbRP Table which is an informal representation of requirements

in a tabular template. A template is a combination of placeholders and linguistic formulas

used to describe something in a particular domain, e.g., templates facilitate communication

among practitioners and provide a helpful guide for beginners (Segura et al., 2017).

Micro-business owners see the μbRP Table during requirements elicitation. In

requirements engineering, although there is a clear distinction between the roles of a

requirements analyst and a software developer, this role is normally played by one person,

usually the software developer, in micro-business software projects. This usually happens due

to the resource and budget constraints of micro-business projects which normally cannot

afford to have a dedicated requirements engineer in their implementations (Azar et al., 2007).

Table IV.5 shows a shortened version of the FR section of a requirements table for the

restaurant micro-business example. The complete table can be found in Appendix A.9. The

table is brought to the requirements elicitation meeting and is made up of three main sections.

The topmost section is the description section of the μbRP where the following details can be

found: the name of the μbRP, a brief description of the context of the μbRP, and keywords

of the μbRP. Keywords are indexed in μbRP repositories so that software developers may

search for them easily. Although there is no limit as to the number of keywords that can be

placed, creators of the μbRP tables are recommended to keep this at a minimum for precision

and searchability purposes. The topmost section is prepared, meaning that it was ready before

the requirements elicitation meeting between the software developer and the micro-business

owner.

142

Table IV.5 Restaurant μbRP FR Table Section (shortened)

3.1.2 Functional Requirements Table Section

The middle section of the μbRP table is the functional requirements section and its purpose

is to elicit the functional requirements of the micro-business. This section refers to a detailed

specification of the requirements that the μbRP is trying to solve, in line with the general

description of the problem. In the first column of the middle section, functional requirements

are expressed in a business-like, question-answer format. Micro-business owners prefer to

use their natural language and sketches to express their requirements instead of using

technical software jargon (Macasaet et al., 2011). The questions and answers are made so

that they are comprehensible for micro-business owners in a straightforward way. Like the top

section, the first column in the middle is prepared before the requirements elicitation meeting.

We propose a technique to transform functional requirements into a business-like,

question-answer format. When transforming functional requirements to business-like,

question-answer format, the first step is to express the functional requirements in declarative,

straightforward sentences, e.g., “record cash sale” and “display total cash sales” is

transformed into “the user is able to record a cash sale and then display cash sale totals.”

Then, when the sentences are constructed, they are turned into a question form which can be

answered in simple, straightforward ways, e.g., the question “does the micro-business owner

need to record and display cash sales?” can be answered with a “Yes” or “No” response.

Figure IV.4 shows the transformation of functional requirements to business-like, question-

answer format. However, direct specification of the functional requirements is another

143

alternative, e.g. “record cash sale”, where the writer can choose between alternatives

according his/her preferences.

Figure IV.4 Transformation of FRs to business-like, question-answer format

In the second column of the middle section of the μbRP table, the possible answers to the

business-like, question-answers, are found. These candidate answers correspond to the

options or modes of the pattern which point to the solution. For example, if a process is to

“query site visitor data” then some possible options or modes would be to “query log files” or

to “query page tag files.”

For further clarity, another example of a pattern option or mode could be seen in the

restaurant micro-business requirements table in Table IV.5. For question (d) How can

customers pay the restaurant?", the possible modes of payment are by credit card, debit card,

PayPal, etc. It is easy to understand the concept of modes by relating it to the phrase “modes

of payment," something heard on a day-to-day basis. A customer is required to pay for what

is purchased but the manner or mode for paying is something that can vary depending on the

situation. Like the first column of the middle section, the second column of the middle section

is prepared before the requirements elicitation meeting. However, it is important to note that

in the future, modes of payment are going to change and some prepared parts of the pattern

will have to change and vary with the times.

144

In the third column of the middle section of the μbRP table, the responses of the micro-

business owner are placed under the column “choices.” Based on the choices for the solution,

the μbRP will guide developers to solutions as will be explained. The final answers of the

micro-business owner are required for the different instantiations of the pattern. The instance

of the pattern is its application in a real-world micro-business case. The third column of the

middle section is a part to-be chosen, meaning that the values under this column are chosen

by the micro-business owner with the software developer during the requirements elicitation

meeting. Figure IV.5 provides a model of the relationships among a question, mode/option,

and choice/answer.

Figure IV.5 From question, to mode/option, to choice/answer

3.1.3 Non-Functional Requirements Table Section

The bottom section of the μbRP table is the NFR section. This section also refers to the

problem description (even challenges) that the μbRP is trying to address (or confront). In

every μbRP, the most commonly occurring NFRs in the given micro-business are enumerated

and grouped for the micro-business owner, the micro-business customer, and the software

developer. These priorities are ranked from the most important to the least important; where

1st is the label used in the table for the most important priority, and 2nd, 3rd, etc… is used up

to the least important. NFRs are ranked instead of given a definite answer since these

requirements are “satisficed” instead of satisfied. While the NFRs are prepared, they are to-

be prioritized by the micro-business owner with the software developer during the

requirements elicitation meeting for pattern instantiation. Table IV.6 shows a shortened

version of the NFR section of the restaurant micro-business requirements table.

145

Table IV.6 Restaurant μbRP NFR Table Section (shortened)

The priorities decided in the NFR section help in managing trade-offs in the solution. The

relationship of the NFRs to the activities allow the developers and the users to see

dependencies which would later on help in understanding priorities and trade-offs during

implementation. More priority will be given to the operationalizations that are related to

softgoals with higher priority. For example, if speedy customer payment takes priority over the

variety of customer payment, then the designed solution will prioritize - operationalizations

with lesser payment components, also in relation with lesser choices for options/modes in the

functional requirements, that perform faster than others - instead of - operationalizations with

many payment components for variety which could result in slower customer payments.

3.1.4 BPMN, UML, and SIGs Models

BPMN models business processes, SIGs model NFRs, and UML models software

components. These models help stakeholders in requirements elicitation and analysis and

developers in modeling, designing, and implementing the solution in the μbRP. The point-of-

view is an important aspect for using different models since a single model is not capable of

providing various points of views in equal measure at the same time (Kalenborn, 2010).

Hence, specific models are used for the μbRPs to provide further clarity, optimal viewing, and

various perspectives for its stakeholders which are usually the owners, analysts, and

developers involved in the micro-business software project.

146

The BPMN models are used to further describe the business processes involved in the

μbRPs. In particular, the BPMN models are used to show the flow of activities for the

functional requirements. In Figure IV.6, the flow of activities from the placement of the order

of the customer to providing feedback is modeled.

First, the customer orders food and this is recorded in a sales system. Then the restaurant

micro-business uses ingredients in the inventory to make food. If there are not enough

ingredients, the restaurant micro-business must source them from suppliers. Monitoring the

availability of ingredients can be done through an inventory management system. Purchasing

of ingredients from suppliers can be done through a procurement system. Once the food is

prepared, the customer receives the food and then pays for it. In some cases, the customer

pays for the food when it is ordered. Finally, the customer provides feedback based on his or

her experience with the restaurant micro-business. Customers, the micro-business, and the

suppliers could be able to log in to the restaurant micro-business system if allowed.

Figure IV.6 BPMN Diagram for the Restaurant Micro-business (simplified)

147

Even if the BPMN models are considered readily understandable, (Mendling et al., 2010)

suggest that the purposeful use of customized labels in business process models could help

representations be more comprehensible (or even, more technically relevant). In Figure IV.6

in the customer BPMN pool lane, there is an activity “pay for food.” A customized label [done

as] is used to indicate that there is a mode for this activity. Allowing the users of the models to

see the modes of business process patterns is helpful in understanding the functional

requirements and how they could be done.

When the business process pattern is done in practice, this is considered as an instance

of the pattern. This means that the mode of paying for food is performed in practice when the

customer pays for the food using a credit card or a debit card. During the instance of a pattern,

e.g., performing a payment in practice, several dependencies come into play such as the

software systems involved, the computing devices, and even the people who are part of

collecting and making such payments. In addition to understanding the FRs which are

business processes modeled in BPMN, understanding the business processes alongside the

NFRs provide better understanding as they pertain to holistic quality attributes of the entire

system involved.

Since BPMN is not intended to model NFRs (Zhao et al., 2012), the prioritized NFRs (or

softgoals) are modeled using SIGs. SIGs were originally proposed to model NFRS (Chung et

al., 2000). Combining both BPMN and SIGs through an “operationalization target link” allows

developers and users to see how the NFRs relate to the activities in a business process.

For the restaurant micro-business, a prioritized NFR “quickness (responsiveness) of

payment” is refined into an operationalization which is a measurable (or estimate-able)

element that satisfices the NFR. In the model in Figure IV.7, operationalizations point to the

NFRs they are satisficing. The operationalizations could satisfy the NFR in the form of

operations, processes, or (infra)structures. A Mobile Payment Device could satisfice the NFR

quickness of payment and in the case of a faulty Mobile Payment Device, it could negatively

affect satisficing the NFR quickness of payment, e.g., make the payment slower or even

impossible.

The Mobile Payment Device is modeled as an operationalization in SIGS.

Operationalization icons are discussed in detail in the next subsection 3.2. From the

operationalization, it would support the business activity of paying for food. This means that if

the business process activity of paying for food would be done through a credit or debit card,

148

then the Mobile Payment Device would be supporting this business process activity. Without

the Mobile Payment Device, it would be difficult or even impossible to perform a payment with

a credit or debit card. The operationalization is modeled in SIGs and then connected with the

business activity, pay for food, through an operationalization target link. The operationalization

target link is modeled with a dash-dot-dash arrow, connecting the operationalization and the

business activity. This is shown in Figure IV.7.

Figure IV.7 Combining BPMN and SIGs through an operationalization target link

In Figure IV.7, a broader, more holistic, perspective is provided for the business process

activity “paying for food”. The metric of {high signal availability} for the mobile payment device

is shown to directly relate to the NFR of the responsiveness of the payment through a solid

directional arrow and also to the business process activity of the customer paying for food.

Therefore, a viewer of this model would see that if the mobile payment device does not have

high signal availability, the NFR responsiveness of payment and the execution of the payment

for food by the customer can be negatively affected.

The perspective provided by the BPMN and SIGs models helps both the micro-business

owner and software developer decide on possible operationalizations and how they will be

implemented. In Section 3.2.2, a catalog of operationalizing methods is proposed to help the

149

micro-business owner and the software developer collaborate on possible operationalizations

which could satisfice the NFRs. For example, when the NFR of responsiveness is made a top

priority by the micro-business owner as shown in Figure IV.7, the software developer could

refer to the catalog of operationalizing methods and from there, suggest a mobile processing

payment device with high signal availability to satisfice the NFR of responsiveness and to

support the business process of paying for food. The micro-business owner understands this

relationship through the explanation of the software developer with the aid of the model.

Hence, the micro-business owner can make better decisions to invest in mobile payment

devices with high signal availability instead of constantly doubting about such an investment.

Using the proposed catalog of operationalizing method icons is discussed in further detail

Section 3.2.2.

Some micro-business owners already find the models with BPMN and SIGs sufficient for

analysing requirements. Micro-business owners are usually not interested in knowing the

technical implementation details such as the number of lines of code in a component or the

programming language that is being used by the developers. Micro-business owners are more

interested in the value that the software would bring to the business over the technical

implementation details.

However, software developers could make use of more technical details to guide them

during implementation. Although analysing requirements are important, software developers

are also interested in ways to meet such requirements through software. For modeling the

proposed software which could meet such requirements, software developers could express

the associated software components in UML. When more models with UML are created by

the developers, they are stored in a repository which can then be later referenced and reused

by developers in future projects. When there are similar requirements and similar software

components for meeting such requirements, there could be opportunities for reuse and

speeding up implementation. Reusing components in repositories are discussed in more detail

in Section 5.2.

In addition, the UML models bridge the gap between the SIGs and BPMN models, linking

the FRs and the NFRs, providing an even more holistic view. In Figure IV.7, it is shown that

the Mobile Payment Device supports the Payment for Food but this would lead to the next

question for the software developer: “how could we implement that with software?” The UML

models suggest solutions to this initial question.

150

In the restaurant micro-business, from the Mobile Payment Device which is represented as

an operationalizing method (SIGs), an operationalization target link is used to represent how

the Mobile Payment Device <<contributes>> to the performance of the Payment Component

which is expressed in UML. This means that if the Mobile Payment Device does not have high

signal availability, the way the Payment Component functions will be affected. In extreme

cases where there is no availability of signal, the Payment Component may also cease to

function.

From the Mobile Payment Device, the operationalization target link contributes to the

Payment Component expressed in UML, and then continues to support the specific business

process of Payment for Food. As shown in the model, the Payment Component <<supports>>

the business process of Payment for Food because through the Payment Component, the

Payment for Food through the use of a credit or debit card can be made. Without the Payment

Component, such activity between the micro-business and the customer may not be possible.

Figure IV.8 shows the relationships from NFRs (payment responsiveness), to

operationalizations (Mobile Payment Device), to UML (Payment Component), and finally to

BPMN (Payment for Food business process activity). The relationships in Figure IV.8 are

based on the relationships in the conceptual model in Figure IV.1 which is found at the

beginning of this chapter.

151

Figure IV.8 Combining UML with BPMN and SIGs

The purpose of the UML model is to provide technically relevant information for software

design to software developers, aiding them in software component reuse. Information such as

the required and provided interfaces is shown for every software component as shown in

Figure IV.9. In addition, the components should also include other notes such as what kind of

FRs it satisfies and NFRs it can satisfice, based on the models. This information guides the

software developer when searching for other associated software components in the

repositories, aiding in reuse. These technical diagrams are created by software developers

who have previously developed the associated software components. If there are no

components or UML diagrams in the repository, then these are developed / created by the

software engineers. The process of creation, use, and reuse is discussed in more detail in

Section 5, managing μbRPs.

In Figure IV.9, if the software developer is using the Payment Component, the UML model

shows that it is providing an interface to the Point-of-Sale POS component. The UML model

also shows that the POS Component requires the Payment Component for certain functions.

Hence, when the software developer uses the Payment Component, the possibility of (re-

)using another component such as the POS Component is shown in the UML model as well.

152

Figure IV.9 A UML Component Diagram showing required and provided interfaces

3.1.5 Complementary Notes

Even if requirements are listed down in a table and modeled, they could continue to be

ambiguous and/or complex for many micro-business owners and software developers. To

avoid confusion and prevent misunderstandings, μbRP complementary notes could be made

by the software developer and micro-business owner to ensure that the requirements are met.

These complementary notes can be made at any point in time in the requirements process

and then compiled afterwards. The μbRP complementary notes are part of the μbRP solution

as they are vital guides for the micro-business owner and the software developer for

implementation. They are to-be noted in a sense that they are written down depending on

each particular micro-business software project implementation. Below are examples of

complementary notes for the restaurant micro-business example.

Complementary Notes for the Restaurant Micro-business

 The operating hours of the restaurant are everyday except Monday, from 12

noon to 11 in the evening. The system should be available and working at these

times.

 Peak hours of the restaurant are from 1230 pm to 230 pm and 7 pm to 10 pm.

Expect the system to have more activity during these peak hours.

 The restaurant micro-business is able to hire additional staff during peak hours.

153

3.2 Adapting SIGs models for the micro-business domain

Since the proposal of SIGs in the NFR Framework in 2000 (Chung et al., 2000), there have

been hardly any industrial empirical studies regarding its comprehensibility and adaptability.

In the domain of micro-businesses, our studies on SIGs as detailed in the next chapter, would

be one of the first to be done. This initial study was done from June 2013 to December 2013,

where we conducted and recorded sixteen one-on-one interviews with micro-business owners

(in Manila (Philippines), Dallas, Texas (United States of America), and Granada (Spain)) to

find out if SIGs were comprehensible to them.

This initial study had favorable results. Although the SIG samples were not too complex,

micro-business owners were still able to provide relevant responses when we asked them for

their interpretations. All sixteen interviewees provided us with valid interpretations of the SIG

diagrams. Most of them described how required infrastructure could be traced to business

goals through NFRs. In fact, the proposed SIGs adaptations were inspired by valuable

comments from the micro-business owners interviewed, such as, “why are they (the

operationalizing methods) still clouds (in bold)?”

In the 90’s, it would have been difficult to imagine a micro-business on a remote island

using a computing device to sell their goods. Nowadays, even the most isolated micro-

businesses in remote islands are using mobile computing devices to manage their orders and

inventory (Macasaet et al., 2019). Given the increased reliance of businesses on computing

devices and evolving computing paradigms, the way micro-businesses will operate will involve

more and more seamless integration of both the physical and digital worlds (Georgakopoulos

& Jayaraman, 2016). This evolution is not expected to slow down and is even expected to

speed up in the coming years (Tan & Wang, 2010).

3.2.1 Operationalizing Methods

It is unlikely that the application of generalist requirements techniques (such as SIGs) be

directly applicable in the micro-business domain without any modifications (Aranda et al.,

2007; Solemon et al., 2009; Bürsner & Merten, 2010). We propose to adapt and update the

operationalizing method models to be more iconic, resulting in intuitive models which are more

comprehensible for the micro-business owner and technically relevant for the developers

working on the software projects. This adaptation also serves as an update for modeling in

154

the context of the evolving computing paradigms of today. Figure IV.10 shows the traceability

from micro-business (soft) goals (NFRs) to operationalizations, such as infrastructure, to FRs.

Figure IV.10 Adapting SIGs for Micro-business Software Systems

First, a μbRP table is used to determine both the FRs and NFRs to be respectively satisfied

and satisficed in the micro-business software system. Then, the NFRs (in SIGs) are refined

into operationalizing methods. Operationalizing methods are measurable (or estimate-able)

elements which satisfice refined softgoals. Originally, the operationalizing method is modeled

with a cloud-in-bold element as specified in the NFR Framework. In Section 3.2.2, we propose

the use of familiar icons with possible measurement specs in braces “{ }” for micro-businesses.

The icons can be easily represented digitally with copyright-free icon libraries or even drawn

by hand during informal requirements elicitation sessions.

FRs and the NFRs are linked naturally with μbRPs. It is crucial to cover this aspect in order

to provide a broader, more holistic view, and appropriate solution. When both the micro-

business owner and the software developer have collaborated on refining the NFRs (which

are modeled with SIGs), they have to come up with possible solutions that would satisfice the

NFR softgoals. Depending on the priorities of the micro-business, such solutions could be

made up of operationalizations, processes, and software systems. For instance, if the micro-

business owner feels that having onsite storage is safer and more secure than cloud storage

then the operationalizing method chosen would be an onsite server over a cloud server. The

operationalizations of the NFR softgoals provide more concrete mechanisms in the target

system where the FRs and NFRs meet (Chung et al, 2000).

155

Operationalizing methods target systems with operationalization target links. The systems

could be software components modeled with UML components diagrams or business

processes modeled in BPMN. The software components or business activities satisfy the FRs

in the μbRP table.

3.2.2 Catalog of Operationalizing Methods

(Mairiza et al., 2010) propose a catalog for classifying the most popular and frequently

occurring NFRs which could be performance, reliability, usability, security, and maintainability.

By refining these popular NFRs into operationalizing methods, we propose a catalog of the

most popular recurring operationalizing methods in the micro-business domain, as specified

in Table IV.7, specifying operationalizing methods, examples, infrastructure icons, metrics for

software developers, and management notes for micro-business owners. The purpose of this

catalog is to improve the way operationalizing methods are modeled with SIGs, resulting in

better collaboration for possible solutions between micro-business owners and software

developers: from clouds-in-bold to more familiar icons that the users could recognize, apt for

the evolutions of the computing paradigms of today.

Since the proposed operationalizing methods are derived from the most popular and

frequently occurring NFRs, most of the common NFRs that appear in the μbRP tables would

have commonly occurring operationalizing methods that relate to them. For instance,

responsiveness is a commonly occurring NFR in the μbRPs and this NFR would usually be

related to an operationalizing method that has a measurement spec with speed involved, e.g.,

a fast processing device with high processing power, internet connection with high bandwidth,

etc. The succeeding paragraphs discuss these commonly recurring operationalizing methods

that relate to commonly recurring NFRs for micro-businesses.

The first operationalizing method is the stationary processing device. It is a non-movable

unit such as a desktop or pc and is represented with both a monitor and a desktop tower unit

icon. Developers can consider the specs to ensure proper performance while micro-business

owners can consider warranty and power consumption in their notes. In the micro-business

restaurant, this could be a desktop pc functioning as a cashier system where the records of

all the payments of the customers are stored.

The second operationalizing method is the mobile processing device. It is a movable unit

such as a mobile phone or laptop and is represented with a smartphone icon. Like the

156

stationary processing device, developers can consider the specs to ensure proper

performance while micro-business owners can consider warranty and power consumption in

their notes. In the micro-business restaurant, this could be a mobile payment device which the

waiters and waitresses carry around the dining tables to collect payments after meals.

The third operationalizing method is the display device. It is a device that displays

information such as flatscreen television or a desktop monitor and is represented with a

monitor icon. Developers can consider the resolution of the display device while micro-

business owners can consider the lifetime and warranty of the display unit in their notes. In

the micro-business restaurant, this could be the monitor that is attached to the desktop pc.

The fourth operationalizing method is the networking device. It is a device that enables the

transfer of data between devices such as a router or a satellite dish and is represented with a

broadcasting router icon. Developers can consider the data transfer rates while the micro-

business owners can consider the geographical location in their notes. In the micro-business

restaurant, this could be the router that is used at the locale to connect to the internet. The

restaurant may need to connect to the internet because of cloud-based email or because of

some other software application hosted in the cloud.

The fifth operationalizing method is the virtual security element. It is an element that

protects the software from virtual threats like a virus or malware. An example of such an

element is anti-virus software or a firewall and is represented with a virtual shield icon.

Developers can consider scan speed and frequency while micro-business owners can

consider the risks if a virtual threat happens in their notes. In the micro-business restaurant,

this could be an updated Operating System that prevents malware attacks.

The sixth operationalizing method is the physical security device. It is a device that protects

the system from physical threats like a thief. An example of this device would be a surveillance

camera or a physical lock and is represented with a lock icon. Developers can consider the

capture resolution of the video or the durability of the physical lock while the micro-business

owners can consider the risks if a physical attack happens in their notes. In the restaurant

micro-business, this could be a steel gate at the front door which is closed at night to prevent

any intrusions from thieves.

The seventh operationalizing method is the virtual third party. It is a party which provides

virtual services for the software to function such as cloud data storage and is represented with

157

a broadcasting building icon. Developers can consider transfer rates to and from the virtual

third party while micro-business owners can consider the service level agreements and

alternative back-ups in their notes. In the micro-business restaurant, this could be a cloud

storage provider on the internet where the micro-business stores its marketing media such as

pictures of the food and other promotional material.

The eighth operationalizing method is the physical third party. It is a party which provides

tangibles for the system to function such as utilities and is represented with a building icon.

Developers can consider how much of the utilities they can use and at what rate while micro-

business owners can consider the type of contract and the track record of the third party in

their notes. In the micro-business restaurant, this could be a meat supplier who the micro-

business has to interact with almost daily to get his or her fresh supply of ingredients for the

meals.

The ninth operationalizing method is the human resource. These are human resources that

contribute to the software system and are represented with a human stick figure icon. The

developers can consider the skill set of the human resources supporting the software system

while the micro-business owners can consider the contracts they have with the human

resources in their notes. In the micro-business restaurant, this could be the waiters and

waitresses who are serving the customers at their tables when they order food.

The tenth operationalizing method is the logistics. This is a means which can transport

tangible items between locations such as a transport truck and is represented with a transport

truck icon. The developers can consider transport capacities and delivery frequency while

micro-business owners can consider the appropriate transport means in their notes. In the

micro-business restaurant, this could be an owned vehicle which picks up ingredients from a

supplier that does not deliver.

There are still operationalizing methods to-be-determined TBDs and can even be

determined on a case-to-case basis by the developers and the micro-business owners using

SIGs for their representations. If the operationalizing method is still to be determined, we would

even encourage the users to improvise and model the operationalizing methods as they see

fit for their models. Both the developers and the micro-business users can always use the

original cloud-in-bold icon to represent an operationalizing method

158

On any of these icons which represent operationalizing methods, labels are used (as

recommended by (Mendling et al., 2010)), indicating exactly what they are (or planned “to-

be”), accompanied by a metric (in braces “{“ “}”) for which satisficing/satisfying could be

measured or estimated. The way these labels are placed can be seen in Figure IV.10.

Table IV.7 Catalog of Operationalizing Methods

159

4. A REAL-WORLD EXAMPLE OF AN μbRP IN PRACTICE

Since μbRPs are based on real-world practice, we would like to further describe our

proposal using a real-world example. Let us put this micro-business example into context then:

At the end of 2020, there were 1,107,145 micro-businesses with 1-9 employees (Spain SME

Statistics, 2021). It contracted by 2.3% from the previous year. The closure of almost 30,000

micro-businesses during the global pandemic of 2020 shows how difficult it is for micro-

businesses to stay afloat these days. Micro-businesses need to consider new constraints such

as social distancing, mask wearing, washing of hands, curfews, and lockdowns in their locales.

In addition, if micro-business owners become ill with fever, colds, or any symptoms of COVID-

19, they will have to quarantine and even close shop if required.

