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It’s the questions we can’t answer that teach us the most. They teach us how to think.
If you give someone an answer, all they gain is a little fact. But give them a question

and they’ll look for their own answers.

– Patrick Rothfuss, The Wise Man’s Fear

Machines take me by surprise with great frequency.

– Alan Turing
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Abstract

Improvements in treatment of classification problems with autoencoder-based models

The present doctoral thesis tackles the study and application of a specific tool from the data science
field, autoencoders, which are artificial neural networks able to transform the variable space of a
dataset according to a certain selected criterion. Manipulating and transforming variables is a crucial
task in data mining, since it can largely determine the complexity of a data analysis problem and, as a
result, affect the behavior of learning methods which are used to extract useful knowledge. Moreover,
the recent surge in data collection and processing for all kinds of purposes causes these tasks to be less
and less feasible to be performed by hand, so there is a need of automatic methods to solve them.

Autoencoders are models that belong to the field of representation learning, and can be much more
flexible and adaptable than other, more classical methods such as principal component analysis. This
versatility has been studied via a thorough analysis of their inner workings and the different varieties
of models than can be created based on their essential components. As a complement, a new software
tool has been developed to provide easy access to these models and eliminate an important existing
knowledge barrier which could prevent their use.

An extensive search has been conducted in the literature for problem typologies whose difficulty
is related to the data representation, so as to open the possibility for autoencoder-based solutions.
Datasets can present several issues: those linked to the very structure of the data points, like the use of
several objects to describe a sole instance; those relative to the complexity of categorized data, or tasks
that do not provide additional information and must be solved by means of feature analysis.

With the aim of creating a novel contribution in the field of autoencoders, three new models have
been developed to tackle the problem of complexity in categorized data. They are able to simplify the
borders between categories in order for a classification method to improve its performance.

In summary, the main contributions of this thesis are as follows:

▶ A theoretical analysis and taxonomy of the main autoencoder variants present in the literature,
composing a guide to ease their selection and use.

▶ A complete software package which automatizes a great part of the implementation work for
autoencoders and simplifies its use to a level similar to other feature extraction methods.

▶ A synthesis and organization work of the peculiarities that supervised learning problems can
present when data points are represented in a nonstandard fashion.

▶ A demonstration of the diverse applications of autoencoder-based models, identifying and
exposing several strategies to solve unsupervised problems by means of variable transformations.

▶ Three new models, Scorer, Skaler and Slicer, focused on data complexity reduction in classifica-
tion problems.

This document introduces all global concepts needed to understand the published articles and provides
a theoretical vision of the representation learning problem and of the deep learning tool set, which



includes the main object of study. In addition, it explains the techniques that help put into practice
these models and how they execute on computation infrastructures. Next, the material published
throughout the doctoral period is introduced and five articles published in renowned journals are
reproduced. Finally, these and other activities carried out are summarized and the lines of work that
would continue the achieved advancements are presented.

viii



Resumen

Mejoras en tratamiento de problemas de clasificación con modelos basados en autoencoders

La presente tesis doctoral aborda el estudio y aplicación de una herramienta particular del ámbito de la
ciencia de datos, los autoencoders, que son redes neuronales artificiales capaces de transformar el espacio
de variables de un conjunto de datos según un criterio escogido. La manipulación y transformación
de variables es una tarea crucial en minería de datos, puesto que puede determinar en gran medida
lo complejo que resulte un problema de análisis de datos y, por tanto, afectar al comportamiento de
los métodos de aprendizaje con los que se pretende extraer conocimiento útil. Además, el reciente
incremento en recolección y procesamiento de datos para todo tipo de propósitos propicia que cada vez
menos tareas de transformación se puedan realizar manualmente, por lo que son necesarios métodos
automáticos que las resuelvan.

Los autoencoders son modelos que se encuadran en el campo del aprendizaje de representaciones,
y resultan mucho más flexibles y adaptables que otros métodos más clásicos como el análisis de
componentes principales. Para estudiar esta versatilidad, se ha realizado un análisis pormenorizado de
su funcionamiento y de las diferentes variedades de modelos que se pueden crear fundamentándose
en sus componentes básicos. Como complemento, se ha construido una herramienta software que
proporciona fácil acceso a estos modelos y elimina una importante barrera de conocimiento existente a
la hora de utilizar los autoencoders.

Asimismo, se ha llevado a cabo una extensa búsqueda en la literatura de tipologías de problemas cuya
dificultad esté relacionada con la representación de los datos, de forma que se pueda plantear una
solución basada en autoencoders. Se han identificado varias clases de conflictos que pueden presentar
los conjuntos de datos: los que residen en la propia estructura de los datos como, por ejemplo, el
uso de varios objetos para representar una sola instancia; los relacionados con la complejidad de los
propios datos cuando están categorizados, o tareas que no aportan información adicional y han de
resolverse por medio del análisis de las características.

Con el objetivo de aportar una contribución novedosa al campo de los autoencoders, se han desarrollado
tres modelos que abordan el problema de la complejidad de los datos categorizados, siendo capaces
de simplificar las fronteras entre las categorías de forma que un método de clasificación mejore su
rendimiento.

En resumen, las principales contribuciones de la tesis son las siguientes:

▶ Un análisis teórico y taxonomía de las principales variantes de autoencoders presentes en la
literatura, componiendo una guía para facilitar la selección y el uso de las mismas.

▶ Un completo paquete software que automatiza gran parte del trabajo de implementación
de autoencoders y acerca su uso a un nivel comparable al de otros métodos de extracción de
características más simples.

▶ Un trabajo de organización y síntesis de las particularidades que pueden presentar los problemas
de aprendizaje supervisado cuando los datos están representados de formas no estándares.



▶ Una demostración de las diversas aplicaciones de los modelos basados en autoencoders, identifi-
cando y exponiendo distintas estrategias para resolver problemas no supervisados mediante
manipulación de las variables.

▶ Tres nuevos modelos, Scorer, Skaler y Slicer, enfocados a la reducción de la complejidad de
datos en problemas de clasificación.

El presente documento introduce todos los conceptos globales necesarios para entender los artículos
publicados y aporta una visión teórica de la problemática del aprendizaje de representaciones y del
conjunto de herramientas de aprendizaje profundo, dentro del cual se enmarca el objeto principal de
estudio. Además, se explican las técnicas que ayudan a llevar a la práctica estos modelos y cómo se
ejecutan sobre las infraestructuras de computación. Posteriormente se introduce el material publicado
a lo largo del periodo doctoral y se reproducen cinco artículos publicados en revistas científicas de
notable reputación. Finalmente se resumen estas y otras actividades llevadas a cabo, y se presentan las
líneas de trabajo que continuarían con los avances ya realizados.

x
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Current trends in collection of data are increasing, with more and
more human activities producing machine-readable information,
such as product reviews [1]

[1]: Fang et al. (2015), “Sentiment anal-
ysis using product review data”

, posts on social media [2]

[2]: Balaji et al. (2021), “Machine learn-
ing algorithms for social media anal-
ysis: A survey”

, medical images
[3]

[3]: Willemink et al. (2020), “Prepar-
ing medical imaging data for ma-
chine learning”

, industrial machinery sensor data [4]

[4]: Gao et al. (2015), “A survey
of fault diagnosis and fault-tolerant
techniques—Part I: Fault diagnosis
with model-based and signal-based
approaches”

, and more. Automatic
processing of data makes it easier to obtain results fast and saves
hours of human labor which can be freed for other purposes or
dedicated to tasks which cannot be automated. The speed provided
by current computation resources also opens new possibilities for
leveraging the available data, achieving extraction and manipulation
of information at levels infeasible by human hand.

The study of problems, tools and solutions related to data integration,
processing and analysis has been recently known as data science [5]

[5]: Dhar (2013), “Data science and
prediction”

, a
field which overlaps branches of mathematics, statistics and computer
science, among other disciplines. Current data science applications
are present everywhere, from the most industrial settings to direct
final user access, and range from machinery fault detection [6]

[6]: Carvalho et al. (2019), “A sys-
tematic literature review of machine
learning methods applied to predic-
tive maintenance”

, to
medical diagnosis assistance [7]

[7]: Erickson et al. (2017), “Machine
learning for medical imaging”

, customer loyalty in retail [8]

[8]: Ma et al. (2020), “Machine learn-
ing and AI in marketing–Connecting
computing power to human insights”

and
photograph enhancing [9]

[9]: Wang et al. (2020), “Deep learn-
ing for image super-resolution: A sur-
vey”

.

The general objective in a data science problem is to model a real
world scenario based on the collected data and use the resulting
model to provide some information to the end user, for example, a
category or label, a ranking, an association or a transformed version
of the original data. This is a process that encompasses all steps
from data acquisition, to its preparation, processing and analysis.
In this context, a wide variety of computer algorithms are used to
manipulate and process data. The study and development of these
techniques that allow machines to distill knowledge from data are
known as machine learning.

1.1 Problem setting

There are several stages that compose the process of solving a data
science problem, represented visually in Figure 1.1. A great part
of the time spent, usually the longest, consists in preparing and
preprocessing the available data in order for the posterior learning
techniques to extract the maximum possible amount of information
and ensure the new knowledge is valid [10]. There exist several traits
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Figure 1.1: Steps of the knowledge
discovery in databases (KDD) pro-
cess ordered from left to right: data
selection, cleaning, transformation,
mining and evaluation.

SELECTION

CLEANING

TRANSFORMATION

MINING

EVALUATION

Data
Knowledge

[11]: García et al. (2015), Data prepro-
cessing in data mining

Figure 1.2: Two randomly gen-
erated images from https:
//thispersondoesnotexist.com.
In blue, available features such as the
color values of some pixels. In pink,
latent variable values (such as hair
tone) that are not directly represented
in the data but influence those color
values.

[12]: Borsboom (2008), “Latent vari-
able theory”

of the data that can be manipulated to facilitate the work of learning
algorithms: missing values, noisy instances, class imbalance, among
others [11].

The set of features, that is, the specific representation of each instance
in a dataset, is one aspect which machine learning models can be
specially sensitive to.

Features that may characterize an event or object adequately for
humans may not be ideal for machines to process. For example, a
string of text may have meaning for a reader but for the machine
it is just a sequence of characters whose semantics are not easily
processed in that format. Similarly, an image can be expressed as
a series of color values which, if shown on a screen, will display
something intelligible for a person’s eye, but those values do not
hold direct relation to what is contained in the image itself.

Furthermore, the techniques used for collecting data can only pro-
duce the observable variables in a dataset, but there may be in-
teresting, hidden variables which influence the data in a clearer
way. This is a concept known in statistics as latent variables [12]. For
example, the value “blond” for the latent variable “hair color” might
determine the color value of many pixels in an image of a person’s
face, but those are also influenced by overall lighting and contrast,
so the hair color of a person cannot be deduced by just extracting a
couple of pixels (see Figure 1.2 for an example). It would be desirable
to obtain the meaningful features, but a learning mechanism that
takes all observable features into account is needed for these to be
extracted.

Providing a learning algorithm with unprocessed features usually
leads to sub-par performance due to several potential issues: different
scales, presence of noisy variables, redundant information, useful
information that is obscured and not directly represented, as well as



1.2 Tools 5
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[18]: Tenenbaum et al. (2000), “A
global geometric framework for non-
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irrelevant information. All of this may confuse a learning method
which initially might consider all variables equally relevant.

Other possible obstacles that one may come across when inspecting
the features of a dataset are difficult classes, also known as data
complexity [13]. This scenario arises when the variables do not
provide sufficient information to allow class separation, the relations
between variables and the target are highly nonlinear, or other
circumstances prevent a learning method from inferring an adequate
mapping from the input features to the target variable.

As a consequence, much time can be spent manually engineering
features according to what the practitioner believes the learning
method will adapt best. However, this is a process that requires
experience and usually involves many attempts at improving results.
Instead of this, a new task can be performed by machine learning
techniques before the actual knowledge extraction, called feature
learning or more broadly representation learning [14].

Feature learning alleviates a notable amount of manual labor and
dataset manipulation although, of course, implies that the user know
about feature learning methods and their operation. There exists
a very diverse array of methods, ranging from simple principal
component analysis (PCA) [15] to more complex manifold learning
methods [16].

However, not every feature learning method can solve every task.
Most of them have a specific criterion that they optimize, such as
maximum variance in the case of PCA, point reconstruction from
its neighbors as in locally linear embedding [17], or shortest-path
distances between points as in Isomap [18]. The objective function
of each method determines which behavior will be found in the
extracted representation, with little to no room to customize it. There
may be situations where it is necessary for the learned variables
to adjust to certain properties and, ideally, the feature extraction
method should allow to enforce those properties.

1.2 Tools

The main set of tools that are used to tackle problems along this work
is deep learning, a subset of machine learning focused on algorithms
which extract successive transformations of the data until a solution
to the task is reached.
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[19]: McCulloch et al. (1943), “A logi-
cal calculus of the ideas immanent in
nervous activity”
[20]: Rosenblatt (1958), “The percep-
tron: a probabilistic model for infor-
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the brain.”

[21]: DeepL Team (2021), How does
DeepL work?
[22]: Shu et al. (1999), “A neural
network-based intelligent metasearch
engine”
[23]: Mycroft.AI (2021), Mycroft Tech-
nologies Overview

Deep learning originates from the concept of artificial neuron, which
takes some inspiration on the biological nervous system [19]. The per-
ceptron, a probabilistic model of the brain, was developed drawing
from this abstract neuron [20] and current artificial neural networks
are simply generalizations of the multi-layer perceptron (MLP). For a
long time, neural networks were very inefficient to train compared to
other machine learning methods, and they were not used for many
applications as a result.

The resurgence of neural network models for machine learning
has happened more recently due to the fact that their optimization
had much higher computational cost than other, classical machine
learning models. Thus, more efficient optimization strategies in
combination with much more powerful hardware (leveraging the
computing capacities of modern GPUs) have allowed to train complex
deep models which were unfeasible before.

Nowadays, deep learning is used to extract the contents of images,
natural language and speech (as well as produce them) in a wide
range of applications, from small fitness devices to autonomous
vehicles. It is also very present in research fields ranging from
medicine to computer security. It powers translation systems [21],
search engines [22] and virtual assistants [23].

The main advantage of deep learning against traditional machine
learning methods is being able to automatically transform raw
data into useful representations that depict more complex, high-
level concepts. This stage is usually performed manually when
approaching machine learning problems with other models.

Since deep learning models perform their own representation learn-
ing while training to solve other tasks, one possible use for these
models is the extraction of said representations. One can either
extract these deep features from neural networks which are trained
for a different purpose or build a deep learning model dedicated to
just learning a new, more useful representation. The latter approach
will be our focus during most of this thesis, using a specific category
of models known as autoencoders.

1.3 Motivation

The questions that we are trying to tackle throughout this thesis can
be summarized as follows:
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[24]: Sakurada et al. (2014), “Anomaly
detection using autoencoders with
nonlinear dimensionality reduction”

[25]: Fong et al. (2017), “Interpretable
explanations of black boxes by mean-
ingful perturbation”

▶ How can representation learning be approached with deep
neural models?

▶ What benefits can be obtained by transforming data into an
appropriate representation?

▶ Can specific behavior be induced within the transformations,
such as separating different classes?

As the trends in usage of deep learning models to solve machine
learning problems continue to increase, we focus our interest in their
potential to not only tackle supervised problems such as classification,
regression or detection, but also wider problems where solutions are
not so easily validated, such as feature learning. Since deep learning
allows the integration of the feature extraction stage directly within
the predictor itself, these types of models should be valuable feature
learners for other tasks as well.

Deep neural models dedicated to generating new feature sets could
be adapted, as a result, to different purposes. For instance, one could
search for feature spaces where “ordinary” data points are very
cohesive, and thus anomalous inputs would be easy to identify
[24]. Similarly, a transformation of features could allow for better
separation of different classes, better distinction between noise and
signal, or more meaningful traits that relate to all the original
variables.

Another potential use of feature learning models that catches our
interest is the possibility of capturing more than one aspect of each
problem instance, which translates to different views of the problem,
for example, image and text. These views could be processed by
different learners or special algorithms, but one could build feature
learners that combine the available information into a more machine-
ready feature vector.

A current conflict of deep learning models with several areas of
interest in machine learning, such as medical applications, is the
fact that most are essentially black boxes [25]. This means that the
behavior of a trained model is obscured by the intrinsic structure
and is thus unintuitive for humans to comprehend. As a result, there
is much interest in explaining and justifying the behavior of these
models. Enabling the use of interpretable classifiers and regressors
such as decision trees by means of better dataset representations can
be one way of avoiding black boxes in these contexts.
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1.4 Objectives

All the research developed along this work has been revolving around
the general aim of improving how autoencoders can achieve a better
representation of data in order to extract more reliable models from
it.

As a result, the specific objectives that we posed throughout the
course of the thesis were the following:

▶ To acquire a deep understanding on how autoencoders work,
how they differ from other feature extraction techniques, and
the different approaches to learn new features with them.

▶ To facilitate the use of autoencoders by unspecialized users,
improving on previous implementations in efficiency and ease
of use.

▶ To explore different types of supervised learning problems
further from the classical binary (positive/negative) prediction
schemes or regression tasks.

▶ In the context of supervised problems, to develop new ways
of optimizing autoencoders so that generated features are able
to separate different classes better.

Additionally, there are several tangential issues that were studied
due to the interesting relation to the main topic and the opportunity
to work on real world problems. These are as follows:

▶ To identify areas of application where autoencoders are able to
provide solutions without the need of additional modelling.

▶ To evaluate and compare different encoder-decoder architec-
tures for different purposes.

▶ To analyze whether ensembling several encoder-decoder meth-
ods can provide better solutions.

The main objectives outlined above are further detailed in the fol-
lowing subsections.

Didactic resources about autoencoders

Autoencoders are conceptually very different from traditional feature
extractors. Unlike these, autoencoders are based on a neural network
framework and this allows for a high level of customization and
adjustments for each task. However, this availability of diverse
options when building an autoencoder makes it less accessible to
inexperienced practitioners. This is a barrier that was identified at
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the start of our research work and, as a result, became an issue we
wanted to address.

Our first goal, taking advantage of the usual literature review, was
to produce a guide on autoencoders for machine learning users
assuming no prior knowledge about neural networks or these models
in particular. This guide should cover all the basics in order to be
able to grasp what autoencoders compute, how they are trained,
how they compare to other feature learners and what options a user
may be presented with when choosing to apply this model to their
data.

Easy-to-use autoencoder implementations

One of the first obstacles that programmers may come across when
working with feature learning tools is that autoencoders are much
harder to set up and train than other alternatives like PCA or even
complex manifold learning algorithms such as LLE or Isomap, which
come already implemented in libraries and can be applied with a
simple function call.

In consequence, for a better understanding of autoencoders by the
data science community, it is crucial to have access to a software tool
which provides all the necessary tooling in order to design, train and
use autoencoders without the need to be an expert in this specific
area. Our objective was to develop this tool which would provide a
simple interface for scientists from other knowledge fields and other
practitioners, as well as more complete functionalities for those who
need and know how to take advantage of them.

Exploration of supervised problems

With the potential application of autoencoders in mind, but not
limiting ourselves to the current state of available strategies and archi-
tectures, we aimed to study in detail the diverse range of supervised
problems that one may encounter beyond traditional classification
(binary or multiclass) and regression (with one output).

The main purpose of this was to identify common properties in
different problems that would allow to tackle them from similar
perspectives or generalizations of simpler cases.
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[26]: Tabik et al. (2020), “COVIDGR
Dataset and COVID-SDNet Method-
ology for Predicting COVID-19 Based
on Chest X-Ray Images”

Development and application of new autoencoder models

After a more general focus on the state of the art, it was important
to create new solutions based on what had been learned. These
solutions should be applicable as widely as possible and tackle
real problems from a novel perspective, leveraging the flexibility of
autoencoders.

In order to contribute to the specific field of autoencoders, our aim
was to improve on one of the main uses that these models can have,
the extraction of better features for classification methods. Instead
on relying on the intended classifiers themselves to optimize the
quality of the features, like a deep neural network would operate,
we opted to choose metrics that inform about the ability of dataset
variables to separate different classes. This way, the model is not
necessarily focused on the variables that are more relevant to allow
a neural network classify, but those that help separate classes in
general, which can in turn be useful for various classifiers.