Given these constraints of physical contact, the ordinary brick-and-mortar retail store is now

more than ever forced to go online. These types of micro-businesses are left with almost no

choice but to embrace evolving computing paradigms. They must familiarize themselves with

infrastructure and devices that enable them to do business without any physical contact,

preventing the spread of COVID-19 and allowing them to stay in business during these trying

economic times.

Our real-world micro-business example is a retail shop owner in Spain who wants to stay

in business today. His plan to stay in business is to convert his physical retail shop into an

online retail shop, save on locale costs, and then source and ship orders faster than his

competition. He wants his software system to have accurate, real-time online sales orders and

inventory information so that he could make better and faster logistics decisions. The online

retail shop of the micro-business must be as responsive as possible, both from the customer

and administrator perspectives, to improve the shipping of products to customers. The micro-

business owner is not interested in owning the software and maintaining it and would rather

focus on the business instead of worrying about software matters. Instead, the developer will

be billing the micro-business owner a monthly subscription for the use of the software system,

i.e., online retail shop system.

160

4.1 Requirements Elicitation

The first step for the micro-business owner and the software developer is to meet and clarify

the requirements during elicitation. Note that in Requirements Engineering, there is a clear

distinction between the role of requirements engineer and software developer. However, due

to resource constraints in micro-businesses, this role is usually done by one person, the

software developer.

The software developer brings a μbRP table to the requirements elicitation meeting with

the micro-business owner as shown in Table IV.8. This table is meant to speed up

requirements elicitation through better communication with the micro-business owner without

compromising technical details. The table is straightforward and could even be answered by

the micro-business owner himself even without the aid of a software developer. However, it is

recommended that the software developer elicit the requirements together with the micro-

business owner.

The requirements elicitation table before the requirements elicitation meeting is shown in

Table IV.8. This table would be the same for several online retail shops. Since a μbRP is a

pattern of recurring software requirements in micro-businesses, the recurring software

requirements of online retail shops are included in the table.

161

Table IV.8 Online Retail Shop μbRP Requirements Elicitation Table Before Elicitation

Meeting

162

The Online Retail Shop μbRP table shows its three main sections. The description section,

the topmost section, is the section which shows the following details: the name which is the

“Online Retail Shop μbRP,” a brief description of the μbRP which is “μb sells items online,

customer pays online, and then μb ships item to the customer,” and then finally the keywords

of the μbRP which are online shopping, online payment, and online activity monitoring.

In the functional requirements section, the middle section, of the Online Retail Shop μbRP

table, we find the business-like, question-answer format. The first question (a) “How will the

μb customers find the product they want at the online shop?” until the last question (l) “Is the

online shop linked to a logistics management system?” are all expressed as questions in a

straightforward, easy-to-understand language for micro-business owners.

In the second column of the functional requirements section of the Online Retail Shop μbRP

table, the possible options or answers to the business-like, question-answers, are found.

Shown are the possible options or answers to the question (a) “How will the μb customers find

the product they want at the online shop?” in the column right after it which shows the possible

options: search engine, filters, product catalog, offers, and others, being able to select as many

that apply to the question. The question (d) “How does the online shop accept payments?”

has the possible options or modes of payment in the second column after the question which

are payment by credit card, PayPal, etc. From the first and second columns of the functional

requirements section, the processes of the micro-business are provided.

In the third column of the middle section of the Online Retail Shop μbRP table, the

responses of the micro-business owner are shown under the column “choices.” For the

question (a) “How will the μb customers find the product they want at the online shop?”, the

choices are in the third column of the table which are: search engine, filters, and catalog.

The requirements elicitation table after the requirements elicitation meeting is shown in

Table IV.9. This table would be different for several online retail shops, depending on the

choices made by each micro-business owner. The non-functional requirements of the Online

Retail Shop micro-business are discussed in further detail in Section 4.3.

163

Table IV.9 Online Retail Shop μbRP Requirements Elicitation Table After Elicitation Meeting

164

4.2 Modeling

BPMN is used for modeling the business processes in the functional requirements section.

Provding this point-of-view helps both the micro-business owners and the software developers

understand the functional requirements. The BPMN model in Figure IV.11 shows the

functional requirements, its modes, and options.

165

Figure IV.11 Model of the modes or “options” of the Online Retail Shop μbRP

166

The purposeful placement of custom labels in business process models (in this case, the

BPMN models) is recommended to make the models more comprehensible or maybe even

more technically relevant (Mendling et al., 2010). Using custom labels, a basic overview of

how μbRP tables link to models is provided in Figure IV.12 with only requirements (a) and (m).

The BPMN model for the complete requirements from (a) to (n) are provided in Figure IV.11.

Figure IV.12 Linking μbRP Tables and Models

Figure IV.12 shows several custom labels which help the viewers understand the links

between tables and figures. The first custom label is the letter in parentheses which is found

in the μbRP tables. Table IV.8 and Table IV.9 show these letters in parentheses before the

questions in the first column in the functional requirements section. For example, the question:

“How will the customers find the product they want in the online shop?” is preceded by the

letter “a” in parentheses. This means that there is an area in a figure such as Figure IV.11

where this functional requirement is modeled in BPMN. The area in the figure has an encircled

letter-in-bold that corresponds to this question. In Figure IV.11, the viewer must look for an

encircled letter “a” in bold and see how this functional requirement is modeled in BPMN.

In Table IV.8 and Table IV.9, there are modes in the second column of the functional

requirements section. For question (a), these modes are to find products via search engine,

filters, product catalog, offers, and others. In Figure IV.11, the modes of functional requirement

167

(a) are modeled in BPMN in the area indicated with an encircled letter “a” in-bold. There is

also a [done as] label in the BPMN model to indicate the modes/options. In the succeeding

chapter where we evaluate the μbRPs, our observations show that the custom labels, e.g.

[done as], as shown in these figures provide indications and important notes for developers

who would like to reuse μbRPs and also their associated software components.

In Table IV.8 and Table IV.9, the answers, choices, and priorities made by the micro-

business owner are shown in the last columns of the functional requirements section and the

non-functional requirements section. For question (a), the answers/choices are search engine,

filters, and catalog. In Figure IV.13, only the choices/answers made by the micro-business

owner for functional requirement (a) are modeled in BPMN in the area indicated with an

encircled letter “a” in-bold. These choices correspond to instances which are discussed in

further detail in Section 4.3.

4.3 Instantiation

The choices made by the micro-business owner are used in the instantiations of the

pattern. The micro-business choices are reflected in the last column of the functional

requirements section in Table IV.9. The instances of a pattern are the results of the pattern

in practice in the real-world when the micro-business owner and the software developer have

agreed on modes or options in which the pattern will be done (as), i.e., “how will the option be

done?” The instance of a pattern could be understood by taking the example of the modes of

payment and then envision what happens when a customer actually pays. In question (d)

“How does the online shop accept payments?”, the micro-business has chosen that the

customer can either pay with a credit card or pay with an e-wallet like PayPal or Skrill. The

BPMN diagram shows that the micro-business owner has chosen that the customers can only

pay with these two options: credit card or e-wallet. Which means that in the real-world

instance, if the customer would have wanted to pay using a bank transfer, it would not have

been possible because the micro-business owner did not choose this as one of the possibilities

to accept payment.

In the bottom section of the Online Retail Shop μbRP table in Table IV.9, the NFRs are

listed. These NFRs are the most commonly occurring ones for Online Retail Shops and have

been grouped in terms of priorities to the micro-business owner, the micro-business customer,

and the software developer. These priorities are ranked from the most important to the least

168

important; where 1st is the label used in the table for the most important priority, and 2nd, 3rd,

etc… is used up to the least important.

The most important NFR for the online retail shop would be “(m) the timely delivery of the

product to the customer.” In Figure IV.13 in the area with an encircled letter in-bold “m”, this

NFR is modeled with SIGs and refined as “(n) speed of the software system” since the timely

delivery of the product is directly dependent on the speed of the software system. The refined

NFR is also considered the 2nd most important NFR for the micro-business. The NFRs are

ranked instead of given a definite answer since these requirements are “satisficed” instead of

satisfied. This provides insight on what quality attributes are most important and provides

guidance on the choices to make when trade-offs have to be made.

In Figure IV.13, the non-functional requirement “speed of the software system” is located

with an encircled letter “m” in-bold which means that it is a model that corresponds to letter

“m” in the non-functional requirements section in Table IV.9. The non-functional requirements

are modeled after prioritizations have been made by the micro-business owner. This is a

practical approach because modeling NFRs before prioritizations are made is time-consuming

and may not be necessary because some NFRs are not that important based on actual

prioritizations of the micro-business owner. The operationalizing method “Good Internet” is a

refinement for the NFR “speed of the software system” and is modeled with the

operationalizing method icons proposed in Section 3.2.2. Good internet supports how the

website will function which is modeled in UML. Finally, the website supports the instance of

the business process of how customers look for products which is modeled in BPMN. This

BPMN model is located with an encircled letter “a” in-bold. The flow from an NFR to a BPMN

model is explained in detail in Section 3.1.4.

169

Figure IV.13 Model of an Online Store μbRP instantiation with “choices” and “priorities”

170

As discussed in the previous chapter and as detailed in Appendix B.2, NFRs are modeled

with a cloud and then lines connect the NFRS to the refined NFRs. The catalogue adaptating

SIGs for the micro-business domain presented in Section 3.2.2 is used to model the

operationalization methods. Figure IV.13 shows three NFRs namely: the speed of product

delivery which is identified in the figure with an encircled letter in-bold “n”, refined into two

NFRs which are the speed of the software system which is identified in the figure with an

encircled letter in-bold “m”, and the speed of logistics. The letters “m” and “n” are encircled in-

bold because they correspond directly to prioritized NFRs in Table IV.9. Both the speed

of the software system and the speed of logistics contribute to the speed of product delivery

for the customer. This SIGs model shows that importance has to be given to these two NFRs

to ensure that the most important NFR is satisficed.

From the refined NFRs, operationalization methods point to the NFRs that it satisfices and

an operationalization target link is used to point to a system or software which would depend

on such operationalization. From the catalog presented in Section 3.2.2, the operationalizing

methods stationary processing device (server) and virtual third party (internet provider) are

used and point to the NFR speed of the software system. This means that in order to satisfice

the NFR speed of the software system, there must be a good server and internet provider in

place. The operationalizing method models of logistics (transporter) and human resource

(staff) point to the NFR speed of logistics. This means that in order to satisfice the NFR speed

of logistics, there must be good transporters and competent staff to carry out these tasks.

From the operationalizations, operationalization target links point to software systems or

business processes. In Figure IV.13, the good server operationalization points to the customer

info component and the website component. This means that in order for the customer info

component and the website component to function properly, it needs to be supported with a

good server. The customer info component supports the business process of identifying

customers when logging on to the Online Retail Shop system while the website component

supports the business process of how customers search for products on the Online Retail

Shop. From the NFRs in Table IV.9 to the SIGs models in Figure IV.13 to the BPMN models

which correspond to the business processes of the FRs in Table IV.9, the μbRPs come full

circle. Should the software developer and micro-business owner prefer more models for the

4th, 5th, etc. NFRs, they are able to continue modeling, depending on a case-to-case basis.

171

4.4 Software Design

For keeping the models manageable, not all associated components are placed in the

models which include BPMN and SIGs as shown in Figure IV.13. After creating the SIGs

models, the software developer creates UML models to include within the BPMN and SIGs as

shown in Figure IV.13. Then, a UML component deployment diagram with more details is

created that would further guide in the implementation of the system as shown in Figure IV.14.

As will be explained in the next section, Section 5, managing μbRPs, based on the design in

the UML, the software developers will either create these software components or reuse

software components if they already exist in a repository.

Figure IV.14 shows the website component which was also shown in Figure IV.13. More

detail about the website component is provided such as the required interfaces for it to

function. Through the UML diagram, the software developer is trying to explain the

relationships among the software components which later on provide guidance on any

opportunities to (re-)use such components. For the website component, such relationships are

detailed in the following paragraphs.

Figure IV.14 A UML model from the instantiated μbRP (in Figure IV.13)

172

For the website user interface component to function, it will need input from the customer

information component, the database component, the payment component, and the admin

component. In the online retail micro-business example, the website user interface could be

an entire front-end written in JavaScript which would need input from the other components.

For the customer information component to function, it will need input from the database.

In the online retail micro-business example, this customer information component could be a

module which is focused on collecting and providing customer information between the user

interface and the database.

For the payment component to function, it will need input from the bank component, the e-

wallet component, and the database. In the online retail micro-business example, this payment

component could be a module which is focused on facilitating the payment of users from

financial institutions such as banks or e-wallets so that users could order items from the online

retail shop and have them delivered to their homes.

For the admin component to function, it will need information from the database. In the

online retail micro-business example, the admin component could be a module which

manages the users who can log into the system and check balances, orders, and status of

shipments.

The bank component provides output to the payment component. In the online retail micro-

business example, the bank component could be a module that interfaces with various banks

so that users could use any credit or debit card they have associated with a bank to make their

payments on the online retail shop.

The e-wallet component provides output to the payment component. In the online retail

micro-business example, the e-wallet component could be a module from an e-wallet company

such as PayPal which would allow the user to make a payment through a portal on the website

user interface.

The database provides output to the customer information component, the website user

interface component, the payment component, and the admin component. In the online retail

micro-business example, the database could be a relational database using Structured Query

Language SQL.

173

4.5 Complementary Notes

Throughout the requirements process, notes are taken by the micro-business owner and

the software developer/analyst. They are compiled as complementary notes and would be

included as follows:

● There will be discussions regarding the speed and reliability of the hosting servers and

internet providers.

● Investments in reliable computers are to be taken into consideration.

● From the point of view of the software developer, the top priority is to profit from the

project on a long-term basis.

● The software which will be developed is not going to be owned by the micro-business

owner. Instead, the micro-business owner will be billed for the developed software on

a subscription basis.

● If the functioning of the software is disrupted due to issues related to the global

pandemic, then the software developer will be obliged to immediately resolve the issue

as soon as humanly possible, without endangering his health and the health of others.

● The software developer will not be held responsible if the shipping of goods to

customers is affected by issues related to the global pandemic. The micro-business

owner will be responsible to resolve these issues within his organization and with his

third parties. Since the speed of the delivery is a top priority, the speed of shipping

takes priority over other NFRs.

● If a global lockdown is implemented which means that either the micro-business owner

or the software developer is unable to perform his duties and obligations, the

subscription fees will be waived during the period of the global lockdown and any

damages or fines related to the malfunctioning of the software will be exempt from

liabilities on the part of the developer. By the inability to perform duties and obligations,

we mean for instance that all shipping routes are made inactive or all computer servers

are shut down, e.g., circumstances which totally prevent either party from functioning

even at bare minimum of his operations.

174

5. MANAGING μbRPs

This section explains how μbRPs are managed. A detailed explanation on how μbRPs are

created, (re-)used, and then applied into practice is provided. In addition, explanations on how

the associated software components are used alongside the μbRPs are provided within the

context of Component Based Software Engineering “CBSE.”

5.1 Creating μbRPs

Before being able to (re-)use a μbRP in practice, it must first be created. In Figure IV.15, a

step-by-step process for creating and then using μbRPs is shown.

175

Figure IV.15 A BPMN model of the process of managing μbRPs

176

First, we start off by creating an μbRP. (1) Observing micro-businesses is the first step of

the process. The goals and requirements of micro-businesses are listed down. Upon listing

down the requirements, (2) common, recurring requirements are identified. If there is an

existing repository of μbRPs, developers (3) search for μbRPs using keywords in the

repository and if there are relevant results, i.e., common, recurring requirements, (4) then

μbRPs are (re-)used. However, if there is no existing repository or if there are no relevant

μbRPs, then a (5) μbRP is created.

As defined, a μbRP is a pattern of recurring requirements models in micro-business

software projects and the minimum number of common requirements to constitute such a

pattern is two. This is because if the number is less than two then there would be nothing in

common and there would be no pattern in the first place.

Figure IV.16 shows an example of how common, recurring requirements are grouped and

then diagrammed. This is the basis of all the (recurring) requirements in the μbRPs. The figure

shows that Hypothetical μb A and Hypothetical μb B have two common requirements: record

a cash sale and display total cash sales. From these two common requirements occurring in

both Hypothetical μb A and Hypothetical μb B, they are combined and described in one

(recurring) requirement. The pattern is called “Record-Display Cash Sale.” It is accompanied

with a text description, i.e., for requirements: “record cash sale” and “display total cash sales.”

From the text description, a BPMN diagram can be created to further explain the (recurring)

requirement as shown in Figure IV.16. At this point, SIGs and UML models are still not created

because they become more relevant after filling up requirements tables.

177

Figure IV.16 Grouping and Modeling Common Requirements and Turning Requirements into

a Question Format that can be Answered with Yes or No, and corresponding BPMN diagram

Creators of the μbRPs have to ensure that the μbRP names are as unique as possible and

that they are not repeating a μbRP that has already been created. During creation, they can

double-check this in the repositories, assuming a repository already exists. Software

development companies using wiki tools such as Confluence (Atlassian, 2021) follow basic

guidelines for having unique names and titles for their wiki pages so that users can find them

more efficiently later on. Such discipline can be applied to μbRP creation and archiving as

well. Software developers are free to use whatever naming and archiving methodology that

best suits their team practices.

178

5.2 Using μbRPs

The use of the μbRPs would either come from step (4) μbRPs are (re-)used, step (5) μbRPs

are created, or both steps: (re-)used and created μbRPs. We will proceed with the steps and

see how the μbRPs are used in practice.

After dealing with the common, recurring requirements in steps (4) and (5), step (6) varying

requirements are identified and then (7) complementary notes are made. Aside from the

BPMN models which correspond to the FRs in the requirements tables, the SIGs and UML

models are prepared for the (8) design and (9) reuse or development of software components

and their architecture. The SIGs models correspond to the prioritized NFRs while the UML

models correspond to the associated software components to the μbRPs.

Finally, the (10) micro-business software system is deployed and eventually, (11) future

systems would benefit from the growing repositories of μbRPs and associated software

components. As seen in Figure IV.15, the process of creating and using μbRPs is iterative,

meaning that the more times it is done, the more chances that there will be a growing and

evolving library of μbRPs and associated software components for the software developers.

In the case of μbRPs where micro-business owners make similar choices, even more

opportunities for reuse become apparent. For example, if there is an existing repository of

components that satisfy FRs and satisfice NFRs, then these components could be found with

keywords (FRs, NFRs, operationalizations, etc.) or notes and then can be re-used. However,

if the components are not those that directly comply with the requirements, then new

components may have to be developed.

Managing μbRPs are in line with Component Based Software Engineering “CBSE''

practices. (Kouroshfar et al., 2009) propose generic phases of component-based development

based on seven popular component-based development methodologies. These generic

phases are analysis, design, provision, and release. Activities (1) to (7) correspond to

analysis, (8) and (9) correspond to design and provision of components respectively, and

(10) corresponds to release. These generic phases are marked with an asterisk “*” in Figure

IV.15.

In the context of component-based software development work by (Kouroshfar et al., 2009),

we consider the association of software components to the operationalizations from the NFRs

179

in the μbRPs as part of the analysis phase – where the requirements of the system are elicited

and a preliminary project plan and schedule is outlined. In Figure IV.15, the analysis phase is

reflected in steps (1) through (7).

In the design phase, the components of the system are identified and based on the

dependencies and interactions among these components, specifications are made for each

component. This is when the system is designed and is step (8) in Figure IV.15. This is

explained in more detail in Section 3.1.3 about component modeling using UML.

In the provision phase, the required components (from the analysis and design phases)

are (re-)used from the component repository or written from scratch. This is step (9) in Figure

IV.15.

In the release phase, the components are assembled for deployment which is shown as

step (10) in Figure IV.15. The proposition of using CBSE is based on the functionality of the

software components (analysis phase) and their fit for the implementation (design phase).

There are other non-functional attributes and characteristics of software components such as

(re-)usability, efficiency, and maintainability and we acknowledge that this is not yet specified

in this proposal and have made it part of our future work.

6. TOOL SUPPORT FOR μbRP MODELING

The μbRP models involve several languages and notations, i.e., BPMN, SIGs, and UML,

and a modeling tool would come in handy to support the software developers creating and

maintaining these μbRP diagrams. We have developed Requirements Engineering Tools “RE-

Tools” (RE-Tools, 2013) which is capable of modeling BPMN, SIGs, UML, and additional

labels, e.g., encircled letters in bold, [done as], all at the same time, all in one model.

RE-Tools has already surpassed 1,700 downloads internationally. We have done tool

demonstrations in conferences (Supakkul & Chung, 2012; Supakkul et al., 2013), conducted

several training sessions in industry (PSRI, 2018; Sabre, 2018; Virus, 2018; Everyware, 2018;

Desarrollo TIC, 2018), and have encountered publications by other researchers using the tool

(Veerappa & Harrison, 2013). To improve RE-Tools, we constantly collect user feedback and

incorporate improvements incrementally. Figure IV.17 shows a greyscale screenshot of RE-

Tools, which depicts the simultaneous visualization of multiple notations, i.e., BPMN, SIGs,

180

and UML. This tool is available for download, is open-source, and can be tested by any

software developer who needs tool support when using μbRPs. The download link can be

found in the μbRP User Guide in the Appendix C.2.

Figure IV.17 A screenshot of RE-Tools, showing multiple notations, BPMN, SIGs, and UML

at the same time

7. CONCLUSIONS

In this chapter, we have provided our characterization and conceptualization of micro-

businesses in terms of goals, requirements, software components, etc. In particular, we have

presented a conceptual model for μbRPs, explaining each and every concept and the

relationships among them. We have proposed μbRPs, which are recurring software

requirement models in micro-businesses, with a description including tables, notes, and

models in BPMN, UML, and SIGs. We have presented an adaptation and update of SIGs to

make them more suitable in the micro-business domain. To bring the proposal of μbRPs into

practice, we have presented the μbRP in a real-world example in order to validate the

proposal. We have presented, step-by-step, the process of creating and using μbRPs in

practice. Finally, we have presented the diagramming tool, RE-tools, which allows the

181

simultaneous modeling of BPMN, UML, and SIGs. In the next chapter, we are going to discuss

how we have evaluated μbRPs in practice using Action Research.

CHAPTER REFERENCES

Aranda, J., Easterbrook, S. & Wilson, G. (2007). Requirements in the wild: How small
companies do it. Requirements Engineering Conference, 2007. RE '07. 15th IEEE
International (p./pp. 39-48), ISBN: 978-0-7695-2935-6

Atlassian. (2021). Atlassian. Last accessed on January 30, 2021 on www.atlassian.com

Azar, J., Smith, R.K., & Cordes, D. (2007). Value-oriented requirements prioritization in a
small development organization, IEEE software, vol. 24, no. 1, (pp. 32–37)

Bürsner, S. & Merten, T. (2010). RESC 2010: 1st Workshop on Requirements Engineering in
Small Companies, in workshop proceedings of Requirements Engineering for Software
Quality REFSQ 2010, ICB-Research Report no. 40, October 2010, p. 128-130. url:
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Cardoso, E., Almeida, J., Guizzardi, R., & Guizzardi, G. (2011). A Method for Eliciting Goals
for Business Process Models Based on Non-Functional Requirements Catalogues.
International Journal of Information System Modeling and Design, 2 (2), (pp. 1-18) doi:
10.4018/jismd.2011040101

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (2000). Non-functional Requirements in
Software Engineering. Boston, Dordrecht, London. Kluwer Academic Publishers

Desarrollo TIC. (2018). Desarrollo TIC. Last accessed on December 15, 2018, at
http://www.desarrollotic.com

Everyware. (2018). Everyware Technologies. Last accessed on December 15, 2018, at
http://www.everywaretech.es

European Commission. (2013). User Guide to the SME Definition. Last accessed on April 3,
2021 at
https://ec.europa.eu/regional_policy/sources/conferences/state-
aid/sme/smedefinitionguide_en.pdf

Georgakopoulos, D. & Jayaraman, P.P. (2016) Internet of Things: from internet scale
sensing to smart services. Computing 98(10), pp. 1041–1058

IEEE Computer Society. (1990). IEEE Standard Glossary of Software Engineering
Terminology. IEEE Standard

Jantunen, S. (2010). The Benefit of Being Small: Exploring Market-Driven Requirements
engineering Practices in Five Organizations. In Proceedings of the 1st Workshop on RE in
Small Companies RESC, (pp. 131-140). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Kalenborn, A. (2010). Modelling by Example: Requirements engineering during the bidding
stage of dialog-oriented software projects. In Proceedings of the 1st Workshop on RE in

182

Small Companies RESC, (pp. 158-166). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Kotonya, G. & Sommerville, I. (2003). Requirements Engineering: Processes and Techniques.
England. John Wiley and Sons Limited.