The previous model proposal would be more valuable if useful
applications of it were deployed. For a first use, we chose a dataset
that was imposing notable levels of difficulty for classifiers to model
adequately, the COVIDGR dataset of chest X-ray imaging for COVID-
19 detection [26]. This is, as well, an area where a solution involving
a simple, interpretable classifier would appeal more to the experts
than a black-box model like a neural network.

1.5 Thesis structure

This work comprises several original introductory chapters present-
ing the necessary theoretical concepts and the basics on how these
are put to practice, as well as reproductions of five articles published
in peer-reviewed journals, each of them related one or more of the
previously established goals for this thesis.

The rest of this document is organized as follows:

▶ Chapter 2 describes the basic theory that lies under the subse-
quent works and the specific models that are developed and
used.

▶ Chapter 3 explains the practicalities of implementing and
training deep learning models, especially autoencoders.

▶ Chapter 4 outlines the main results obtained during the re-
search period, providing context and connections among the
articles that are reproduced next.
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▶ Article I, the first of the journal articles, is a guide on the inner
workings of autoencoders, their variants, how to design and
how to implement them.

▶ Article II describes into detail the software developed with
the objective to facilitate the use of autoencoders.

▶ Article III is a review of the current state of the art in supervised
learning further from the standard problems.

▶ Article IV covers the most popular applications of autoen-
coders apart from classification, with concrete examples and
guidelines.

▶ Article V improves the applicability of autoencoders in clas-
sification problems by developing new loss functions which
help reduce data complexity.

▶ Lastly, Chapter 5 draws some conclusions and closing state-
ments on the developed work.
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Table 2.1: An example dataset de-
scribing features of different kinds
of animals. Each feature can be nu-
merical (length, legs) or categorical
(wings, species).

Length Legs Wings Species

0.40 4 No Dog
0.01 6 Yes Fly
1.45 0 No Dolphin
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Machine learning covers a set of problems and tools that overlaps
several disciplines. As such, in order to tackle machine learning
problems, it is necessary to lay some foundations which help grasp
all the concepts involved. Even though this is a rapidly evolving field,
there are fundamental topics that remain applicable.

The objective of this chapter is to provide the reader with the
definitions, descriptions and examples that allow to understand the
rest of this work. We will try to assume little-to-no prior knowledge
about machine learning, thus making it as accessible as possible. The
following sections go over the basic subjects of machine learning,
build the core concepts of deep learning and arrive to the main tools
that will be used along the rest of this book, autoencoders.

2.1 Machine learning fundamentals

Machine learning differs from other kinds of computer science
disciplines in that its objective is not to give precise instructions
for the machine to follow, but instead to provide some form of
experience that the machine must learn from in order to extract some
information or display some behavior [1]. The algorithms developed
for machine learning are essentially mechanisms that take in a certain
amount of data, process it and compute the necessary steps to fulfill
a specific objetive related to the data. Their output is usually a model,
that is, a representation of an approximate solution to the problem.

Data and models

Datum (plural data) usually refers to the minimal unit of machine-
readable information, for example, the height of a person (numerical
value), whether they are an adult or not (binary categorical value),
their country of origin (categorical value) or their given name (char-
acter string).

A dataset is a collection of data, usually organized into a table. It
contains several samples, which correspond to each one of the cases
of the problem from which the machine will be able to learn before
being presented with new cases. Variables are each one of the aspects
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that have been measured or that characterize each sample. They
determine the type of data (character strings, numbers, dates) and
the range where values are taken. A usual distinction of numerical
variables is between continuous and discrete ones, the former cor-
responding to real intervals and the latter with a countable set of
possible values.

Samples are typically distributed in rows and variables in columns.
Table 2.1 shows an example of dataset with 3 samples and 4 variables,
where each variable corresponds to a specific kind of data: length is
a continuous numerical variable, legs is discrete numerical, wings is
binary categorical and species is categorical.

A model is an abstraction of a dataset that enables the machine to
perform the desired operations, for example, generating new data
similar to the available, or assigning a category to new data points.
A good model should be faithful to the available data, incorporating
enough information to describe its behavior and potential relations
between variables, so that it can be used as a description of the data
and as a tool for solving tasks related to it. Models typically follow
some template which includes a range of parameters that can be
adjusted in order for the resulting model to represent the data. We
will call these templates untrained models, whereas the final results
will be trained models.

Learning and types of learning

In the context of machines learning from data, several types of
learning are usually distinguished, according to the feedback that
the machine receives while processing data. This concept is known as
supervision, and usually relates to whether there are available solved
cases for the specific problem at hand. A solved case is composed of
an input instance and an associated solution or label, which may be
a numerical value, a categorical value or a more complex structure.
Attending to the availability of labels for the learning algorithm, the
following learning paradigms are considered [2]:

▶ Supervised learning
▶ Unsupervised learning
▶ Semi-supervised learning
▶ Reinforcement learning
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Supervised learning

In a supervised learning setting [3], every observed case of the
problem in the dataset is coupled with its solution, so that the
machine can learn a mapping out of those associations, from the space
of the instances (input space) to the one of the labels (output space).
Models generated by learning algorithms in this contexts are usually
known as predictors, since for each new data point they must guess a
label in the output space. For example, in Table 2.1, an appropriate
objective task for a supervised learning algorithm is to predict the
species of an animal, knowing the rest of its characteristics.

Common supervised learning problems are classification and regres-
sion. They differ in the type of output that the predictor must produce:
classification implies that the output space is finite, thus the label is
just one of a certain number of available classes, whereas regression
involves guessing a real value from a continuous interval.

Unsupervised learning

The scenario of unsupervised learning [4] covers problems where
the solution is not known for the data that is available and, as a
result, the model cannot be provided with supervision. Instead, the
user of an unsupervised learning algorithm looks to find some sort
of inner structure or hidden patterns in the data.

One case where unsupervised learning methods are convenient is
when trying to find the most useful variables in a dataset, or even
transform the original features onto a more compact set of variables
which prevent redundancy and maximize efficiency in relation to
information provided per feature. Another typical task is finding
associations between items present in the data points, like related
articles in a shopping bag or recommended moviess.

Combinations of supervised and unsupervised learning

There are special cases where the task that is being approached is
not entirely supervised but not completely unsupervised either, but
a mix of both.

The most common combination emerges when the presence of
labels in the observed data is mixed, that is, there are instances
with associated labels and others with missing labels. This learning
paradigm, known as semi-supervised learning [5], is of interest in
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many real-world problems, since annotating each one of the collected
data instances with its corresponding label can be costly and time-
consuming [6].

Another relevant area that combines predictive and descriptive
learning is that of subgroup discovery [7], a task where the objective
is to find unusual relations (rules) between the input variables and
the target variable. Instead of learning to predict this variable, the
idea is to identify interesting subsets of instances according to their
relation to the target variable and the rest of samples.

Reinforcement learning

A different strategy for machines to learn consists in providing them
with positive or negative reinforcements according to their behavior
[8]. Instead of providing the algorithm with the complete solution
for each problem instance, usually a score is given, evaluating the
current solution against some criteria. This learning paradigm fits
well with problems where multiple solutions can be acceptable, so
the actual solving process is not as important as obtaining the desired
result, as well as situations where the aim is to find the most efficient
solution. Notable examples of this kind of learning are tabletop
games like AlphaGo for Go [9] and even strategy videogames like
AlphaStar for StarCraft II [10].

2.2 Obstacles when learning models

Machine learning models can come across several kinds of difficulties
that are relevant to analyze since they are related to the tools and
solutions studied in this thesis. Primarily, we will focus on improving
the feature sets and tackling certain aspects of supervised learning
problems.

Feature sets

The feature set, as explained in Chapter 1, corresponds to the space
where each sample takes values. The same events may be expressed
by different feature sets according to the information collection
procedures. For example, a spoken command may be represented
by a precise sound file that was recorded or by the words that were
uttered. In the former case, the feature set could be the presence
of each frequency at each time point. In the latter, a possible set of
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features would indicate whether each word from a predefined list
was present or not in the sentence.

Traditional algorithms for adjusting models tend to process data "as
is", which means that they perform few transformations (or none)
to each vector before using them directly to fit model parameters.
This causes them to underperform when the representation of the
vectors (i.e. the set of features) is not ideal. As a consequence, it
is usually convenient to preprocess data beforehand, using one or
several tools that will manipulate the features looking to improve
the performance of the learning algorithm. This is known as feature
extraction, feature learning or representation learning [11].

Potential issues with supervised problems

Although supervised learning tasks provide the desired answer for
all observed cases, there are a wide variety of obstacles that can
prevent a learning algorithm from finding an acceptable solution.

The structure of the task can itself be a hindrance. The scheme
that most algorithms are designed to tackle is that of a binary
classification problem. This is characterized by the categorization of
instances in one of two possible classes, which can be represented as
a binary variable which acts as the target. Each instance is in turn
represented by a vector valued in a set of variables. Although this is
the simplest setting for a supervised machine learning problem, and
many methods are initially created with it in mind for this reason,
real world situations usually need more complex approaches.

One possible case is problem objects being represented by several
data points, either homogeneous or heterogeneous according to
whether they come from the same feature space. For example, one
molecule may present various forms [12], where one of them may
present a valid solution, rendering that molecule apt to solve the
studied problem. This is known as a multi-instance learning task,
while a multi-view one would have the data points belonging to
different sources (and different feature spaces) [13], like social media
posts with associated image and text. Learning methods are typically
applied with a one-to-one input-target association in mind, so these
types of input structures become harder to work around.

Equivalently to each problem case being structured differently to a
feature vector, the target can also become more complex. Many real
world situations are better represented with more than one target
variable. For example, tags in text documents can appear simulta-
neously, so predicting them will require a multilabel classification
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algorithm [14]. A similar case applies to continuous values in targets,
leading to multi-output regression methods [15].

Moreover, combinations of the previous nonstandard inputs and
outputs structures can coexist, like in multi-instance multilabel
problems [16] or multi-view multilabel ones [17].

Different issues can arise that make certain classes hard to learn
by classifiers due to their size, location or lack of representation
within the training set itself. This phenomenon is broadly known
as data complexity [18], and in some cases as difficult classes [19],
if the complications are related to a specific class. Data complexity
can be caused by the feature set not fully being able to separate
instances of different classes, class boundaries being highly nonlinear
or composed of several disjoint subsets, or a class being notably
underrepresented with respect to the rest, among other factors.

2.3 Deep learning

An alternative approach to extracting features before training a
predictor is to embed the feature extraction stage within the untrained
model itself, and learn the best features at the same time that the
final model (a classifier, regressor, segmentor...) is trained. When this
process is organized layer-wise, the overall model is called a deep
learning model [20].

Deep learning model design comprises two complementary elements:
the type of layers that build up the network and determine the type
of data that can be processed, and the architecture itself, that is, the
way these layers are organized and allow to perform one task or
another with the provided data. For example, one could build a
classification network out of recurrent units for sentiment analysis,
or an encoder-decoder network out of convolutional layers for image
segmentation. The fundamental types of layers as well as the most
relevant architectures are explained next.

Neural networks according to layer operations

Not every kind of neural network is prepared to deal with every
type of dataset. Their main advantage is that they can become spe-
cialized in certain structures, such as sequential data (sound, speech,
language), bidimensional data (images) and three-dimensional data
(video). This specialization while preserving the same training strate-
gies and essential implementation methods is what sets them apart



2.3 Deep learning 21

Figure 2.1: Comparison of the archi-
tectures of several CNNs, from left to
right: VGG-19, a CNN with 36 layers
and a residual CNN with 36 layers.
Figure from [21].

from traditional learning methods, which are more fixed in their
way of working through data.

Dense networks

Dense deep networks, also known as fully connected networks, are
essentially the same as MLPs. Their main operation in each layer
is matrix product, where a parameter matrix is used to extract the
values of each layer out of those of the previous one. More formally,
is 𝑥 is an input vector, 𝑊 is the parameter matrix and 𝑏 is a bias
parameter, the dense layer performs the following computation:

𝑓 (𝑥) =𝑊𝑥 + 𝑏 𝑊 ∈ M𝑛×𝑚(ℝ), 𝑥 ∈ ℝ𝑚 , 𝑏 ∈ ℝ𝑛 . (2.1)

These networks are called fully connected because each value in the
output is able to draw information from all values in the input vector.
This is especially useful when variables are not structured since the
order of variables will not affect the training.

Convolutional networks

Convolutional networks (CNNs) emerge out of the need to adapt
operations to bidimensional data, as well as reduce the computational
complexity of dense networks when treating this type of high-
dimensional data. Since the matrix used in a dense layer has 𝑛 × 𝑚
parameters, 𝑚 being the number of variables in the input vector
and 𝑛 the number of variables in the output vector, the amount of
floating point operations required to compute the result is 𝑂 (𝑛𝑚).

In a CNN, a certain number of matrices typically named channels is
computed out of the input matrix. Each one is composed of values
calculated by convoluting the original matrix with a weight matrix,
called kernel, which is usually of a fixed small size: 3 × 3 up to 9 × 9.
Each pixel (𝑖 , 𝑗) in a filter resulting from convoluting a kernel 𝐾 over
the input 𝐼 can be computed as follows:

𝑓 (𝑖 , 𝑗) = (𝐾 ∗ 𝐼) (𝑖 , 𝑗) =
∑
𝑚

∑
𝑛

𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛) . (2.2)

By keeping 𝑘, the size of the kernels, notably smaller than the in-
put image, the complexity of convolution is 𝑂(𝑘𝑛) and it requires
much fewer parameters than matrix multiplication. This makes
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Figure 2.2: Diagram for an LSTM
where blue units are gates (sigmoidal
or tanh activations), green units are
products and pink units are sums. Tri-
angles over data flows indicate values
that are fed at the next step.
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CNNs appropriate for image-related tasks such as image classifi-
cation, segmentation and object detection. They can also extend to
tridimensional data such as video segments.

Most current neural network libraries implement cross correlation
instead of the discrete convolution, which does not affect the results
since equivalent kernels can be learned for it. The operation is still
called convolution in most cases, and the only change is a sign flip
for 𝑚 and 𝑛:

𝑓 (𝑖 , 𝑗) = (𝐼 ∗ 𝐾) (𝑖 , 𝑗) =
∑
𝑚

∑
𝑛

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛) . (2.3)

Convolution is not the only stage performed by CNN. The other
important step is pooling. This function outputs a smaller version of
its input by summarizing nearby values. For example, max pooling
[22] takes the maximum out of a rectangle of the input matrix and
outputs that as a single value, reducing in this way the size of the
matrix.

Computer vision has been one of the fundamental applications of
deep learning and CNNs have evolved greatly as a result, with
many improvements and extensions such as residual connections
(see Figure 2.1), breakdown of convolutions into smaller ones [23],
and pruning strategies [24].

Recurrent networks

In a recurrent neural network (RNN), some parts of the computation
of the network at each step, e.g. the output, are fed as input in the next
one. This creates a “memory” which allows the RNN to remember
previous outputs when making predictions. RNNs are used for tasks
such as speech recognition and language translation, where the order
of the input is important and past outputs are relevant for the next
predictions.

A popular kind of RNN units are long short-term memory (LSTM)
units [25], which add a self-loop controlled (gated) by another unit
so that the memorized information can be eventually forgotten. See
Figure 2.2 for a detailed schematic of this type of unit.

Attention and transformers

Attention mechanisms started in encoder-decoder recurrent net-
works as a system to identify parts of speech that are more relevant



2.3 Deep learning 23

[26]: Bahdanau et al. (2015), “Neural
machine translation by jointly learn-
ing to align and translate”
[27]: Luong et al. (2015), “Effective
approaches to attention-based neural
machine translation”

Figure 2.3: Original architecture dia-
gram of the Transformer. Source: [28].

[28]: Vaswani et al. (2017), “Attention
is all you need”
[29]: Devlin et al. (2019), “BERT: Pre-
training of Deep Bidirectional Trans-
formers for Language Understand-
ing”
[30]: Liu et al. (2021), “Swin trans-
former: Hierarchical vision trans-
former using shifted windows”
[31]: Chen et al. (2021), “CycleMLP: A
MLP-like architecture for dense pre-
diction”

than others within the input data while decoding is in process [26,
27]. Instead of compacting all the inputs into an encoded vector
and decoding from there, attention allows to have all information
available and focus on just the important pieces at each decoding
step. There exist several ways of applying attention according to
the elements that interact with one another, including self-attention,
local attention and global attention.

Based on the concept of attention, transformers [28] were conceptu-
alized by simply avoiding recurrent units and building the whole
network around stacked self-attention operations. Figure 2.3 shows
how a transformer is organized. Transformers have been applied
beyond machine translation to many other natural language tasks,
where they are currently the state of the art [29]. Some proposals
have tackled computer vision as well [30], but are being matched in
performance by attention-free models such as [31].

Network architectures

Neural layers can be organized in different formations and connected
in various ways in order to achieve specific solutions. The structure
and connections of a network are known as its architecture.

Classifiers and regressors

Classifiers and regressors are very common types of neural network
architectures. The key to obtaining a label output from a network
is to stack layers which transform and progressively reduce the
dimension of the original data, up to the last layer where the class is
selected or a numerical value is predicted.

Some classification networks are trained and tested against well
known benchmarks, becoming a reference for further works and even
a basis for other tasks, leveraging the already extracted knowledge
by means of transfer learning. For instance, the VGG-19 and ResNet
networks shown in Figure 2.1 are standard tools for general image
classification.

Encoder-decoder structures

There exists a category of deep architectures composed of two
components, an encoder and a decoder, where there is an interest
in the model operating first with the features in order to obtain
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Figure 2.4: Schematic structure of a
fully connected autoencoder.

higher-level features (encoding) and then developing these features
back onto more detailed and specific versions.

For example, when the objective task is to segment the pixels in an
image, that is, label each pixel with one of several classes, a possible
solution is to compute abstract, high-level features for the image, and
use those to classify each pixel next [32]. This allows to analyze the
neighborhoods of each pixel before assigning it to a class, which will
probably lead to more cohesive segmentations. Using an encoder-
decoder structure, the encoder would compute these low-resolution
but high-level features, and the decoder would perform the detailed
labeling task out of the extracted information.

Similarly, an encoder-decoder scheme made out of recurrent units,
also known as a sequence-to-sequence model [33], could serve as basis
for a language translation system. The encoder would extract an
intermediate representation for the meaning of the original sentence
and the decoder would transform that onto the target language.

A special subset of encoder-decoder architectures are autoencoders,
which are further described next.

Autoencoders

Essentially, an autoencoder is an encoder-decoder architecture which
is trained to map its inputs onto its outputs. Being 𝑓 the encoder
network and 𝑔 the decoder one, the main objective of an autoen-
coder would be to match the input data as closely as possible (see
Figure 2.4):

𝑥 ≈ 𝑔( 𝑓 (𝑥)) (2.4)

As a feature learner, the autoencoder trains to extract appropriate
features from data by considering that quality features should allow
to reconstruct the original data from the encoded vectors.

Different variations can be introduced into the training process and
the autoencoder structure in order to extend its functionality. For
example, the encoded features can be manipulated to be more sparse,
i.e. most of them are equal to 0 for each input vector; the extracted
reconstruction can discard noise from the inputs, or it can model
the data as a continuous probability distribution. Article I goes into
detail about these variants and compares autoencoders to other
feature learning methods.
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Autoencoders are not limited to the existing variants. Since they
are usually based on a penalty function added to the objective
that they train to optimize, an expert can define a different penalty
function and induce a new behavior on the learned features. This
penalty function, unlike the basic objective, can be based on network
inputs, outputs, encodings or even external data associated to each
instance. This idea is further explored in Article V, where three novel
autoencoder models are proposed.

Unlike some types of neural networks which are used more com-
monly such as CNN classifiers or natural language models, autoen-
coders are not straightforward to implement in current deep learning
libraries. This is due to autoencoders having two main output points
where most neural networks have one: autoencoders can both encode
a feature vector through their middle layer and reconstruct it through
their last layer. In spite of this, there are few software tools which act
as an abstraction layer over deep learning platforms, giving easier
access to autoencoder functionalities. This, along with our developed
software package Ruta, is further discussed in Article II.

Autoencoders, just like other kinds of networks, can adapt to process
data with different structures. As long as the input and output shapes
of the network coincide, an autoencoder will be able to transform the
variables and produce an output as close as possible to the sampled
data. In consequence, autoencoders can be made out of dense layers,
convolutional layers and recurrent units as detailed in Section 3.1.
Other possible structures for problems which could be captured by
an adequately built autoencoders are analyzed in Article III.