Kouroshfar, E., Shahir, H. Y. & Ramsin, R. (2009). Process Patterns for Component-Based
Software Development. In G. A. Lewis, I. Poernomo & C. Hofmeister (eds.), CBSE (pp. 54-
68). Springer. ISBN: 978-3-642-02413-9. doi: 10.1007/978-3-642-02414-6_4

Macasaet, R., Chung, L., Garrido, J., Rodriguez, M., & Noguera, M. (2011). An Agile
Requirements Elicitation Approach based on NFRs and Business Process Models for Micro-
businesses. In Proceedings of the 12th International Conference on Product Focused Software
Development and Process Improvement PROFES, (pp. 50-56). ACM New York, NY, USA.
doi: 10.1145/2181101.2181114

Macasaet, R., Noguera, M., Rodriguez, M., Garrido, J., Supakkul, S., & Chung, L. (2012).
Micro-business Behavior Patterns associated with Components in a Requirements Approach.
In Proceedings of the 2nd International Workshop on Experiences and Empirical Studies in
Software Modeling EESSMOD at the ACM/IEEE 15th International Conference on Model
Driven Engineering Languages & Systems MODELS, Article 7, (pp. 1-6). ACM New York, NY,
USA. doi: 10.1145/2424563.2424573

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S. & Chung, L.
(2013). A requirements-based approach for representing micro-business patterns. In R.
Wieringa, S. Nurcan, C. Rolland & J.-L. Cavarero (eds.), Proceedings of the IEEE 7th
International Conference on Research Challenges in Information Science RCIS 2013, (pp.1-
12), IEEE. ISBN: 978-1-4673-2912-5. doi: 10.1109/RCIS.2013.6577703

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2014). Representing Micro-business Requirements Patterns associated with Software
Components. In RCIS’13 Special Issue of Top Ranked Papers, Journal of Information System
Modeling and Design IJISMD 5 (4), (pp. 71-90), IGI-Global.

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2019). Micro-business Requirements Patterns in Practice: Remote Communities in
Developing Nations. Journal of Universal Computer Science JUCS 25 (7), (pp. 764-787).

Mairiza, D., Zowghi, D. & Nurmuliani, N. (2010). An investigation into the notion of non-
functional requirements. Proceedings of the 2010 ACM Symposium on Applied Computing
(p./pp. 311--317), New York, NY, USA: ACM. ISBN: 978-1-60558-639-7

Mendling, J., Recker, J., & Reijers, H. (2010). On the usage of labels and icons in business
process modeling. International Journal of Information System Modeling and Design, 1 (2),
pp. 40-58. doi: 10.4018/jismd.2010040103

Medvidovic, N. & Taylor, R. N. (2000). A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26, 70--93.

Object Management Group, Inc. (2008). Business Process Modeling Notation Version 1.1.
Last accessed on March 10, 2011 at http://www.omg.org/spec/BPMN/1.1/PDF

Object Management Group, Inc. (2009). Unified Modeling Language Version 2.2. Last
accessed on March 10, 2011 at

183

http://www.omg.org/spec/UML/2.2/Superstructure/PDF/changebar

Object Management Group, Inc. (2010). MDA Foundation model. Needham, MA, USA

PSRI. (2018). Pentathlon Systems Resources Incorporated. Last accessed on December
15, 2018 at http://www.pentathlonsystems.com

RE-Tools. (2013). RE-Tools. Last accessed on October 9, 2013 at
https://personal.utdallas.edu/~chung/Sam_Supakkul/RE-Tools/index.html

Respect-IT. (2007). KAOS Tutorial Version 1.0. Retrieved on January 15, 2013, from
http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

Sabre. (2018). Sabre Incorporated. Last accessed on December 15, 2018 at
http://www.sabre.com

Segura, S., Durán, A., Troya, J., and Cortés, A.R. (2017). A Template-Based Approach to
Describing Metamorphic Relations. IEEE/ACM 2nd International Workshop on Metamorphic
Testing (MET), 2017, pp. 3-9, doi: 10.1109/MET.2017.3

Solemon, B., Sahibuddin, S., & Ghani, A.A.A. (2009). Requirements engineering problems
and practices in software companies: An industrial survey. Advances in Software Engineering,
Springer, 2009, pp. 70-77

Spain SME Statistics. (2021). Spanish Ministry of Commerce, Industry, and Tourism. Last
accessed on June 30, 2021 at http://www.ipyme.org/Publicaciones/CifrasPYME-
enero2021.pdf

Supakkul, S., & Chung, L. (2012). The RE-Tools: A Multi-notational Requirements Modeling
Toolkit. In Proceedings of the 20th International Requirements Engineering Conference RE
(pp. 333-334). IEEE. doi: 10.1109/RE.2012.6345831

Supakkul, S., Chung, L., Macasaet, R., Noguera, M., Rodriguez, M., & Garrido, J. (2013).
Modeling and Tracing Stakeholders' Goals across Notations using RE-Tools. In Proceedings
of the 6th International i* Workshop iStar at the 25th International Conference on Advanced
Information Systems Engineering CAiSE, (pp. 128-130). Last accessed on October 9, 2013 at
http://ceur-ws.org/Vol-978/paper_23.pdf

Tan, L., & Wang, N. (2010). Future internet: the internet of things. In: 2010 3rd international
conference on advanced computer theory and engineering (ICACTE), vol 5, (pp. 376-380).
IEEE doi: 10.1109/ICACTE.2010.5579543

Veerappa, V., & Harrison, R. (2013). Assessing the maturity of requirements through
argumentation: A good enough approach. Automated Software Engineering ASE, (pp. 670-
675). IEEE. doi: 10.1109/ASE.2013.6693131

Virus. (2018). Virus Worldwide. Last accessed on December 15, 2018 at
http://www.virusworldwide.com

Zhao, L., Letsholo, K., Chioasca, E., Sampaio, S., & Sampaio, P. (2012). Can business
modeling bridge the gap between business and information systems? In Proceedings of the
27th annual ACM symposium on applied computing SAC (pp. 1723-1724). ACM New York,
NY, USA. doi: 10.1145/2245276.2232054

184

185

Chapter V

Evaluation of μbRPs

This chapter will discuss how μbRPs have been evaluated. First, we discuss why μbRPs

are suitable for micro-business software projects in terms of comprehensibility, timeliness, and

affordability. Then, we discuss how we have been evaluating μbRPs using Action Research

and Grounded Theory. Finally, we show how the evaluation approach for the μbRPs has also

been applied in other software development contexts.

1. THE SUITABILITY OF USING μbRPs IN MICRO-BUSINESS SOFTWARE PROJECTS

The suitability of using μbRPs in micro-business software projects could be characterized

in terms of its contributions to the goals of comprehensibility, timeliness, and affordability.

Comprehensibility refers to the ability of a micro-business owner (or software developer) to

interpret and understand the μbRPs correctly. Timeliness refers to the timely implementation

of a software project. Affordability refers to the ability of a micro-business owner to afford

(purchase) software.

For μbRPs to be suitable in the micro-business domain, they have to be readily

comprehensible by micro-business owners. We use one-on-one interviews for evaluating the

comprehensibility of the μbRPs for micro-business owners. We discuss these interviews in

detail in Section 2.1.

μbRPs are suitable for software developers because they are technically relevant and

practical to use. This relevance and practicality are reflected in the timeliness and affordability

goals. The number of man days expended in a software project directly affects the timeliness

goal. The labor cost in a software project directly affects the affordability goal (where labor

cost in a software project is derived by multiplying the number of man days expended in a

software project by the daily software developer rate). The number of components reused in

a software project affects the timeliness goal (by reducing the number of man days expended

in a software project), which then affects the affordability goal (by reducing the cost equivalent

of man days expended in a software project).

186

Action Research is when a research proposal is applied into practice and the

researchers are actively participating. (Goldkuhl, 2008) (Goldkuhl, 2012) (Bilandzic &

Venable, 2011).

Evaluating μbRPs using Action Research was an ideal choice because we needed real-

world data, specifically for evaluating man days, number of software components reused, and

cost in real-world software development companies with micro-business projects. Also, the

use of μbRPs required training and influence from the researchers as done in Action

Research. In case studies and field experiments, the influence of the researcher has to be

minimized or even non-existent. Action Research is discussed in detail in Section 3.

Complementing Action Research with survey-type studies has been done by (Lee, 2002)

and we do this in a similar fashion with the one-on-one interviews. A graphical representation

which depicts the Action Research, as described above, evaluating the suitability of μbRPs in

micro-business software projects, can be conveniently expressed using SIGs as shown in

Figure V.1.

187

Figure V.1. Evaluating the suitability of μbRPs for micro-business software projects

2. EVALUATING COMPREHENSIBILITY

In reference to Figure V.1 – evaluating suitability, using μbRPs are suitable when they are

comprehensible to the micro-business owners. If the μbRPs are not comprehensible to the

micro-business owners then it would not improve the communication of requirements from

and to the software developers. If a micro-business owner is unable to communicate his/her

requirements correctly to the software developers then the success of the entire software

project is jeopardized, misunderstood requirements being a major cause of project failure

(Happel, 2010).

With the help of the participating software development companies, we have conducted

one-on-one interviews in order to further understand whether the tables and models in our

188

proposal are “comprehensible enough” for micro-business owners. In every “project under

study” in the Action Research, a participating software developer showed a table and a model,

like the one shown in Figure V.2, representative of the project, to the micro-business owner

and asked them for their interpretation of the documents and if they had any extra comments

to make. Since the tables of the μbRPs are straightforward and are already in “business-like”

language, we did not make an evaluation form for the μbRP tables. Instead, we focused on

evaluating the comprehensibility of the μbRP models for the micro-business owners.

Figure V.2. Sample Model Comprehensibility Form

A sample μbRP diagram comprehensibility form, in English, is shown in Figure V.2 and can

also be found in Appendix C.1. The forms were also prepared in other languages, i.e., Spanish

“Castellano,” the local language spoken in Granada, Spain and Filipino “Tagalog,” the local

language spoken in Manila, Philippines.

189

There are two main questions in the μbRP diagram comprehensibility form. The first

question pertains to the explanation of the business process diagram (expressed in BPMN) in

correct chronological order by the micro-business owner. The result of this question is either

“correct” or “incorrect.” The second question is an open-ended question, geared towards the

interpretation of the NFRs and infrastructure (expressed in SIGs) in the diagrams. The results

of this question vary.

2.1 Compilation of Interview Results

From the period of June 2013 to December of 2013, we have compiled the results of 16

one-on-one interviews where stakeholders from the micro-business projects in the Action

Research provided responses. Six micro-businesses were from Manila, where responses

were documented in both English and Tagalog. Six micro-businesses were from Granada,

where responses were documented in Spanish. Four micro-businesses were from Dallas

(Texas, United States of America), where responses were documented in English.

The four micro-businesses from Dallas only participated in the evaluation of μbRP diagram

comprehensibility and not in the full Action Research (where timeliness and affordability were

also evaluated). We decided to include some one-on-one interviews in Dallas because the

area is also considered a micro-business hub and gathering relevant data in the area was an

opportunity that we could immediately take advantage of. In 2011, Dallas had 42,068 micro-

businesses based on a headcount of less than 10, representing approximately 69% of total

businesses in the area (United States Census Bureau, 2011).

The recording of the responses was written on the forms by the researchers in the local

languages and then translated with great care by the researchers into English for collation and

presentation in this thesis, as shown in Table V.1. The responses to the second question

(relating to NFRs) are condensed for presentation purposes in Table V.1, highlighting the most

important input provided by the micro-business stakeholder.

190

Table V.1

2.2 Potential Benefits of using SIGs in μbRP Diagrams

From the one-on-one interviews, we also grouped the responses to question 2 (from the

μbRP diagram comprehensibility form as presented in Appendix C.1) based on how the SIGs

in μbRP diagrams aid in the comprehension of the requirements of micro-businesses. The

SIGs in μbRP diagrams are beneficial in three ways.

First, SIGs are able to show that external factors, outside the responsibility of the software

developer, can affect the performance of the software, as observed from the following

responses to question 2 of the μbRP diagram evaluation forms.

“It is important to get a contract with a reliable internet service provider in order for the

software to work as expected.” [Interviewee #1]

“The employees at the store have to be well-trained in using the software system.”

[Interviewee #2]

“Purchasing powerful hardware for the system will maximize the performance of the

software.” [Interviewee #4]

191

“Experienced cashiers at the counter of the point-of-sale (POS) system are able to make

faster sales transactions with customers.” [Interviewee #5]

“Purchasing a fast printer for providing receipts to the customer will make sales transactions

faster at the counter.” [Interviewee #6]

“In the case of system failure for an unforeseen reason, it would be advisable to have the

CRM database backed-up on a separate server.” [Interviewee #8]

“Inexperienced users of the patient management system will affect the entire system in a

bad way.” [Interviewee #13]

“A reliable hosting provider must be contracted in order for the online shop to function as

planned.” [Interviewee #16]

Second, SIGs are able to show which NFRs and operationalizing methods are directly

related to business process activities, as indicated by the operationalization target link (dash-

dot-dash arrow). This is observed from the following responses to question 2 of the evaluation

forms as follows.

“Experienced cashiers at the counter of the point-of-sale (POS) system are able to make

faster sales transactions with customers.” [Interviewee #5]

“Purchasing a fast printer for providing receipts to the customer will make sales transactions

faster at the counter.” [Interviewee #6]

“Having a good internet connection will make collecting and uploading customer-related

data to the CRM database much faster.” [Interviewee #9]

“Managing customer data is improved when there are experienced CRM users operating

on the system.” [Interviewee #10]

“If the users of the patient management system are well-trained then the collection of

patient data onto the system is going to get better.” [Interviewee #11]

192

“Users of the online shop must be trained well in order to manage the online shop properly.”

[Interviewee #14]

Third, SIGs are able to show how child NFRs can positively (or negatively) contribute to

their parent NFRs. This is observed from the following responses to question 2 of the

evaluation forms as follows.

“In order to improve the availability of the products at the store, there must be good

transportation of items from the warehouse to the store and the staff must be able to perform

logistics tasks well.” [Interviewee #3]

“For the system to function as fast as possible, it is important to have good hardware,

software, and a reliable internet connection at all times.” [Interviewee #7]

“The entire system will work faster if there are faster hard drives (database servers) and

more powerful computers in place.” [Interviewee #12]

“The availability of the products which are sold at the online store depends on the proper

management of inventory and transportation of the goods (logistics).” [Interviewee #15]

Further observations and discussions on how SIGs aid in the comprehensibility of the μbRP

diagrams are continued in the next chapter.

193

3. EVALUATING TIMELINESS AND AFFORDABILITY

Using Action Research, the goals of timeliness and affordability are evaluated in this

Section. Based on Figure V.1, the promotion of software (component) reuse, resulting in

reduction of man days expended in software implementation and lowering of labor costs,

contributes to the technical relevance and the suitability of μbRPs in micro-businesses

software projects.

Our research team has always valued the documentation of observations of actual software

implementations around the world. Action Research has always been an ideal choice for us

because when documenting observations, we are able to gather actual data such as the effort

exerted in software implementations, the number of software components reused, and given

the daily rates of developers, even the costs involved. This actual data helps us understand

what is going on when μbRPs are applied in practice. In addition, the use of μbRPs requires

training and influence from the researchers. In case studies and field experiments (as opposed

to Action Research), the influence of the researcher has to be minimized or even non-existent.

Given the several variants of Action Research (Goldkuhl, 2008; Goldkuhl, 2012; Bilandzic

& Venable, 2011), the Action Research in this thesis is reported as-is, step-by-step, for

clarification purposes. In order to improve the validity of Action Research, (Kock, 2004)

recommends the use of one or more of the following: units of analysis, multiple iterations,

and/or Grounded Theory. We apply all three recommendations as detailed in the following

subsections: 3.1, 3.2, and 3.3.

3.1. Units of Analysis

We begin the Action Research by identifying the units of analysis. The advantage of using

units of analysis is that when more instances of the unit of analysis are made, the more likely

that statistical analysis can be used later on to ascertain whether there are observable trends

or whether events are simply happening by chance.

The first unit of analysis is the “number of man days expended during software

implementation.” It starts on the first day of requirements gathering and ends on the day the

project is accepted by the micro-business owner (or equivalent stakeholder). One man day is

194

equivalent to one software developer who has worked for eight hours. Labor cost per project

can be derived by multiplying the number of man days by the daily rate for developers.

The second unit of analysis is the "number of software components reused" where the

characterization of a software component is as mentioned in the introduction. A third unit of

analysis could be made and it would be “the kind of μbRPs used.” With this third unit of

analysis, other μbRP proposals could also be evaluated using the Action Research presented

in this paper.

3.2 Multiple Iterations

In order to perform iterations in Action Research, we needed the participation of

companies which had micro-business software implementations taking place. We chose

Manila (Philippines) and Granada (Spain) as cities for our Action Research because of the

geographic proximity of our research teams and because of their abundance of micro-

businesses. As of 2011, Manila had 211,974 micro, small, and medium enterprises (MSMEs)

of which approximately 90% are micro, based on a headcount of less than 10 and

approximately total assets less than 60,000 United States Dollars (Philippine MSME Statistics,

2011). Granada had 55,578 micro-businesses which comprise approximately 96% of total

businesses, based on a headcount of less than 10 (Spain SME Statistics, 2011).

Four software development companies with micro-business projects decided to learn and

adapt the μbRPs – (a) Pentathlon Systems Resources Incorporated (PSRI, 2018), (b) Virus

Worldwide (Virus, 2017), (c) Everyware Technologies (Everyware, 2017), and (d) Desarrollo

TIC (Desarrollo TIC, 2017). The first two are headquartered in Manila and the latter two are

headquartered in Granada.

The companies were asked to identify a “previous implementation” and “implementations

under study,” where the latter would be the iterations in the Action Research. The

implementations had to be of similar nature as possible. In the “previous implementation,” no

μbRPs were used. It is important to note that the “previous implementation” is not a control

implementation because if it were, then it would no longer be considered Action Research but

a field experiment (Kock, 2004).

Before the “implementations under study” took place, mandatory face-to-face training

sessions involving two developers from each software development company were required.

195

The following were the training sessions that the developers went through and these sessions

can be viewed in further detail in Appendix C.3. Each training session took no longer than one

hour.

(1) Tutorial 1: Basic BPMN and SIGs

(2) Tutorial 2: Pattern Representation

(3) Tutorial 3: Component Representation

(4) Tutorial 4: Tool Support

(5) Tutorial 5: Unified Modeling Language

(6) Overview of μbRPs and the User Guide

(7) Participating on the Evaluation of μbRPs

Afterwards, the developers could use the training material (PSRI Action Research, 2021),

supporting tools (RE-Tools, 2014) and accompanying documentation (Supakkul & Chung,

2012; Supakkul et al., 2013), and could contact the researchers anytime via email,

videoconference, or mobile for any μbRP-related support.

Since PSRI has contributed in developing the μbRPs under study since 2010, a fresh

perspective involving two new hires developed a sales management system from scratch,

their “previous implementation,” without using μbRPs. Table V.2 shows the units of analysis

and six iterations which were performed in each company throughout a 30-month period,

spanning from January 2015 to June 2017.

In addition, Table V.2 also shows the exerted effort needed to set-up and maintain the

μbRPs for use in each of the participating companies. This is measured from the time when

there had been no μbRP knowledge up to the time when there were at least 10 μbRPs that

could be used. Set-up efforts consist of (1) training the software developers and analysts

regarding the creation and the use of μbRPs and (2) setting up the component libraries, μbRP

tables, and optional μbRP illustrations.

If we assume that a man day costs US$ 320, then the average cost of setting up μbRPs

would be US$ 1,760 (5.5-man day average setup time for the 4 sample companies in Table

V.2 multiplied by the assumed day rate) and US$ 320 for monthly maintenance. Table V.2

also shows assumed savings based on the day rate multiplied by the reduction of exerted

effort when μbRPs are used.

196

Table V.2

3.3 Grounded Theory

In order to take the results in Table V.2 in proper context, application of the third

recommendation of (Kock, 2004) in validating Action Research, Grounded Theory, is

discussed and applied in this subsection.

3.3.1 A Brief Background on Grounded Theory

Grounded Theory traces its roots back from sociologists (Glaser & Strauss, 1967). There

are three basic “types” of Grounded Theory which are the original by (Glaser & Strauss, 1967)

also referred to as “classical Glaserian Grounded Theory,” a formalized and procedural one

by (Strauss & Corbin, 1990), and one which clarifies ontological and epistemological

ambiguities (Charmaz, 2006). We adapt the “classical Glaserian Grounded Theory” which has

been recommended, used, and applied recently in the field of software engineering (Kock,

2004; Carver, 2006; Crabtree et al., 2009; Adolph et al., 2011; Macasaet, 2018). All references

to Grounded Theory in this chapter pertain to “classical Glaserian Grounded Theory.”

Grounded Theory is basically setting out to gather data and then systematically

developing a substantive theory directly from the data (Glaser & Strauss, 1967).

The theory is “grounded” in the data. Grounded Theory differs from (other) methods which

first develop theories without data and then systematically seek out data to verify the theories.

197

Grounded Theory is also different because its main purpose is not to find out irrefutable truths

but to try to explain what is going on. Using Grounded Theory in software engineering is useful

when trying to answer the question, “What is going on here?”

(Schreiber & Stern, 2001) suggest using Grounded Theory in research areas that have not

been previously studied or where new perspectives are needed. In Grounded Theory,

researchers go through the iterative steps of collecting data (where research notes are

referred to as “memos”), building theories, and then comparing the theories to those in existing

literature. Grounded Theory suggests that making comparisons to existing literature has to be

delayed as much as possible so as to avoid coming up with preconceived theories which would

not be grounded on the data.

3.3.2 Grounded Theory in the Practice of Action Research

On a practical level, the Grounded Theory in this thesis is adapted for the specific needs of

Action Research as recommended by (Kock, 2004). The results from Table V.2 may be used

to develop causal models (Bagozzi, 1980; Davis, 1985) which are considered as the highest

level of abstraction in Grounded Theory. The causal models link independent, moderating,

intervening, and dependent variables (Arnold, 1982; Baron & Kenny, 1986; Creswell, 1994;

Drew & Hardman, 1985). The variables may be classified in terms of units of analysis (as

explained in Subsection 3.3.1), which can be measured or estimated numerically or non-

numerically (Drew & Hardman, 1985; Gregory & Ward, 1974; Pervan & Klass, 1992). From

the results in Table V.2, we build a causal model, shown in Figure V.3, which includes

activities, variables (as units of analysis, represented as an operationalizing method using

SIGs), and the possible grounded theories we could build from the data.

Table V.2 shows that the use of the μbRPs in the “implementations under study” could

have reduced the number of man days expended in implementations and could have

increased the number of software components reused in implementations, resulting in

reduced effort for the participating software developers.

Instead of drawing conclusions from the data and making claims, we build grounded

theories and ask questions which would be relevant for the (further) evaluation of μbRPs.

Some of the grounded theories that we can build from the data (and from memos) include (but

are not limited to):

198

(1) the use of μbRPs improve component reuse

(2) the use of μbRPs improve communication between micro-business owners and

software developers

(3) improved communication improves project acceptance rates

(4) improved communication reduces the number of man days expended in projects

(5) training for using μbRPs improves morale and the use of μbRPs

(6) the use of μbRPs have a complimentary effect with other reuse methods

(7) the use of μbRPs increases the awareness of (software) reuse in general.

Such grounded theories provoke questions such as: Was the improvement in software

component reuse due to the use of μbRPs alone or due to a symbiosis between the use of

μbRPs and (unknown, other) reuse methods? Did the morale of the software developers

influence the quality of communication with micro-business owners? As a result of using the

μbRPs, how many reduced man days can be attributed to improved communication? When

evaluating the use of μbRPs in real world settings, is it possible to isolate human variables,

which are indispensable in the field of software engineering?

Using SIGs, Figure V.3 shows us “what is going on here,” based on the grounded theories

built from the Action Research data. The operationalizing methods in bold are used to depict

project acceptance, man days expended, labor cost, and number of software components

reused. These are the methods which contribute to the timelines and affordability goals,

refined from the goal of suitability of μbRPs for micro-businesses. From the operationalizing

methods, target links depict the grounded theories which lead to the activities performed in

micro-businesses which contribute to the success of the software projects. Within the

activities, there are also grounded theories that link some activities together. Instead of trying

to jump to conclusions, the grounded theories better prepare us to ask the right questions as

we continue with our future work as discussed in the next chapter.

199

Figure V.3 A causal model showing grounded theories built from the Action Research data

4. APPLICATION OF OUR EVALUATION APPROACH IN OTHER CONTEXTS

As part of our future work, we believe that μbRPs could be useful as a starting point for

writing User Stories in an Agile context. Instead of starting from scratch, the μbRPs could be

used as a starting point for writing User Stories in micro-businesses using Agile methodologies

for their software projects. For exploratory purposes in 2018, we asked Axiom Practice

Management “AXPM,” a software company currently known as Greyfinch (Greyfinch, 2019),

if they wanted to do Action Research in their current Agile methodology implementation.

Greyfinch is a Software as a Service “SaaS” Company that has been in operation since 2012

and serves the healthcare industry in the United States of America, mainly in the states of

Arkansas and Texas. In 2018, it had annual revenues of US$ 80 Million and a headcount of a

little more than 400 people.

200

The Action Research would allow us to probe and see the possibilities where μbRPs could

also be applicable in an Agile context. The Action Research approach used to evaluate the

μbRPs presented in this thesis (Macasaet et al., 2014; Macasaet et al., 2019) was used for

the Action Research at Greyfinch. In sections 4.1 through 4.3, both the Agile methodology and

Action Research used at Greyfinch are discussed in detail.

4.1 A Brief Background of the Scrum Framework

The Scrum Framework is a popular Agile framework being used nowadays and is the

framework being used by Greyfinch to develop software. The Scrum Framework traces its

origins from Professor Hirotaka Takeuchi and Ikujiro Nonaka and later on to Jeff Sutherland

and Ken Schwaber who published the Scrum Framework (Scrum.org, 2018).