Finally, the utility of autoencoders as feature learners is not limited
to helping classification methods by projecting instances to a more
useful feature space. As mentioned before, autoencoders may learn
noise-resilient representations which allow to restore noisy signals.
The reconstruction fidelity can also be used as a sign of anomalous
data. Meanwhile, the encoded features can also be binarized to
serve as bucket identifiers or treated as a probability distribution
to sample new points. All of these applications are explained and
demonstrated in Article IV.
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Bringing all previous theoretical concepts into a working model
is not straightforward if approached from scratch but, since the
late 2000s and early 2010s, there have been notable advancements
in programming libraries which take care of the hard work of
calculating gradients and optimizing weights, leaving to the data
scientist just the task of designing an appropriate model.

This chapter is dedicated to illustrating the reader on the different
possibilities that exist for designing and implementing autoencoder
networks. Detailed examples on how to code simple autoencoders
are provided.

3.1 Design

Designing an autoencoder for a certain task can be challenging, since
the objective is to find a more useful representation of the data but
we cannot know the size of the optimal representation beforehand,
thus difficulting decisions about the number of layers and the size
of each one.

Type of layers

As explained in greater detail in Section 2.3, different layers are avail-
able in every deep learning framework and can be used according
to the structure of the provided data and the kind of operations the
practitioner wants to apply to it. The choice in an autoencoder would
be analogous to that in other kinds of networks:

▶ Unstructured variables: the most basic type of data takes the
form of tabular values where columns may be related but do
not hold a specific structure, they can be reordered in any way
and the data is still valid. Appropriate layers for this kind
of data are dense layers, also known as fully connected or
linear. These compute a product between the input vector and
a matrix of parameters, which gives a new output vector as a
result.
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▶ Images: the recent surge in deep learning applications is in
great part due to the potential of convolutional operations for
image processing. These relieve a great part of the compu-
tational complexity of dense layers by leveraging the spatial
relations among values. Convolutional layers are frequently
coupled with pooling layers (either max-pooling or average-
pooling) which reduce the dimensionality of the data points,
as well as dropout layers which randomly disable some layer
nodes during training in order to improve model robustness.

▶ Sound, time series and sequential data: many data sources
impose a one-dimensional structure to the values, e.g. recorded
sounds, stock prices, sensor signals across time, etc. Convo-
lutional operations can also apply in this case, since they can
operate in one dimension analogously to the two-dimensional
version. However, other layers have been specifically designed
for this kind of data, such as long short-term memory (LSTM)
units or gated recurrent units (GRU). These are encompassed
under the term recurrent units.

Model depth

Determining how deep a model should become, i.e., how many
layers to stack, is a process influenced by the amount of variables
and instances in the dataset. Taking into account that deep learning
models are usually data-hungry, defining a model with many layers
will require a large dataset in order to optimize all parameters. This
inconvenience is especially present in the case of dense layer-based
models, since these have many more parameters than convolutional
models.

Encoding layer

Autoencoders being mainly feature learners, the most important layer
is that where the new representation of the data will be extracted.
Some aspects that are important to evaluate are the dimension or
shape of the encoding and the activation function.

The dimension of the encoding layer will determine the compactness
of the new representation. Thus, if the objective is to find a small set
of variables for a dataset, a short length will be selected for this layer.
The optimal size can be hard to find, but if the layer is too small the
behavior of the autoencoder will generally be poor (the loss function
will not decrease during training) so a practical way of estimating
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an appropriate size is to start with a very short layer and increase
the size until the training process is able to converge.

For its part, the activation function will determine the range of the
values that will be obtained. This is relevant if, for instance, bounded
values are needed for a later purpose. In that case, a sigmoid or a
tanh activation function would be helpful in providing values within
the [0, 1] and [−1, 1] ranges, respectively.

Output layer

Finally, the output layer needs to preserve the same structure of the
input data. This means that, if an instance is composed of 𝑛 values,
this layer needs to produce 𝑛 outputs.

It is also convenient to consider the range of the input values if an
activation is to be applied to the final layer. Using the appropriate
activation function in the output layer can facilitate the reconstruction
task of the autoencoder.

▶ Unbounded: for data with unbounded variables, no activation
(also known as "linear" activation in some frameworks) is the
adequate decision, since most activations restrict the range of
the output.

▶ Partially bounded: Nonnegative data can be generated by a
ReLU activation.

▶ Bounded interval: Data in the [0, 1] range can be produced as
the result of a sigmoid activation. Similarly, the tanh activation
function can provide data in the [−1, 1] range.

Architecture search

Even if the previous guidelines can provide a starting point for
the design of an appropriate autoencoder for a certain task, many
hyperparameters remain for the user to set: number of total layers,
number of neurons in each layer, loss function penalties to add, etc.
The search for an optimal model can become difficult if performed
by trial and error, even for experienced practitioners. There are
some solutions in order to facilitate this process. An extensive
experimentation serving to identify which autoencoder variants and
structures are more suitable to tackle different types of problems
is available at [1]. The alternative is running an automatic search
for an adequate architecture under some heuristic, for example, an
evolutionary method [2]. This option falls under the category of
algorithms known as neural architecture search [3].
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3.2 Training deep models

The training process of a deep learning model can be very resource-
intensive, since it requires computing hundreds of arithmetic opera-
tions, usually across several thousands of parameters.

Stochastic gradient descent

Deep learning models are usually optimized by differentiating the
objective function with respect to the model parameters and updating
those in the direction of steepest descent. This optimization scheme
is known as gradient descent, but it suffers from high time complexity
when datasets become large. An approximation called stochastic
gradient descent (SGD) is used instead as a result [4]. It simply runs
gradient descent on successive minibatches of data, estimating the
true gradient as the overall expectation of all gradients computed.
This fixes the time required for each parameter update, depending
only on the size of the minibatch and independently from the training
set size.

Gradient descent is prone to converging to local minima and SGD
is just an approximation which will also tend to stabilize in local
minima or locations with small gradients. However, neural networks
do not represent convex functions, on the contrary, they almost
always present a large amount of local minima. As a consequence,
many improvements have been proposed to find better solutions
with lower values of the objective function. Of course, they still do
not ensure that a global minimum is reached, but they are more
likely to find an overall well optimized point in parameter space.
Some of these improvements on SGD are AdaBoost [5], Adadelta [6]
and Adam [7].

Gradient computation

In order to optimize a neural network, SGD requires to compute the
value of the objective function and then find its gradient with respect
to model parameters. Since SGD is an approximation, the training
stage is usually divided into a series of epochs, during which a batch
of data is fed to the network. Each epoch is composed of several
forward and backward passes.
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Forward pass

The value of the objective function is the result of transforming the
input data through the network up to the application of the loss
function, that is, the metric that evaluates the obtained output with
respect to the desired one. This sequence of operations is known as
a forward pass of a batch of data.

Backward pass

The expression for the derivative of each layer in a feedforward
neural network turns out to be dependent on the values for the
derivatives in the next layer. The strategy, as a result, is to perform
the computations starting from the output layer back to the input
layer. This technique is known as backpropagation of errors.

The derivatives are computed for the last layer and, using the chain
rule, those values can be reused to find the derivatives for the second-
to-last layer, then the layer before, and the rest successively. This
backward pass is what allows the optimizer to calculate the gradient
of the objective function with respect to all the weights.

After one or more backward passes, the errors and derivatives
obtained are combined and used to update the weights in the
direction of steepest descent. Certain properties of the optimizer,
such as momentum, may also be applied in order to compensate
for potential noise and side effects of using only a small part of the
dataset for each update.

3.3 Implementation

During the latest years, there has been a notable evolution in the
scene of software libraries for deep learning. From the existence of a
wide variety of them with differing functionalities, ease of use and
optimizations, there has been a tendency to condensate popularity
in just two of them, which currently offer very similar functionalities
and interfaces: Tensorflow and Pytorch.

About Tensorflow

Tensorflow is a deep learning framework implemented in C++, with
Python and C++ interfaces, developed by Google and open source
contributors.
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Figure 3.1: Trends for web searches for five of the most popular deep learning frameworks, over the last 5 years.
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This library provides both lazy and eager execution of tensor op-
erations on either CPU or GPU. Eager execution, the usual way of
running statements where the result of each statement is readily
available just after an operation is run, is enabled by default starting
from Tensorflow 2. Lazy execution behaves the opposite, delaying
the actual computation of operations until a final step where every-
thing is processed jointly. It allows to optimize models better using a
computation graph, but makes it harder to debug them.

Tensorflow integrates an easy-to-use API called Keras [8], which
raises the level of abstraction so that the user does not need to
program each operation but can design a network based on its
layers. This API also brings additional tools including prebuilt
and pretrained models, data manipulation functionalities, built-in
datasets and automatic parameter tuning.

Sample implementation

Consider an essential autoencoder model where both the encoder
and the decoder are composed of one fully connected layer.

For the purpose of modularity, which helps reusing parts of the
code later, it is convenient to define the encoder and the decoder
separately. Each will be represented by an object of class Sequential,
and comprises a list with just one layer, of class Dense.

Both models are chained by listing them in a new Sequentialmodel,
which is then compiled to optimize the binary crossentropy loss
using the Adam [7] optimizer. Assuming that the variable x_train

holds the training data, the model is optimized when the fit()

method is called.
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Once the autoencoder has been trained, the encoder can be fed new
instances from the same variable space and it will map those to the
learned representation.

1 import tensorflow as tf

2

3 enc_dim = 10

4 encoder = tf.keras.Sequential([

5 tf.keras.layers.Dense(enc_dim, activation="relu",

6 input_shape=(x_train.shape[1], ))

7 ])

8 decoder = tf.keras.Sequential([

9 tf.keras.layers.Dense(x_train.shape[1],

10 activation="sigmoid", input_shape=(enc_dim,))

11 ])

12

13 autoencoder = tf.keras.Sequential([encoder, decoder])

14 autoencoder.compile(loss="binary_crossentropy",

15 optimizer="adam")

16 autoencoder.fit(x_train, x_train, epochs=10)

17

18 new_encodings = encoder.predict(x_test)

About Pytorch

Pytorch is the successor of the Lua-based Torch library, with the
objective of providing an interface as natural as possible for the
experienced Python user. It is developed by Facebook and other
open source contributors.

This library attempts to provide a deeper integration with Numpy
and Scipy, and is designed to work in eager execution but models
can be transformed into graph mode (which enables lazy execution
and further optimizations).

The Pytorch API is well organized into modules depending on
the type of data that is being processed: torchvision for images,
torchaudio for audio sequences and torchtext for text and natural
language. Models can be built in a similar fashion to the Keras
interface, but the training process usually requires more explicit
code.

Sample implementation

Next is an equivalent implementation for the same autoencoder of
the previous example, this time in Pytorch. The similarities can be
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appreciated when defining the encoder and the decoder, but the
optimization of the autoencoder model is done more explicitly this
time, by means of a training loop. At each iteration, the following
steps are performed:

1. A batch of input samples is selected
2. The neural network is fed these samples and its output is

obtained
3. A loss metric is calculated according to the target outputs
4. The gradients applied to the model are reset
5. The gradients corresponding to the current loss are computed

and propagated
6. Model parameters are updated by the optimizer according to

the gradients

Once the training loop has finished, the model is considered trained
and is switched to evaluation mode in order to allow for extraction
of the learned features for new data.

1 import torch

2 from torch.nn.functional import binary_cross_entropy

3

4 enc_dim = 10

5

6 encoder = torch.nn.Sequential(

7 torch.nn.Linear(x_train.shape[1], enc_dim),

8 torch.nn.ReLU(True)

9 )

10 decoder = torch.nn.Sequential(

11 torch.nn.Linear(enc_dim, x_train.shape[1]),

12 torch.nn.ReLU(True)

13 )

14

15 autoencoder = torch.nn.Sequential(encoder, decoder)

16

17 optimizer = torch.optim.Adam(autoencoder.parameters())

18

19 for i in range(100):

20 inputs = x_train[i*10:(i+1)*10]

21 output = autoencoder(inputs)

22 loss = binary_cross_entropy(output, inputs)

23 autoencoder.zero_grad()

24 loss.backward()

25 optimizer.step()

26

27 autoencoder.eval()

28 encoder(x_test)
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GPU parallelization

From a hardware point of view, neural network training is a relatively
easy task since it mostly involves great amounts of floating point
matrix products. Thus, it does not require the complexity of a whole
CPU to run the optimization task. Instead, most of the bulk of the
process can be carried out by the simpler, more dense computing
chips that are present in current graphical processing units (GPU).
These allow very fast parallel calculations and, as a result, are ideal
to accelerate the training process.

Most tensor libraries, including Tensorflow and Pytorch, are im-
plemented with GPU execution in mind as well as CPU execution
(usually as fallback) of the models. The most popular platform for
parallel execution is CUDA from NVIDIA [9], which provides access
to an instruction set that is executed on a GPU, and OpenCL [10] is an
equivalent standard. If the correct drivers and the CUDA platform
are installed, the selected library will be able to automatically connect
to the GPU in order to copy data to the dedicated memory and send
instructions to carry out the necessary computations.

The potential of GPUs is further leveraged in dedicated multi-
GPU servers where the calculations can be spread across several
accelerators, resulting in proportional time savings with no loss in
quality of results. Graphics cards manufacturers currently produce
variants of the cards that are specific for computing purposes and
discard the video output, sometimes including dedicated circuitry
for tensor operations (e.g. Tensor Cores in the NVIDIA A100 lineup
[11] as can be seen in Figure 3.2).
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This part of the document reproduces five articles published in peer-
reviewed journals authored by the candidate. They represent the core
contributions of the present thesis. However, there are many more
outcomes resulting from the research work produced during the
course of the doctoral studies. These include other journal articles
co-authored in collaboration with other colleagues in tangential
topics, national and international conferences, disseminative talks
in seminars, several software libraries and one book. Figure 4.1
indicates the main numbers related to the different types of works
developed.

Figure 4.1: Visual summary of the main results obtained during the candidate’s research career.

A quick look at the infographic reveals that the focus of this thesis
has not only been to produce novel scientific research, but also useful
software tools to apply and improve our developments, as well as
didactic material which brings this area of computer science closer
to different audiences.
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In order to not only measure the work by its quantity but also by its
impact, mainly within the research community, the joint number of
citations through time is shown in Figure 4.2 as well as its position
relative to the rest of publications in the same field in Figure 4.3.

Figure 4.2: Graph of the number of publications and citations across years (source: Web of Science).

Figure 4.3: Beamplot displaying the
impact of the candidate’s publica-
tions since 2015 to 2020 (source: Web
of Science). Each purple point cor-
responds to a publication and the
horizontal position describes its ci-
tation level with respect to the rest
of publications in the same area and
year (higher is better).
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4.1 Relation of all published material

The following tables detail all of the candidate’s publications as of
the time of writing. First, Table 4.1 indicates articles published in
journals ranked within Journal Citation Reports (JCR), including
quality metrics such as journal position in the ranking, quartile and
number of citations.

The rest of publications such as articles in other journals, conference
works, talks and one book are broken down in Table 4.2.

Table 4.1: Quality metrics of the articles published in JCR journals during the research period of the candidate. The position
of each journal is taken from the JCR of the corresponding year, except for those marked with an asterisk (∗) which are
taken from JCR 2020. The source for the number of citations is Web of Science. Category legends: Statistics and Probability
(STAT), Computer Science/Artificial Intelligence (CS AI), Computer Science/Theory and Methods (CS TM), Computer
Science/Information Systems (CS IS). Articles marked with a star (⋆) are part of the core of this thesis.

Year Title Journal Position Cat. Cit. Ref.

2015 Working with Multilabel Datasets in R: The
mldr Package

The R Journal 56/123 (Q2) STAT 30 [1]

2018 Tips, guidelines and tools for managing multi-
label datasets: The mldr.datasets R package
and the Cometa data repository

Neurocomputing 28/134 (Q1) CS AI 12 [2]

⋆ 2018 A practical tutorial on autoencoders for nonlin-
ear feature fusion: Taxonomy, models, software
and guidelines

Information Fusion 2/105 (Q1)
3/134 (Q1)

CS TM
CS AI

102 [3]

⋆ 2019 Ruta: Implementations of neural autoencoders
in R

Knowledge-based Sys-
tems

15/137 (Q1) CS AI 4 [4]

⋆ 2020 An analysis on the use of autoencoders for rep-
resentation learning: Fundamentals, learning
task case studies, explainability and challenges

Neurocomputing 30/139 (Q1) CS AI 11 [5]

2020 Artificial intelligence within the interplay be-
tween natural and artificial computation: Ad-
vances in data science, trends and applications

Neurocomputing 30/139 (Q1) CS AI 35 [6]

2020 COVIDGR Dataset and COVID-SDNet Method-
ology for Predicting COVID-19 Based on Chest
X-Ray Images

Biomedical And Health
Informatics

28/161 (Q1) CS IS 55 [7]

2021 Revisiting data complexity metrics based on
morphology for overlap and imbalance: snap-
shot, new overlap number of balls metrics and
singular problems prospect

Knowledge and Informa-
tion Systems

65/139 (Q2)∗ CS AI 1 [8]

⋆ 2021 Reducing Data Complexity using Autoen-
coders with Class-informed Loss Functions

Pattern Analysis and Ma-
chine Intelligence

1/139 (Q1)∗ CS AI n/a [9]

2022 A tutorial on the segmentation of metallo-
graphic images: Taxonomy, new MetalDAM
dataset, deep learning-based ensemble model,
experimental analysis and challenges

Information Fusion 1/110 (Q1)∗
3/139 (Q1)∗

CS TM
CS AI

0 [10]
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Table 4.2: Other publications, conferences and talks authored by the candidate. Articles marked with a star (⋆) are part of
the core of this thesis.

Year Title Type Published in Ref.

2015 mldr: Paquete R para exploración de datos
multietiqueta

National
conference

XVI Conferencia de la Asociación Es-
pañola para la Inteligencia Artificial

[11]

2016 Análisis visual de técnicas de deep learning no
supervisado

National
conference

XVII Conferencia de la Asociación Es-
pañola para la Inteligencia Artificial

[12]

2016 R Ultimate Multilabel Dataset Repository International
conference

Hybrid Artificial Intelligence Systems [13]

2017 Unsupervised Deep Learning in R with Ruta Poster IX Jornadas de usuarios de R
2018 A practical tutorial on autoencoders for nonlin-

ear feature fusion: Taxonomy, models, software
and guidelines

Keywork in
national confer-
ence

XVIII Conferencia de la Asociación Es-
pañola para la Inteligencia Artificial

[14]

⋆ 2018 A snapshot on nonstandard supervised learn-
ing problems: taxonomy, relationships, prob-
lem transformations and algorithm adaptations

Journal article Progress in Artificial Intelligence
(115/171, Q3 in ESCI ranking; Q2 in SJR)

[15]

2019 A showcase of the use of autoencoders in fea-
ture learning applications

International
conference

International Work-Conference on the
Interplay between Natural and Artificial
Computation

[16]

2019 Aplicaciones prácticas de las redes neuronales
no supervisadas

National
conference

Congreso esLibre 2019

2020 Autoencoders: An Overview and Applications Talk Severo Ochoa School on Machine Learn-
ing, Big Data, and Deep Learning in As-
tronomy (IAA-CSIC SOMACHINE)

2021 Machine Learning y Ciencia de Datos con
Python y R

Book Krasis Press [17]

2021 Slicer: Feature Learning for Class Separability
with Least-Squares Support Vector Machine
Loss and COVID-19 Chest X-Ray Case Study

International
conference

Hybrid Artificial Intelligence Systems [18]
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[3]: Charte et al. (2018), “A practical
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[4]: Charte et al. (2019), “Ruta: Imple-
mentations of neural autoencoders in
R”

[15]: Charte et al. (2019), “A snapshot
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[5]: Charte et al. (2020), “An analysis
on the use of autoencoders for rep-
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ability and challenges”

[9]: Charte et al. (2021), “Reduc-
ing Data Complexity using Autoen-
coders with Class-informed Loss
Functions”
[18]: Charte et al. (2021), “Slicer: Fea-
ture Learning for Class Separability
with Least-Squares Support Vector
Machine Loss and COVID-19 Chest
X-Ray Case Study”

4.2 Main articles

From the works previously mentioned, five peer-review articles
have been selected as the main core of this thesis for advancing our
fundamental objectives.

The first objective, as described previously in Section 1.4, was to study
autoencoders and contribute to more people being able to use them to
solve their tasks. Article I [3] addresses this by describing autoencoder
fundamentals, its variants, implementations and providing tips on
autoencoder design depending on the problem at hand.

Continuing with the objective of facilitating access to autoencoders,
Article II [4] presents Ruta, a software library which simplifies the
creation and training process. It is programmed in the R language to
ease the transition from other tools for users with little programming
knowledge.

Next, part of the time was devoted to exploring a diverse range of
problems where autoencoders could be applicable. Article III [15] or-
ganizes the knowledge around a variety of supervised problems, for
example, multi-instance classification and multi-output regression.
For its part, Article IV [5] analyzes another list of problems, mostly
unsupervised, where autoencoder-based models have already been
applied as a valid solution, from anomaly detection to instance
generation.

Some preliminary work was accomplished into approaching one of
the nonstandard supervised problems, label distribution learning,
using an autoencoder-based solution. This did not improve on
current, simpler techniques so our focus changed onto tackling
a more general situation that could be then applied to multiple
supervised problems. This new development, consisting of a model
which is able to extract features with better class separability than
most traditional feature learners, is detailed in Article V [9]. We also
demonstrate the usefulness of this novel solution by applying it to a
specific problem, detection of COVID-related pulmonar symptoms
in X-ray images, in [18].
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Abstract

Many of the existing machine learning algorithms, both supervised
and unsupervised, depend on the quality of the input character-
istics to generate a good model. The amount of these variables is
also important, since performance tends to decline as the input
dimensionality increases, hence the interest in using feature fusion
techniques, able to produce feature sets that are more compact and
higher level. A plethora of procedures to fuse original variables for
producing new ones has been developed in the past decades. The
most basic ones use linear combinations of the original variables,
such as PCA (Principal Component Analysis) and LDA (Linear Dis-
criminant Analysis), while others find manifold embeddings of lower
dimensionality based on non-linear combinations, such as Isomap
or LLE (Linear Locally Embedding) techniques.

More recently, autoencoders (AEs) have emerged as an alternative to
manifold learning for conducting nonlinear feature fusion. Dozens
of AE models have been proposed lately, each with its own specific
traits. Although many of them can be used to generate reduced
feature sets through the fusion of the original ones, there also AEs
designed with other applications in mind.

The goal of this paper is to provide the reader with a broad view
of what an AE is, how they are used for feature fusion, a taxonomy
gathering a broad range of models, and how they relate to other
classical techniques. In addition, a set of didactic guidelines on how
to choose the proper AE for a given task is supplied, together with a
discussion of the software tools available. Finally, two case studies
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I.1 Introduction

The development of the first machine learning techniques dates back
to the middle of the 20th century, supported mainly by previously
established statistical methods. By then, early research on how to
emulate the functioning of the human brain through a machine was
underway. McCulloch and Pitts cell [2] was proposed back in 1943,
and the Hebb rule [3] that the Perceptron [4] is founded on was
stated in 1949. Therefore, it is not surprising that artificial neural
networks (ANNs), especially since the backpropagation algorithm
was rediscovered in 1986 by Rumelhart, Hinton and Willians [5],
have become one of the essential models.

ANNs have been applied to several machine learning tasks, mostly
following a supervised approach. As was mathematically demon-
strated [6] in 1989, a multilayer feedforward ANN (MLP) is an
universal approximator, hence their usefulness in classification and
regression problems. However, a proper algorithm able to train an
MLP with several hidden layers was not available, due to the vanish-
ing gradient [7] problem. The gradient descent algorithm, firstly used
for convolutional neural networks [8] and later for unsupervised
learning [9], was one of the foundations of modern deep learning
[10] methods.

Under the umbrella of deep learning, multiple techniques have
emerged and evolved. These include DBNs (Deep Belief Networks) [11],
CNNs (Convolutional Neural Networks) [12], RNNs (Recurrent Neural
Networks) [13] as well as LSTMs (Long Short-Term Memory) [14] or AEs
(autoencoders).

The most common architecture in unsupervised deep learning is that
of the encoder-decoder [15]. Some techniques lack the encoder or the
decoder and have to compute costly optimization algorithms to find
a code or sampling methods to reach a reconstruction, respectively.
Unlike those, AEs capture both parts in their structure, with the
aim that training them becomes easier and faster. In general terms,



I.1 Introduction 51

[16]: Ballard (1987), “Modular Learn-
ing in Neural Networks”

[17]: Bellman (1957), Dynamic Pro-
gramming

[18]: Dash et al. (1997), “Feature Selec-
tion for Classification”

[19]: Liu et al. (1998), Feature extrac-
tion, construction and selection: A data
mining perspective

[20]: Domingos (2012), “A few useful
things to know about machine learn-
ing”

[21]: Bengio et al. (2013), “Represen-
tation learning”

AEs are ANNs which produce codifications for input data and are
trained so that their decodifications resemble the inputs as closely
as possible.

AEs were firstly introduced [16] as a way of conducting pretraining
in ANNs. Although mainly developed inside the context of deep
learning, not all AE models are necessarily ANNs with multiple
hidden layers. As explained below, an AE can be a deep ANN, i.e. in
the stacked AEs configuration, or it can be a shallow ANN with a
single hidden layer. See Section I.2 for a more detailed introduction
to AEs.

While many machine learning algorithms are able to work with raw
input features, it is also true that, for the most part, their behavior
is degraded as the number of variables grows. This is mainly due
to the problem known as the curse of dimensionality [17], as well
as the justification for a field of study called feature engineering.
Engineering of features started as a manual process, relying in an
expert able to decide by observation which variables were better for
the task at hand. Notwithstanding, automated feature selection [18]
methods were soon available.

Feature selection is only one of the approaches to reduce input space
dimensionality. Selecting the best subset of input variables is an NP-
hard combinatorial problem. Moreover, feature selection techniques
usually evaluate each variable independently, but it is known that
variables that separately do not provide useful information may do
so when they are used together. For this reason other alternatives,
primarily feature construction or extraction [19], emerged. In addition
to these two denominations, feature selection and feature extraction,
when dealing with dimensionality reduction it is also frequent to
use other terms. The most common are as follows:

Feature engineering [20] This is probably the broadest term, en-
compassing most of the others. Feature engineering can be carried
out by manual or automated means, and be based on the selection
of original characteristics or the construction of new ones through
transformations.

Feature learning [21] It is the denomination used when the pro-
cess to select among the existing features or construct new ones is
automated. Thus, we can perform both feature selection and feature
extraction through algorithms such as the ones mentioned below.
Despite the use of automatic methods, sometimes an expert is needed
to decide which algorithm is the most appropriate depending on
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data traits, to evaluate the optimum amount of variables to extract,
etc.

Representation learning [21] Although this term is sometimes
interchangeably used with the previous one, it is mostly used to refer
to the use of ANNs to fully automate the feature generation process.
Applying ANNs to learn distributed representations of concepts
was proposed by Hinton in [22]. Today, learning representations
is mainly linked to processing natural language, images and other
signals with specific kinds of ANNs, such as CNNs [12].

Feature selection [23] Picking the most informative subset of vari-
ables started as a manual process usually in charge of domain experts.
It can be considered a special case of feature weighting, as discussed
in [24]. Although in certain fields the expert is still an important
factor, nowadays the selection of variables is usually carried out
using computer algorithms. These can operate in supervised or
unsupervised manner. The former approach usually relies on corre-
lation or mutual information between input and output variables
[25, 26], while the latter tends to avoid redundancy among features
[27]. Feature selection is overall an essential strategy in the data
preprocessing [23, 28] phase.

Feature extraction [29] The goal of this technique is to find a better
data representation for the machine learning algorithm intended to
use, since the original representation might not be the best one. It can
be faced both manually, in which case the feature construction term
is of common use, and automatically. Some elemental techniques
such as normalization, discretization or scaling of variables, as
well as basic transformations applied to certain data types*, are
also considered within this field. New features can be extracted by
finding linear combinations of the original ones, as in PCA (Principal
Component Analysis) [30, 31] or LDA (Linear Discriminant Analysis)
[32], as well as nonlinear combinations, like Kernel PCA [33] or
Isomap [34]. The latter ones are usually known as manifold learning
[35] algorithms, and fall in the scope of nonlinear dimensionality
reduction techniques [36]. Feature extraction methods can also be
categorized as supervised (e.g. LDA) or non-supervised (e.g. PCA).

Feature fusion [37] This more recent term has emerged with the

* e.g. Take the original field containing a date and divide it into three new variables,
year, month and day.
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growth of multimedia data processing by machine learning algo-
rithms, especially images, text and sound. As stated in [37], feature
fusion methods aim to combine variables to remove redundant and
irrelevant information. Manifold learning algorithms, and especially
those based on ANNs, fall into this category.

Among the existing AE models there are several that are useful
to perform feature fusion. This is the aim of the most basic one,
which can be extended via several regularizations and adaptations
to different kinds of data. These options will be explored through
the present work, whose aim is to provide the reader with a didactic
review on the inner workings of these distinct AE models and the
ways they can be used to learn new representations of data.

The following are the main contributions of this paper:

▶ A proposal of a global taxonomy of AEs dedicated to feature
fusion.

▶ Descriptions of these AE models including the necessary
mathematical formulation and explanations.

▶ A theoretical comparison between AEs and other popular
feature fusion techniques.

▶ A comprehensive review of other AE models as well as their
applications.

▶ A set of guidelines on how to design an AE, and several
examples on how an AE may behave when its architecture and
parameters are altered.

▶ A summary of the available software for creating deep learning
models and specifically AEs.

Additionally, we provide a case study with the well known dataset
MNIST [38], which gives the reader some intuitions on the results
provided by an AE with different architectures and parameters. The
scrips to reproduce these experiments are provided in a repository,
and their use will be further described in Section I.6.

The rest of this paper is structured as follows. The foundations and
essential aspects of AEs are introduced in Section I.2, including
the proposal of a global taxonomy. Section I.3 is devoted to thor-
oughly describing the AE models able to operate as feature fusion
mechanisms and several models which have further applications.
The relationship between these AE models and other feature fusion
methods is portrayed in Section I.4, while applications of different
kinds of AEs are described in Section I.5. Section I.6 provides a set
of guidelines on how to design an AE for the task at hand, followed
by the software pieces where it can be implemented, as well as the
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case study with MNIST data. Concluding remarks can be found in
Section I.7. Lastly, an Appendix briefly describes the datasets used
through the present work.

I.2 Autoencoder essentials

AEs are ANNs† with a symmetric structure, where the middle
layer represents an encoding of the input data. AEs are trained to
reconstruct their input onto the output layer, while verifying certain
restrictions which prevent them from simply copying the data along
the network. Although the term autoencoder is the most popular
nowadays, they were also known as autoassociative neural networks
[39], diabolo networks [40] and replicator neural networks [41].

In this section the foundations of AEs are introduced, describing
their basic architecture as ANNs as well as the activation functions
regularly applied in their layers. Next, AEs are grouped into four
types according to their architecture. This is followed by our pro-
posed taxonomy for AEs, which takes into account the properties
these induce in codifications. Lastly, a summary of their habitual
applications is provided.

General structure

The basic structure of an AE, as shown in Fig. I.1, includes an input
𝑥 which is mapped onto the encoding 𝑦 via an encoder, represented
as function 𝑓 . This encoding is in turn mapped to the reconstruction
𝑟 by means of a decoder, represented as function 𝑔.

Figure I.1: General autoencoder struc-
ture

𝑥 𝑦 𝑟
𝑓 𝑔

This structure is captured in a feedforward neural network. Since
the objective is to reproduce the input data on the output layer,
both 𝑥 and 𝑟 have the same dimension. 𝑦, however, can be higher-
dimensional or lower-dimensional, depending on the properties
desired. The AE can also have as many layers as needed, usually
placed symmetrically in the encoder and decoder. Such a neural
architecture can be observed in Fig. I.2.

† Strictly speaking not all AEs are ANNs, but here our interest is in those since they
are the most common ones.
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𝑊 (1)

𝑊 (2) 𝑊 (3)
𝑊 (4)

Figure I.2: A possible neural archi-
tecture for an autoencoder with a 2-
variable encoding layer. 𝑊 denotes
weight matrices.

In this case the encoder is made up of three layers, including the
middle encoding one, while the decoder starts in the middle one
and also spans three layers.

Activation functions of common use in autoencoders
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Figure I.3: Common activation functions in ANNs.

A unit located in any of the hidden layers of an ANN receives several
inputs from the preceding layer. The unit computes the weighted
sum of these inputs and eventually applies a certain operation, the
so-called activation function, to produce the output. The nonlinearity
behavior of most ANNs is founded on the selection of the activation
function to be used. Fig. I.3 shows the graphical appearance of six of
the most popular ones.
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The activation functions shown in the first row are rarely used on
AEs when it comes to learning higher level features, since they rarely
provide useful representations. An undercomplete AE having one
hidden layer made up of 𝑘 linear activation units (Eq. I.1) and that
minimizes the sum of squared errors is known to be equivalent to
obtaining the 𝑘 principal components of the feature space via PCA
[42–44]. AEs using binary/boolean activations (Eq. I.2) [45, 46] are
mostly adopted for educational uses, as McCulloch and Pitts [2] cells
are still used in this context. However, they also have some specific
applications, such as data hashing as described in subsection I.5.

𝑠linear(𝑥) = 𝑥 (I.1)
𝑠binary(𝑥) = [𝑥 > 0] (I.2)

Note that square brackets denote Iverson’s convention [47] and
evaluate to 0 or 1 according to the truthiness of the proposition.

Rectified linear units (ReLU, Fig. I.3c, Eq. I.3) are popular in many
deep learning models, but it is an activation function that tends to
degrade the AE performance. Since it always outputs 0 for negative
inputs, it weakens the process of reconstructing the input features
onto the outputs. Although they have been successfully used in [48,
49], the authors had to resort to a few detours. A recent alternative
which combines the benefits of ReLU while circumventing these
obstacles is the SELU function (Scaled Exponential Linear Units, Fig. I.3f,
Eq. I.4) [50]. There are already some proposals of deep AEs based
on SELU such as [51].

𝑠relu(𝑥) = 𝑥[𝑥 > 0] (I.3)

𝑠selu(𝑥) = 𝜆

{
𝛼𝑒𝑥 − 𝛼 𝑥 ≤ 0
𝑥 𝑥 > 0

, where 𝜆 > 1 (I.4)

Sigmoid functions are undoubtedly the most common activations
in AEs. The standard logistic function, popularly known simply as
sigmoid (Fig. I.3d, Eq. I.5), is probably the most frequently used.
The hyperbolic tangent (Fig. I.3e, Eq. I.6) is also a sigmoid function,
but it is symmetric about the origin and presents a steeper slope.
According to LeCun [52] the latter should be preferred, since its
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derivative produces stronger gradients that the former.

𝑠sigm(𝑥) = 𝜎(𝑥) = 1
1 + 𝑒𝑥 (I.5)

𝑠tanh(𝑥) = tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (I.6)

When designing AEs with multiple hidden layers, it is possible to
use different activation functions in some of them. This would result
in AEs combining the characteristics of several of these functions.

Autoencoder groups according to network structure

AEs could be grouped according to disparate principles, such as
their structure, the learning algorithm they use, the loss function
that guides the update of weights, their activation function or the
field they are applied. In this section we focus on the first criterion,
while the others will be further covered in following sections.

As explained above, AEs are ANNs with a symmetrical structure.
The decoder and the encoder have the same number of layers, with
the number of units per layer in reverse order. The encoding layer
is shared by both parts. Depending on the dimensionality of the
encoding layer, AEs are said to be:

▶ Undercomplete, if the encoding layer has a lower dimension-
ality than the input. The smaller number of units imposes
a restriction, so during training the AE is forced to learn a
more compact representation. This is achieved by fusing the
original features according to the weights assigned through
the learning process.

▶ Overcomplete, otherwise. An encoding layer having the same or
more units than the input could allow the AE to simply learn
the identity function, copying the input onto the output. To
avoid this behavior, usually other restrictions are applied as
will be explained later.

Although the more popular AE configuration for dimensionality
reduction is undercomplete, an overcomplete AE with the proper
restrictions can also produce a compact encoding as explained in
subsection I.3.

In addition to the number of units per layer, the structure of an AE
is also dependent of the number of layers. According to this factor,
an AE can be:
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Figure I.4: Autoencoder models ac-
cording to their structure.

(a) Shallow undercomplete (b) Shallow overcomplete

(c) Deep undercomplete (d) Deep overcomplete

[53]: Larochelle et al. (2009), “Explor-
ing strategies for training deep neural
networks”

▶ Shallow, when it only comprises three layers (input, encoding
and output). It is the simplest AE model, since there is only
one hidden layer (the encoding).

▶ Deep, when it has more than one hidden layer. This kind of AE
can be trained either layer by layer, as several shallow stacked
AEs, or as a deep ANN [53].

These four types of AEs are visually summarized in Fig. I.4. Shallow
AEs are on the top row and deep ones in the bottom, while under-
complete AEs are on the left column and overcomplete on the right
one.

Autoencoder taxonomy

As stated before, a taxonomy of AEs can be built according to
different criteria. Here the interest is mainly on the properties of the
inferred model regarding the feature fusion task. Conforming to this
principle, we have elaborated the taxonomy shown in Fig. I.5. As
can be seen, there are four main categories in this taxonomy:
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Autoencoder taxonomy

Lower dimensionality

Basic

Convolutional

LSTM-based

Regularization

Sparse

Contractive

Noise tolerance

Denoising

Robust

Generative model

Variational

Adversarial

Figure I.5: Taxonomy: most popular autoencoders classified according to the charasteristics they induce in their encodings

Lower dimensionality High-dimensional data can be an issue
when using most classifiers and especially shallow neural networks,
since they do not perform any kind of high-level feature learning and
are then forced to optimize a notable amount of parameters. This
task may be eased by just lowering the dimensionality of the data,
and this is the aim of the basic AE, which is thoroughly explained in
Section I.3. Decreasing the dimensionality of specific types of data,
such as images or sequences, can be treated by domain specific AEs
detailed in Section I.3.

Regularization Sometimes, learned features are required to present
special mathematical properties. AEs can be easily modified in order
to reach encodings that verify them. The main regularizations that
can be applied to AEs are portrayed in Section I.3.

Noise tolerance In addition to different properties, a desirable trait
for the encoded space may be robustness in the face of noisy data.
Two distinct approaches to this problem using AEs are gathered in
Section I.3.

Generative model The transformation from the original feature
space onto the encoded space may not be the main objective of an AE.
Occasionally it will be useful to map new samples in the encoded
space onto the original features. In this case, a generative model is
needed. Those based in AEs are specified in Section I.3.
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Usual applications

The term autoencoder is very broad, referring to multiple learning
models based on both fully-connected feed-forward ANNs and
other types of ANNs, and even models completely unrelated to that
structure. Similarly, the application fields of AEs are also varied. In
this work we pay attention specifically to AEs whose basic model is
that of an ANN. In addition, we are especially interested in those
whose objective is the fusion of characteristics by means of nonlinear
techniques.

Reducing the dimensionality of a feature space using AEs can be
achieved following disparate approaches. Most of them are reviewed
in Section I.3, starting with the basic AE model, then advancing to
those that include a regularization, that present noise tolerance, etc.
The goal is to provide a broad view of the techniques that AEs rely
on to perform feature fusion.

Besides feature extraction, which is our main focus, there are AE
models designed for other applications such as outlier detection,
hashing, data compression or data generation. In Sections I.3 and I.3
some of these AEs will be briefly portrayed, and in Section I.5 many
of their applications will be shortly reviewed.

I.3 Autoencoders for feature fusion

As has been already established, AEs are tools originally designed
for finding useful representations of data by learning nonlinear ways
to combine their features. Usually, this leads to a lower-dimensional
space, but different modifications can be applied in order to discover
features which satisfy certain requirements. All of these possibili-
ties are discussed in this section, which begins by establishing the
foundations of the most basic AE, and later encompasses several
diverse variants, following the proposed taxonomy: those that pro-
vide regularizations are followed by AEs presenting noise tolerance,
generative models are explained afterwards, then some domain
specific AEs and finally two variations which do not fit into any
previous category.

Basic autoencoder

The main objective of most AEs is to perform a feature fusion process
where learned features present some desired traits, such as lower
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dimensionality, higher sparsity or desirable analytical properties.
The resulting model is able to map new instances onto the latent
feature space. All AEs thus share a common origin, which may be
called the basic AE [54].

The following subsections define the structure of a basic AE, es-
tablish their objective function, describe the training process while
enumerating the necessary algorithms for this task, and depict how
a deep AE can be initialized by stacking several shallow ones.