The Scrum Framework can be described as a framework that allows the management and

development of complex products in an efficient, creative and focused manner. It aims to

deliver products with the highest possible value. Scrum is a useful Project Management tool

and can be used for software development as well as operations management within an

organization. It also enables an organization to become “Agile” by maximizing responsiveness

and adaptiveness to changing customer needs.

There are various roles in the Scrum Framework. The Product Owner or PO is responsible

for maximizing the value of the work of the development team by being up-to-date with the

market and ensuring the profitability of the product. Although the PO is responsible for

understanding the business objectives of the product, they are allowed to delegate market

research activities and surveys as long as objectives are not compromised for the Scrum

Team.

The Development Team is made up of software developers, testers, business analysts,

user experience designers, and testers. The Development Team is a team which is capable

of delivering a working version of the software to the customers. The better the chemistry of

the team, the more likely it is to succeed (Macasaet, 2017). There is sometimes confusion that

the Development Team is only made up of software developers because of the name but the

truth is that anybody who contributes to the development of the final product is part of the

Development Team.

201

Finally, there is the Scrum Master who must ensure that the Scrum Framework is working

in the organization. The Scrum Master ensures that those accountable for deliverables are

made accountable. The Scrum Master is also responsible for removing any impediment that

is hampering the Development Team from delivering the next working version of the product.

The events in the Scrum Framework are contained in a Sprint which usually lasts for one

week or up to four weeks. At Greyfinch, the sprints were two weeks long. Sprint Planning is a

Sprint Event which lasts eight hours for a four-week Sprint. In Greyfinch, the Sprint Planning

session was four hours long every two weeks.

During Sprint Planning, the Development Team commits to do items found on a Product

Backlog, an artifact where all the items to be developed are listed in terms of priority. These

items are software requirements and usually referred to in Agile terminology as User Stories.

User Stories usually have the form: “As a [role], I would like to [goal], so that [value].” For

example, “As a User of a Sales System, I would like to Know my Sales, so that I know if I am

meeting my Sales Targets for the current period.” These User Stories are the “requirements”

and are items in the Product Backlog. Each item on the Product Backlog is estimated with

Story Points. Story Points are an estimate of the amount of effort needed to finish a product

backlog item. This is an arbitrary estimate and does not correspond directly to man hours

expended.

Every day, throughout the sprint, there is a Scrum Daily which lasts for a maximum of 15

minutes. Those attending briefly summarize what they did yesterday, what they are doing

today, and if there is anything preventing them from doing what they have to do today.

At the end of the Sprint, there is a Sprint Review or a Sprint Demo where the Development

Team presents their work to the Product Owner for acceptance. The Sprint Demo lasts for

four hours long if the Sprint is for four weeks. In Greyfinch, the Sprint Demo lasts for two hours

long for the two-week Sprints.

Finally, there is the Sprint Retrospective. The Sprint Retrospective lasts three hours long

for an eight-week Sprint. At Greyfinch, the Sprint Retrospective lasts for one hour and thirty

minutes. During the Sprint Retrospective, those who attend talk about what went right and

wrong in the current Sprint and what could be improved in the next Sprint. All of the events in

the Scrum Framework are time-boxed, meaning that the team members respect the maximum

amount of time that can be spent in an event: at Greyfinch, four hours for Sprint Planning, 15

202

minutes for the Scrum Daily, two hours for the Sprint Demo, and one and a half hours for the

Sprint Retrospective.

4.2 Just in Time Demos

The Scrum Framework has been successful for several teams however there are still teams

who have not been successful (Lopez-Martinez et al., 2016). Some teams attempt to modify

the Scrum Framework so that it could be more tailor-made to some software companies. This

is called Scrumbut. Scrumbut is criticized because according to Scrum.org, those who intend

to modify or change the Scrum Framework would not be able to take full advantage of what

the Scrum Framework has to offer (Scrum.org, 2018).

Even if the Scrum Framework was working properly at Greyfinch, the team wanted to keep

improving which led to the introduction of Just in Time “JIT” Demos. A JIT Demo is a

demonstration of the work done by a developer to the Product Owner as soon as an item on

the backlog is finished and both of them are available to meet (Macasaet, 2018). Normally, all

finished items are presented by the developers at the end of a Sprint, during the Sprint Review

or Sprint Demo. The completion of the items is based on how the developers have met the

requirements as stated in the User Stories.

JIT Demos aim to have (1) faster feedback loops between the Product Owner and the

Development Team and (2) demos with better quality. The trade-off that has to be made for

JIT Demos is that there is no strict time-box that has to be followed which may result in more

time being spent on them throughout the duration of the Sprint. An illustration of how JIT

Demos have changed the Scrum Framework is shown in Figure V.4.

203

Figure V.4 Modification of the Scrum Framework in order to make way for JIT Demos

(Macasaet, 2018)

4.3 Evaluation of Just in Time Demos

JIT Demos were evaluated in 2018 using the same approach we have used to evaluate

μbRPs. The units of analysis were both the Story Points finished in each Sprint and Product

Owner Hours spent in each Sprint. The multiple iterations were several Sprints, the first five

consecutive Sprints without using JIT Demos and the second five consecutive Sprints using

JIT Demos. The results are shown in Table V.3.

204

Table V.3 Units of Analysis and Multiple Iterations with JIT Demos (Macasaet, 2018)

It is important to note that in Table V.3, POs spend an average of two hours in the Sprint

Demo when the standard Scrum Framework is followed. In this case, the Development Team

has to wait until the end of the Sprint to get feedback from the PO regarding whether a User

Story is completed or not.

When Just in Time Demos are used, the POs spend almost double the amount of time

during each Sprint. In this scenario, POs provide immediate feedback to the developers on

the Scrum Team. There is a faster feedback loop for the Development Team to continue their

work and they no longer have to wait until the end of the Sprint to start working on items on

the Backlog.

From the units of analysis and the multiple iterations, a causal model of the Grounded

Theory is presented in Figure V.5.

205

Figure V.5 Using Grounded Theory to make a Causal Model of JIT Demos

(Macasaet, 2018)

As a result of the causal model, some of the following questions for future research came

up:

1. Does the time of the demo really have to be at the end of the Sprint (during the Sprint

Review)?

2. Could the authors of the Scrum Framework consider JIT demos as an alternative within

the Scrum Framework? Warnings are made about “Scrumbut” although industry cases vary

from one to another and maybe exceptions could be made.

3. Is it better for POs to spend more time on JIT Demos instead of compressing all their

feedback for all the demos during the Sprint Review Time Box?

These new research questions were relevant for Greyfinch to conduct future studies and

further improve their software development practice. From the Action Research point-of-view,

our research team has seen the value of the evaluation approach for exploring areas which

have not been fully studied, e.g., JIT demos in Scum, and coming up with research questions

that could not have been formulated without the use of Action Research. For our future work,

our research team has seen that we could continue applying Action Research in software

companies using Agile methodologies and further explore the possible advantages that μbRPs

could bring, such as how μbRPs could help in writing User Stories in Agile contexts.

206

5. CONCLUSIONS

In this chapter, we have presented the evaluation approach used for μbRPs and how this

evaluation approach could be applied in other contexts. As discussed, the evaluation approach

has demonstrated value in industry by discovering more problems that need solutions and

more questions that need answers. There is value in discovering the right questions to ask

and the right problems to solve. As one famous thinker would say: "The greatest challenge to

any thinker is stating the problem in a way that will allow a solution." - Bertrand Russell. In the

next chapter, we discuss the observable strengths and weaknesses of μbRPs based on the

experiences from the evaluation approach as discussed in this chapter. We also discuss our

future work in the next chapter.

207

CHAPTER REFERENCES

Adolph, S., Hall, W. & Kruchten, P. (2011). Using Grounded Theory to study the experience
of software development. Empirical Software Engineering, 16, (pp. 487-513).
doi:10.1007/s10664-010-9152-6

Arnold, H. (1982). Moderator variables: A clarification of conceptual, analytic, and
psychometric issues, Organizational Behavior and Human Performance, (29) 2, (pp. 143-
174), ISSN 0030-5073, doi:10.1016/0030-5073(82)90254-9

Bagozzi, R. P. (1980). Causal models in marketing. New York, NY: Wiley. ISBN:
0471015164

Baron, R. & Kenny, D. (1986). The moderator-mediator variable distinction in social
psychological research: Conceptual, strategic, and statistical considerations. Journal of
personality and social psychology, 51, (pp. 1173—1182). doi:10.1037/0022-3514.51.6.1173

Bilandzic, M. & Venable, J. (2011). Towards Participatory Action Design Research: Adapting
Action Research and Design Science Research Methods for Urban Informatics. J.
Community Informatics, 7. Last accessed on October 9, 2013 at http://ci-
journal.net/index.php/ciej/article/view/786/804

Carver, J. (2006). The Use of Grounded Theory in Empirical Software Engineering. In V. R.
Basili, H. D. Rombach, K. Schneider, B. A. Kitchenham, D. Pfahl & R. W. Selby (eds.),
Empirical Software Engineering Issues (pp. 42). Springer. ISBN: 978-3-540-71300-5. doi:
10.1007/978-3-540-71301-2_15

Charmaz, K. (2006). Constructing Grounded Theory: a practical guide through qualitative
analysis. London; Thousand Oaks, Calif.: Sage Publications.

Crabtree, C. A., Seaman, C. B. & Norcio, A. F. (2009). Exploring language in software
process elicitation: A Grounded Theory approach. ESEM (pp. 324-335), ISBN: 978-1-4244-
4842-5. doi: 10.1109/ESEM.2009.5315984

Creswell, J. W. (ed.) (1994). A Qualitative Procedure in Research Design. Qualitative and
Quantitative Approaches. London and New Dheli: Sage.

Davis, J. A. (1985). The Logic of Causal Order (Vol. 07-055). Beverly Hills, London, New
Delhi: Sage.

Desarrollo TIC. (2018). Desarrollo TIC. Last accessed on December 15, 2018 at
http://www.desarrollotic.com

Drew, C.J. & Hardman, M.L. (1985). Designing and Conducting Behavioral Research.
Pergamon, New York, NY.

Everyware. (2018). Everyware Technologies. Last accessed on December 15, 2018 at
http://www.everywaretech.es

Glaser, B. G., Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research. New York, NY: Aldine de Gruyter.

208

Goldkuhl, G. (2008). Practical Inquiry as Action Research and Beyond. In W. Golden, T.
Acton, K. Conboy, H. van der Heijden & V. K. Tuunainen (eds.), ECIS (pp. 267-278). Last
accessed on October 9, 2013 at http://aisel.aisnet.org/ecis2008/118

Goldkuhl G. (2012). From Action Research to practice research. Australasian Journal of
Information Systems, 17, 2, (pp. 57-78). url:
http://dl.acs.org.au/index.php/ajis/article/view/688.

Gregory, D. & Ward, H. (1974). Statistics for Business Studies. McGraw-Hill, London,
England.

Greyfinch. (2019). Greyfinch.com. Last accessed on August 17, 2018

Happel, H.J., Maalej, W., & Seedorf, S. (2010). Applications of ontologies in collaborative
software development. In I. Mistrík, J. Grundy, A. Hoek, & J. Whitehead (Eds.), Collaborative
Software Engineering (pp. 109-129). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-
10294-3_6

Kock, N. (2004). The three threats of Action Research: a discussion of methodological
antidotes in the context of an information systems study. Decision Support Systems, 37 (2),
(pp. 265-286). doi: 10.1016/S0167-9236(03)00022-8

Lee, O. (2002). An Action Research report on the Korean national digital library. Information
& Management, 39, (pp. 255-260). doi: 10.1016/S0378-7206(01)00094-5

López-Martínez, J., Juárez-Ramírez, R., Huertas, C., Jiménez, S. & Guerra-García, C.
(2016). Problems in the Adoption of Agile-Scrum Methodologies: A Systematic Literature
Review. In 4th International Conference in Software Engineering Research and Innovation,
Puebla, pp. 141-148.

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2014). Representing Micro-business Requirements Patterns associated with Software
Components. In RCIS’13 Special Issue of Top Ranked Papers, Journal of Information System
Modeling and Design IJISMD 5 (4), (pp. 71-90), IGI-Global.

Macasaet, R. J. (2017). The Project Start Review Group. In M. Brambilla, T. Hildebrandt (eds.),
Proceedings of the Industry Track of the 15th International Conference on Business Process
Management BPM, (pp. 81-87).

Macasaet, R.J. (2018). Just in Time Demos in the Scrum Framework. Proceedings of the 3rd
International Conference on System Reliability and Safety ICSRS, (pp.21-24).

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2019). Micro-business Requirements Patterns in Practice: Remote Communities in
Developing Nations. Journal of Universal Computer Science JUCS 25 (7), (pp. 764-787).

Pervan, G.P. & Klass, D.J. (1992). The use and misuse of statistical methods in information
systems research, in: R. Galliers (Ed.), Information Systems Research: Issues, Methods
and Practical Guidelines, (pp. 208–229), Blackwell, Boston, MA.

Philippines MSME Statistics. (2011). Philippine Department of Trade and Industry. Last
accessed on December 5, 2013 at http://www.dti.gov.ph/dti/index.php?p=321

209

PSRI. (2018). Pentathlon Systems Resources Incorporated. Last accessed on December
15, 2018 at http://www.pentathlonsystems.com

PSRI Action Research. (2021). Action Research Material for Micro-businesses. Last
accessed on December 31, 2021 at http://www.pentathlonsystems.com/ar4mb.html

RE-Tools. (2013). RE-Tools. Last accessed on October 9, 2013 at
https://personal.utdallas.edu/~chung/Sam_Supakkul/RE-Tools/index.html

Schreiber, R. & Stern, P. (2001). Using Grounded Theory in Nursing. Springer Publishing
Company, New York.

Scrum.org. (2018). The Scrum Guide. Last accessed on August 17, 2018

Spain SME Statistics. (2011). Spanish Ministry of Industry, Energy, and Tourism. Last
accessed on December 5, 2013 at
http://www.ipyme.org/Publicaciones/ESTADISTICAS_PYME_N10_2011.pdf

Strauss, A. & Corbin, J. (1990). Basics of qualitative research: Grounded Theory procedures
and techniques. Sage Publications, Basics of Qualitative Research

Supakkul, S., & Chung, L. (2012). The RE-Tools: A Multi-notational Requirements Modeling
Toolkit. In Proceedings of the 20th International Requirements Engineering Conference RE
(pp. 333-334). IEEE. doi: 10.1109/RE.2012.6345831

Supakkul, S., Chung, L., Macasaet, R., Noguera, M., Rodriguez, M., & Garrido, J. (2013).
Modeling and Tracing Stakeholders' Goals across Notations using RE-Tools. In Proceedings
of the 6th International i* Workshop iStar at the 25th International Conference on Advanced
Information Systems Engineering CAiSE, (pp. 128-130). Last accessed on October 9, 2013 at
http://ceur-ws.org/Vol-978/paper_23.pdf

United States Census Bureau. (2011). County Business Patterns. Last accessed on
December 5, 2013 at http://censtats.census.gov/cgi-bin/cbpnaic/cbpcomp.pl

Virus. (2018). Virus Worldwide. Last accessed on December 15, 2018 at
http://www.virusworldwide.com

210

211

Chapter VI

Conclusion

After presenting and evaluating the μbRPs in the previous chapters, this concluding chapter

discusses the observable strengths, weaknesses, and future work that is planned out for

μbRPs.

1. OBSERVABLE STRENGTHS

Based on the experience of the participating software development companies in the Action

Research, we enumerate the observable strengths when using μbRPs.

First, the μbRP table during requirements elicitation and analysis has been useful. The

tables are outright and straightforward which made it comprehensible for micro-business

owners without technical backgrounds. In just one step, the micro-business owners simply

had to answer questions in business language without compromising technical details for the

software developers. There was no need of going back-and-forth explaining requirements with

technical jargon. The μbRP table also contains a lot of domain knowledge which is useful for

understanding the context of an implementation. The μbRP table saves a lot of time while

maintaining the quality of the requirements.

Second, the models for μbRPs have been found useful for the information on software

components, specifically for reuse and implementation. The models show software developers

that there are opportunities for reusing software components in certain business process

contexts and that the software developers could take advantage of these reuse opportunities

if possible. The models with associated software components also provide information

regarding the relationships among the software components. Using the specific keywords and

filenames found on these models, the software developers are able to search the software

component repositories with more guidance and more speed, knowing which associated

software components to search for beforehand.

212

The models indicate the activities in business processes and the associated software

components which are critical and which directly or indirectly relate to NFRs. For example, the

use of operationalization target links connects the NFRs. Prioritizing which business activities

and which software components are critical allow software developers to focus their efforts on

more important tasks, eventually contributing to the success rate for software

implementations. The use of the models provides both the software developers and micro-

business owners a clearer overview of the software implementation, avoiding myopic views.

Being aware of the many factors that affect the software implementation allow both software

developers and micro-business owners to exert conscious efforts in areas critical to success.

Third, based on Grounded Theory, we observed that the overall length of implementations

could have been shortened due to the use of μbRPs. When the internal communication within

an implementation, e.g., the communication among software developers, and the external

communication with the customer, e.g., the communication of software developers with the

micro-business owner, are improved, then the length of projects could be shortened. Improved

communication and promoting software component reuse by using μbRPs could be related to

shortening development time and eventually shortening total implementation time.

Consequently, shorter implementation times could have translated to lesser man day effort

and lower implementation costs, making software more affordable for the budget-conscious

micro-businesses.

Fourth, Action Research was applied in a different context in industry and it had favorable

feedback from the collaborators, i.e., the use of Action Research in evaluating Just in Time

Demos in the Scrum Framework, as mentioned in the previous chapter. Positive feedback

from using Action Research is encouraging for our research teams. This provides us with more

motivation to continue Action Research with μbRPs and to continue doing Action Research in

more contexts in industry as well.

213

2. DISCUSSIONS ON WEAKNESSES AND LIMITATIONS

Based on the experience of the participating software development companies in the Action

Research, we also discuss the weaknesses and limitations when using μbRPs.

First, although Action Research lacks the rigorousness of other methods, e.g., controlled

experiments, field experiments, surveys, case studies, etc., it makes up for its shortcomings

when researchers make positive real-world contributions in the day-to-day operations of

practitioners. The participating software development companies improved their software

component reuse and reduced man days in the “projects under study,” resulting in tangible

savings. The practitioners, having an orientation to results, placed high value on this kind of

outcome and were zealous to say that the use of μbRPs were indeed suitable for micro-

business software projects.

 As researchers, making claims on whether the savings were due to the use of μbRPs is

still unascertainable at this moment. Multiple iterations of Action Research in the future could

demonstrate observable trends through statistical analysis, eventually paving the way for

stronger conclusions. In relation to multiple iterations, the kind of mutual collaboration

demonstrated in this Action Research motivates practitioners to continue participating in

Action Research, allowing researchers to carry-on collecting and analyzing valuable real-world

data.

The second discussion relates to the software development companies that participated

and plan to participate in Action Research. PSRI has been involved in developing and

improving the μbRPs since 2010. There will be favorable biases when creators are asked

about the opinion of their own work. Virus, Everyware, and Desarrollo TIC have strong ties to

PSRI, got special attention in terms of training and support, and were enthusiastic when using

and applying the μbRPs. The results of the Action Research could have been different if

random software development companies with micro-business projects participated. We are

interested in finding out if the use of μbRPs would have similar results in other software

development companies without strong ties to PSRI. Hence, we have made all Action

Research available to the public so that others may conduct independent studies at their own

convenience. We are also collecting feedback from anonymous μbRP users by regularly

engaging in workshops, tutorials, and conferences.

214

The third discussion is related to the comprehension of the μbRPs by micro-business

owners. Since the tables of μbRPs are comprehensible in a straightforward, business-type

way, it was the comprehensibility of the models which was being evaluated in the one-on-one

interviews. When asked to explain the processes in the models of the μbRPs in chronological

order, all 16 of the interviewed micro-business owners were able to do it correctly. All 16

interviewees also provided relevant responses when interpreting the SIGs in the models. We

see this as an indication that the models of the μbRPs could be comprehensible to micro-

business owners, on top of the straightforward comprehensibility of the tables.

However, since 16 one-on-one interviews merely represent a tiny portion of the entire

micro-business domain, making any claims on μbRP model comprehensibility is still

inconclusive. We plan to conduct more evaluations on the comprehensibility of the μbRPs

using comprehension testing, which can capture a larger population sample of the micro-

business domain. We extend this discussion of future work in the next section.

The fourth and last discussion relates to the unknowns. The main concern at the start of

the Action Research was whether using the proposed μbRPs would be suitable for micro-

business software projects. During the course of the Action Research, more unknowns

surfaced as shown using Grounded Theory, leaving several open-ended questions as

mentioned in the previous chapter. It would have been unlikely for us to ask such detailed

research questions beforehand. The full set of relevant questions regarding the suitability of

the μbRPs for micro-business software projects is yet to be uncovered. As researchers, we

value the discovery of the right questions because asking the right questions build a good

foundation for research work.

215

3. CONCLUSIONS AND FUTURE WORK

This thesis has proposed μbRPs and has discussed its application in industrial practice.

First, the domain of micro-businesses was discussed in detail, including how requirements

differ from large businesses. Second, research work related to patterns and to the evaluation

of proposals based on their technical relevance or comprehensibility was reviewed. Third, the

practicality of using models in the micro-business domain was discussed, particularly BPMN,

UML, and SIGs. Fourth, the conceptual model, the tables, views, modes, instantiations,

component model, use in practice, and the supporting tool, RE-tools, for the μbRPs were

presented. Fifth, the suitability of μbRPs for micro-business software projects was evaluated

by four software development companies using Action Research. The four software

development companies provided observations related to the technical relevance of μbRPs.

Specifically, in relation to how μbRPs affect timeliness and affordability in micro-business

software projects. The comprehensibility of μbRPs by micro-business owners was evaluated

using one-on-one interviews with the help of the participating software development

companies in the Action Research. Finally, the strengths and weaknesses of the μbRPs and

its evaluation were discussed.

Responding to the first main research question, as stated in the introduction – how should

requirements be represented so that they would be comprehensible for micro-business

owners and technically relevant for software developers? Representing μbRPs in a

comprehensible manner for micro-businesses and in a technical manner for software

developers is difficult since both goals are somewhat conflicting. Throughout our research, we

have learned that in order to meet the demands of both parties, not one, but multiple

languages, notations, models, and point-of-views used in a complementary manner are

recommended, providing different views for the users as has been described in this thesis. In

addition, these multiple languages, notations, and models, must be fit for use in the micro-

business domain. There should not be unnecessary cognitive load for understanding and

using such models. Future work related to μbRP representation involves the continuous

improvement of modeling the relationships among BPMN, SIGs, and UML. Proposed

lightweight (or even ultra-lightweight) models, harmonizing BPMN, SIGs, and UML, which are

apt for the micro-business domain, are currently being developed. RE-Tools is also being

continuously improved based on constructive feedback from current users.

216

Responding to the second main research question – how could the proposed requirements

approach be evaluated? Evaluating the μbRPs using Action Research allowed us to promote

the use of μbRPs, collect real-world data when the μbRPs are applied, contribute to software

process improvement efforts in real-world software development companies, and come up

with more relevant research questions based on Grounded Theory for use in our future work.

In addition, the evaluation approach was also applied in another context and was shown to be

helpful in practice.

We plan to continue conducting more iterations of Action Research, building and evaluating

more grounded theories, hopefully in collaboration with other software development

companies with micro-business projects, aside from those that have participated in this Action

Research. Ideally, the software development companies that will participate in future iterations

of Action Research should not have strong ties to PSRI. Since the Action Research material

is available to the public, software development companies can conduct their studies at their

own convenience. Other μbRP proposals may also be evaluated using the Action Research

presented in this paper. We are constantly collecting feedback from anonymous μbRP users

via workshops, tutorials, and conferences.

We are continuing to conduct one-on-one interviews with micro-business owners in order

to further understand the comprehensibility of μbRPs. As future work, we plan to further

understand μbRP comprehensibility using other means such as comprehensibility tests in

order to have a larger sample size, representative of the micro-business domain. As we

continue collecting constructive feedback, both from real-world micro-business owners and

software developers, we plan to continuously improve the μbRPs along the way.

Key characteristics for micro-business software are lightweight requirements analysis and

software design that are unlikely to go wrong, leading to faster implementation and delivery. It

is important for us to bring the complex research of software requirements closer and more

applicable to micro-businesses. They are an important driver for economies and they could

use all the help they can get nowadays. Given the several physical restrictions from the global

pandemic and constantly evolving computing paradigms, now would be the right time to put

requirements research into practice and help micro-businesses stay afloat. Our requirements

approach could help micro-businesses take advantage of the latest devices, infrastructure,

and business trends by providing requirements analysis and software design that is

comprehensible, affordable, and technically feasible for them.

217

The abundance of Software-as-a-Service “SaaS” which could be utilized by several micro-

businesses also provides an opportunity for the application of μbRPs. Just like Commercial-

of-the-shelf “COTS” systems, SaaS could also be viewed as stand-alone components for

meeting requirements. We plan to include more SaaS based solutions in the modes and

instantiations of the μbRPs as part of our future work.