Structure

The structure of a basic AE, as shown in the previous section, is that
of a feed forward ANN where layers are of symmetrical amount
of units. Layers need not be symmetrical in the sense of activation
functions or weight matrices.

The simplest AE consists of just one hidden layer, and is defined by
two weight matrices and two bias vectors:

𝑦 = 𝑓 (𝑥) = 𝑠1(𝑊 (1)𝑥 + 𝑏(1)), (I.7)

𝑟 = 𝑔(𝑦) = 𝑠2(𝑊 (2)𝑦 + 𝑏(2)), (I.8)

where 𝑠1 and 𝑠2 denote the activation functions, which usually are
nonlinear.

Deep AEs are the natural extension of this definition to a higher
number of layers. We will call the composition of functions in the
encoder 𝑓 , and the composition of functions in the decoder 𝑔.

Objective function

AEs generally base their objective function on a per-instance loss
function L : ℝ𝑑 ×ℝ𝑑 → ℝ:

J(𝑊, 𝑏; 𝑆) =
∑
𝑥∈𝑆

L(𝑥, (𝑔 ◦ 𝑓 )(𝑥)) (I.9)

where 𝑓 and 𝑔 are the encoding and decoding functions determined
by the weights 𝑊 and biases 𝑏, assuming activation functions are
fixed, and 𝑆 is a set of samples. The objective of an AE is thus to
optimize𝑊 and 𝑏 in order to minimize J.

For example, a typical loss function is the mean squared error
(MSE):

LMSE(𝑢, 𝑣) = ∥𝑢 − 𝑣∥2
2 . (I.10)
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Notice that multiplying by constants or performing the square root
of the error induced by each instance does not alter the process, since
these operations preserve numerical order. As a consequence, the
root mean squared error (RMSE) is an equivalent loss metric.

When a probabilistic model is assumed for the input samples, the
loss function is chosen as the negative log-likelihood for the example
𝑥 given the output (𝑔 ◦ 𝑓 )(𝑥) [55]. For instance, when input values
are binary or modeled as bits, cross-entropy is usually the preferred
alternative for the loss function:

LCE(𝑢, 𝑣) = −
𝑑∑
𝑘=1

𝑢𝑘 log 𝑣𝑘 + (1 − 𝑢𝑘) log(1 − 𝑣𝑘) . (I.11)

Training

Usual algorithms for optimizing weights and biases in AEs are
stochastic gradient descent (SGD) [56] and some of its variants, such
as AdaGrad [57], RMSProp [58] and Adam [59]. Other applicable
algorithms which are not based on SGD are L-BFGS and conjugate
gradient [60].

The foundation of these algorithms is the technique of gradient
descent [61]. Intuitively, at each step, the gradient of the objective
function with respect to the parameters shows the direction of
steepest slope, and allows the algorithm to modify the parameters
in order to search for a minimum of the function.

In order to compute the necessary gradients, the backpropagation
algorithm [5] is applied. Backpropagation performs this computation
by calculating several intermediate terms from the last layer to the
first.

AEs, like many other machine learning techniques, are susceptible to
overfitting of the training data. To avoid this issue, a regularization
term can be added to the objective function which causes a weight
decay [62]. This improves the generalization ability and encourages
smaller weights that produce good reconstructions. Weight decay
can be introduced in several ways, but essentially consists in a term
depending on weight sizes that will attempt to limit their growth.
For example, the resulting objetive function could be

J(𝑊, 𝑏; 𝑆) =
∑
𝑥∈𝑆

L(𝑥, (𝑔 ◦ 𝑓 )(𝑥)) + 𝜆
∑
𝑖

𝑤2
𝑖 (I.12)

where 𝑤𝑖 traverses all the weights in 𝑊 and 𝜆 is a parameter
determining the magnitude of the decay.
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Further restrictions and regularizations can be applied. A specific
constraint that can be imposed is to tie the weight matrices symmet-
rically, that is, in a shallow AE, to set𝑊 (1) = (𝑊 (2))𝑇 , and the natural
extension to deep AEs. This allows to optimize a lower amount of
parameters, so the AE can be trained faster, while maintaining the
desired architecture.

Stacking

When AEs are deep, the success of the training process relies heavily
on a good weight initialization, since there can be from tens to
hundreds of thousands of them. This weight initialization can be
performed by stacking successive shallow AEs [55], that is, training
the AE layer by layer in a greedy fashion.

The training process begins by training only the first hidden layer as
the encoding of a shallow AE, as shown by the network on the left
of Fig. I.6. After this step, the second hidden layer is trained, using
the first hidden layer as input layer, as displayed on the right. Inputs
are computed via a forward pass of the original inputs through the
first layer, with the weights determined during the previous stage.
Each successive layer up to the encoding is trained the same way.

Figure I.6: Greedy layer-wise training
of a deep AE with the architecture
shown in Fig I.4c. Units drawn in
black designate layers of the final AE,
and gray ones indicate layers that are
not part of the unrolled AE during
the fine-tuning phase.

After this layer-wise training, initial weights for all layers preceding
and including the encoding layer will have been computed. The
AE is now “unrolled”, i.e. the rest of layers are added symetrically
with weight matrices resulting from transposing the ones from each
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corresponding layer. For instance, for the AE trained in Fig. I.6, the
unrolled AE would have the structure shown in Fig. I.4c.

Finally, a fine-tuning phase can be performed, optimizing the weights
by backpropagating gradients through the complete structure with
training data.

Regularization

Encodings produced by basic AEs do not generally present any
special properties. When learned features are required to verify some
desirable traits, some regularizations may be achieved by adding a
penalization for certain behaviors Ω to the objetive function:

J(𝑊, 𝑏; 𝑆) =
∑
𝑥∈𝑆

L(𝑥, (𝑔 ◦ 𝑓 )(𝑥)) + 𝜆Ω(𝑊, 𝑏; 𝑆) . (I.13)

Sparse autoencoder

Sparsity in a representation means most values for a given sample
are zero or close to zero. Sparse representations are resembling
of the behavior of simple cells in the mammalian primary visual
cortex, which is believed to have evolved to discover efficient coding
strategies [63]. This motivates the use of transformations of samples
into sparse codes in machine learning. A model of sparse coding
based on this behavior was first proposed in [64].

Sparse codes can also be overcomplete and meaningful. This was
not necessarily the case in basic AEs, where an overcomplete code
would be trained to just copy inputs onto outputs.

When sparsity is desired in the encoding generated by an AE,
activations of the encoding layer need to have low values in average,
which means units in the hidden layer usually do not fire. The
activation function used in those units will determine this low value:
in the case of sigmoid and ReLU activations, low values will be close
to 0; this value will be -1 in the case of tanh, and −𝜆𝛼 in the case of a
SELU.

The common way to introduce sparsity in an AE is to add a penalty
to the loss function, as proposed in [65] for Deep Belief Networks.
In order to compare the desired activations for a given unit to the
actual ones, these can be modeled as a Bernoulli random variable,
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assuming a unit can only either fire or not. For a specific input 𝑥,
let

�̂�𝑖 =
1
|𝑆 |

∑
𝑥∈𝑆

𝑓𝑖(𝑥) (I.14)

be the average activation value of an unit in the hidden layer, where
𝑓 = ( 𝑓1 , 𝑓2 , . . . 𝑓𝑐) and 𝑐 is the number of units in the encoding. �̂�𝑖
will be the mean of the associated Bernoulli distribution.

Let 𝜌 be the desired average activation. The Kullback-Leibler di-
vergence [66] between the random variable defined by unit 𝑖 and
the one corresponding to the desired activations will measure how
different both distributions are [67]:

KL(𝜌∥�̂�𝑖) = 𝜌 log
𝜌

�̂�𝑖
+ (1 − 𝜌) log

1 − 𝜌

1 − �̂�𝑖
. (I.15)

Fig. I.7 shows the penalty caused by Kullback-Leibler divergence for
a hidden unit when the desired average activation is 𝜌 = 0.2. Notice
that the penalty is very low when the average activation is near the
desired one, but grows rapidly as it moves away and tends to infinity
at 0 and 1.

The resulting penalization term for the objective function is

ΩSAE(𝑊, 𝑏; 𝑆) =
𝑐∑
𝑖=1

KL(𝜌∥�̂�𝑖) , (I.16)

where the average activation value �̂�𝑖 depends on the parameters of
the encoder and the training set 𝑆.

There are other modifications that can lead an encoder-decoder
architecture to produce a sparse code. For example, applying a
sparsifying logistic activation function in the encoding layer of a
similar energy-based model, which forces a low activation average
[68], or using a Sparse Encoding Symmetric Machine [69] which
optimizes a loss function with a different sparsifying penalty.

Contractive autoencoder

High sensitivity to perturbations in input samples could lead an AE
to generate very different encodings. This is usually inconvenient,
which is the motivation behind the contractive AE. It achieves
local invariance to changes in many directions around the training
samples, and is able to more easily discover lower-dimensional
manifold structures in the data.
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Figure I.7: Values of Kullback-Leibler
divergence for a unit with average
activation �̂�𝑖 .
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Sensitivity for small changes in the input can be measured as the
Frobenius norm ∥·∥𝐹 of the Jacobian matrix of the encoder 𝐽 𝑓 :

𝐽 𝑓 (𝑥)

2

𝐹
=

𝑑∑
𝑗=1

𝑐∑
𝑖=1

(
𝜕 𝑓𝑖
𝜕𝑥 𝑗

(𝑥)
)2

. (I.17)

The higher this value is, the more unstable the encodings will be to
perturbations on the inputs.

A regularization is built from this measure into the objective function
of the contractive AE:

ΩCAE(𝑊, 𝑏; 𝑆) =
∑
𝑥∈𝑆



𝐽 𝑓 (𝑥)

2
𝐹
. (I.18)

A particular case of this induced contraction is the usage of L2
weight decay with a linear encoder: in this situation, the only way to
produce a contraction is to maintain small weights. In the nonlinear
case, however, contraction can be encouraged by pushing hidden
units to the saturated region of the activation function.

The contractive AE can be sampled [70], that is, it can generate
new instances from the learned model, by using the Jacobian of the
encoder to add a small noise to another point and computing its
codification. Intuitively, this can be seen as moving small steps along
the tangent plane defined by the encoder in a point on the manifold
modeled.
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Noise tolerance

A standard AE can learn a latent feature space from a set of samples,
but it does not guarantee stability in the presence of noisy instances,
nor it is able to remove noise when reconstructing new samples.
In this section, two variants that tackle this problem are discussed:
denoising and robust AEs.

Denoising autoencoder

A denoising AE or DAE [71] learns to generate robust features from
inputs by reconstructing partially destroyed samples. The use of AEs
for denoising had been introduced earlier [72], but this technique
leverages the denoising ability of the AE to build a latent feature space
which is more resistant to corrupted inputs, thus its applications are
broader than just denoising.

The structure and parameters of a denoising AE are identical to those
of a basic AE. The difference here lies in a stochastic corruption of the
inputs which is applied during the training phase. The corrupting
technique proposed in [71], as illustrated by Fig. I.8, is to randomly
choose a fixed amount of features for each training sample and set
them to 0. The reconstructions of the AE are however compared to
the original, uncorrupted inputs. The AE will be thus be trained to
guess the missing values.

Figure I.8: Illustration of the training
phase of a denoising AE. For each in-
put sample, some of its components
are randomly selected and set to 0,
but the reconstruction error is com-
puted by comparing to the original,
non-corrupted data.

Formally, let 𝑞(�̃� |𝑥) be a stochastic mapping performing the partial
destruction of values described above, the denoising AE recieves
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�̃� ∼ 𝑞(�̃� |𝑥) as input and minimizes

JDAE(𝑊, 𝑏; 𝑆) =
∑
𝑥∈𝑆

𝔼�̃�∼𝑞(�̃� |𝑥) [L(𝑥, (𝑔 ◦ 𝑓 )(�̃�))] . (I.19)

A denoising AE does not need further restrictions or regularizations
in order to learn a meaningful coding from the data, which means it
can be overcomplete if desired. When it has more than one hidden
layer, it can be trained layer-wise. For this to be done, uncorrupted
inputs are computed as outputs of the previous layers, these are then
corrupted and provided to the network. Note that after the denoising
AE is trained, it is used to compute higher-level representations
without corrupting the input data.

The training technique allows for other possible corruption processes,
apart from forcing some values to 0 [73]. For instance, additive
Gaussian noise

�̃� ∼ N(𝑥, 𝜎2I) , (I.20)

which randomly offsets each component of 𝑥 with the same variance,
or salt-and-pepper noise, which sets a fraction of the elements of the
input to their minimum or maximum value, according to a uniform
distribution.

Robust autoencoder

Training an AE to recover from corrupted data is not the only way to
induce noise tolerance in the generated model. An alternative is to
modify the loss function used to minimize the reconstruction error
in order to dampen the sensitivity to different types of noise.

Robust stacked AEs [74] apply this idea, and manage to be less
affected by non-Gaussian noise than standard AEs. They achieve this
by using a different loss function based on correntropy, a localized
similarity measure defined in [75].

LMCC(𝑢, 𝑣) = −
𝑑∑
𝑘=1

K𝜎(𝑢𝑘 − 𝑣𝑘), (I.21)

where K𝜎(𝛼) =
1√
2𝜋𝜎

exp
(
− 𝛼2

2𝜎2

)
, (I.22)

and 𝜎 is a parameter for the kernel K.

Correntropy specifically measures the probability density that two
events are equal. An advantage of this metric is it being less affected
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by outliers than MSE. Robust AEs attempt to maximize this measure
(equivalently, minimize negative correntropy), which translates in a
higher resilience to non-Gaussian noise.

Domain specific autoencoders

The following two AEs are based on the standard type, but are
designed to model very specific kinds of data, such as images and
sequences.

Convolutional autoencoder [76] Standard AEs do not explicitly
consider the 2-dimensional structure when processing image data.
Convolutional AEs solve this by making use of convolutional layers
instead of fully connected ones. In these, a global weight matrix is
used and the convolution operation is applied in order to forward
pass values from one layer to the next. The same matrix is flipped
over both dimensions and used for the reconstruction phase. Convo-
lutional AEs can also be stacked and used to initialize CNNs [77],
which are able to perform classification of images.

LSTM autoencoder [78] A basic AE is not designed to model
sequential data, an LSTM AE achieves this by placing Long-Short-
Term Memory (LSTM) [79] units as encoder and decoder of the
network. The encoder LSTM reads and compresses a sequence into
a fixed-size representation, from which the decoder attempts to
extract the original sequence in inverse order. This is especially
useful when data is sequential and large, for example video data. A
further possible task is to predict the future of the sequence from the
representation, which can be achieved by attaching an additional
decoder trained for this purpose.

Generative models

In addition to the models already described, which essentially
provide different mechanisms to reduce the dimensionality of a set
of variables, the following ones also produce a generative model from
the training data. Generative models learn a distribution in order to
be able to draw new samples, different from those observed. AEs can
generally reconstruct encoded data, but are not necessarily able to
build meaningful outputs from arbitrary encodings. Variational and
adversarial AEs learn a model of the data from which new instances
can be generated.
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Variational autoencoder [80] This kind of AE applies a variational
Bayesian [81] approach to encoding. It assumes that a latent, unob-
served random variable y exists, which by some random process
leads to the observations, x. Its objective is thus to approximate the
distribution of the latent variable given the observations. Variational
AEs replace deterministic functions in the encoder and decoder by
stochastic mappings, and compute the objective function in virtue of
the density functions of the random variables:

LVAE(𝜃, 𝜙; x) =
KL(𝑞𝜙(y|x)∥𝑝𝜃(y)) − 𝔼𝑞𝜙(y|x) [log 𝑝𝜃(x|y)] , (I.23)

where 𝑞 is the distribution approximating the true latent distribution
of y, and 𝜃, 𝜙 are the parameters of each distribution. Since varia-
tional AEs allow sampling from the learned distribution, applications
usually involve generating new instances [82, 83].

Adversarial autoencoder [84] It brings the concept of Generative
Adversarial Networks [85] to the field of AEs. It models the en-
coding by imposing a prior distribution, then training a standard
AE and, concurrently, a discriminative network trying to distin-
guish codifications from samples from the imposed prior. Since
the generator (the encoder) is trained to fool the discriminator as
well, encodings will tend to follow the imposed distribution. There-
fore, adversarial AEs are also able generate new meaningful samples.

Other generative models based on similar principles are Variational
Recurrent AEs [86], PixelGAN AEs [87] and Adversarial Symmetric
Variational AEs [88].

Other autoencoders farther from feature fusion

As can be seen, AEs can be easily altered to achieve different proper-
ties in their encoding. The following are some AEs which do not fall
into any previous category.

Relational autoencoder Basic AEs do not explicitly consider the
possible relations among instances. The relational AE [89] modifies
the objective function to take into account the fidelity of the recon-
struction of relationships among samples. Instead of just adding a
penalty term, the authors propose a weighted sum of the sample
reconstruction error and the relation reconstruction error. Notice
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that this is not the only variation named “relational autoencoder” by
its authors, different but identically named models are commented
in sections I.3 and I.5.

Discriminative autoencoder Introduced in [90], the discrimina-
tive AE uses the class information of instances in order to build a
manifold where positive samples are gathered and negative samples
are pushed away. As a consequence, this AE performs better recon-
struction of positive instances than negative ones. It achieves this
by optimizing a different loss function, specifically the hinge loss
function used in metric learning. The main objective of this model is
object detection.

Autoencoder-based architectures for feature learning

The basic AE can also be used as building block or inspiration for
other, more complex architectures dedicated to feature fusion. This
section enumerates and briefly introduces the most relevant ones.

Autoencoder trees [91] (Fig. I.9a) are encoder-decoder architectures,
inspired by neural AEs, where the encoder as well as the decoder are
actually decision trees. These trees use soft decision nodes, which
means they propagate instances to all their children with different
probabilities.

A dual-autoencoder architecture [92] (Fig. I.9b) attempts to learn two
latent representations for problems where variables can be treated as
instances and viceversa, e.g. predicting customers’ recommendations
of items. These two representations are linked by an additional term
in the objective function which minimizes their deviation from the
training data.

The relational or “cross-correlation” AE defined in [93] incorporates
layers where units are combined by multiplication instead of by
a weighted sum. This allows it to represent co-ocurrences among
components of its inputs.

A recursive AE [94] (Fig. I.9c) is a tree-like architecture built from
AEs, in which new pieces of input are introduced as the model gets
deeper. A standard recursive AE attempts to reconstruct only the
direct inputs of each encoding layer, whereas an unfolding recursive
AE [95] reconstructs all previous inputs from each encoding layer.
This architecture is designed to model sentiment in sentences.
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Figure I.9: Illustrations of
autoencoder-based architec-
tures. Each rectangle represents a
layer, dark gray fill represents an
input, light gray represents output
layers and white objects represent
hidden layers.

(a) AE tree. Triangles represent decision trees.

(b) Dual AE. The encodings are cou-
pled by an additional penalty term,
represented as a diamond.

(c) Recursive AE (left), unfolded recursive AE (right)
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I.4 Comparison to other feature fusion techniques

AEs are only several of a very diverse range of feature fusion methods
[37]. These can be grouped according to whether they perform
supervised or unsupervised learning. In the first case, they are
usually known as distance metric learning techniques [96]. Some
adversarial AEs, as well as AEs preserving class neighborhood
structure [97], can be sorted into this category, since they are able to
make use of the class information. However, this section focuses on
the latter case, since most AEs are unsupervised and therefore share
more similarities with this kind of methods.

A dimensionality reduction technique is said to be convex if it op-
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timizes a function which does not have any local optima, and it
is nonconvex otherwise [98]. Therefore, a different classification of
these techniques is into convex and nonconvex approaches. AEs
fall into the nonconvex group, since they can attempt to optimize
disparate objective functions, and these may present more than one
optimum. AEs are also not restrained to the dimensionality reduction
domain, since they can produce sparse codes and other meaningful
overcomplete representations.

Lastly, feature fusion procedures can be carried out by means of linear
or nonlinear transformations. In this section, we aim to summarize
the main traits of the most relevant approaches in both of these
situations, and compare them to AEs.

Linear approaches

Principal component analysis is a statistical technique developed
geometrically by Pearson [30] and algebraically by Hotelling [31].
It consists in the extraction of the principal components of a vector
of random variables. Principal components are linear combinations
of the original variables in a specific order, so that the first one has
maximum variance, the second one has maximum possible variance
while being uncorrelated to the first (equivalently, orthogonal), the
third has maximum possible variance while being uncorrelated to
the first and second, and so on. A modern analytical derivation of
principal components can be found in [99].

The use of PCA for dimensionality reduction is very common, and
can lead to reasonably good results. It is known that AEs with
linear activations that minimize the mean quadratic error learn the
principal components of the data [43]. From this perspective, AEs
can be regarded as generalizations of PCA. However, as opposed
to PCA, AEs can learn nonlinear combinations of the variables and
even overcomplete representations of data.

Fig. I.10 shows a particular occurrence of these facts in the case of
the MNIST dataset [38]. Row 1 shows several test samples and the
rest display reconstructions built by PCA and some AEs. As can be
inferred from rows 2 and 3, linear AEs which optimize MSE learn
an approximation of PCA. However, just by adjusting the activation
functions and the objective function of the neural network one can
obtain superior results (row 4). Improvements over the standard AE
such as the robust AE (row 5) also provide higher quality in their
reconstructions.
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Figure I.10: Row 1 shows test sam-
ples, second row corresponds to PCA
reconstructions, the third one shows
those from a linear AE optimizing
MSE, row 4 displays reconstructions
from a basic AE with tanh activation
and cross-entropy as loss function,
and last row corresponds to a robust
AE.

1.
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A procedure similar to PCA but from a different theoretical per-
spective is Factor Analysis (FA) [100], which assumes a set of latent
variables or factors which are not observable but are linearly com-
bined to produce the observed variables. The difference between
PCA and FA is similar to that between the basic AE and the varia-
tional AE: the latter assumes that hypothetical, underlying variables
exist and cause the observed data. Variational AEs and FA attempt to
find the model that best describes these variables, whereas the basic
AE and PCA only aim for a lower-dimensional representation.

Linear Discriminant Analysis (LDA) [101] is a supervised statistical
method to find linear combinations of features that achieve good
separation of classes. It makes some assumptions of normality and
homoscedasticity over the data, and projects samples onto new
coordinates that best discriminate classes. It can be easily seen that
AEs are very different in theory to this method: they usually perform
unsupervised learning, and they do not necessarily make previous
assumptions of the data. In contrast, AEs may not find the best
separation of classes but they might encode further meaningful
information from the data. Therefore, these techniques may be
convenient, each in very different types of problems.

Nonlinear approaches

Kernel PCA [33] is an extension of PCA which applies kernel meth-
ods in order to extract nonlinear combinations of variables. Since
principal components can be computed by projecting samples onto
the eigenvectors of the covariance matrix, the kernel trick can be
applied in order to calculate the covariance matrix of the data in a
higher-dimensional space, given by the kernel function. Therefore,
kernel PCA can compute nonlinear combinations of variables and
overcomplete representations. The choice of kernel, however, can
determine the success of the method and may behave differently
with each problem, and hence AEs are a more general and easily
applicable framework for nonlinear feature fusion.

Multidimensional Scaling (MDS) [102] is a well known technique
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and a foundation for other algorithms. It consists in finding new
coordinates in a lower-dimensional space, while maintaining relative
distances among data points as accurately as possible. For this to
be achieved, it computes pairwise distances among points and then
estimates an origin or zero point for these, which allows to transform
relative distances into absolute distances that can be fitted into a real
Euclidean space. Sammon mapping [103] modifies the classical cost
function of MDS, in an attempt to similarly weigh retaining large
distances as well as small ones. It achieves better preservation of local
structure than classic MDS, at the cost of giving more importance to
very small distances than large ones.

The approach of MDS to nonlinear feature fusion is opposite to that
of AEs, which generally do not directly take into account distances
among pairs of samples, and instead optimize a global measure of
fitness. However, the objective function of an AE can be combined
with that of MDS in order to produce a nonlinear embedding which
considers pairwise distances among points [104].

Isomap [34] is a manifold learning method which extends MDS
in order to find coordinates that describe the actual degrees of
freedom of the data while preserving distances among neighbors
and geodesic distances between the rest of points. In addition, Locally
Linear Embedding (LLE) [105] has a similar goal, to learn a manifold
which preserves neighbors, but a very different approach: it linearly
reconstructs each point from its neighbors in order to maintain the
local structure of the manifold.

Both of these techniques can be compared to the contractive AE,
as it also attempts to preserve the local behavior of the data in
its encoding. Denoising AEs may also be indirectly forced to learn
manifolds, when they exist, and corrupted examples will be projected
back onto their surface [73]. However, AEs are able to map new
instances onto the latent space after they have been trained, a task
Isomap and LLE are not designed for.

Laplacian Eigenmaps [106] is a framework aiming to retain local
properties as well. It consists in constructing an adjacency graph
where instances are nodes and neighbors are connected by edges.
Then, a weight matrix similar to an adjacency matrix is built. Last,
eigenvalues and eigenvectors are obtained for the Laplacian matrix
associated to the weight matrix, and those eigenvectors (except 0)
are used to compute new coordinates for each point. As previously
mentioned, AEs do not usually consider the local structure of the
data, except for contractive AEs and further regularizations which
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incorporate measures of local properties into the objective function,
such as Laplacian AEs [107].

A Restricted Boltzmann Machine (RBM) [108], introduced origi-
nally as harmonium in [109], is an undirected graphical model, with
one visible layer and one hidden layer. They are defined by a joint
probability distribution determined by an energy function. How-
ever, computing probabilities is unfeasible since the distribution
is intractable, and they have been proved to be hard to simulate
[110]. Instead, Contrastive Divergence [111] is used to train an RBM.
RBMs are an alternative to AEs for greedy layer-wise initialization
of weights in ANNs including AEs. AEs, however, are trained with
more classical methods and are more easily adaptable to different
tasks than RBMs.

I.5 Applications in feature learning and beyond

The ability of AEs to perform feature fusion is useful for easing
the learning of predictive models, improving classification and
regression results, and also for facilitating unsupervised tasks that
are harder to conduct in high-dimensional spaces, such as clustering.
Some specific cases of these applications are portrayed within the
following subsections, including:

▶ Classification: reducing or transforming the training data in
order to achieve better performance in a classifier.

▶ Data compression: training AEs for specific types of data to
learn efficient compressions.

▶ Detection of abnormal patterns: identification of discordant
instances by analyzing generated encodings.

▶ Hashing: summarizing input data onto a binary vector for
faster search.

▶ Visualization: projecting data onto 2 or 3 dimensions with an
AE for graphical representation.

▶ Other purposes: further applications of AEs.

Classification

Using any of the AE models described in Section I.3 to improve the
output of a classifier is something very common nowadays. Here
only a few but very representative case studies are referenced.

Classifying tissue images to detect cancer nuclei is a very complicated
accomplishment, due to the large size of high-resolution pathological
images and the high variance of the fundamental traits of these nuclei,
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e.g. its shape, size, etc. The authors of [112] introduce a method,
based on stacked DAEs to produce higher level and more compact
features, which eases this task.

Multimodal/Multiview learning [113] is a rising technique which
also found considerable support in AEs. The authors of [114] present a
general procedure named Orthogonal Autoencoder for Multi-View. It is
founded on DAEs to extract private and shared latent feature spaces,
with an added orthogonality constraint to remove unnecessary
connections. In [115] the authors propose the MSCAE (Multimodal
Stacked Contractive Autoencoder), an application-specific model fed
with text, audio and image data to perform multimodal video
classification.

Multilabel classification [116] (MLC) is another growing machine
learning field. MLC algorithms have to predict several outputs (labels)
linked to each input pattern. These are usually defined by a high-
dimensional feature vector and a set of labels as output which tend
to be quite large as well. In [117] the authors propose an AE-based
method named C2AE (Canonical Correlated AutoEncoder), aimed to
learn a compressed feature space while establishing relationships
between the input and output spaces.

Text classification following a semi-supervised approach by means
of AEs is introduced in [118]. A model called SSVAE (Semi-supervised
Sequential Variational Autoencoder) is presented, mixing a Seq2Seq
[119] structure and a sequential classifier. The authors state that their
method outperforms fully supervised methods.

Classifiers based on AEs can be grouped in ensembles in order to gain
expressive power, but some diversity needs to be introduced. Several
means of doing so, as well as a proposal for Stacked Denoising
Autoencoding (SDAE) classifiers can be found in [120]. This method
has set a new performance record in MNIST classification.

Data compression

Since AEs are able to reconstruct the inputs given to them, an obvious
application would be compressing large amounts of data. However,
as we already know, the AE output is not perfect, but an approximate
reconstruction of the input. Therefore, it is useful only when lossy
compression is permissible.

This is the usual scenario while working with images, hence the
popularity of the JPEG [121] graphic file format. It is therefore not
surprising that AEs have been successfully applied to this task. This
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is the case of [122], where the performance of several AE models
compressing mammogram image patches is analyzed. A less specific
goal can be found in [123]. It proposes a model of AE named SWTA
AE (Stochastic Winner-Take-All Auto-Encoder), a variation of the sparse
AE model, aimed to work as a general method able to achieve a
variable ratio of image compression.

Although images could be the most popular data compressed by
means of AEs, these have also demonstrated their capacity to work
with other types of information as well. For instance:

▶ In [124] the authors suggest the use of AEs to compress bio-
metric data, such as blood pressure or heart rate, retrieved by
wearable devices. This way battery life can be extended while
time transmission of data is reduced.

▶ Language compression is the goal of ASC (Autoencoding Sen-
tence Compression), a model introduced in [125]. It is founded
on a variational AE, used to draw sentences from a language
modeled with a certain distribution.

▶ High-resolution time series of data, such as measurements
taken from service grids (electricity, water, gas, etc.), tend
to need a lot of space. In [126] the APRA (Adaptive Pairwise
Recurrent Encoder) model is presented, combining an AE and a
LSTM to successfully compress this kind of information.

Lossy compression is assumed to be tolerable in all these scenarios,
so the approximate reconstruction process of the AE does not hinder
the main objective in each case.

Detection of abnormal patterns

Abnormal patterns are samples present in the dataset that clearly
differ from the remaining ones. The distinction between anomalies
and outliers is usually found in the literature, although according
to Aggarwal [127] these terms, along with deviants, discordants or
abnormalities, refer to the same concept.

The telemetry obtained from spacecrafts is quite complex, made up
of hundreds of variables. The authors of [128] propose the use of basic
and denoising AEs for facing anomaly detection taking advantage
of the nonlinear dimensionality reduction ability of these models.
The comparison with both PCA and Kernel PCA demonstrates the
superiority of AEs in this task.

The technique introduced in [129] aims to improve the detection
of outliers. To do so, the authors propose to create ensembles of



I.5 Applications in feature learning and beyond 79

[130]: Castellini et al. (2017), “Fake
Twitter followers detection by denois-
ing autoencoder”

[131]: Chi et al. (2017), “Hashing Tech-
niques: A Survey and Taxonomy”

[132]: Gionis et al. (1999), “Similar-
ity Search in High Dimensions via
Hashing”

[133]: Salakhutdinov et al. (2009), “Se-
mantic hashing”

[134]: Salton et al. (1983), “Extended
Boolean information retrieval”

[135]: Carreira-Perpinan et al. (2014),
“Distributed optimization of deeply
nested systems”
[136]: Carreira-Perpinán et al. (2015),
“Hashing with binary autoencoders”

[137]: Fayyad et al. (2002), Informa-
tion visualization in data mining and
knowledge discovery

AEs with random connections instead of fully connected layers.
Their model, named RandNet (Randomized Neural Network for Outlier
Detection), is compared against four classic outlier detection methods
achieving an outstanding performance.

A practical application of abnormal pattern detection with AEs is the
one proposed in [130]. The authors of this work used a DAE, trained
with a benchmark dataset, to identify fake twitter accounts. This way
legitimate followers can be separated of those that are not.

Hashing

Hashing [131] is a very common technique in computing, mainly to
create data structures able to offer constant access time to any element
(hash tables) and to provide certain guarantees in cryptography (hash
values). A special family of hash functions are those known as
Locality Sensitive Hashing (LSH) [132]. They have the ability to map
data patterns to lower dimensional spaces while maintaining some
topological traits, such as the relative distance between these patterns.
This technique is very useful for some applications, such as similar
document retrieval. AEs can be also applied in these same fields.

Salakhutdinov and Hinton demonstrated in [133] how to perform
what they call semantic hashing through a multi-layer AE. The fun-
damental idea is to restrict the values of the encoding layer units so
that they are binary. In the example proposed in this study that layer
has 128 or 20 units, sequences of ones and zeroes that are interpreted
as an address. The aim is to facilitate the retrieval of documents,
as noted above. The authors show how this technique offers better
performance than the classic TF-IDF [134] or LSH.

Although the approach to generate the binary AE is different from
the previous one, since they achieve hashing with binary AEs helped
by MAC (Method of Auxiliary Coordinates) [135], the proposal in [136]
is quite similar. The encoding layer produces a string of zeroes and
ones, used in this case to conduct fast search of similar images in
databases.

Data visualization

Understanding the nature of a given dataset can be a complex task
when it posesses many dimensions. Data visualization techniques
[137] can help analyze the structure of the data. One way of visualiz-
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ing all instances in a dataset is to project it onto a lower-dimensional
space which can be represented graphically.

A particular useful case of AEs are those with a 2 or 3-variable
encoding [138]. This allows the generated codifications of samples
to be displayed in a graphical representation such as the one in
Fig. I.11.

Figure I.11: Example visualization of
the codifications of a Cancer dataset
generated with a basic AE with
weight decay.

V1

V
2

Benign    

Malignant    

The original data [139] has 30 variables describing each pattern.
Each data point is linked to one of two potential cancer diagnosis
(classes), Benign and Malignant. These have been used in Fig. I.11
to better show the separation between the two classes, but the V1
and V2 variables have been produced by the AE in an unsupervised
fashion. Different projections could be obtained by adjusting the AE
parameters.

Other applications of autoencoders

Beyond the specific applications within the four previous categories,
which can be considered as usual in terms of the use of AEs, these
find to be useful in many other cases. The following are just a few
specific examples.

Holographic images [140] are a useful resource to store information
in a fast way. However, retrieval of data has to face a common
obstacle as is image degradation by the presence of speckle noise. In
[141] an AE is trained with original holographic images as well as
with degraded images, aiming to have a decoder able to reconstruct
deteriorated examples. The denoising of images is also the goal of the
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method introduced in [142], although in this case they are medical
images and the AE method is founded on convolutional denosing
AEs.

The use of AEs to improve automatic speech recognition (ASR)
systems has been also studied in late years. The authors of [143] rely
on a DAE to reduce the noise and thus perform speech recognition
enhancement. Essentially, the method gives the deep DAE noisy
speech samples as inputs while the reference outputs are clean.
A similar procedure is followed in [144], although in this case
the problem present in the speech samples is reverberation. ASR
is specially challenging when faced with whispered speech, as
described in [145]. Once more, a deep DAE is the tool to improve
results from classical approaches.

The procedure to curate biological databases is very expensive, so
usually machine learning methods such as SVD (Singular Value
Decomposition) [146] are applied to help in the process. In [42] this
classical approach is compared with the use of deep AEs, reaching
as conclusion that the latter is able to improve the results.

The authors of [147] aim to perform multimodal fusion by means of
deep AEs, specifically proposing a Multimodal Deep Autoencoder
(MDA). The goal is to perform human pose recovery from video
[148]. To do so, two separate AEs are used to obtain high-level
representations of 2D images and 3D human poses. Connecting
these two AEs, a two-layer ANN carries out the mapping between
the two representations.

Tagging digital resources, such as movies and products [149] or even
questions in forums [150], helps the users in finding the information
they are interested in, hence the importance in designing tag recom-
mendation systems. The foundation of the approach in [151] is an AE
variation named RSDAE (Relational Stacked Denoising Autoencoder).
This AE works as a graphical model, combining the learning of
high-level features with relationships among items.

AEs are also scalable to diverse applications with big data, where the
stacking of networks acquires notable importance [152]. Multi-modal
AEs and Tensor AEs are some examples of variants developed in
this field.
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I.6 Guidelines, software and examples on
autoencoder design

This section attempts to guide the user along the process of designing
an AE for a given problem, reviewing the range of choices the user
has and their utility, then summarizing the available software for
deep learning and outlining the steps needed to implement an AE. It
also provides a case study with the MNIST dataset where the impact
of several parameters of AEs is explored, as well as different AE
types with identical parameter settings.

Guidelines

Figure I.12: Summary of choices
when designing an AE

Choices when designing AEs

Architecture

No. of layers

No. of units

Unit type

Fully connected

Convolutional

LSTM

Loss function

Main term

MSE

Cross-entropy

Correntropy

Regularizations

Sparsity

Contraction

Weight decay

Activations

Tanh

Sigmoid

ReLU

SELU

Linear

...

When building an AE for a specific task, it is convenient to take
into consideration the modifications studied in Section I.3. There is
no need to choose just one of those, most of them can actually be
combined in the same AE. For instance, one could have a stacked
denoising AE with weight decay and sparsity regularizations. A
schematic summary of these can be viewed in Fig. I.12.

Architecture Firstly, one must define the structure of the AE, espe-
cially the length of the encoding layer. This is a fundamental step
that will determine whether the training process can lead it to a
good codification. If the length of the encoding is proportionally
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very low with respect to the number of original variables, training a
deep stacked AE should be considered. In addition, convolutional
layers are generally better performant with image data, whereas
LSTM encoders and decoders would be preferable when modeling
sequences. Otherwise, fully connected layers should be chosen.

Activations and loss function Activation functions that will be
applied within each layer have to be decided according to the loss
function which will be optimized. For example, a sigmoid-like
function such as the logistic or tanh is generally a reasonable choice
for the encoding layer, the latter being usually preferred due to its
greater gradients. This does not need to coincide with the activation
in the output layer. Placing a linear activation or ReLU at the output
can be sensible when using mean squared error as reconstruction
error, while a logistic activation would be better combined with the
cross-entropy error and normalized data, since it outputs values
between 0 and 1.

Regularizations On top of that, diverse regularizations may be
applied that will lead the AE to improve its encoding following
certain criteria. It is generally advisable to add a small weight decay
in order to prevent it from overfitting the training data. A sparse
codification is useful in many cases and adds more flexibility to the
choice of structure. Additionally, a contraction regularization may
be valuable if the data forms a lower-dimensional manifold.

As seen in previous sections, AEs provide high flexibility and can
be further modified for very different applications. In the case that
the standard components do not fit the desired behavior, one must
study which of those can be replaced and how, in order to achieve
it.

Software

There exists a large spectrum of cross-platform, open source imple-
mentations of deep learning methods which allow for the construc-
tion and training of AEs. This section summarizes the most popular
frameworks, enumerates some specific implementations of AEs, and
provides an example of use where an AE is implemented on top of
one of these frameworks.
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Available frameworks and packages

Tensorflow [153] Developed by Google, Tensorflow has been the
most influential deep learning framework. It is based on the concept
of data flow graphs, where nodes represent mathematical operations
and multidimensional data arrays travel through the edges. Its core
is written in C++ and interfaces mainly with Python, although there
are APIs for Java, C and Go as well.

Caffe [154] Originating at UC Berkeley, Caffe is built in C++ with
speed and modularity in mind. Models are defined in a descriptive
language instead of a common programming language, and trained
in a C++ program.

Torch [155] It is a Lua library which promises speed and flexibility,
but the most notorious feature is its large ecosystem of community-
contributed tutorials and packages.

MXNet [156] This project is currently held at the Apache Incubator
for incoming projects into the Apache Foundation. It is written in
C++ and Python, and offers APIs in several additional languages,
such as R, Scala, Perl and Julia. MXNet provides flexibility in the
definition of models, which can be programmed symbolically as
well as imperatively.

Keras [157] Keras is a higher-level library for deep learning in
Python, and can rely on Tensorflow, Theano, MXNet or Cognitive
Toolkit for the underlying operations. It simplifies the creation of
deep learning architectures by providing several shortcuts and pre-
defined utilities, as well as a common interface for several deep
learning toolkits.

In addition to the previous ones, other well known deep learning
frameworks are Theano [158], Microsoft Cognitive Toolkit (CNTK‡)
and Chainer §.

Setting various differences apart, all of these frameworks present
some common traits when building AEs. Essentially, the user has to
define the model layer by layer, placing activations where desired.
When establishing the objective function, they will surely include
‡ https://docs.microsoft.com/cognitive-toolkit/
§ https://chainer.org/
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the most usual ones, but uncommon loss functions such as corren-
tropy or some regularizations such as contraction may need to be
implemented additionally.