The reusability of μbRPs with associated software components in Component Based

Software Engineering “CBSE” provide us with a starting point for investigating more non-

functional attributes and characteristics of the associated software components such as their

maintainability, usability, and efficiency. For instance, as the μbRPs and their associated

software component repositories grow in participating software development companies, more

challenges such as the maintainability of the software components in practice have to be taken

into consideration. We are also keen in investigating reusability of the components within the

context of Model-Driven Development.

In other contexts, given the small-scale nature of micro-businesses, we believe that μbRPs

could be applied in various Agile Software Development Frameworks such as Scrum,

particularly aiding in the discovery and writing of Epics, User Stories, and their Acceptance

Criteria. μbRPs could also aid in writing test cases in Test-Driven Development.

Notwithstanding issues, we feel that we have done among the first studies on μbRPs,

obtaining some lessons and observations, and provoking relevant discussions which would

be helpful in future work.

218

219

Capítulo VI

Conclusión

Después de presentar y evaluar los μbRPs en los capítulos anteriores, este capítulo final

analiza las fortalezas y debilidades observables y el trabajo futuro que se planea para los

μbRPs.

1. FORTALEZAS OBSERVABLES

Según la experiencia de la participación de empresas de desarrollo de software en la

investigación de acción, enumeramos las fortalezas observables cuando se usan los μbRPs.

Primero, la tabla μbRP ha sido útil durante la obtención de requisitos. Las tablas son

directas y sencillas. Son comprensibles para los propietarios de microempresas sin

conocimientos técnicos. En un solo paso, los propietarios de microempresas respondian

preguntas de requisitos en lenguaje natural sin comprometer los detalles técnicos para los

desarrolladores de software. No había necesidad de explicar los requisitos con palabras

técnicas. También, la tabla μbRP tiene mucha información del dominio que ha sido útil para

comprender el contexto de la implementación. La tabla μbRP ahorra mucho tiempo

manteniendo la calidad de los requisitos.

En segundo lugar, los modelos de μbRP han sido útiles para usar los componentes de

software, específicamente para su reutilización e implementación. Los modelos muestran a

los desarrolladores de software que existen oportunidades para reutilizar componentes de

software en ciertos contextos de procesos comerciales y que los desarrolladores de software

podrían aprovechar estas oportunidades de reutilización si es posible. También, los modelos

con componentes de software asociados dan información sobre las relaciones entre los

componentes de software. Usando las palabras claves específicas y los nombres de archivo

que se encuentran en los modelos, los desarrolladores de software pueden buscar

componentes de software en los repositorios con más orientación y velocidad, sabiendo

buscar de antemano cuales son los componentes de software asociados.

220

Los modelos indican las actividades en los procesos comerciales y los componentes de

software asociados que son críticos y que se relacionan directa o indirectamente con los

NFRs. Por ejemplo, el uso de enlaces de objetivos de operacionalización conecta los NFRs.

Priorizando qué actividades comerciales y qué componentes de software son críticos. Eso

permite que los desarrolladores de software concentren sus esfuerzos en tareas más

importantes y que finalmente contribuyen en la tasa de éxito de las implementaciones de

software. El uso de los modelos proporciona tanto a los desarrolladores de software como a

los propietarios de microempresas una visión general más clara para la implementación del

software. Eso evita los puntos de vista miopes. Ser consciente de los muchos factores que

afectan la implementación del software permite que tanto los desarrolladores de software

como los propietarios de microempresas ejerzan esfuerzos conscientes en áreas críticas para

el éxito del proyecto de software.

En tercer lugar, según Grounded Theory, observamos que la duración total de las

implementaciones podría haberse disminuido debido al uso de μbRP. Cuando se mejora la

comunicación interna dentro de una implementación, por ejemplo, la comunicación entre los

desarrolladores de software y la comunicación externa con el cliente, la duración de los

proyectos podría disminuir. La comunicación mejorada y la promoción de la reutilización de

componentes de software mediante el uso de μbRP podrían estar relacionadas con la

reducción del tiempo de desarrollo y, finalmente, con la reducción del tiempo total de

implementación. En consecuencia, los tiempos de implementación más cortos podrían

haberse convertido en menos esfuerzo por día y costos de implementación más bajos,

resultando que el software sea más asequible para las microempresas conscientes de sus

recursos.

Cuarto, la Action Research se aplicó en un contexto diferente en la industria y tuvo

resultados favorables con los colaboradores - el uso de Action Research en la evaluación de

Just in Time Demos en Scrum Framework, como se mencionó en el capítulo anterior. Los

resultados positivos del uso de Action Research han sido de alguna forma positivo para

nuestros equipos de investigación. Esto nos motiva para continuar con Action Research con

μbRPs y también para otros contextos en la industria.

221

2. DISCUSIÓN SOBRE DEBILIDADES Y LIMITACIONES

Según la experiencia de las empresas de desarrollo de software participantes en Action

Research, discutimos las debilidades y limitaciones cuando se usan μbRPs.

Primero, aunque Action Research falta la rigurosidad de otros métodos, por ejemplo,

experimentos controlados, casos de estudio, encuestas, etc., compensa sus deficiencias

cuando los investigadores hacen contribuciones positivas al mundo real en las operaciones

diarias. Las empresas participantes de desarrollo de software mejoraron la reutilización de

sus componentes de software y redujeron los días-hombre en los “proyectos en estudio”, lo

que resultó en ahorros tangibles. Los profesionales en el mundo real, que tienen una

orientación hacia los resultados, proporcionaron un gran valor a este tipo de resultados y se

mostraron entusiastas al decir que el uso de μbRPs era realmente adecuado para proyectos

de software de microempresas.

 Como investigadores, todavía no se puede determinar si los ahorros se debieron al uso

de μbRP en este momento. Múltiples iteraciones en Action Research en el futuro podrían

demostrar tendencias observables a través del análisis estadístico, lo que eventualmente

allanaría el camino para conclusiones más sólidas. En relación con las iteraciones múltiples,

el tipo de colaboración mutua demostrada en esta Action Research motiva a los profesionales

a seguir participando, lo que les permite continuar recopilando y analizando datos valiosos

del mundo real.

La segunda discusión se relaciona con las empresas de desarrollo de software que

participaron y tienen planes en participar en Action Research. PSRI ha estado involucrado en

el desarrollo y la mejora de μbRPs desde 2010. Habrá sesgos favorables cuando se pregunte

a los creadores sobre la opinión de su propio trabajo. Virus, Everyware y Desarrollo TIC tienen

fuertes colaboraciones con PSRI, recibieron atención especial en términos de capacitación y

soporte, y se mostraron entusiastas al usar y aplicar μbRPs. Los resultados de Action

Research podrían haber sido diferentes si participaran empresas aleatorias de desarrollo de

software con proyectos de microempresas. Estamos interesados en averiguar si el uso de

μbRPs tendría resultados similares en otras empresas de desarrollo de software sin fuertes

vínculos con PSRI. Por lo tanto, hemos puesto a disposición al público todo el material de

Action Research para que otros puedan hacer estudios independientes a su conveniencia.

222

También, recopilamos comentarios de usuarios anónimos de μbRPs que han participado

regularmente en talleres, tutoriales y conferencias.

La tercera discusión es la comprensión de μbRPs por parte de los microempresarios. Dado

que las tablas de μbRP son comprensibles de una manera sencilla y de tipo comercial, fue la

comprensibilidad de los modelos lo que se evaluó en las entrevistas individuales. Cuando se

les pidió que explicaran los procesos en los modelos de los μbRP en orden cronológico, los

16 propietarios de microempresas entrevistados pudieron hacerlo correctamente. Los 16

entrevistados también proporcionaron respuestas relevantes al interpretar SIGs en los

modelos. Vemos esto como una indicación de que los modelos de μbRPs podrían ser

comprensibles para los propietarios de microempresas, además de la comprensibilidad

directa de las tablas.

Sin embargo, dado que las 16 entrevistas simplemente representan una pequeña porción

de todo el dominio de la microempresa, hacer afirmaciones sobre la comprensibilidad del

modelo μbRP aún no es concluyente. Planeamos hacer más evaluaciones sobre la

comprensibilidad de μbRPs mediante pruebas de comprensión, que pueden capturar una

muestra de población más grande del dominio de microempresas. Ampliamos esta discusión

del trabajo futuro en la siguiente subsección.

La cuarta y última discusión se relaciona con las incógnitas. La pregunta inicial al comenzar

Action Research era si el uso de μbRPs sería adecuado para proyectos de software de

microempresas. Durante el curso de Action Research, surgieron más incógnitas con el uso

de Grounded Theory, dejando varias preguntas abiertas como se mencionó en el capítulo

anterior. Habría sido poco probable que hiciéramos preguntas de investigación tan detalladas

de antemano. Aún no se ha descubierto el conjunto completo de preguntas relevantes sobre

la idoneidad de μbRPs para proyectos de software de microempresas. Como investigadores,

valoramos el descubrimiento de las preguntas adecuadas porque las preguntas adecuadas

construyen una buena base para el trabajo de investigación.

223

3. CONCLUSIONES Y TRABAJO FUTURO

Esta tesis ha propuesto μbRPs y ha presentado su aplicación en la industria. Primero,

presentó en detalle el dominio de las microempresas, incluyendo cómo los procesos de

requisitos son diferentes en las grandes empresas. Segundo, revisaron trabajos de

investigación relacionados con patrones y con la evaluación de propuestas en función de su

pertinencia técnica o comprensibilidad. Tercero, presentó la practicalidad de usar modelos en

el dominio de la microempresa, particularmente BPMN, UML y SIGs. Cuarto, presentaron el

modelo conceptual, las tablas, las vistas, los modos, las instancias, el modelo de

componentes, el uso en la práctica y la herramienta, RE-tools, para μbRPs. Quinto, cuatro

empresas de desarrollo de software evaluaron la idoneidad de μbRPs para proyectos de

software de microempresas mediante Action Research. Las cuatro empresas de desarrollo

de software proporcionaron observaciones relacionadas con la relevancia técnica de μbRPs.

Específicamente, en relación con la forma en que μbRPs afectan la puntualidad y la

asequibilidad en proyectos de software para microempresas. La comprensibilidad de μbRPs

para los propietarios de microempresas se evaluó mediante entrevistas individuales con la

ayuda de las empresas participantes de desarrollo de software en Action Research.

Finalmente, se discutieron las fortalezas y debilidades de μbRPs y su evaluación.

En respuesta a la primera pregunta de nuestra tesis, como se indicó en la introducción,

¿cómo se deben representar los requisitos para que sean comprensibles para los propietarios

de microempresas y técnicamente relevantes para los desarrolladores de software?

Representar μbRPs en una manera comprensible para las microempresas y también

técnicamente útil para los desarrolladores de software es difícil, ya que ambos objetivos son

algo contradictorios. A lo largo de nuestra investigación, hemos aprendido que para satisfacer

las demandas de ambas partes, se recomienda el uso de no uno, sino múltiples lenguajes,

notaciones, modelos y puntos de vista de manera complementaria, proporcionando diferentes

puntos de vista como se ha descrito en esta tesis. Además, estos múltiples lenguajes,

notaciones y modelos deben ser aptos para su uso en el dominio de las microempresas. No

debería existir una carga cognitiva innecesaria para comprender y utilizar tales modelos. El

trabajo futuro relacionado con la modelación de μbRPs implica la mejora continua de las

relaciones entre los modelos de BPMN, SIGs y UML. Actualmente, se están desarrollando

propuestas de modelos ligeros (o incluso ultraligeros), que armonizan BPMN, SIG y UML, y

que son aptos para el dominio de las microempresas. RE-Tools también se mejora

continuamente en función de los comentarios constructivos de los usuarios actuales.

224

En respuesta a la segunda pregunta de nuestra tesis: ¿cómo se puede evaluar la

propuesta de μbRPs? La evaluación de μbRPs mediante Action Research nos permitió

promover el uso de μbRPs, recopilar datos del mundo real cuando se aplican μbRPs,

contribuir a los esfuerzos de mejora de procesos de software en empresas de desarrollo de

software del mundo real y generar preguntas de investigación más relevantes basadas en

Grounded Theory para su uso en nuestro trabajo futuro. Además, la manera de evaluación

se aplicó en otro contexto y demostró ser útil en la práctica.

Planeamos continuar realizando más iteraciones de Action Research, construyendo y

evaluando más teorías por Grounded Theory, con suerte en colaboración con otras empresas

de desarrollo de software con proyectos de microempresas, además de aquellas que ya han

participado en la Action Research. Idealmente, las empresas de desarrollo de software que

participarán en futuras iteraciones de Action Research no deberían tener fuertes lazos con

PSRI. Dado que el material de Action Research está disponible para el público, las empresas

de desarrollo de software pueden realizar sus estudios a su conveniencia. También, se

pueden evaluar otras propuestas de μbRP utilizando la manera de Action Research

presentada en esta tesis. Constantemente, recopilamos comentarios de usuarios anónimos

de μbRPs a través de talleres, tutoriales y conferencias.

Continuamos realizando entrevistas individuales con propietarios de microempresas para

comprender mejor la comprensibilidad de μbRPs. Como trabajo futuro, planeamos

comprender mejor la comprensibilidad de μbRPs utilizando otros medios, como pruebas de

comprensibilidad, para tener un tamaño de muestra más grande y más representativo del

dominio de microempresas. Mientras recopilamos comentarios constructivos, tanto de

propietarios de microempresas del mundo real como de desarrolladores de software,

planeamos mejorar continuamente los μbRPs a lo largo del camino.

Las características clave del software para microempresas son el análisis de requisitos

ligeramente y el diseño de software donde hay poca probabilidad de que salga mal. Con

estas, se lleva a una implementación y entrega más rápida. Es importante para nosotros llevar

y hacer más aplicable la compleja investigación de los requisitos de software a las

microempresas. Son un motor importante para las economías y les vendría bien toda la ayuda

que puedan obtener hoy en día. Dadas las diversas restricciones físicas por la pandemia

global y la tecnología en constante evolución, ahora sería el momento adecuado para poner

en práctica la investigación de requisitos y ayudar a las microempresas a mantenerse en

225

operaciones. Nuestra propuesta de requisitos podría ayudar las microempresas a aprovechar

los dispositivos, la infraestructura y las tendencias comerciales más recientes,

proporcionando análisis de requisitos y diseño de software comprensible, asequible y

técnicamente factible para ellos.

La abundancia de Software-as-a-Service "SaaS" que podría ser utilizado por varias

microempresas también da una oportunidad para el uso de μbRPs. Igual que los sistemas

Commercial-of-the-Shelf "COTS," SaaS también podría verse como componentes

independientes para cumplir con los requisitos. Planeamos incluir más soluciones basadas

en SaaS en los modos e instanciaciones de μbRPs como parte de nuestro trabajo futuro.

La reutilización de μbRPs con componentes software asociados en Component Based

Software Engineering "CBSE" nos da un punto para empezar a investigar más atributos y

características no funcionales de los componentes de software asociados, como su

mantenimiento, usabilidad y eficiencia. Por ejemplo, cuando crecen los μbRPs y sus

repositorios de componentes software asociados en las empresas participantes de desarrollo

de software, se deben tener en cuenta más desafíos, como el mantenimiento de los

componentes software en la práctica. También estamos interesados en investigar la

reutilización de los componentes en el contexto de Model-Driven Development.

En otros contextos, dada la pequeña escala de las microempresas, creemos que μbRPs

podrían aplicarse en varios Agile Frameworks de desarrollo de software como Scrum.

Ayudaría particularmente en el descubrimiento y redacción de épicas, historias de usuarios y

sus criterios de aceptación. También, los μbRPs podrían ayudar a escribir casos de prueba

en el entorno de Test-Driven Development.

A pesar de los retos y dificultades, creemos que hemos realizado uno de los primeros

estudios sobre μbRPs, obteniendo algunas lecciones y observaciones, y provocando

discusiones relevantes que serían útiles en el trabajo futuro.

226

227

Appendix A

Initial Catalogue of μbRPs

1. Name: Inventory (Macasaet et al., 2014)

Context: This pattern has common micro-business inventory-related requirements. The basic
inventory process involves the storage, retrieval, or checking/verification of physical items by
an inventory clerk in a storage facility.

Keywords: item, inventory, storage, retrieval, warehouse, stock, stockroom, checking,
verification

Problem: The problem and requirements are about managing how inventory is stored,
retrieved, and managed in micro-businesses.

Solution: Several solutions could solve these problems such as manual recording, the use of
barcodes, and scanners, to name a few. Storing items can be done in one or several places.

228

229

Figure A.1 Inventory BPMN Example

230

2. Name: Sales (Macasaet et al., 2013)

Context: This pattern has common micro-business sales-related requirements. The basic
sales process involves a customer who is willing to purchase a product or solicit a service from
a micro-business in exchange for a monetary amount or any other means applicable (such as
coupons or gift cheques).

Keywords: sales, sale, point-of-sale, POS, online sale, cash, credit card, debit, cheque, gift
certificate, coupon

Problem: The problem and requirements are about managing how customers are shopping
and paying for items in micro-business establishments. Also, the micro-business has to record
sales activity for reporting purposes, internally and/or externally on a case-to-case basis.

Solution: The solutions could come in the form of automated point-of-sale “POS” systems
which involve payments in cash, credit card, coupons, to name a few or recording of such
sales manually.

231

232

Figure A.2 Sales BPMN Example

233

3. Name: Logistics

Context: This pattern involves recurring requirements related to logistics, supply chain, and
distribution in micro-businesses. The basic logistics process involves procurement of physical
goods, storage (see inventory μbRP), and distribution of physical goods to retailers or
distributors.

Keywords: logistics, supply chain, storage, distribution, physical goods, transportation

Problem: The problem and requirements are about managing the way micro-businesses are
sourcing, checking, distributing, and delivering items throughout their distribution network.

Solution: The various solutions for micro-businesses would be purchasing from suppliers,
distributing through delivery contractors, and sourcing internally through production and
delivery through in-house staff, to name a few.

234

235

Figure A.3 Logistics BPMN Example

236

4. Name: Production

Context: This pattern involves recurring requirements related to the production of goods in a
micro-business context. The basic production process includes use of input goods or material,
production of goods by means of machinery or labor, and storage of the finished goods in
inventory.

Keywords: production, manufacturing, labor, man days, overhead, machinery, cost of goods
sold “COGS”, finished goods, work-in-progress

Problem: The problem and requirements are about how the production of goods and items
are managed in a micro-business such as doing it in batches, by job, or flow. Other challenges
are the way production equipment is managed, dealing with excess, and shortages, to name
a few.

Solution: The solutions involve Just-in-time inventory “JIT”, Economic Order Quantity “EOQ”,
Activity Based Costing “ABC”, to name a few.

237

238

Figure A.4 Production BPMN Example

239

5. Name: Customer Relationship Management CRM

Context: This pattern involves recurring requirements related to the management of customer
relationships, mainly acquisition and retention, in a micro-business context. Customer
relationship management involves maintaining customer details, managing products bought
or services rendered to clients, including technical support and call centers, and marketing of
products and services both for existing and new customers.

Keywords: customer relationship management, CRM, customer data, new sales, marketing,
technical support, call center

Problem: The problem and requirements are about how to store customer data, how to inform
customers of new campaigns, how to manage customer feedback, and how to manage
returned items.

Solution: The solutions include in-house servers, cloud servers, traditional ads, social media
campaigns, website, mobile messaging, call centers, and ticketing systems.

240

241

Figure A.5 Customer Relationship Management BPMN Example

242

6. Name: Human Resources

Context: This pattern involves recurring requirements related to the management of human
resources in a micro-business context. Human resource management involves hiring ideal
candidates for the micro-business, retaining employees through competitive salaries and
benefits, monitoring time, attendance, and performance of employees, and the management
of labor costs for micro-business.

Keywords: Human Resource Management, Payroll, Benefits, Salaries, Time and Attendance,
Hiring, Employee, Labor

Problem: The problems and requirements are about how and what employee information is
stored, how to monitor employee performance and attendance, how to manage the hiring
pipeline, how to manage payroll and benefits, and how to manage the users of the system.

Solution: The solutions provided are storing employee fields such as name, address, birthday,
position, tax number, among others. Employee performance can be managed through
success criteria per role or by reaching quotas. Attendance can be checked using biometrics
or manually. Some proposed types of users for this system are admins, managers, and
employees. There are also proposed solutions on including benefits calculation for the
employees.

243

244

Figure A.6 Human Resources BPMN Example

245

7. Name: Accounting

Context: This pattern involves recurring requirements in the accounting processes of micro-
businesses. Accounting involves the input of journal entries onto ledgers which enable the
reporting of balance sheets, income statements, statements of cash flow, and other
government-required reports. Accounting principles vary from country to country but majority
will either follow Generally Agreed Accounting Principles "GAAP" or International Accounting
Standards "IAS."

Keywords: keywords: accounting, GAAP, IAS, balance sheet, income statement, cash flow,
general ledger, GL, journal entry, compliance

Problem: The problem and requirements are about which accounting standards are being
followed by the micro-business, how and when the micro-business files its taxes, the nature
of the accounting system and its reports, and the kinds of users of the system.

Solution: The solutions involve a system complying with Generally Agreed Accounting
Principles “GAAP” or International Accounting Standards “IAS”, maintaining and/or reporting
monthly, quarterly, semi-annually, and annually, having a system oriented towards financial
and/or managerial accounting including the nature of reporting, and the ability to maintain a
single or multiple currencies.

246

247

Figure A.7 Accounting BPMN Example

248

8. Name: Management

Context: This pattern involves recurring requirements in management reporting for micro-
businesses. Management reporting involves supporting decision makers with relevant
information on profitability, sales, costs, forecasts, and employee information.

Keywords: Management, Reporting, Profitability, Sales, Forecast, Costs, Employee Roster

Problem: The problems and requirements are about who makes the decisions and drives the
success of the micro-business, who the micro-business has to provide reports to, and where
and how these reports are stored and recorded.

Solution: The solution involves identifying stakeholders such as proprietors, partners,
investors, executives, management, and staff. The reports could be stored on local servers or
on the cloud and can be provided to tax authorities, local government, internal employees, or
the public. The cadence of reporting can be done monthly, quarterly, semiannually, or
annually.

249

250

Figure A.8 Management BPMN Example

251

9. Name: Restaurant

Context: This pattern involves a restaurant micro-business sourcing ingredients, making food,
and then provding the food for consumption for the customers

Keywords: ingredients, food, restaurant, delivery

Problem: The problem and the requirements are about how the micro-business sources its
ingredients, how the customers will place their orders to the restaurant micro-business, and
how the micro-business will deliver the food to the customers for their consumption.

Solution: The solutions provided involve: sourcing from the market, having ingredients
delivered by a third party, customers placing orders with an in-house menu, phone, website,
or mobile/app, having the customers consume the food in-house, have it deliverd to a
destination, or have the food picked up at the restaurant.

252

253

Figure A.9 Restaurant BPMN Example

254

10. Name: Online Retail Shop

Context: This pattern involves the micro-business selling items online, customer pays online,
and then micro-business ships item to the customer.

Keywords: online shopping, online payment, online activity monitoring

Problem: The problem and requirements are about how customers are looking for the items
they want to buy, how these items are presented online to the customers, how payment is
made by the customer, how customer reviews are made, how and where the data from the
online activity will be stored, and also how to track the delivery of the items to customers.

Solution: The solutions are search engines, filters, catalogs, presentation with images, video,
text, types of customer reviews, payment methods such as credit, debit, bank transfers, e-
wallets, saving customer data on local servers or in the cloud, and having a delivery tracking
system.

255

256

Sample Choices for Online Retail Shop

257

Figure A.10 Model of the modes or “options” of the Online Retail Shop

258

Figure A.11 Model of the Sample Online Store μbRP instantiation with “choices” and

“priorities”

259

Figure A.12 Model of a Component Diagram for the Online Retail Shop Sample

260

261

Appendix B

Languages and Notations in Practice

1. Business Process Modeling Notation “BPMN”

1.1 BPMN Concepts

The sequence flow defines the execution order of the activities in its supposed

chronological order. A sequence flow is considered as the default flow if all other conditions

for its execution are false. In a micro-business, the default flow from one activity to another

could be: a cashier gets the change from the cash register and by default, he or she hands

over the cash to the customer.

Figure B.1 BPMN Sequence Flows

Figure B.2 BPMN Example of a Default Flow

Another type of flow is a conditional flow. A conditional flow executes if the condition for its

execution holds true. In a micro-business, a conditional flow could be: if the customer pays in

cash more than what is billed then the customer will receive change and if not, the cashier will

simply accept the payment, put it in the cash register, and then simply thank the customer for

coming. Hence, the condition to give back change is dependent on the amount of cash paid

262

by the customer for his or her bill. The flows, both default and sequential, are shown below in

BPMN.

Figure B.3 BPMN Example of a Conditional Flow

The start event and an end event are where flows begin and end.

Figure B.4 BPMN Start and End Events

In a micro-business, the start event could be the moment when a customer walks into a

brick-and-mortar store while the end event could be the moment when a customer walks out

of the store.

Figure B.5 BPMN Example of Start and End Events

263

The activity task is a unit of work and is the job to be performed. When an activity task is

marked with a + symbol, it indicates the existence of a sub-process, an activity that can be

refined into more granular or specific jobs.

Figure B.6 BPMN Activity Task and Sub-Process

In a micro-business, an activity could be arranging grocery items in the store. A sub-process

could be arranging the items in the milk section depending on the requests and contracts with

each of the suppliers.