Very few pieces of software have specialized in the construction of
AEs. Among them, there is an implementation of the sparse AE
available in packages Autoencoder [159] and SAENET [160] of the
CRAN repository for R, as well as an option for easily building basic
AEs in H2O¶. The yadlt library for Python implements denoising
AEs and several ways of stacking AEs.

Example of use

For the purposes of the case study in Section 7, some simple im-
plementations of different shallow AEs have been developed and
published on a public code repository under a free software license**.
In order to use these scripts, the machine will need to have Keras and
Tensorflow installed. This can be achieved from a Python package
manager, such as pip or pipenv, or even general package managers
from some Linux distributions.

In the provided repository, the reader can find four scripts dedicated
to AEs and one to PCA. Among the first ones, autoencoder.py
defines the Keras model for a given AE type with the specified
activation for the encoding layer. For its part, utils.py implements
regularizations and modifications in order to be able to define basic,
sparse, contractive, denoising and robust AEs.

Executable scripts are mnist.py and cancer.py. The first trains any
AE with the MNIST dataset and outputs a graphical representation
of the encoding and reconstruction of some test instances, whereas
the latter needs the Wisconsin Breast Cancer Diagnosis (WDBC)
dataset in order to train an AE for it. To use them, just call the Python
interpreter with the script as an argument, e.g. python mnist.py.

In order to modify the learned model in one of these scripts, the user
will need to adjust parameters in the construction of an Autoencoder

object. The following is an example which will define a sparse
denoising AE:

dsae = Autoencoder(

input_dim = 784, encoding_dim = 36,

weight_decay = False, sparse = True,

¶ http://docs.h2o.ai
https://deep-learning-tensorflow.readthedocs.io/
** https://github.com/fdavidcl/ae-review-resources



86 I A practical tutorial on autoencoders for nonlinear feature fusion

[38]: LeCun et al. (1998), “Gradient-
based learning applied to document
recognition”

contractive = False, denoising = True,

robust = False, activation = "tanh"

)

Other numerical parameters for each AE type can be further cus-
tomized inside the build method. The training process of this AE
can be launched via a MNISTTrainer object:

MNISTTrainer(dsae).train(

optimizer = "adam", epochs = 50,

loss = losses.binary_crossentropy

).predict_test()

Finally, running the modified script will train the AE and output
some graphical representations.

The Autoencoder class can be reused to train AEs with other datasets.
For this, one would need to implement funtionality analogous to
the MNISTTrainer class, which loads and prepares data, which is
provided to the AE model to be trained. A different example can be
found in the CancerTrainer class for the WDBC dataset.

Case study: handwritten digits

In order to offer some insight into the behavior of the main kinds
of AE that can be applied to the same problem, as well as some of
the key points in their configuration, we can study the resulting
codifications and reconstructions when training them with the well
known dataset of handwritten digits MNIST [38]. To do so, we have
trained several AEs with the 60 000 training instances, and have
obtained reconstructions for the first test instance of each class. Input
values, originally ranging from 0 to 255, have been scaled to the
[0, 1] interval.

By default, the architecture of every AE has been as follows: a 784-
unit input layer, a 36-unit encoding layer with tanh activation and
a 784-unit output layer with sigmoid activation. They have been
trained with the RMSProp algorithm for a total of 60 epochs and
use binary cross-entropy as their reconstruction error, except for the
robust AE which uses its own loss function, correntropy. They are
all provided identical weight initializations and hyperparameters.

Firstly, the performance impact of the encoding length and the
optimizer is studied. Next, changes in the behavior of a standard
AE due to different activation functions are analyzed. Lastly, the
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main AE models for feature fusion are compared sharing a common
configuration. Scripts that were used to generate these results were
implemented in Python, with the Keras library over the Tensorflow
backend.

Settings of encoding length

As discussed previously, the number of units in the encoding layer
can determine whether the AE is able to learn a useful representation.
This fact is captured in Fig. I.13, where an encoding of 16 variables
is too small for the shallow AE to be successfully trained with
the default configuration, but a 36-variable codification achieves
reasonably good reconstructions. The accuracy of these can be
improved at the cost of enlarging the encodings, as can be seen with
the 81 and 144-variable encodings. Square numbers were chosen for
the encoding lengths for easier graphical representation, as will be
seen in Section 7, but any other length would have been as valid.

Figure I.13: First row: test samples;
Remaining rows: reconstructions ob-
tained with 16, 36, 81 and 144 units in
the encoding layer, respectively.

Comparison of optimizers

As introduced in Section I.3, AEs can use several optimization meth-
ods, usually based on SGD. Each variant attempts to improve SGD
in a different way, habitually by accumulating previous gradients in
some way or dynamically adapting parameters such as the learning
rate. Therefore, they will mainly differ in their ability to converge
and their speed in doing so.

The optimizers used in these examples were baseline SGD, AdaGrad,
Adam and RMSProp. Their progressive improvement of the objective
function through the training phase is compared in Fig. I.14. It is easily
observed that SGD variants vastly improve the basic method, and
Adam obtains the best results among them, being closely followed by
AdaGrad. The speed of convergence seems slightly higher in Adam
as well.
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Figure I.14: Evolution of the loss func-
tion when using several optimizers.
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Figure I.15: Test samples and reconstructions obtained with different optimizers.
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Figure I.16: Test samples and reconstructions obtained with different activation functions.
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(a) Basic AE

(b) Basic AE with weight decay

(c) Sparse AE

(d) Contractive AE

(e) Denoising AE with sparsity regularization

(f) Robust AE with weight decay

Figure I.17: Reconstructing test samples with different AE models. First row of each figure shows test samples, second row
shows activations of the encoding layer and third row displays reconstructions. Encoded values range from -1 (black) to 1
(white).
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In addition, Fig. I.15 provides the reconstructions generated for some
test instances for a basic AE trained with each of those optimizers. As
could be intuitively deduced by the convergence, or lack thereof, of
the methods, SGD was not capable of finding weights which would
recover any digit. AdaGrad, for its part, did improve on SGD but its
reconstructions are relatively poor, whereas Adam and RMSProp
display superior performance, with little difference between them.

Comparison of activation functions

Activation functions play an important role in the way gradients are
propagated through the network. In this case, we apply four widely
used activations in the encoding layer of a basic AE and compare
how they affect its reconstruction ability. Some example results can
be seen in Fig. I.16.

Sigmoid and hyperbolic tangent are functions with similar properties,
but in spite of this they produce remarkably dissimilar results.
Reconstructions are poor when using sigmoidal activation, while
tanh achieves representations much closer to the original inputs.

With respect to ReLU and SELU, the observed results are surprisingly
solid and almost indistinguishable. They perform slightly better than
tanh in the sense that reconstructions are noticeably sharper. Their
good performance in this case may be due to the nature of the data,
which is restricted to the [0, 1] interval and does not necessarily show
the behavior of these activations in general.

Comparison of the main AE models

It can be interesting to study the different traits the codifications
may acquire when variations on the basic AE are introduced. The
reconstructions produced by six different AE models are shown in
Fig. I.17.

The basic AE (Fig. I.17a) and the one with weight decay (Fig. I.17b)
both generate recognizable reconstructions, although slighly blurry.
They however do not produce much variability among different
digits in the encoding layer, which means they are not making full
use of its 36 dimensions. The weight decay corresponds to Eq. I.12
with 𝜆 set to 0.01.

The sparse AE has been trained according to Eq. I.15 with an expected
activation value of −0.7. Its reconstructions are not much different
from those of the previous ones, but in this case the encoding layer
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has much lower activations in average, as can be appreciated by
the darker representations in Fig. I.17c. Most of the information is
therefore tightly condensed in a few latent variables.

The contractive AE achieves other interesting properties in its en-
coding: it has attempted to model the data as a lower dimensional
manifold, where digits that seem more similar will be placed closer
than those which are very unalike. As a consequence, the 0 and the 1
shown in Fig. I.17d have very differing codifications, whereas the 3
and the 8 have relatively similar ones. Intuitively, one would need to
travel larger distances along the learned manifold to go from a 0 to a
1, than from a 3 to an 8.

The denoising AE is able to eliminate noise from test instances,
at the expense of losing some sharpness in the reconstruction, as
can be seen in Fig. I.17e. Finally, the robust AE (Fig. I.17f) achieves
noticeably higher clarity in the reconstruction and more variance in
the encoding than the standard AEs.

I.7 Conclusions

As Pedro Domingos states in his famous tutorial [20], and as can be
seen from the large number of publications on the subject, feature
engineering is the key to obtain good machine learning models, able
to generalize and provide decent performance. This process consists
in choosing the most relevant subset of features or combining some
of them to create new ones. Automated fusion of features, specially
when performed by nonlinear techniques, has demonstrated to be
very effective. Neural network-based autoencoders are among the
approaches to conduct this kind of task.

This paper started offering the reader with a general view of which
an AE is, as well as its essential foundations. After introducing the
usual AE network structures, a new AE taxonomy, based on the
properties of the inferred model, has been proposed. Those AE
models mainly used in feature fusion have been explained in detail,
highlighting their most salient characteristics and comparing them
with more classical feature fusion techniques. The use of disparate
activation functions and training methods for AEs has been also
thoroughly illustrated.

In addition to AEs for feature fusion, many other AE models and
applications have been listed. The number of new proposals in this
field is always growing, so it is easy to find dozens of AE variants,
most of them based on the fundamental models described above.
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This review is complemented by a final section proposing guidelines
for selecting the most appropriate AE model based on different
criteria, such as the type of units, loss function, activation function,
etc., as well as mentioning available software to put this knowledge
into practice. Empirical results on the well known MNIST dataset
obtained from several AE configurations, combining disparate acti-
vation functions, optimizers and models, have been compared. The
aim is to offer the reader help when facing this type of decision.

Acknowledgments: This work is supported by the Spanish National
Research Projects TIN2015-68454-R and TIN2014-57251-P, and Project
BigDaP-TOOLS - Ayudas Fundación BBVA a Equipos de Investigación
Científica 2016.

I.A. Description of used datasets

Breast Cancer Diagnosis (Wisconsin)

The well known dataset of diagnosis of breast cancer in Wisconsin
(WDBC) [139] is briefly used in Section I.5 to provide a 2-dimensional
visualization example.

This dataset consists of 569 instances corresponding to patients, each
of which present 30 numeric input features and one of two classes
that identify the type of tumor: benign or malignant. The dataset is
slightly imbalanced, exhibiting a 37.3% of instances associated to the
malignant class, while the remaining 62.7% correspond to benign
tumors. The data have been normalized for the training process of
the basic AE that generated the example.

Originally, features were extracted from a digitized image of a fine-
needle aspiration sample of a breast mass, and described ten different
traits of each cell nucleus. The mean, standard error and largest value
of these features are computed, resulting in the 30 input attributes
for each patient, gathered in the published dataset.

WDBC is usually relied on as an example dataset and most classifiers
generally obtain high accuracy: the authors of the original proposal
already achieved 97% of classification accuracy in cross-validation.
However, it presents some issues when applying AEs: its small
imbalance may cause instances classified as benign to contribute
more to the loss function, inducing some bias in the resulting
network, which may reconstruct these more accurately than the rest.
Furthermore, it is composed of relatively few instances, which may



I.7 Conclusions 93

[38]: LeCun et al. (1998), “Gradient-
based learning applied to document
recognition”

[120]: Alvear-Sandoval et al. (2018),
“On building ensembles of stacked
denoising auto-encoding classifiers
and their further improvement”
[161]: Ciregan et al. (2012), “Multi-
column deep neural networks for im-
age classification”

not be sufficient for some deep learning techniques to be able to
generalize.

MNIST

MNIST [38] is a widely used dataset within deep learning research.
It is regularly chosen as a benchmark for new techniques and neural
architectures. It has been the base of our case study in Section 7.

The dataset consists of 60 000 instances, divided into a 50 000-instance
set for training and the remaining 10 000 for test. each corresponding
to a 28x28-sized image of a handwritten digit, from 0 to 9. The values
of this 28x28 matrix or 784-variable input represent the gray level
of each pixel, and therefore range from 0 to 255, but they have been
rescaled to the [0, 1] interval in our examples.

This dataset is actually a modified subset of a previous work from
NIST†† for character recognition. The original images used only black
or white pixels, whereas in MNIST they have been anti-aliased.

MNIST has been used as benchmark for a large variety of deep
learning proposals, since it is reasonably easy to extract higher-level
features out of simple grayscale images, and it provides a high
enough amount of training data. State-of-the-art work‡‡ achieves an
error rate of around 0.2% [120, 161].

†† Available at http://doi.org/10.18434/T4H01C.
‡‡ A collection of methods applied to MNIST and their results is available at
http://yann.lecun.com/exdb/mnist/.
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Abstract

Autoencoders are neural networks which perform feature learning
on data. Many variants can be found in the literature, but their
implementations are scarce, in separate software pieces and utilizing
different languages and frameworks. The ruta package implements a
unified foundation for the construction and training of autoencoders
on top of Keras and Tensorflow, and allows for easy access to the
main functionalities as well as full customization of their diverse
aspects.

Keywords

unsupervised learning - neural networks - autoencoders

II.1 Introduction

The problem of feature extraction consists in finding a transformation
of the feature space of some data set which is more adequate than the
original one in relation to another task, such as classification or visual-
ization. A particular case of this problem is dimensionality reduction,
where the objective is to build a more compact representation for
the data while retaining most of their information.

Some traditional techniques for feature extraction are principal
components analysis (PCA) [2], multidimensional scaling [3], Isomap
[4] and locally linear embedding [5]. Other more modern methods



106 II Ruta: implementations of neural autoencoders in R

[7]: Goodfellow et al. (2016), “Deep
Learning”
[8]: Hinton (2006), “Reducing the Di-
mensionality of Data with Neural
Networks”

[9]: Chollet et al. (2015), Keras
[10]: Abadi et al. (2016), “TensorFlow:
A System for Large-scale Machine
Learning”

[11]: Charte et al. (2018), “A practical
tutorial on autoencoders for nonlin-
ear feature fusion: Taxonomy, models,
software and guidelines”

include t-distributed stochastic neighbor embedding (t-SNE) [6],
which is designed to visualize high-dimensional datasets, restricted
Boltzmann machines (RBMs) [7] and autoencoders (AEs) [8], both
based on neural networks.

AEs are a tool for feature extraction in increasing development. Mak-
ing use of them, however, is not straightforward. Software pieces
which implement them are uncommon and are either very basic ver-
sions or adapted to specific databases. Basic AE models are relatively
easy to implement in well-known deep learning frameworks, such
as Keras [9] or Tensorflow [10], but this requires some knowledge
about their structure and training procedures. In addition to this,
some useful regularizations and alterations in the objective functions
can present challenges while coding. Since most neural AEs share
a common basis, it is desirable to have an implementation which
abstracts its components and gives the customization possibilities
to build different kinds of AEs without reimplementing them. This
would allow users to leverage the possibilities of AEs as feature
learning techniques without the need to study their architecture in
advance.

The ruta package for the R language includes all the necessary
foundations to build AEs for all kinds of experimentations. It is
based on frameworks Keras and Tensorflow to ensure efficiency and
cross-platform compatibility. Its interface allows any R user to easily
define different models, train them and perform additional tasks
with little to no previous knowledge required.

II.2 Problems and Background

As previously stated, the main objective of an AE is to find a good
transformation of the features according to one or more criteria.
When an instance is mapped to the new feature space, it is seen
as an encoding of the original. This encoding must allow the AE to
reconstruct the instance from the original feature space by means
of a decodification process. Intuitively, this reconstruction can only
be achieved if sufficient information about each instance is retained
within the encoding.

Autoencoder framework

An AE [11] is an artificial neural network (ANN) composed of an
encoder and a decoder. Analytically, it can be seen as a composition
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Figure II.1: A possible neural archi-
tecture for an AE with a 2-variable
encoding layer.

[11]: Charte et al. (2018), “A practical
tutorial on autoencoders for nonlin-
ear feature fusion: Taxonomy, models,
software and guidelines”

of maps 𝑓 and 𝑔 which results in a tensor of the same shape as
the input. As an ANN, it takes a form analogue to that on Fig. II.1.
AEs were originally used to perform a preliminary weight training
on other ANNs, but on their own they can also learn alternative
representations for input data.

The different aspects that lead an AE to a specific transformation are
its neural architecture, which determines the type of input and the
size of the encoding; the cost and activation functions, which can be
defined and regularized in order to induce some desired properties,
and parameters of the training process, such as the optimization
algorithm or the number of times the data is feeded to the network.

Variants

An interesting advantage of AEs is their versatility: one can obtain
encodings with certain properties if the adequate regularizations
are chosen. There exist many AE variants in the literature [11], the
most common ones centered in how to control the behavior of
the transformation while allowing for faithful reconstructions. The
following are the most relevant ones:

▶ Sparse: induces a low number of activations in average in the
encoding layer.

▶ Contractive: attempts to preserve the local structure of the
original space, thus searching for coordinates in a lower-
dimensional manifold.

▶ Denoising: is able to remove noise introduced in input exam-
ples.

▶ Robust: is less sensitive to noise in instances due to a different
loss function.

▶ Variational: extracts a generative model from the data and is
able to produce new, unseen instances.

▶ Adversarial: trains in an adversarial manner with the aim of
forcing the encoding to follow a given distribution.

▶ Convolutional and LSTM-based: are composed of other types
of units and layers in order to accomodate bidimensional and
sequential data, respectively.

II.3 Software Framework

In this section we elaborate on the internal structure of the developed
software and its functionality.
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Software Architecture

The object system utilized in ruta is S3, a minimal object orientation
from the R language based on generic functions. The software is
developed around several classes which have certain applicable
methods:

▶ ruta_autoencoder: represents a parametrized AE learner. It
can be trained and can perform several post-train tasks, such
as data encoding and reconstruction.

▶ ruta_network: defines neural network structures by layers.
Networks can be concatenated to produce a longer one.

▶ ruta_loss: represents the loss function to be optimized by the
learner. It is either a wrapper over a loss function from Keras,
or a built-in loss function such as correntropy.

▶ ruta_noise: represents a type of noise which can be applied
to input data. Several of these are provided within the package
for convenience.

Software Functionalities

The main functionalities of package ruta are as follows:

▶ Define and customize diverse aspects of an AE model.
▶ Train AE variants according to the desired objective function.
▶ Encode and reconstruct input data with a trained model.
▶ Evaluate a trained model according to several metrics which

account for quality of reconstruction.
▶ Sample generative models created by variational AEs.
▶ Generate corrupted data with different types of noise.

The programming interface provided by the package gives several
ways to access this set of functionalities, according to the desired
level of customization and difficulty:

▶ Directly train an AE and compress a database via function
autoencode.

▶ Define a basic AE simply by enumerating the dimensions of
its layers in a vector, e.g. autoencoder(c(32, 6)).

▶ Define each layer composing the neural architecture by means
of functions input, dense, conv, output, etc., then construct
an AE with possibly one or more variant properties.
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Figure II.2: Features learned by a ba-
sic AE with Iris data.

The following AE types can be used: basic, sparse, contractive,
denoising, robust, variational and convolutional (via the included
conv layers). Some of them may be combined by means of the
make family of functions, e.g. make_sparse. They are extensively
documented within the package and in the online documentation*.

Implementation Details

Since ruta is implemented on top of Tensorflow and Keras, it can run
on computing devices such as GPUs. In order for them to be used,
the correct Tensorflow version with CUDA support will need to be
installed. Several issues can arise during the installation and first
use, which have been documented in the troubleshooting section of
the online documentation.

Few other software pieces provide the necessary functionality to
build custom AEs. Among them we can find H2O [12], with its
h2o.deeplearning function which includes an autoencoder option;
package autoencoder for R [13], and library yadlt for Python. These
focus on just one or two AE variants and provide less customiz-
ability than AEs defined in ruta. For further options one needs to
resort to Deep Learning frameworks, which require a much higher
programming effort in order to define AE models.

II.4 Illustrative Examples

An easy way to start using ruta is by means of the autoencode

function. This will take a dataset and automatically train a simple
AE and produce a codification for it. The function accepts several
parameters, from which only the desired dimension is mandatory.
Other optional parameters are the type of AE, the activation function
in the middle layer and the number of epochs for the training process.
The following example uses this function to extract 2 features from
the well-known toy dataset Iris:
library(ruta)

library(purrr)

encoded <- iris[, 1:4] %>% as.matrix() %>% autoencode(2, "robust")

These 2 features can be visualized like in Fig. II.2 in order to represent
the model learned by the AE.