Figure B.7 BPMN Example of Activity Task and Sub-Process

A data object represents information flowing through a process such as a document, email,

or letter.

Figure B.8 BPMN Data Object

264

In a micro-business, this could be the receipt that is provided to a customer after he or she

pays for his or her merchandise at the store.

Figure B.9 BPMN Example of a Data Object

A data store is a place where the process can read or write data such as a database or a

filing cabinet. It exists even outside the whole process.

Figure B.10 BPMN data store

In a micro-business, when a customer pays by credit card, the credit card machine usually

produces a copy for the merchant or the micro-business and an optional copy for the customer

if he or she requests for their copy. If a micro-business decides to physically store these

merchant copies, they can be placed in a filing cabinet or another physical repository.

Figure B.11 BPMN Example of a data store

Pools and lanes represent responsibilities for activities in a process. A pool/lane may be an

organization, a role, or a system. Lanes further subdivide pools or other lanes hierarchically.

265

Figure B.12 BPMN Pools and Lanes

In a micro-business, a lane could be a role such as the cashier who is handling all the

payments of the customers at the brick-and-mortar store. Two roles such as the cashier and

the customer could form the pool that groups all on-site roles inside the brick-and-mortar store.

Figure B.13 Example of BPMN Example of Pools and Lanes

The exclusive gateway routes the sequence flow to exactly one of the outgoing branches.

When merging, it awaits one incoming branch to complete before triggering the outgoing flow.

Figure B.14 BPMN Exclusive Gateway

In a micro-business, this could be all the different payment types such as by cash, credit

card, or coupon all ending in the same way which is when the cashier provides a receipt to

the customer, regardless of their payment method.

266

Figure B.15 BPMN Example of an Exclusive Gateway

The inclusive gateway activates one or more outgoing flows. When merging, all active

incoming branches must complete before proceeding.

Figure B.16 BPMN Inclusive Gateway

In a micro-business food stall, this could be the moment after the customer pays and then

simultaneously, the cashier hands out the receipt to the customer and one of the kitchen staff

starts preparing the food for the customer.

267

Figure B.17 BPMN Example of an Inclusive Gateway

A parallel gateway splits the sequence flow and activates all outgoing branches

simultaneously. When merging, parallel branches wait for all incoming branches to complete

before triggering the outgoing flow.

Figure B.18 BPMN Parallel Gateway

In an online retail store micro-business, this could be the moment when a customer makes

an online order and prefers to pay by bank transfer. Before any merchandise is sent out, the

retailer must wait for the bank transfer to complete. Upon completion of the bank transfer, the

retailer can then ship the merchandise to the customer.

268

Figure B.19 BPMN Example of a Parallel Gateway

An event-based gateway is always followed by catching events or receiving tasks.

Sequence flow is routed to the subsequent event/task which happens first.

Figure B.20 BPMN Event-Based Gateway

In a micro-business, this event could be a customer who is complaining about his or her

food in a restaurant. When this happens, the subsequent activity is for a responsible role to

resolve the situation or to escalate the incident to his or her manager.

Figure B.21 BPMN Example of an Event-Based Gateway

269

A complex gateway has branching behavior that is not captured by the other gateways.

Figure B.22 BPMN Complex Gateway

In a micro-business, this could be a very specific case particular to the micro-business. For

instance, if a fast food restaurant gets a request from a customer to prepare his or her food in

a very specific way then depending on this request, certain activities will or will not take place.

There are some customers who do not prefer to have pickles on their burgers, have the burger

cooked in between medium rare and well done, and have slightly cooked onions. There are

just so many permutations on how you could prepare a burger in a fast food restaurant micro-

business.

Figure B.23 BPMN Example of a Complex Gateway

1.2 BPMN Micro-business Example

One example that could be used to apply the BPMN concepts in the previous subsection

is to illustrate the ordering process by customers at a fast food restaurant. First, the customer

enters the fast food restaurant and approaches a touch-screen panel where he or she can

place an order. The customer selects the food and drink items they would want and then they

are given the option to pay by credit card at the touch screen or to pay by cash at the counter.

If the customer pays by credit card then he or she is given a confirmation slip at the touch-

screen panel and can wait for his or her order at the food disbursement counter. If the customer

decides to pay by cash then he or she must proceed to the cashier and pay there physically.

270

When the payment is made, he or she can now wait for his or her order at the food

disbursement counter. When the food preparation staff of the fast food restaurant completes

the preparation of food, they hand the food out at the food disbursement counter to the

customers. At this point, the customers can select their seat at the fast food restaurant and

eventually enjoy their meal.

The illustration of the ordering process by customers at a fast food restaurant is presented

in the BPMN diagram below, using the concepts discussed in the previous subsection.

Figure B.24 BPMN Diagram of the ordering process of customers at a fast food restaurant

2. Softgoal Interdependency Graphs “SIGs”

2.1 SIGs Concepts

NFRs (or softgoals) are represented using a cloud, accompanied by a label which indicates

the NFR and what it pertains to in brackets “[].” Using SIGs, an NFR or softgoal is considered

as a goal which cannot be strictly satisfied but “satisficed,” meaning it is satisfied sufficiently,

Figure B.25 NFR or softgoal representation

271

In the micro-business domain, an NFR or softgoal could be the timeliness that a cashier

completes a transaction with a customer in a brick-and-mortar retail shop. How timely should

the cashier be in order to satisfy a customer?

Figure B.26 NFR or softgoal representation example

When decomposing or refining softgoals, “and” and “or” solid line connectors are used.

Figure B.27 AND Refining of Softgoals

Figure B.28 OR Refining of Softgoals

An example of refining softgoals in a micro-business could be refining the timeliness of a

transaction between the cashier and the customer into the responsiveness of the cash register

machine and the agility of the customer to make the payment.

272

Figure B.29 Refining of Softgoals Example

Interdependency arrows, indicating explicit or implicit relationships are used to connect

softgoals. Using SIGs, an explicit or direct relationship of softgoals is represented with a

directional arrow.

Figure B.30 SIG Direct or Explicit Softgoal Relationship

In a micro-business, an example of a direct relationship to a softgoal is that employing a

qualified cashier directly affects the responsiveness of the cash register machine. Without a

qualified cashier, the responsiveness of the cash register can not even be assessed.

Employing a qualified cashier is an operationalizing method which will be discussed in more

detail later.

Figure B.31 SIG Direct or Explicit Softgoal Relationship Example

273

Using SIGS, an indirect or implicit relationship of softgoals is represented with a broken

directional arrow.

Figure B.32 SIG Indirect or Implicit Softgoal Relationship

In a micro-business, an indirect relationship to a softgoal could be that the responsiveness

of the cash register machine may indirectly depend on various distractions at the store such

as noise levels, lighting, presence of children, among other things.

Figure B.33 SIG Indirect or Implicit Softgoal Relationship Example

In SIGs, a + sign above an interdependency arrow is used for a positive contribution that

helps satisfice a softgoal but does not satisfice it by itself.

Figure B.34 SIG Positive Direct Dependency Softgoal

Figure B.35 SIG Positive Indirect Dependency Softgoal

274

In a micro-business, an example could be that the qualified cashier directly and positively

affects the responsiveness of the cash register but does not entirely make the cash register

as responsive as possible. There are also other factors that directly affect the responsiveness

of the cashier such as the firmware of the cash register.

Figure B.36 SIG Positive Direct Dependency Softgoal Example

In SIGs, a ++ sign above an arrow is used to describe a strong positive contribution. As

such, can satisfice a softgoal by itself.

Figure B.37 SIG Strong Positive Direct Dependency Softgoal

Figure B.38 SIG Strong Positive Indirect Dependency Softgoal

275

In a micro-business, the security of a transaction at a cash register could be satisficed by

a biometric system incorporated into the cash register, only allowing approved cashiers to

execute transactions.

Figure B.39 SIG Strong Positive Direct Dependency Softgoal Example

In SIGs, a - sign above an arrow is used for a negative contribution that hampers the

achievement of a softgoal but does not, by itself, prevent satisficing the softgoal.

Figure B.40 SIG Negative Direct Dependency Softgoal

Figure B.41 SIG Negative Indirect Dependency Softgoal

In a micro-business, the noise level of children may contribute to distractions to the cashier

when making transactions at the cash register. These distractions could indirectly and

negatively affect the responsiveness of the cash register in completing a transaction for the

customer.

276

Figure B.42 SIG Negative Indirect Dependency Softgoal Example

In SIGS, a -- sign above an arrow is used for a strong negative contribution and by itself,

can hamper the achievement of the softgoal.

Figure B.43 SIG Strong Negative Direct Dependency Softgoal

Figure B.44 SIG Strong Negative Indirect Dependency Softgoal

Some micro-businesses decide to work and integrate with local banks only. Foreigners at

rural stores usually have credit or debit cards that some local cash registers can not recognize.

This means that an unacceptable payment method from a customer could entirely hamper the

responsiveness of the cash register to complete a transaction.

277

Figure B.45 SIG Strong Negative Direct Dependency Softgoal Example

When softgoals are refined, there comes a point where they can be operationalized.

Operationalizing methods are measurable (or estimate-able) elements which satisfice refined

softgoals. In SIGs, an operationalizing method is represented as a cloud in bold.

Figure B.46 SIG Operationalizing Method

In a micro-business, an operationalizing method could be a router or a network device

connected to a cash register which contributes to the responsiveness of the cash register. A

network device with a reliable connection allows the cash register to operate responsively.

Figure B.47 SIG Operationalizing Method Example

278

From an operationalizing method, an operationalization target link is used and directed

towards a target system which is a focal point where NFRs and FRs meet. In SIGs, an

operationalization target link is represented by a dash-dot-dash arrow.

Figure B.48 SIG Operationalization Target Link

In SIGs, a target system is represented with a rectangle.

Figure B.49 SIG Target System

In a micro-business, an operationalization target link can come from a router and be

directed towards the router’s firmware, a target system.

Figure B.50 SIG Operationalization Target Link and Target System Example

From the target system, a design decision link is used and is directed towards one or more

FRs which it satisfies (note: satisfice ≠ satisfy). In SIGS, a decision link is represented with a

directional arrow with a solid line. This is differentiated from the direct dependency arrow by

looking at where it originates, a target system, and where it points to, a functional requirement.

279

Figure B.51 SIG Design Decision Link

In a micro-business, the firmware on the network device could be able to completely satisfy

a functional requirement such as to have a minimum of 10 megabytes per second of both

upload and download speed 95% of the time.

Figure B.52 SIG Design Decision Link Example

An overview of SIGs and the NFR Framework, including the flow from an operationalizing

method to a Functional Requirement is shown in Figure B.53.

Figure B.53 Softgoal Interdependency Graphs “SIGs”

280

Other important labels that appear in SIGs are check marks when a softgoal is fulfilled

(or chosen to be implemented), cross marks X when a softgoal can not be realized (or chosen

not to be implemented), and exclamations ! when a softgoal is deemed to be critical or

important.

2.2 SIGs Micro-business Example

A micro-business example for the SIGs concepts in the previous subsection could be an

illustration of how the softgoals affect the touch screen in the fast-food restaurant example in

the previous subsection. A non-functional requirement that could be illustrated is reliability –

the ability of the entire system to perform what it is supposed to do and to perform it

consistently.

The softgoal of reliability could be further refined to reliability of the software and the

reliability of the hardware. In the refined softgoal of reliability of the hardware, a direct

dependency with a positive contribution can be linked to the operationalizing method which

would be a physical touch screen unit. The touch screen unit is linked to the target system via

an operationalization target link.

Fig. III.54 SIGs illustrating the softgoal of reliability in the fast food restaurant

281

3. Unified Modeling Language “UML”

3.1 Class Diagram (Structural)

A class is a template for creating objects in UML. In a micro-business software system, an

example of a class could be the register class for the actual cash register at the store.

3.1.1 Class Diagram (Structural) Concepts

A Class Diagram is represented as a rectangle with three sections. The top section is for

the name, the middle section is for the attributes, and the bottom section is for the operations.

The middle and bottom section in class diagrams are optional.

Figure B.55 A Class

In a micro-business software system, “register” could be the name of the class for the actual

cash register at the store.

Figure B.56 A Class Example

When a class composes and contains another class, a filled diamond is attached to the

class.

282

Figure B.57 A Class Composed of and Containing another Class

In a micro-business software system, a menu class can contain a product class since a

product that a customer can order in a fast food restaurant can be found in the menu.

Figure B.58 A Class Composed of and Containing another Class Example

When a class composes but does not contain another class, a hollow diamond is attached

to the class.

Figure B.59 A Class Composed of but not Contained by another Class

In a micro-business software system, the register class for the cash register could be

composed of but not contain the sale class.

283

Figure B.60 A Class Composed of but not Contained by another Class Example

Inheritance is indicated by a hollow arrow and refers to the ability of the child class to inherit

the functionality of the super class and add new functionality of its own.

Figure B.61 Inheritance among Classes

In a micro-business software system, the savings account class in the payroll system for

the employees could inherit all the functionalities of a bank account class in the payroll system

for the employees.

Figure B.62 Inheritance among Classes Example

An action of one class to another is indicated by a hollow arrow above the line that connects

both classes. The hollow arrow is usually accompanied by descriptive text of such action.

Figure B.63 Actions among Classes

284

In a micro-business, the kid’s set menu class could have an action that gives away the

crayons and paper placemat class.

Figure B.64 Actions among Classes Example

One-to-one, many-to-one, one-to-many, and many-to-many relationships are indicated with

1’s and *’s on the lines between the classes. The one-to-one relationship between classes is

shown in the figure below.

Figure B.65 One-to-one Relationship between Classes

In a micro-business, an example of a one-to-one relationship is the customer payment class

and the customer’s receipt class. There will always be only one customer’s receipt for every

unique payment that they have made.

 Figure B.66 One-to-one Relationship between Classes Example

The one-to-many relationship between classes is shown in the figure below.

285

Figure B.67 One-to-many Relationship between Classes

In a micro-business, an example of a one-to-many relationship is the product class to the

price class. One specific kind of product or item on the menu could have several different

prices depending on market demand or seasonality.

Figure B.68 One-to-many Relationship between Classes Example

The many-to-one relationship between classes is shown in the figure below.

Figure B.69 Many-to-one Relationship between Classes

In a micro-business, an example of a many-to-one relationship is the price class to the

product class (notice the position of the classes with respect to the word “to”). There could be

several different prices for a product depending on market demand and seasonality of a

product.

Figure B.70 Many-to-one Relationship between Classes Example

286

The many-to-many relationship between classes is shown in the figure below.

Figure B.71 Many-to-many Relationship between Classes

In a micro-business, an example of a many-to-many relationship is the relationship between

waiters and customers. One waiter can serve many customers and many waiters can serve

one customer.

Figure B.72 Many-to-many Relationship between Classes Example

3.1.2 Class Diagram (Structural) Example

In order to show how class diagrams (structural) could be applied in a micro-business

example, some classes in the system of the fast food restaurant example in the previous

sections could be illustrated. In this micro-business software system example, there is a

physical, brick-and-mortar fast food restaurant that exists. Each fast food restaurant has a

menu which customers can choose from. Each fast food restaurant has one or several touch

screens for customers to place their order and pay by credit card and one or several cashiers

where customers can pay in cash.

287

Figure B.73 A Sample Class Diagram (Structural) of the Fastfood Restaurant

3.2 Component Diagram (Structural)

Components are autonomous, encapsulated units in a system or subsystem that provides

one or more interfaces. For example, a Point-of-Sale (POS) component forms part of an entire

micro-business software system. After discussing concepts of component diagrams

(structural), an example of a component diagram as part of a micro-business software system

is provided at the end of this subsection.

3.2.1 Component Diagram (Structural) Concepts

Component representation is made with a rectangle and a component symbol on the upper

right corner.

Figure B.74 Representation of a Component

288

The provided interface of a component is represented by a circle connected to a line to the

component.

Figure B.75 The Provided Interface of a Component

The required interface of a component is represented by a half circle connected to a line to

the component.

Figure B.76 The Required Interface of a Component

Connecting components with their provided and required interfaces is represented with the

circle connecting to the half circle among components. In a micro-business software system,

a Point-of-Sale component may require an Employee component if it needs to verify the

identity of the user before it records any transactions.

Figure B.77 Connecting the Required and Provided Interface among Components

289

3.2.2 Component Diagram (Structural) Example

A micro-business example that could be used to show the concepts of the Component

Diagram (Structural) discussed in the previous subsection would be to illustrate some of the

software components of the fast food restaurant example in the previous section. The software

of the fast food restaurant is composed of a point-of-sale (POS) component which takes the

orders and collects payments from customers. There is an inventory component which tracks

the ingredients used to prepare the food until they are in their final form to be consumed by

the customer. There is an employee management component which tracks the time-in and

time-out of employees. Only employees that are timed-in are allowed access to all the other

software components in the fast food restaurant system.

Figure B.78 Component Diagram (Structural) Example of the fast food restaurant software

290

291

Appendix C

Action Research Material for Micro-businesses

(Everything in Appendix C is available on http://www.pentathlonsystems.com/ar4mb.html)

1. Sample Form used to Evaluate μbRP Diagram Comprehensibility

292

293

2. μbRP User Guide

Micro-business Requirements Patterns

User Guide v5.2

294

Micro-business Requirements Patterns

Contents ……………………………………………………………………………….….2

Part 1. Overview of the Approach

 1.1 User Pre-requisites……………………………………………………………3

 1.2 Tool Support……………………..…………………………………………….3

 1.3 Source Publication………………………………………….………………...4

 1.4 Other Sources…………………………………………………………………4

 1.4 Activities in the Approach…………………………………………………….5

 1.4.1 Observation of Micro-businesses…………………………………6

 1.4.2 Identification of Common and Varying Requirements………….6

 1.4.3 Tabulation (Table Sample)…………………………………….7 (8)

 1.4.4 Iterations…………………………………………………………….9

 1.4.5 Complementary Implementation Notes…………………….……9

Part 2. Representation in the Approach

 2.1 Core Concepts...……………………………..………………………..……..10

 2.2 Modes/Options and Choices/Answers….………………………………….10

2.3 Using Labels………..………………………………………………………..11

 2.4 Combining BPMN and SIGs..………………………………………………12

 2.5 Software Components………………………………………………………13

2.6 Evaluation of the Approach………………………………………………...14

 2.6.1 Evaluation of Suitability..………………………………………….14

 2.6.2 Evaluation of Comprehensibility…………………………………15

295

Part 1. Overview of the Approach

1.1 User Pre-requisites

It is recommended to have an understanding of UML, BPMN, SIGs, and a year of
software development experience when using this approach. Refresher tutorials for
these notations are available at http://pentathlonsystems.com/ar4mb.html

1.2 Tool Support

The following tools are recommended for use with this approach. Exercises are
available at http://pentathlonsystems.com/tutorials/Tutorial%204%20-
%20Available%20Tools.pptx

1.2.1 RE-Tools

RE-tools is capable of diagramming and representing BPMN + SIGs + components +
the custom pattern labels discussed in this user guide. Below is the download link:

https://personal.utdallas.edu/~chung/Sam_Supakkul/RE-Tools/index.html

1.2.2. StarUML

StarUML is an open-source project to develop fast, flexible, extensible, featureful,
and freely-available UML/MDA platform running on Win32 platform. The goal of the
StarUML project is to build a software modeling tool and also platform that is a
compelling replacement of commercial UML tools. Below is the download link:

http://staruml.sourceforge.net/en/download.php

296

1.3 Source Publication

The following is the publication citation related to this user guide. It is highly
recommended to read this publication. The download link provided by the
Journal of Universal Computer Science:

https://www.jucs.org/jucs_25_7/micro_business_requirements_patterns/

An evaluator’s copy may be requested from the primary author at any time. The
citation is as follows:

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung,
L. (2019). Micro-business Requirements Patterns in Practice: Remote
Communities in Developing Nations. Journal of Universal Computer Science JUCS
25 (7), (pp. 764-787).

1.4 Other Sources

Kotonya, G. & Sommerville, I. (2003). Requirements Engineering: Processes and
Techniques. England. John Wiley and Sons Limited.

Kouroshfar, E., Shahir, H. Y. & Ramsin, R. (2009). Process Patterns for Component-
Based Software Development. In G. A. Lewis, I. Poernomo & C. Hofmeister (eds.),
CBSE (pp. 54-68). Springer. ISBN: 978-3-642-02413-9. doi: 10.1007/978-3-642-
02414-6_4

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S. &
Chung, L. (2013). A requirements-based approach for representing micro-business
patterns. In R. Wieringa, S. Nurcan, C. Rolland & J.-L. Cavarero (eds.), Proceedings
of the IEEE 7th International Conference on Research Challenges in Information
Science RCIS 2013, (pp.1-12), IEEE. ISBN: 978-1-4673-2912-5. doi:
10.1109/RCIS.2013.6577703

297

1.5 Activities in the Approach

An overview of the approach is presented below, followed by a step-by-step
summary of the activities.

Figure 1. Overview of the Approach, adapted from Macasaet et al., 2019

298

1.4.1 Observation of Micro-businesses

1) List down goals and requirements of two or more micro-businesses.

2) Decompose goals into requirements. Below is a sample of how Kotonya and
Sommerville perform this activity.

Figure 2. Decomposing goals into requirements by Kotonya and Sommerville, 2003

3) Divide requirements into: functional and non-functional.

1.4.2 Identification of Common and Varying Requirements

1) Group the common requirements. The minimum number of common
requirements to constitute a pattern is 2 (If there was nothing in common,
there would be no pattern in the first place). On the next page is a brief
example of how requirements are grouped and diagrammed.

2) A pattern diagram is a visual representation of the requirements in terms of
(business) processes as shown on the next page. BPMN is recommended to
illustrate the processes but other languages such as UML may be used.

3) Identify uncommon requirements.

299

Figure 3. Grouping common requirements, adapted from Macasaet et al., 2013

1.4.3 Pattern Tabulation

Tabulating the requirements data helps organize the requirements (common and
uncommon). In order to tabulate a pattern, a requirement(s) is (are) transformed into
a non-technical form, such as a business-type question, e.g.

From (Requirement):

 display available products online (μb side)

To (Non-technical form):

 does the customer shop online?

This is done in order to group the common requirements as shown on the next page.

300

Table I. Requirements in a Table

301

1.4.4 Emergence of patterns in succeeding iterations

For every succeeding micro-business, the software developer does the same
activities of observing and listing down requirements. The new list of requirements is
compared to all other existing requirements. Similar and varying requirements are
identified. Similar requirements are grouped as previously explained. If there are no
similar requirements then software components are simply developed to
satisify/satisfice the requirements.

1.4.5 Complementary Implementation Notes

Due to the complexity of NFRs, complementary implementation notes are normally
added by the software developer in order to satisfice the NFRs. Examples of
complementary implementation notes are shown below.

“discuss reliability of hosting servers and internet providers”

“bill the client on a project-basis or on a subscription-basis”

“hire more staff in order to reduce the time to complete the project”

302

Part 2. Representations in Micro-business Requirements Patterns

2.1 Core Concepts

Goals and sub-goals are decomposed into requirements. Micro-business processes
satisfy/satisfice the goals of the business. Requirements are classified as functional or
non-functional. Software components satisfy/satisfice the requirements. Software
components realize the micro-business requirements patterns.

2.2 Modes/Option and Choices/Answers

The micro-business requirements pattern has questions which have modes/options
and choices/answers. First, a question is [done as] a mode and then the micro-
business owner [chooses] the answer(s). This concept is shown below:

Figure 4. The question has a mode/option and a choice/answer

303

2.3 Using Labels

When using BPMN diagrams, it is recommended to label business processes. For
example, a [done as] label can be placed which links a business process activity to
its modes. This could help (other) developers identify possible solutions. An example
of a [done as] label which represents modes from Table I is shown below:

Figure 5. Placing a [done as] label on the modes of micro-business requirements patterns

304

2.4 Combining BPMN and SIGs

Combining both BPMN and SIGs through an “operationalization target link” allows
developers and users to see how the non-functional requirements relate to the
activities in a business process. The concept is shown below.

Figure 6. An example of combining BPMN and SIGs in one diagram

305

2.5 Software Components

2.5.1 Placement of components in the diagrams

Business analysts may already find the aforementioned models sufficient to
understand and utilize patterns but software developers may want to represent the
placement of components in their diagrams as well. Components may be placed in
between the operationalizing method which contributes to the component’s function
and the business activity which the component supports.

Figure 7. Placement of component representations

306

2.6 Evaluation of the Approach

2.6.1 Evaluation of Suitability

Evaluation is done in the style of “Action Research.” The approach author will
participate and try to promote the approach when it is being applied in a
software project. Users provide feedback and results when the approach is
applied. The approach author may be contacted at any time for questions at
rjmacasaet@pentathlonsystems.com

1. Take note of how many times you reused software components before
applying this approach AND the overall duration of the software project in man
days (you may round-up man days, i.e., if 8 hours of development time by one
person is 1 man day then 9 hours would be rounded-up to 2-man days.)

2. In a similar software project (as similar as possible), take note of how many
times you reused software components after applying this approach AND the
overall duration of the software project. You may have as many “similar
projects” as possible.

3. Did the approach help promote the reuse of software components?

Yes or No? Describe your experience with the approach.

4. Would you recommend any improvements to the approach?

307

2.6.2 Evaluation of Comprehensibility

2.6.2.1 Sample Diagram Comprehensibility Form

The form below may be used to evaluate whether a micro-business
owner/stakeholder comprehends the diagrams used in this approach.

Figure 8. Sample Diagram Comprehensibility Form

2.6.2.2 Diagram Comprehensibility Evaluation Test

Visit www.pentathlonsystems.com/eval3.html and complete the evaluation.

--- End of User Manual ---

308

3. Tutorials

3.1 Tutorial 1 – Basic BPMN and SIGs

309

310

3.2 Tutorial 2 – Pattern Representation

311

312

3.3 Tutorial 3 – Component Representation

313

3.4 Tutorial 4 – Available Tools

3.5 Tutorial 5 – UML

314

315

4. BPMN Quick Reference Sheet (care of bpmb.de)

316

5. SIGs Quick Reference Sheet

317

Bibliography

ABB. (2013). ABB Automation Products. Last accessed on October 6, 2013 at
http://www.abb.com/

Adolph, S., Hall, W. & Kruchten, P. (2011). Using Grounded Theory to study the experience
of software development. Empirical Software Engineering, 16, (pp. 487-513).
doi:10.1007/s10664-010-9152-6

Ahmad, K. & Zabri, S. (2018). The mediating effect of knowledge of inventory management
in the relationship between inventory management practices and performance: The case of
micro retailing enterprises. Journal of Business and Retail Management Research, 12, 2.
(pp. 83-93). doi: 10.24052/JBRMR/V12IS02/TMEOKOIMITRBIMPAPTCOMRE

Akkaoui, Z. E. & Zimányi, E. (2009). Defining ETL workflows using BPMN and BPEL. In I.-Y.
Song & E. Zimányi (eds.), DOLAP (pp. 41-48), ACM. ISBN: 978-1-60558-801-8

Akkaoui, Z. E., Zimányi, E., Mazón, J.-N. & Trujillo, J. (2011). A model-driven framework for
ETL process development. In I.-Y. Song, A. Cuzzocrea & K. C. Davis (eds.), DOLAP (pp. 45-
52), ACM. ISBN: 978-1-4503-0963-9

Albert, C. & Brownsword, L. (2002). Evolutionary Process for Integrating COTS-Based
Systems (EPIC). CMU/SEI Technical Report CMU/SEI-2002-TR-005, 2002
url: ftp://ftp.sei.cmu.edu/public/documents/02.reports/pdf/02tr005.pdf

Aleksy, M. & Stieger, B. (2011). Mobile Service Business Patterns. In Proceedings of the IEEE
25th International Conference on Advanced Information Networking and Applications AINA
(pp. 62-68). IEEE. doi: 10.1109/AINA.2011.74

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S.
(1977). A Pattern Language. Oxford University Press, New York.

Alonso, A., Kok, S., Sakellarios, N., & O’Brien, S. (2018). Micro-enterprises, self-efficacy and
knowledge acquisition: Evidence from Greece and Spain. Journal of Knowledge
Management 23 (3), (pp.419-438). doi: 10.1108/JKM-02-2018-0118

Alrajeh, D., Kramer, J., Russo, A. & Uchitel, S. (2009). Learning operational requirements from
goal models. ICSE (pp. 265-275), IEEE. ISBN: 978-1-4244-3452-7

Alrajeh, D., Kramer, J., Russo, A. & Uchitel, S. (2013). Elaborating Requirements Using Model
Checking and Inductive Learning. IEEE Trans. Software Eng., 39, (pp. 361-383).

Alsanoosy, T,, Spichkova, M., & Harland, J. (2018). Cultural influences on the requirements
engineering process: lessons learned from practice. In: 2018 23rd International Conference
on Engineering of Complex Computer Systems (ICECCS). IEEE, (pp 61–70)

Alsanoosy, T., Spichkova, M. & Harland, J. (2020) Cultural influence on requirements
engineering activities: a systematic literature review and analysis. Requirements Eng 25,
(pp. 339–362). https://doi.org/10.1007/s00766-019-00326-9

Álvarez, J. A. T., Nicolás, J., Moros, B. & Garcia, F. (2002). Requirements Reuse for Improving
Information Systems Security: A Practitioner's Approach. Requir. Eng., 6, (pp. 205-219).

318

Allen, C. (2001). Realizing e-business with components. Addison-Wesley, Harlow, Boston

Allen, T. (1977). Managing the Flow of Technology. MIT Press

Alnusair, A., & Zhao, T. (2010). Component Search and Reuse: a ontology-based approach.
In proceedings of the IEEE International Conference on Information Reuse and Integration
IRI, (pp. 258-261).

Ambler, S. (2002). Agile modeling. John Wiley and Sons

Ampatzoglou, A. & Chatzigeorgiou, A. (2007). Evaluation of object-oriented design patterns in
game development. Information and Software Technology, 49 (May (5)), (pp. 445–454),
Elsevier. doi:10.1016/j.infsof.2006.07.003.

Aranda, J., Easterbrook, S. M. & Wilson, G. (2007). Requirements in the wild: How small
companies do it. Requirements Engineering RE (pp. 39-48), IEEE. ISBN: 0-7695-2935-6. doi:
10.1109/RE.2007.54

Aranda, J. (2010). Playing to the Strengths of Small Organizations. In Proceedings of the 1st
Workshop on RE in Small Companies RESC, (pp. 141-144). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Arnold, H. (1982). Moderator variables: A clarification of conceptual, analytic, and
psychometric issues, Organizational Behavior and Human Performance, (29) 2, (pp. 143-174),
ISSN 0030-5073, doi:10.1016/0030-5073(82)90254-9

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst,, J., & Zettel, J. (2002). Component based product line engineering with UML.
Addison-Wesley.

Atkinson, C., Bayer, J., Laitenberger, O., Zettel, J. (2000). Component-based Software
Engineering: The KobrA Approach. In 22nd International Conference on Software Engineering
(ICSE 2000), 3rd International Workshop on Component-based Software Engineering,
Limerick, Ireland

Atlassian. (2021). Atlassian. Last accessed on January 30, 2021 on www.atlassian.com

Azar, J., Smith, R.K., & Cordes, D. (2007). Value-oriented requirements prioritization in a
small development organization, IEEE software, vol. 24, no. 1, (pp. 32–37)

Bae, D.-H. (2007). Software Process Improvement for Small Organizations. COMPSAC (1).
(p. 17). IEEE Computer Society. ISBN: 978-0-7695-2870-0.
doi:10.1109/COMPSAC.2007.193

Bagozzi, R. P. (1980). Causal models in marketing. New York, NY: Wiley. ISBN: 0471015164

Ballurio, K., Scalzo, B. & Rose, L. (2002). Risk Reduction in COTS Software Selection with
BASIS.. In J. C. Dean & A. Gravel (eds.), ICCBSS (pp. 31-43), Springer. ISBN: 3-540-43100-
4

Bandara, A. K., Lupu, E. C., Moffett, J., Heslington & Russo, A. (2004). A Goal-based
Approach to Policy Refinement. Proceedings of the Fifth IEEE International Workshop on

319

Policies for Distributed Systems and Networks, POLICY 2004, (pp. 229-239), doi:
10.1109/POLICY.2004.1309175

Baron, R. & Kenny, D. (1986). The moderator-mediator variable distinction in social
psychological research: Conceptual, strategic, and statistical considerations. Journal of
personality and social psychology, 51, (pp. 1173—1182). doi:10.1037/0022-3514.51.6.1173

Barros, O. (2007) Business process patterns and frameworks: Reusing knowledge in process
innovation. Business Process Management Journal, 13 (1), (pp. 47-69). doi:
10.1108/14637150710721122

Beck, K. (2005). Extreme Programming Explained: Embrace Change; 2nd Edition. Addison-
Wesley Professional

Berczuk, S.P., (2003). Software Configuration Management Patterns: Effective Teamwork,
Practical Integration. Addison-Wesley Professional, 2003

Bhuta, J., Mattmann, C., Medvidovic, N. & Boehm, B. W. (2007). A Framework for the
Assessment and Selection of Software Components and Connectors in COTS-Based
Architectures. Working IEEE/IFIP Conference on Software Architecture WICSA. (p. 6). IEEE
Computer Society. ISBN: 978-0-7695-2744-4. doi: 10.1109/WICSA.2007.2

Bilandzic, M. & Venable, J. (2011). Towards Participatory Action Design Research: Adapting
Action Research and Design Science Research Methods for Urban Informatics. J. Community
Informatics, 7. Last accessed on October 9, 2013 at http://ci-
journal.net/index.php/ciej/article/view/786/804

Bishop, M. (2003). Computer Security: Art and Science. Addison Wesley

Bizagi. (2013). Bizagi Business Process Management. Last accessed on October 6, 2013 on
https://www.bizagi.com/

Blau, P. & Schoenherr, R. (1971). The Structure of Organizations. Basic Books

Boehm, B. W. (2000). Requirements that Handle IKIWISI, COTS, and Rapid Change.. IEEE
Computer, 33, (pp. 99-102).

Boehm, B. W., Port, D., Yang, Y., Bhuta, J. & Abts, C. (2003). Composable Process Elements
for Developing COTS-Based Applications.. ISESE (pp. 8-17), : IEEE Computer Society. ISBN:
0-7695-2002-2

Bosch, J. (2000). Design and use of software architectures. Addison-Wesley, England

Boukheduoma, S., Oussalah, M., Alimazighi, Z., & Tamzalit, D. (2013). Adaptation Patterns
for Service-Based Inter-Organizational Workflows. In Proceedings of the IEEE 7th International
Conference on Research Challenges in Information Science RCIS, (pp. 1-10). IEEE. doi:
10.1109/RCIS.2013.6577722

Brennan, R., Canning, L., & McDowell, R. (2008). Business-to-Business-Marketing, Sage
Publications Limited, London

Brito, F. & Abreu, E. (1995). The MOOD metric set. In proceedings of ECOOP ’95 Workshop
on Metrics

320

Budgen, D., Turner, M., Brereton, P., & Kitchenham, B. (2008). Using mapping studies in
software engineering. in 20th Annual Psychology of Programming Interest Group Conference,
PPIG. Lancaster University, United Kingdom

Buschmann, F., & Meunier, R. (1995). A System of Patterns. Pattern Languages of Program
Design, 1, May, 1995, (pp. 325-343).

Bürsner, S. & Merten, T. (2010). RESC 2010: 1st Workshop on Requirements Engineering in
Small Companies’, in Workshop Proceedings of Requirements Engineering for Software
Quality REFSQ 2010, ICB-Research Report no. 40, October 2010, (pp. 128-130). url:
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Cardoso, E., Almeida, J., Guizzardi, R., & Guizzardi, G. (2011). A Method for Eliciting Goals
for Business Process Models Based on Non-Functional Requirements Catalogues.
International Journal of Information System Modeling and Design, 2 (2), (pp. 1-18) doi:
10.4018/jismd.2011040101

Carver, J. (2006). The Use of Grounded Theory in Empirical Software Engineering. In V. R.
Basili, H. D. Rombach, K. Schneider, B. A. Kitchenham, D. Pfahl & R. W. Selby (eds.),
Empirical Software Engineering Issues (pp. 42). Springer. ISBN: 978-3-540-71300-5. doi:
10.1007/978-3-540-71301-2_15

Chandler, P., & Sweller, J. (1991). Cognitive Load Theory and the Format of Instruction.
Cognition and Instruction (8:4), (pp. 293-332)

Charmaz, K. (2006). Constructing Grounded Theory: a practical guide through qualitative
analysis. London; Thousand Oaks, Calif.: Sage Publications.

Cheesman, J., Daniels, J. & Szyperski, C. (ed.) (2001). UML Components - A Simple Process
for Specifying Component-Based Software. Addison-Wesley.

Chung, L., Nixon, B., Yu, E. & Mylopoulos, J. (2000). Non-functional Requirements in Software
Engineering. Boston, Dordrecht, London. Kluwer Academic Publishers.

Chung, L., Supakkul, S., Subramanian, N., Garrido, J. L., Noguera, M., Hurtado, M. V.,
Rodríguez, M. L. & Akhlaki, K. B. (2011). Goal-Oriented Software Architecting.. In P. Avgeriou,
J. Grundy, J. G. Hall, P. Lago & I. Mistrík (ed.), Relating Software Requirements and
Architectures, (pp. 91-109). Springer. ISBN: 978-3-642-21000-6.

Chung, L., Hill, T., Legunsen, O., Sun, Z., Dsouza, A. & Supakkul, S. (2013). A goal-oriented
simulation approach for obtaining good private cloud-based system architectures. Journal of
Systems and Software, 86, (pp. 2242-2262). doi: 10.1016/j.jss.2012.10.028

Clements, P., Kazman, R., & Klein, M. (2002). Evaluating software architectures: methods and
case studies. Addison-Wesley, Boston

Comella-Dorda, S., Dean, J. C., Morris, E. & Oberndorf, P. (2002). A Process for COTS
Software Product Evaluation. In J. C. Dean & A. Gravel (eds.), COTS-Based Software
Systems, First International Conference, ICCBSS <p> 2002, Orlando, FL, USA, February 4-
6, 2002, Proceedings (pp. 86--96), Berlin, u.a.: Springer Verlag.

Coplien, J.O. (1995a). A development process generative pattern language, AT&T Bell
Laboratories. url: http://www.bell-labs.com/people/cope/Patterns/Process/index.html last
accessed on October 6, 2013

321

Coplien, J.O. (1995b). A generative development-process pattern language. In: Coplien, J.O.,
Schmidt, D.O. (Eds.), Pattern Languages of Program Design. Addison Wesley, Reading, MA,
(pp. 183-237)

Crabtree, C. A., Seaman, C. B. & Norcio, A. F. (2009). Exploring language in software process
elicitation: A Grounded Theory approach. ESEM (pp. 324-335), ISBN: 978-1-4244-4842-5.
doi: 10.1109/ESEM.2009.5315984

Creswell, J. W. (ed.) (1994). A Qualitative Procedure in Research Design. Qualitative and
Quantitative Approaches. London and New Delhi. Sage.

Crnkovic, I., Hnich, B., Johnson, T., Kiziltan, Z., (2002). Specification, implementation, and
deployment of components. Communications, Association of Computing Machinery 45
(October (10)), (pp. 35–40). doi: 10.1145/570907.570928

Crnkovic, I. & Larsson, M. (2000). A Case Study: Demands on Component-based
Development. ICSE'2000 -- International Conference on Software Engineering (pp. 23-31),
Limerick, Ireland. doi: 10.1109/ICSE.2000.870393

Crnkovic, I. & Larsson, M. (2002). Challenges of component-based development. Journal of
Systems and Software, 61, (pp. 201-212). doi: 10.1016/S0164-1212(01)00148-0

Cugola, G. & Ghezzi, C. (1998). Software processes: a retrospective and a path to the future.
Software Process: Improvement and Practice, 4, (pp. 101-123). doi: 10.1002/(SICI)1099-
1670(199809)4:3$<$101::AID-SPIP103$>$3.0.CO;2-K

Davis, J. A. (1985). The Logic of Causal Order (Vol. 07-055). Beverly Hills, London, New Delhi:
Sage.

Davis, C.J., Fuller, R.M., Tremblay, M.C., & Berndt, D.J. (2006). Communication Challenges
in Requirements Elicitation and the Use of the Repertory Grid Technique. In Journal of
Computer Information Systems, 46, (5), 78. url:
http://www.uta.edu/faculty/richarme/MARK%205338/Davis%20repertory%20grid.pdf

Desarrollo TIC. (2018). Desarrollo TIC. Last accessed on December 15, 2018 at
http://www.desarrollotic.com

DPDL. (2013). Design Pattern Definition Language DPDL. Last accessed on October 6, 2013
on http://alshayeb.com/DPDL/

Dobing, B., & Parsons, J. (2006). How UML is Used. Communications of the ACM 49:5, (pp.
109-113)

dos Santos, P. S. M. & Travassos, G. H. (2009). Action Research use in software engineering:
An initial survey. ESEM (pp. 414-417). ISBN: 978-1-4244-4842-5. doi:
10.1109/ESEM.2009.5316013

dos Santos, P. S. M. & Travassos, G. H. (2011). Action Research Can Swing the Balance in
Experimental Software Engineering. Advances in Computers, 83, (pp. 205-276). doi:
10.1016/B978-0-12-385510-7.00005-9

Drew, C.J. & Hardman, M.L. (1985). Designing and Conducting Behavioral Research.
Pergamon, New York, NY.

322

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1999). Patterns in Property Specifications for
Finite-State Verification. In B. W. Boehm, D. Garlan & J. Kramer (eds.), ICSE (pp. 411-420).
ACM. ISBN: 1-58113-074-0. DOI: 10.1145/302405.302672.

Dybå, T. (2003). Factors of software process improvement success in small and large
organizations: an empirical study in the Scandinavian context. ESEC / SIGSOFT FSE (pp.
148-157), ACM. doi: 10.1145/940071.940092

Eden, A. (1999). Precise Specification of Design Patterns and Tool Support in Their
Application. PhD Thesis, University of Tel Aviv, Israel, 1999.

El-Boussaidi, G. & Mili, H. (2012). Understanding design patterns - what is the problem?
Software: Practice and Experience, 42, (pp. 1495-1529). doi: 10.1002/spe.1145

Elizondo, P. V. & Lau, K.-K. (2010). A catalogue of component connectors to support
development with reuse. Journal of Systems and Software, 83, (pp. 1165-1178). doi:
10.1016/j.jss.2010.01.008

Emam, K. E. & Madhavji, N. H. (1995). A field study of requirements engineering practices in
information systems development. Requirements Engineering, pp. 68-80, IEEE Computer
Society.

European Commission. (2013). User Guide to the SME Definition. Last accessed on April 3,
2021 at
https://ec.europa.eu/regional_policy/sources/conferences/state-
aid/sme/smedefinitionguide_en.pdf

Everyware. (2018). Everyware Technologies. Last accessed on December 15, 2018 at
http://www.everywaretech.es

Fayad, M. Laitinen, M., & Ward, R. (2000). Thinking objectively: software engineering in the
small, Communications of the ACM 43, (pp. 115-118). doi: 10.1145/330534.330555

Firesmith, D. (2004). Specifying Reusable Security Requirements.. Journal of Object
Technology, 3, 61-75.

Fowler, M. (1997). Analysis patterns: Reusable Object Models. Addison Wesley Longman,
Inc.

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley
Professional

France, R., Kim, D.-K., Ghosh, S. & Song, E. (2004). A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering, 30, (pp. 193-206). doi:
10.1109/TSE.2004.1271174

France, R., Kim, D., Song, E., Ghosh, S. (2002). Role-Based Modeling Language (RBML)
Specification v1.0. Technical Report 02-106, Computer Science Department, Colorado State
University, Fort Collins, Colorado, June, 2002

Franch, X., Palomares, C., Quer, C., Renault, S. & Lazzer, F. D. (2010). A Metamodel for
Software Requirement Patterns. In R. Wieringa & A. Persson (eds.), Requirements

323

Engineering for Software Quality REFSQ (pp. 85-90), Springer. ISBN: 978-3-642-14191-1.
doi: 10.1007/978-3-642-14192-8_10.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley.

Garlan, D., Allen, R. & Ockerbloom, J. (1995). Architectural Mismatch or Why It's Hard to Build
Systems Out Of Existing Parts. In D. E. Perry, R. Jeffrey & D. Notkin (eds.), ICSE (pp. 179-
185), ACM. ISBN: 0-89791-708-1

Gemino, A., & Wand, Y. (2005). Complexity and Clarity in Conceptual Modeling: Comparison
of Mandatory and Optional Properties. Data & Knowledge Engineering 55:3, (pp. 301-326)

Georgakopoulos, D. & Jayaraman, P.P. (2016) Internet of Things: from internet scale
sensing to smart services. Computing 98(10), pp. 1041–1058

Ghobadian, A. & Gallear, D. (1997) TQM and organization size. International Journal of
Operations & Production Management, 17, (pp. 121-163)

Glaser, B. G., Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research. New York, NY: Aldine de Gruyter.

Glushko, R.J. & McGrath, T. (2002). Document engineering for e-business. ACM Symposium
on Document Engineering, pp. 42-48, ACM

Glushko, R., & McGrath, T. (2008). Document Engineering – Analyzing and Designing
Documents for Business Informatics and Web Services. Cambridge, MA, USA. MIT Press.

Goldkuhl, G. (2008). Practical Inquiry as Action Research and Beyond. In W. Golden, T. Acton,
K. Conboy, H. van der Heijden & V. K. Tuunainen (eds.), ECIS (pp. 267-278). Last accessed
on October 9, 2013 at http://aisel.aisnet.org/ecis2008/118

Goldkuhl G. (2012). From Action Research to practice research. Australasian Journal of
Information Systems, 17, 2, (pp. 57-78). url:
http://dl.acs.org.au/index.php/ajis/article/view/688.

Grant, D. & Ngwenyama, O. K. (2003). A report on the use of Action Research to evaluate a
manufacturing information systems development methodology in a company. Inf. Syst. J., 13,
(pp. 21-36). doi: 10.1046/j.1365-2575.2003.00137.x

Gregory, D. & Ward, H. (1974). Statistics for Business Studies. McGraw-Hill, London, England.

Greyfinch. (2019). Greyfinch.com. Last accessed on August 17, 2018

Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F. & Susi, A. (2013). Comparing
the comprehensibility of requirements models expressed in Use Case and Tropos: Results
from a family of experiments. Information & Software Technology, 55, (pp. 1823-1843). doi:
10.1016/j.infsof.2013.05.003.

Harel, D. & Pnueli, A. (1985). On the Development of Reactive Systems. Logics and models
of concurrent systems, (pp. 477-498)

Happel, H.J., Maalej, W., & Seedorf, S. (2010). Applications of ontologies in collaborative
software development. In I. Mistrík, J. Grundy, A. Hoek, & J. Whitehead (Eds.), Collaborative

324

Software Engineering (pp. 109-129). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-
10294-3_6

Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., & Svendsen, A. (2008). Adding
Standardized Variability to Domain Specific Languages. In Proceedings of the 12th
International Software Product Line Conference SPLC, (pp. 139–148). doi:
10.1109/SPLC.2008.25v

Hoffmann, A., Söllner, M. & Hoffmann, H. (2012a). Twenty Software Requirement Patterns to
Specify Recommender Systems that Users will Trust. ECIS. (p. 185) Last accessed on
October 9, 2013 at http://aisel.aisnet.org/ecis2012/185

Hoffmann, A., Söllner, M., Hoffmann, H. & Leimeister, J. M. (2012b). Towards trust-based
software requirement patterns. RePa, (pp. 7-11), IEEE. ISBN: 978-1-4673-4374-9

Hruby, P. (2006). Model-Driven Design Using Business Patterns. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

Hsueh, N.-L., Chu, P.-H. & Chu, W. C. (2008). A quantitative approach for evaluating the
quality of design patterns. Journal of Systems and Software, 81, (pp. 1430-1439). doi:
10.1016/j.jss.2007.11.724

Huston, B. (2001). The effects of design pattern application on metric scores. Journal of
Systems and Software, 58, (pp. 261-269). doi: 10.1016/S0164-1212(01)00043-7

IBM WSC. (2012). IBM WebSphere Commerce. Last accessed on October 6, 2013 at
http://pic.dhe.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

IEEE Computer Society. (1990). IEEE Standard Glossary of Software Engineering
Terminology. IEEE Standard

Immes, S. (1993). Wahrgenommenes Risiko bei der industriellen Kaufentscheidung, Trier

International Organization for Standardization (ISO). (2011). ISO/IEC DTR 29110-1:2011
Software Engineering – Lifecycle Profiles for Very Small Entities (VSEs) – Part 1: Overview.
ISO, Switzerland, 2011. Retrieved October 9, 2013, from
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Jantunen, S. (2010). The Benefit of Being Small: Exploring Market-Driven Requirements
engineering Practices in Five Organizations. In Proceedings of the 1st Workshop on RE in
Small Companies RESC, (pp. 131-140). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Kalenborn, A. (2010). Modelling by Example: Requirements engineering during the bidding
stage of dialog-oriented software projects. In Proceedings of the 1st Workshop on RE in Small
Companies RESC, (pp. 158-166). url: http://www.icb.uni-
due.de/fileadmin/ICB/research/research_reports/ICBReportNo40.pdf

Kamsties, E., Hormann, K., & Schlich, M. (1998). Requirements Engineering in Small and
Medium Enterprises: State-of-the-Practice, Problems, Solutions, and Technology Transfer. In
Conference on European Industrial Requirements Engineering CEIRE, London, United
Kingdom. url: http://prof.kamsties.com/download/ceire98.pdf

325

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson, S. (1990). Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-21). Software Engineering Institute,
Carnegie Mellon University

Kang, K. C., Lee, J. & Donohoe, P. (2002). Feature-Oriented Project Line Engineering. IEEE
Software, 19 (4), (pp. 58-65), doi: 10.1109/MS.2002.1020288

Kassab, M. (2021). How Requirements Engineering is Performed in Small Businesses? 29th
International Requirements Engineering Conference Workshops (REW), 2021, IEEE, (pp.
220-223), doi: 10.1109/REW53955.2021.00041.

Kauppinen, M., Kujala, S., Aaltio, T. & Lehtola, L. (2002). Introducing Requirements
Engineering: How to Make a Cultural Change Happen in Practice. RE (pp. 43-51). IEEE
Computer Society. ISBN: 0-7695-1465-0. doi: 10.1109/ICRE.2002.1048504

Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S. & Sulonen, R. (2004). Implementing
requirements engineering processes throughout organizations: success factors and
challenges. Information & Software Technology, 46, (pp. 937-953). doi:
10.1016/j.infsof.2004.04.002

Kelliher, F. & Reinl, L. (2009). A resource-based view of micro-firm management practice.
Journal of Small Business and Enterprise Development, 16 (3), (pp. 521-532).

Khwaja S. & Alshayeb M. (2013). Towards design pattern definition language. Software:
Practice and Experience, 43, (pp. 747-757). doi: 10.1002/spe.1122.

Kilov, H. & Sack, I. (2009). Mechanisms for communication between business and IT experts.
Computer Standards & Interfaces, 31(1), (pp. 98-109). doi: 10.1016/j.csi.2007.11.001

Kim, D., France, R. & Ghosh, S. (2004). A UML based language for specifying domain-specific
patterns. Journal of Visual Languages and Computing, 15(3-4): (pp.265-289) doi:
10.1016/j.jvlc.2004.01.004

Kock, N. (2004). The three threats of Action Research: a discussion of methodological
antidotes in the context of an information systems study. Decision Support Systems, 37 (2),
(pp. 265-286). doi: 10.1016/S0167-9236(03)00022-8

Kotonya, G. & Sommerville, I. (2003). Requirements Engineering: Processes and Techniques.
England. John Wiley and Sons Limited.

Kouroshfar, E., Shahir, H. Y. & Ramsin, R. (2009). Process Patterns for Component-Based
Software Development. In G. A. Lewis, I. Poernomo & C. Hofmeister (eds.), CBSE (pp. 54-
68). Springer. ISBN: 978-3-642-02413-9. doi: 10.1007/978-3-642-02414-6_4

Kouskouras, K., Chatzigeorgiou, A., & Stephanides, G. (2008). Facilitating software extension
with design patterns and Aspect-Oriented Programming. Journal of Systems and Software 81
(October (10)), (pp. 1725–1737), Elsevier. doi: 10.1016/j.jss.2007.12.807

Krogstie, J. & Sølvberg., A. (2003). Information Systems Engineering - Conceptual Modeling
in a Quality Perspective. Kompendiumforlaget, NTNU, Trondheim, Norway.

Kruchten, P. (2003). The Rational Unified Process: An Introduction. Boston, MA: Addison-
Wesley. ISBN: 0201707101

326

Lakhal, F., Dubois, H., & Rieu, D. (2013). Pattern-based Methodology for UML profiles
evolution management. In Proceedings of the IEEE 7th International Conference on Research
Challenges in Information Science RCIS. IEEE. (pp. 1-12) doi: 10.1109/RCIS.2013.6577681

Lano., K., Bicarregui, J., & Goldsack, S. (1996). Formalising Design Patterns. In Processing
of the 1st BCS-FACS Northern Formal Methods Workshop, Electronic Workshops in
Computer Science, 1996.

Lee, O. (2002). An Action Research report on the Korean national digital library. Information
& Management, 39, (pp. 255-260). doi: 10.1016/S0378-7206(01)00094-5

Lethbridge, T. C., Singer, J. & Forward, A. (2003). How software engineers use
documentation: the state of the practice. IEEE Software, 20, (pp. 35-39). doi:
http://dx.doi.org/10.1109/MS.2003.1241364

López-Martínez, J., Juárez-Ramírez, R., Huertas, C., Jiménez, S. & Guerra-García, C. (2016).
Problems in the Adoption of Agile-Scrum Methodologies: A Systematic Literature Review. In
4th International Conference in Software Engineering Research and Innovation, Puebla, (pp.
141-148).

Lyytinen, K. & Robey, D. (1999). Learning failure in information system development.
Information Systems Journal, 9, (pp. 85–101).

Macasaet, R., Chung, L., Garrido, J., Rodriguez, M., & Noguera, M. (2011). An Agile
Requirements Elicitation Approach based on NFRs and Business Process Models for Micro-
businesses. In Proceedings of the 12th International Conference on Product Focused Software
Development and Process Improvement PROFES, (pp. 50-56). ACM New York, NY, USA.
doi: 10.1145/2181101.2181114

Macasaet, R., Noguera, M., Rodriguez, M., Garrido, J., Supakkul, S., & Chung, L. (2012).
Micro-business Behavior Patterns associated with Components in a Requirements Approach.
In Proceedings of the 2nd International Workshop on Experiences and Empirical Studies in
Software Modeling EESSMOD at the ACM/IEEE 15th International Conference on Model
Driven Engineering Languages & Systems MODELS, Article 7, (pp. 1-6). ACM New York, NY,
USA. doi: 10.1145/2424563.2424573

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S. & Chung, L.
(2013). A requirements-based approach for representing micro-business patterns. In R.
Wieringa, S. Nurcan, C. Rolland & J.-L. Cavarero (eds.), Proceedings of the IEEE 7th
International Conference on Research Challenges in Information Science RCIS 2013, (pp.1-
12), IEEE. ISBN: 978-1-4673-2912-5. doi: 10.1109/RCIS.2013.6577703

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2014). Representing Micro-business Requirements Patterns associated with Software
Components. In RCIS’13 Special Issue of Top Ranked Papers, Journal of Information System
Modeling and Design IJISMD 5 (4), (pp. 71-90), IGI-Global.

Macasaet, R. J. (2017). The Project Start Review Group. In M. Brambilla, T. Hildebrandt (eds.),
Proceedings of the Industry Track of the 15th International Conference on Business Process
Management BPM, (pp. 81-87).

Macasaet, R.J. (2018). Just in Time Demos in the Scrum Framework. Proceedings of the 3rd
International Conference on System Reliability and Safety ICSRS, (pp.21-24).

327

Macasaet, R. J., Noguera, M., Rodriguez, M. L., Garrido, J. L., Supakkul, S., & Chung, L.
(2019). Micro-business Requirements Patterns in Practice: Remote Communities in
Developing Nations. Journal of Universal Computer Science JUCS 25 (7), (pp. 764-787).

Mairiza, D., Zowghi, D. & Nurmuliani, N. (2010). An investigation into the notion of non-
functional requirements. Proceedings of the 2010 ACM Symposium on Applied Computing
(p./pp. 311--317), New York, NY, USA: ACM. ISBN: 978-1-60558-639-7

Medvidovic, N. & Taylor, R. N. (2000). A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26, (pp. 70-
93).

Mendez-Bonilla, O., Franch, X., & Quer, C. (2008) Requirements Patterns for COTS Systems.
In Proceedings of the 7th International Conference on Composition-Based Software Systems
ICCBSS (pp. 232-234). IEEE. doi: 10.1109/ICCBSS.2008.34

Mendling, J., Recker, J., & Reijers, H. (2010). On the usage of labels and icons in business
process modeling. International Journal of Information System Modeling and Design, 1 (2),
(pp. 40-58). doi: 10.4018/jismd.2010040103

Merten, T., Lauenroth, K., & Bürsner S. (2011). Towards a New Understanding of Small and
Medium Sized Enterprises in Requirements Engineering Research. In Proceedings of the 17th
International Working Conference on Requirements Engineering: Foundation for Software
Quality REFSQ (pp. 60-65). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-19858-8_7

Meszaros, G. & Doble, J. (1998). A pattern language for pattern writing. In Martin, Riehle and
Buschmann (eds.), Pattern Languages of Program Design 3, (pp. 529-574). Reading, MA,
Addison-Wesley

Millman, C. & El-Gohary, H. (2011). New Digital Media Marketing and Micro Business: A UK
Perspective. IJOM, 1, (pp. 41-62). doi: 10.4018/978-1-4666-1598-4.ch076

Mishra, D. & Mishra, A. (2007). Efficient software review process for small and medium
enterprises. IET Software, 1, (pp. 132-142).

Nikula, U., Sajeniemi, J., & Kalvianen, H. (2000). A state-of-the-practice survey on
requirements engineering in small-and-medium-sized enterprises. In Telecom Business
Research Center Lappeenranta Research Report 1, Lappeenrata University of Technology.
url: https://www.uop.edu.jo/Homeworks/13544442010.pdf

Object Management Group, Inc. (2008). Business Process Modeling Notation Version 1.1.
Last accessed on March 10, 2011 at http://www.omg.org/spec/BPMN/1.1/PDF

Object Management Group, Inc. (2009). Unified Modeling Language Version 2.2. Last
accessed on March 10, 2011 at
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/changebar

Object Management Group, Inc. (2010). MDA Foundation model. Needham, MA, USA

Oliveira, B. & Belo, O. (2012). BPMN Patterns for ETL Conceptual Modelling and Validation.
In L. Chen, A. Felfernig, J. Liu & Z. W. Ras (eds.), ISMIS (pp. 445-454), Springer. ISBN: 978-
3-642-34623-1. doi: 10.1007/978-3-642-34624-8_50

Opentaps. (2013). Opentaps. Last accessed on October 6, 2013 at http://www.opentaps.org/

328

Palomares, C., Franch, X., Quer, C., Chatzipetrou, P., Lopez, L., & Gorschek, T. (2021). The
state-of-practice in requirements elicitation: an extended interview study at 12 companies.
Requirements Eng 26, (pp. 273–299). doi: 10.1007/s00766-020-00345-x

Paludo, M., Reinehr, S. S., Malucelli, A., Bruzon, L. & Pinho, P. (2011). Applying pattern
structures to document and reuse components in component-based software engineering
environments. IRI (pp. 378-383), IEEE Systems, Man, and Cybernetics Society. ISBN: 978-1-
4577-0964-7. doi: 10.1109/IRI.2011.6009577

Peixoto, M. & Silva, C. (2018). Specifying privacy requirements with goal-oriented modeling
languages. In Proceedings of the 32nd Brazilian Symposium on Software Engineering (SBES
'18). ACM, New York, NY, USA, (pp. 112-121). doi: 10.1145/3266237.3266270

Pervan, G.P. & Klass, D.J. (1992). The use and misuse of statistical methods in information
systems research, in: R. Galliers (Ed.), Information Systems Research: Issues, Methods
and Practical Guidelines, (pp. 208–229), Blackwell, Boston, MA.

Pino, F. J., García, F. & Piattini, M. (2008). Software process improvement in small and
medium software enterprises: a systematic review. Software Quality Journal, 16, (pp. 237-
261). doi: 10.1007/s11219-007-9038-z

Philippines MSME Statistics. (2011). Philippine Department of Trade and Industry. Last
accessed on December 5, 2013 at http://www.dti.gov.ph/dti/index.php?p=321

Pokozy-Korenblat, K., Priami, C. & Quaglia, P. (2004). Performance Analysis of a UML Micro-
business Case Study. In C. Priami & P. Quaglia (eds.), Global Computing (pp. 107-126),
Springer. ISBN: 3-540-24101-9. doi: 10.1007/978-3-540-31794-4_7

PSRI. (2018). Pentathlon Systems Resources Incorporated. Last accessed on December 15,
2018 at http://www.pentathlonsystems.com

PSRI Action Research. (2021). Action Research Material for Micro-businesses. Last accessed
on December 31, 2021 at http://www.pentathlonsystems.com/ar4mb.html

Quispe, A., Marques, M., Silvestre, L., Ochoa, S. F. & Robbes, R. (2010). Requirements
Engineering Practices in Very Small Software Enterprises: A Diagnostic Study. In S. F. Ochoa,
F. Meza, D. Mery & C. Cubillos (eds.), SCCC, (pp. 81-87), IEEE Computer Society.

Ramsin, R. & Paige, R. F. (2008). Process-centered review of object oriented software
development methodologies. ACM Comput. Surv., 40 (1), Article 3, (pp. 1- 89)

Real Academia Española. (2003). Diccionario de la Lengua Española. 22nd Edition. Espasa
Calpe

Recker, J., Indulska, M., Rosemann, M. & Green, P. (2006). How good is BPMN really?
Insights from theory and practice. ECIS 2006 Proceedings. 135.

Recker, J. (2008). Understanding Process Modelling Grammar Continuance: A Study of the
Consequences of Representational Capabilities. Faculty of Information Technology,
Queensland University of Technology, Brisbane.

329

Recker, J., zur Muehlen, M., Siau, K., Erickson, J., & Indulska, M. (2009). Measuring method
complexity : UML versus BPMN. In: 15th Americas Conference on Information Systems, 6-9
August, 2009, San Francisco, California.

Recker, J. (2010). Opportunities and constraints: the current struggle with BPMN. Business
Process Management Journal, Vol. 16 No. 1, (pp. 181-201),
https://doi.org/10.1108/14637151011018001

Riehle, D. & Züllighoven, H. (1996). Understanding and Using Patterns in Software
Development. Theory and Practice of Software Systems, 2 (1), (pp.3-13)

Reinhartz-Berger, I., Sturm, A. & Tsoury, A. (2011). Evaluating Comprehension and Utilization
of Variability Aspects in UML-Based Models. In S. Nurcan (ed.), CAiSE Forum (Selected
Papers) (pp. 156-171), Springer. ISBN: 978-3-642-29748-9. doi: 10.1007/978-3-642-29749-
6_11

RE-Tools. (2013). RE-Tools. Last accessed on October 9, 2013 at
https://personal.utdallas.edu/~chung/Sam_Supakkul/RE-Tools/index.html

Reijers, I., Mendling, J., & Dijkman, R.M. (2011) Human and automatic modularizations of
process models to enhance their comprehension. Information Systems, 36, (pp. 881-897). doi:
10.1016/j.is.2011.03.003

Respect-IT. (2007). KAOS Tutorial Version 1.0. Retrieved on January 15, 2013, from
http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

Riaz, M. & Williams, L. (2012). Security requirements patterns: understanding the science
behind the art of pattern writing. RePa (pp. 29-34): IEEE. ISBN: 978-1-4673-4374-9. doi:
10.1109/RePa.2012.6359977

Roost, M., Taveter, K., Rava, K., Tepandi, J., Piho, G., Kuusik, R., & Õunapuu, E. (2013).
Towards Self-development of Evolutionary Information Systems: An Action Research of
Business Architecture Development by Students in Socially Networked Groups. Proceedings
of the International Workshop on Approaches for Enterprise Engineering Research AppEER
2013 at the 25th International Conference on Advanced Information Systems Engineering
(CAiSE). Vol 148. doi: 10.1007/978-3-642-38490-5_1

Ruhe, G., Eberlein, A., & Pfahl, D. (2003). Trade-off Analysis for Requirements Selection.
International Journal of Software Engineering and Knowledge Engineering, 13 (4), (pp. 345-
366). doi: 10.1142/S0218194003001378

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,, Lorensen, W. (1991). Object-Oriented
Modeling and Design.

Sabre. (2018). Sabre Incorporated. Last accessed on December 15, 2018 at
http://www.sabre.com

Schmidt, D.C., Fayad, M., & Johnson, R.E. (1996). Software Patterns. Communications of the
ACM, October, 1996

Schreiber, R. & Stern, P. (2001). Using Grounded Theory in Nursing. Springer Publishing
Company, New York.

330

Schumacher, M., Fernandez-Buglioni, E., Hyberston, D., Buschmann, F., & Sommerlad, P.
(2006). Security Patterns: Integrating Security and Systems Engineering. John Wiley & Sons,
Limited

Scrum.org. (2018). The Scrum Guide. Last accessed on August 17, 2018

Segura, S., Durán, A., Troya, J., and Cortés, A.R. (2017). A Template-Based Approach to
Describing Metamorphic Relations. IEEE/ACM 2nd International Workshop on Metamorphic
Testing (MET), 2017, pp. 3-9, doi: 10.1109/MET.2017.3

Serrato-Barrera, R., Rodríguez-Gómez, G., Pérez-Sansalvador, J.C., Pomares-Hernández,
S., Flores-Pulido, L., and Muñoz, A. (2020). Software system design based on patterns for
Newton-type methods. Computing 102, pp. 1005–1030

Seruca, I. & Loucopoulos, P. (2003). Towards a systematic approach to the capture of patterns
within a business domain. Journal of Systems and Software, 67 (1). (pp. 1-18) doi:
10.1016/S0164-1212(02)00083-3

Shaw, M., Garlan, D. (1996). Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall

Siau, K., & Cao, Q. (2001). Unified Modeling Language: A Complexity Analysis. In Journal of
Database Management, 12:1, (pp. 26-34)

Siau, K. & Cao, Q. (2002). How Complex Is the Unified Modeling Language?. In Advanced
Topics in Database Research, Vol. 1 (pp. 294-306)

Siau, K. & Tan, X. (2005). Improving the Quality of Conceptual Modeling Using Cognitive
Mapping Techniques. In Data & Knowledge Engineering 55:3, (pp. 343-365)

Siau, K. & Tian, Y. (2009). A Semiotics Analysis of UML Graphical Notations. Requirements
Engineering 14:1, (pp. 15-26)

Smith, B. H. & Williams, L. (2012). On the Effective Use of Security Test Patterns. SERE (pp.
108-117), IEEE. ISBN: 978-0-7695-4742-8. doi: 10.1109/SERE.2012.23

Sochos, P., Philippow, I. & Riebisch, M. (2004). Feature-Oriented Development of Software
Product Lines: Mapping Feature Models to the Architecture.. In M. Weske & P. Liggesmeyer
(eds.), Net.ObjectDays (pp. 138-152), : Springer. ISBN: 3-540-23201-X

Solemon, B., Sahibuddin, S., & Ghani, A.A.A. (2009). Requirements engineering problems
and practices in software companies: An industrial survey. Advances in Software Engineering,
Springer, (pp. 70-77)

Sommerville I. (2004). Software Engineering. Addison-Wesley: Harlow, England.

Spain SME Statistics. (2011). Spanish Ministry of Industry, Energy, and Tourism. Last
accessed on December 5, 2013 at
http://www.ipyme.org/Publicaciones/ESTADISTICAS_PYME_N10_2011.pdf

Spain SME Statistics. (2021). Spanish Ministry of Commerce, Industry, and Tourism. Last
accessed on June 30, 2021 at http://www.ipyme.org/Publicaciones/CifrasPYME-
enero2021.pdf

331

Stepan, P. & Lau, K.-K. (2012). Controller patterns for component-based reactive control
software systems. In V. Grassi, R. Mirandola, N. Medvidovic & M. Larsson (eds.), CBSE (pp.
71-76). ACM. ISBN: 978-1-4503-1345-2. doi: 10.1145/2304736.2304749

Strauss, A. & Corbin, J. (1990). Basics of qualitative research: Grounded Theory procedures
and techniques. Sage Publications, Basics of Qualitative Research

Supakkul, S. & Chung, L. (2009). Extending Problem Frames to deal with stakeholder
problems: An Agent- and Goal-Oriented Approach.. In S. Y. Shin & S. Ossowski (eds.), SAC
(pp. 389-394), ACM. ISBN: 978-1-60558-166-8

Supakkul, S., Hill, T., Chung, L., Tun, T., & Sampaio do Prado Leite, J.C. (2010). An NFR
Pattern Approach to Dealing with NFRs. In Proceedings of the 18th IEEE International
Requirements Engineering Conference RE (pp. 179-188). IEEE. doi: 10.1109/RE.2010.31

Supakkul, S., & Chung, L. (2012). The RE-Tools: A Multi-notational Requirements Modeling
Toolkit. In Proceedings of the 20th International Requirements Engineering Conference RE
(pp. 333-334). IEEE. doi: 10.1109/RE.2012.6345831

Supakkul, S., Chung, L., Macasaet, R., Noguera, M., Rodriguez, M., & Garrido, J. (2013).
Modeling and Tracing Stakeholders' Goals across Notations using RE-Tools. In Proceedings
of the 6th International i* Workshop iStar at the 25th International Conference on Advanced
Information Systems Engineering CAiSE, (pp. 128-130). Last accessed on October 9, 2013 at
http://ceur-ws.org/Vol-978/paper_23.pdf

Tan, L., & Wang, N. (2010). Future internet: the internet of things. In: 2010 3rd international
conference on advanced computer theory and engineering (ICACTE), vol 5, (pp. 376-380).
IEEE doi: 10.1109/ICACTE.2010.5579543

Thom, L. H., Lazarte, I. M., & Iochpe, C. (2009a). Activity patterns in process-aware
information systems: basic concepts and empirical evidence. IJBPIM 2009 4 (2), (pp. 93-110)

Thom, L. H., Lazarte, I. M., & Iochpe, C. (2009b). On the Support of Workflow Activity Patterns
in Process Modeling Tools: Purpose and Requirements. In 3rd WBPM, 2009, Brazil

Thom, L. H., Lazarte, I. M., Iochpe, C., Priego-Roche, L.-M., Verdier, C., Chiotti, O. & Villarreal,
P. D. (2011). On the Capabilities of BPMN for Workflow Activity Patterns Representation. In
R. M. Dijkman, J. Hofstetter & J. Koehler (eds.), BPMN (pp. 172-177). Springer. ISBN: 978-3-
642-25159-7. doi: 10.1007/978-3-642-25160-3_18

United States Census Bureau. (2011). County Business Patterns. Last accessed on
December 5, 2013 at http://censtats.census.gov/cgi-bin/cbpnaic/cbpcomp.pl

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B. & Barros, A.P. (2003). Workflow
Patterns. Distributed and Parallel Databases, 14 (1), (pp. 5-51)

van Gurp, J., Prehofer, C. & Bosch, J. (2010). Comparing practices for reuse in integration-
oriented software product lines and large open source software projects. Software: Practice
and Experience, 40, (pp. 285-312). doi: 10.1002/spe.955

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: a guided tour. Fifth
IEEE International Symposium on Requirements Engineering. (pp. 249-262). doi:
10.1109/ISRE.2001.948567

332

van Lamsweerde, A. (2009). Requirements Engineering - From System Goals to UML Models
to Software Specifications. Wiley. ISBN: 978-0-470-01270-3

Veerappa, V., & Harrison, R. (2013). Assessing the maturity of requirements through
argumentation: A good enough approach. Automated Software Engineering ASE, (pp. 670-
675). IEEE. doi: 10.1109/ASE.2013.6693131

Villalón, J. A. C.-M., Agustín, G. C., Gilabert, T. S. F., de Amescua Seco, A., Sánchez, L. G.
& Cota, M. P. (2002). Experiences in the Application of Software Process Improvement in
SMES. Software Quality Journal, 10, (pp. 261-273).

Virus. (2018). Virus Worldwide. Last accessed on December 15, 2018 at
http://www.virusworldwide.com

Wahl, T. & Sindre, G. (2005). An Analytical Evaluation of BPMN Using a Semiotic Quality
Framework. In Proceedings of the CAiSE'05 Workshops. Volume 1, Castro, J. and E.
Teniente, Eds., (pp. 533-544), FEUP, Porto, Portugal.

Warmer, J. & Kleppe., A. (1999). The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley

Weitlaner, D., Guettiner, A., & Kohlbacher, M. (2013). Intuitive Comprehensibility of Process
Models. S-BPM ONE 2013, (pp. 52-71). doi: 10.1007/978-3-642-36754-0_4

Wen, Y., Zhao, H. & 0001, L. L. (2011). Analysing security requirements patterns based on
problems decomposition and composition. RePa (pp. 11-20), IEEE. ISBN: 978-1-4577-1020-
9

Withall, S. (2007a). Software Requirement Patterns. O’Reilly

Withall, S. (2007b). Software Requirement Patterns. Microsoft Press

Wohed, P., van der Aalst, W.M.P., Dumas, M. & ter Hofstede, A.H.M. (2005). Pattern-based
Analysis of BPMN - An extensive evaluation of the Control-flow, the Data and the Resource
Perspectives. In BPM Center Report No. BPM-05-26. BPMcenter.org.

Wong, K. Y. & Aspinwall, E. (2004). Characterizing knowledge management in the small
business environment. Journal of Knowledge Management, 8, (pp. 44-61)

Yang, Y., Bhuta, J., Boehm, B. & Port, D. N. (2005). Value-Based Processes for COTS-Based
Applications. IEEE Software, 22, (pp. 54-62).

Yoshioka, N., Washizaki, H., & Maruyama, K. (2008). A survey on security patterns. Progress
in Informatics, Special Issue: The future of software engineering for security and privacy, (pp.
13).

Young, R. (2004). The requirements engineering handbook. Artech House. ISBN: 978-1-
58053-266-2

Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (2011). Modeling Strategic Relationships for
Process Reengineering. In Social Modeling for Requirements Engineering (pp. 11-152). The
MIT Press. ISBN: 9780262240550

333

Zhao, L., Letsholo, K., Chioasca, E., Sampaio, S., & Sampaio, P. (2012). Can business
modeling bridge the gap between business and information systems? In Proceedings of the
27th annual ACM symposium on applied computing SAC (pp. 1723-1724). ACM New York,
NY, USA. doi: 10.1145/2245276.2232054

Zhao, X., & Zou, Y. (2011). A business process-driven approach for generating software
modules. Software: Practice and Experience, 41, (pp. 1049–1071). doi: 10.1002/spe.1068

zur Muehlen, M., & Recker, J. (2008). How Much Language is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation. In Léonard, M., and Bellahsène, Z.
(Eds.) Advanced Information Systems Engineering - CAiSE 2008, Montpellier, France. (pp.
465-479). Springer