* https://ruta.software
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The next step in difficulty involves defining a deep autoencoder. To
help beginners describe its architecture, ruta provides a conversion
from integer vector to neural network architecture in the following
manner: c(64, 16) would become a network with an input layer the
size of the inputs, a hidden layer with 64 variables, another hidden
layer with 16 units for the encoding, the last hidden layer with 64
variables and an output layer the same size of the input one. Thus,
the interface allows for simpler code, which can be observed in the
following comparison between the code needed to define the same
model in ruta and Keras:
xtrain <- quakes[1:750,] %>% as.matrix()

xtest <- quakes[751:1000,] %>% as.matrix()

code_dim <- 2

hidden_dim <- 6

# ============== Ruta ==============

features <- autoencoder(c(hidden_dim, code_dim), "sigmoid") %>%

train(xtrain) %>%

encode(xtest)

# ============== Keras ==============

input_l <- layer_input(shape = 5)

encoded <- layer_dense(input_l, units = hidden_dim)

encoded <- layer_dense(encoded, units = code_dim, activation = "sigmoid")

decoded <- layer_dense(encoded, units = hidden_dim)

decoded <- layer_dense(decoded, units = 5)

autoe <- keras_model(input_l, decoded)

encoder <- keras_model(input_l, encoded)

compile(autoe, loss = "mean_squared_error", optimizer = "rmsprop")

fit(autoe, xtrain, xtrain)

features <- predict(encoder, xtest)

The following example loads a dataset from Keras and normalizes
its variables. Afterwards it defines a sparse AE by means of the
autoencoder_sparse function with a 3-variable encoding, trains
it and uses it to reconstruct test data. An evaluation is performed
according to the mean squared error metric for the same test data.
boston <- keras::dataset_boston_housing()

train_x <- scale(boston$train$x)

test_x <- scale(

boston$test$x,

center = train_x %@% "scaled:center",

scale = train_x %@% "scaled:scale"

)

learner <- autoencoder_sparse(

input() + dense(3, "tanh") + output(),

"mean_squared_error"

)

model <- train(learner, train_x, epochs = 200)

reconstructions <- reconstruct(model, test_x)

evaluate_mean_squared_error(model, test_x)



II.4 Illustrative Examples 111

Another task that can be performed by a trained variational AE
is generation of new instances. In this case, we load the MNIST
dataset of handwritten digits and learn 10 features which can be
sampled via the generate function. Instances can also be generated
by interpolating encodings from existing instances and decoding
those interpolations, as Fig. II.3 shows.
mnist = keras::dataset_mnist()

x_train <- keras::array_reshape(

mnist$train$x, c(dim(mnist$train$x)[1], 784)

) / 255.0

x_test <- keras::array_reshape(

mnist$test$x, c(dim(mnist$test$x)[1], 784)

) / 255.0

network <-

input() +

dense(256, "elu") +

variational_block(10, seed = 42) +

dense(256, "elu") +

output("sigmoid")

learner <- autoencoder_variational(network, loss = "binary_crossentropy")

model <- train(learner, x_train, epochs = 10)

samples <- model %>% generate(dimensions = c(8, 5), side = 6, fixed_values =

0.99)

Figure II.3: Instances generated when
interpolating between test samples in
a variational AE trained with MNIST
data.

The generic AE templates provided within the package may not
always be adaptable enough for some problems. Thus, in order to
provide detailed control over the model for more advanced users
with some knowledge of Keras, ruta can convert its AE objects into
a list of Keras models. This list contains three models: one for the
encoder, another one for the decoder and one for the full AE. It can
be accessed by setting the input shape in the Ruta object and calling
the to_keras method:
obj <- autoencoder_contractive(c(128, 16))

obj$input_shape <- 1000

models <- to_keras(obj)

print(models$autoencoder)

Individual examples for each AE type are provided in the online
documentation, as well as detailed instructions on how to build
more customized neural architectures.
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Figure II.4: Cumulative downloads
since ruta was published.

II.5 Conclusions

In this paper, we have presented a novel software piece focused in
the construction of AEs, the ruta package for R. As opposed to most
software developed on this topic, ruta implements several well-
known AE variants and can handle different datasets. The software
is implemented on top of Tensorflow and Keras in order to provide
good performance, but abstracts many common aspects of AEs in
order to provide an easy-to-use interface, accessible to R users with
or without a programming background.

We have provided examples on how trained AEs can perform several
tasks such as encoding and reconstruction of new data, as well as
evaluation and even instance generation. When users need more
control over the automatic generation of AE architectures, the pack-
age allows to extract the associated Keras models so as not to hinder
their customization.

Since its publication on CRAN in May 2018 to the end of the year,
rutahas received more than a thousand downloads from the RStudio
CRAN mirror. Fig. II.4 shows the amount of downloads since the
day of publication.

Some supplementary software packages have already been planned.
These include a package dedicated to visualizing the behavior of AEs,
from their training process to the learned model, and a web-based
user interface with the aim of providing easier access to these neural
architectures.
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Abstract

Machine learning is a field which studies how machines can alter
and adapt their behavior, improving their actions according to the
information they are given. This field is subdivided into multiple
areas, among which the best known are supervised learning (e.g. clas-
sification and regression) and unsupervised learning (e.g. clustering
and association rules).

Within supervised learning, most studies and research are focused on
well known standard tasks, such as binary classification, multiclass
classification and regression with one dependent variable. However,
there are many other less known problems. These are what we
generically call nonstandard supervised learning problems. The
literature about them is much more sparse, and each study is directed
to a specific task. Therefore, the definitions, relations and applications
of this kind of learners are hard to find.

The goal of this paper is to provide the reader with a broad view
on the distinct variations of nonstandard supervised problems. A
comprehensive taxonomy summarizing their traits is proposed. A
review of the common approaches followed to accomplish them and
their main applications is provided as well.
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III.1 Introduction

According to Mitchell [2], a machine is said to learn from experience
𝐸 related to a class of tasks 𝑇 and performance metric 𝑃, when its
performance at tasks in 𝑇 improves according to 𝑃 after experience
𝐸.

Supervised learning is one of the fundamental areas of machine
learning [3]. From object detection to ecological modeling to emotion
recognition, it covers all kinds of applications. It essentially consists
in learning a function by training with a set of input-output pairs.
The training stage can be seen as 𝐸 in the previous definition, and
the specific task 𝑇 may vary, but usually involves predicting an
appropriate output given a new input.

Traditionally, supervised learning problems have been spread into
two categories: classification and regression [4, 5]. In the first, infor-
mation is divided into discrete categories, while the latter involves
patterns associated to a value in a continuous spectrum.

These problems can be processed by learning from a training dataset,
which is composed of instances. Typically, these instances or samples
take the form (𝑥, 𝑦) where 𝑥 is a vector of values in the space
of input variables and 𝑦 is a value in the target variable. Each
problem can be described by the type of its instances: inputs will
usually belong to a subset of ℝ𝑛 , and outputs will take values in a
specific one-dimensional set, finite or continuous. Once trained, the
obtained model can be used to predict the target variable on unseen
instances.

Standard classification problems are those where labels are either
binary or multiclass [6, 7]. In the binary case, an instance can only
be associated with one of two values: positive or negative, which is
equivalent to 0 or 1. For example, email messages may be classified
into spam or legit, and tumours can be categorized as either benign
or malign. Multiclass problems, on the other hand, involve any finite
number of classes. That is, any given instance will belong to one of
possibly many categories, which is equivalent to it being assigned
a natural number below a convenient threshold. As an example, a
photograph of a plant or a sound recording from an animal could
correspond to one of a variety of species.

A standard regression problem [8, 9] consists in finding a function
which is able to predict, for a given example, a real value among a
continuous range, usually an interval or the set of real numbers ℝ.
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For example, the height of a person may be estimated out of several
characteristics such as age or country of origin.

Even though these standard problems are applicable in a multitude
of cases, there are situations whose correct modeling requires mod-
ifications of their structure. For example, a newspaper article can
be categorized according to its contents, but it could be desirable to
assign several categories simultaneously. Similarly, a social media
post could be described by not one but two input vectors, an image
and a piece of text. These special circumstances cannot be covered
by the traditional one-vector input and one-dimensional output
schema. As a consequence, since performance metrics which mea-
sure improvements in standard tasks assume the common structure,
they lose applicability or sense in these cases. Thus, not only new
techniques are needed to tackle the problems, but also new ways of
measuring and comparing their success.

This work studies variations on classic supervised problems where
the traditional structure is not obeyed, which we call nonstandard
variations. These emerge when the structure of the classical compo-
nents of the problems does not suffice to describe complex situations,
such as multiplicity of inputs or outputs, or order restrictions. As a
consequence, this manuscript does not cover other singular super-
vised problems, such as high dimensionality of the feature space [10]
or unbalanced training sets [11, 12], nor time-dependent problems,
such as data streams [13, 14] or time series [15].

The rest of the paper is structured as follows. Section III.2 formally
defines and describes each nonstandard variation. This is followed by
Section III.3 establishing relations among the introduced problems
and proposing a taxonomy of them. Section III.4 describes the most
common techniques used to solve them. After that, Section III.5
enumerates popular applications of each problem. Section III.6
covers other variations further from the ones previously detailed.
Lastly, Section III.7 draws some conclusions.

III.2 Definitions of nonstandard variations

The problems introduced in this section are generalizations over the
traditional versions of classification and regression. The focus is on
fully supervised problems, where inputs are always paired with
outputs during training. An alternative taxonomy based on different
supervision models is introduced in [16].
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Notation

In this work we will establish a notation which intends to be as
simple to understand as possible, while being able to encompass
every nonstandard variation. First, any supervised learning problem
consists in finding a function which will classify, rank or perform
regression. It will be noted as

𝑓 : 𝑋 → 𝑌 (III.1)

where 𝑋 is an input set, or domain, and 𝑌 is an output set, or
codomain. It will be assumed that a training dataset 𝑆 is provided,
including a finite number of input-output pairs:

(𝑥, 𝑦) ∈ 𝑆 ⊂ 𝑋 × 𝑌 . (III.2)

This way, a learning algorithm will be able to generate the desired
function 𝑓 . An additional notation will be the set of labels Lwhere
convenient.

For example, in standard binary classification 𝑋 ⊂ ℝ𝑛 and 𝑌 = L=

{0, 1}. Similarly, standard regression problems can be defined with
the same kind of 𝑋 set and 𝑌 ⊂ ℝ. Thus, we can define very distinct
supervised problems by particularizing sets 𝑋 or 𝑌 in different
ways.

Other usual notations are based in probability theory, thus involving
random variables and probability distributions [17, 18]. In that case,𝑋
and 𝑌 would be the sample spaces of the input and output variables
X and Y, respectively. Predictors would usually attempt to infer a
discriminant model 𝑃(Y|X) from the training dataset.

Multi-instance

The multi-instance (MI) framework [19] assumes a single feature
space for all instances, but each training pattern may consist of more
than one instance. In this case, a training pattern is composed of a
finite multiset or bag of instances and a label. Formally, assuming
instances are drawn from a set 𝐴 ⊂ ℝ𝑛 , the domain can be described
as follows:

𝑋 = {𝑏 ⊂ 𝐴 | 𝑏 finite} . (III.3)

In this case, the learning algorithm will not know labels associated
to each instance but to a bag of them. In addition to this, not all
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instances may share the same relevance or are equally related to the
label.

Some MI problems assume that hidden labels are present for each
instance in a bag: for example, a training set of drug tests where, for
each test, several drug types are analyzed. Additionally, a typical MI
assumption in the binary scenario states that a bag is positive when
at least one of its instances is positive, and it is negative otherwise
[20].

Other MI problems differ in that a per-instance labeling may not be
possible or may not make sense: for example, if each bag represents
an image and instances are image segments, class beach can only
apply to bags with water and sand segments, but it cannot apply to
an individual instance.

Multi-view

A learning problem is considered to be multi-view (MV) [21] when
inputs are composed of several components of very different na-
ture.

For example, if a learning pattern consists of an image as well as
a piece of text representing the same instance, they can be seen
as two views on it. In that case, images and texts would belong to
distinct feature spaces 𝐴 and 𝐵 respectively, an input pattern being
(𝑎, 𝑏) ∈ 𝐴× 𝐵 . More generally, we can describe the input space as:

𝑋 =

𝑡∏
𝑖=1

𝐴𝑖 , where 𝐴𝑖 ⊂ ℝ𝑛𝑖 , (III.4)

where 𝑡 is the number of views offered by the problem and 𝑛𝑖 is the
dimension of the feature space of the 𝑖-th view.

Multi-label

The multi-label (ML) learning field [22, 23] studies problems related
to simultaneously assigning multiple labels to a single instance. That
is, if L= {𝑙1 , . . . , 𝑙𝑝} the codomain consists of all possible selections
of these 𝑝 labels, also known as labelsets:

𝑌 = 2L � {0, 1}𝑝 . (III.5)

As shown by this formulation, it is equivalent to think of a selection
of labels as a subset of L and as a binary vector. For example, the
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labelset composed of the first and third labels can be represented
either by {𝑙1 , 𝑙3} or (1, 0, 1, 0, . . . , 0).

The difference that arises when comparing ML problems to binary
or multiclass ones is that labels may interact with each other. For
example, a news piece classified in economy is more likely to be
labeled politics than sports. Similarly, a photograph labeled ocean is
less likely to have the mountains label rather than beach. Methods
may take advantage of label co-ocurrence [24] in order to reduce the
search space when predicting a labelset.

A constrained version of ML classification is hierarchical ML classifi-
cation [25], where labels are organized in a class hierarchy, usually
a tree or a direct acyclic graph. A predicted labelset for a given
instance is only consistent if parents of all labels in the labelset are
also predicted.

Multi-dimensional

Multi-dimensional (MD) learning [26] is a generalized classification
problem where categorization is performed simultaneously along
several dimensions. Each instance can belong to one of many classes
in each dimension, thus the output space can be formally described
as:

𝑌 = L1 ×L2 × · · · ×L𝑝 , (III.6)

where L𝑖 is the label space for the 𝑖-th dimension.

As with ML learning, label dimensions may be related in some way
and treating them independently would only be a naive solution to
the problem.

Label distribution learning

In label distribution learning (LDL) problems [27], otherwise known
as probabilistic class label problems [28], any instance can be de-
scribed in different degrees by each label. This can be modeled as a
discrete distribution over the labels, where the probability of a label
given a specific instance is called its degree of description. Analitically,
the objective is, for each instance, to predict a real-valued vector
which sums exactly 1:

𝑌 =

{
𝑦 ∈ [0, 1]𝑝 :

𝑝∑
𝑖=1

𝑦𝑖 = 1

}
. (III.7)
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In this case, we would say that the 𝑖-th label in L describes an
instance (𝑥, 𝑦) with degree 𝑦𝑖 .

Label ranking

In a label ranking (LR) problem [29, 30] the objective is not to find
a function able to choose one or several labels from the label space.
Instead, it must evaluate their relevance for each unseen instance.
The most general version of the problem involves a training set where
𝑌 is the set of all partial orders of L, and the obtained function also
maps individual instances to partial orders. This way, for each test
instance the function will output a sequence of preferences where
some labels will be seen as more relevant than others.

However, the typical situation in label ranking problems is that the
orders are total, which means any two labels can always be compared.
This is called a ranking and does not exclude the possibility of ties.
When ties are not allowed it is said to be a sorting or permutation, and
can be formulated as follows:

𝑌 = {𝜎 : {1, . . . , 𝑝} → L | 𝜎 is bĳective} , (III.8)

where 𝑝 is the amount of labels. 𝑌 can also be seen as the set of all
permutations of the labels in L, usually known as the symmetric
group of order 𝑝, and noted as 𝑆𝑝 .

Multi-target regression

A regression problem where the output space has more than just
one dimension is usually called multi-target regression (MTR) and
is also known as multi-output, multi-variate or multi-response [31].
In this case, a formal description is simply that the codomain is a
continuous multi-dimensional real set:

𝑌 =

𝑝∏
𝑖=1

𝑌𝑖 , where 𝑌𝑖 ⊂ ℝ ∀𝑖 (III.9)

and 𝑝 is the number of target variables.

As with other multiple target extensions, the key difference with
single-target regression in this case is the possible interactions among
output variables.
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Ordinal regression

A problem where the target space is discrete but ordered is called
ordinal regression (OR) or, alternatively, ordinal classification [32]. It
can be located midway between classification and regression. More
specifically, it consists in labeling instances with a finite number of
choices where these are ordered

𝑌 = {1, 2, . . . , 𝑐} , 1 < 2 < · · · < 𝑐 . (III.10)

In OR, the training phase consists in learning from a set of feature
vectors which have a specific label associated to them, and testing can
be performed over individual instances. This means that, although
labels are ordered, the main objective is not to rank or sort instances
as in learning to rank [33], but to simply classify them. The labels
themselves do not provide any metric information either, they only
carry qualitative information about the order among themselves.

Monotonicity constraints

Order relations can exist not only in the label space but in the feature
space as well. Partial orders among real-valued feature vectors are
always possible, and there may be cases where the order among
instances is determined by just one or a few of their attributes.

When inputs as well as outputs are at least partially ordered, it is
common to look for predictions which respect their order relations. In
that case, the objective is to obtain a classifier or regression function
which enforces the following constraint:

𝑥1 < 𝑥2 ⇒ 𝑓 (𝑥1) < 𝑓 (𝑥2) ∀𝑥1 , 𝑥2 ∈ 𝑋 . (III.11)

When 𝑌 is discrete the problem is usually called monotone classifi-
cation (MC), monotonic classification or ordinal classification with
monotonicity constraints [34]. If, on the contrary, 𝑌 is continuous, it
is known as isotonic regression (IR) [35].

Absence or partiality of information

Some problems do not directly alter the structure of𝑋 and𝑌 from the
standard supervised problem. Instead, they restrict which data can
belong to a training set, or remove labelings from training examples.
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In this case, training information is presented partially or with some
exclusions.

According to which kind of information is missing from the training
set, a learning task can usually be categorized as semi-supervised
[36], one-class learning [37], PU-learning [38], zero-shot learning
[39] or one-shot learning [40]. These are described further in Section
III.6.

Variation combinations

Some of the components described above can be combined to com-
pose a more complex problem overall. Usually, one of these com-
binations will take components from different variation types, for
example, simultaneous multiplicity of inputs and outputs.

More specifically, there exist several studies involving MI ML scenar-
ios [41, 42]. In this case, examples from the input space are composed
of several feature vectors and are associated to various labels. As a
consequence, this model can represent many complicated problems
where inputs and outputs have more structure than usual.

Other more uncommon situations are MV MI ML problems [43],
where patterns have several instances which may or may not belong
to the same space, a multi-output version of OR named graded
ML classification [44] and more complex input structures such as
multi-layer MI MV [45], where a hierarchy of instances is present in
each example.

III.3 Taxonomy

A first categorization of the variations analyzed in this work can be
made according to how they differ from the standard problem. There
can be multiplicity in the input space or the output space, order
constraints may exist, or only partial information may be given in
some cases. Fig. III.1 shows ways in which the traditional problems
can be generalized.

Problems introducing multiple inputs are MI and MV, whereas mul-
tiple outputs can be found on ML, MD, LR, LDL and MTR. Problems
where orders are present are OR, MC and IR. Likewise, tasks with
only partial information are, among others, semi-supervised learning
(SSL), positive-unlabeled (PU) learning, one-shot classification and
zero-shot classification.
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Figure III.1: Extensions of the stan-
dard supervised problem: multiple
inputs or outputs, presence of orders
and rankings, and partial informa-
tion.

Multiple outputs
(ML, LR, MD,
LDL, MTR) 

Order constraints
(OR, MC, IR) Standard problem

Partial information
(SSL, PU, 0­shot,  
1­shot, 1­class) 

Multiple inputs
(MI, MV) 

Finally, a generalized problem can be built out of combining several
of these components: for example, a multiple-input multiple-output
problem where the inputs and outputs can belong to structures like
the ones defined above.

The rest of this section studies variations on the structure of the
input space and output space, establishes relations among problems,
and describes how they can be particularized or generalized to one
another.

Input structure

In a standard supervised problem, the input space consists of single
feature vectors and does not impose a specific order.

Problems where learning patterns are composed of multiple in-
stances can usually be categorized into either MI, if the inputs share
the same structure, or MV, otherwise. Their combination can also be
considered as well, e.g. a problem where an example is composed of
one or more photographs and one or more pieces of text. This would
be a case of a MV MI problem.

There are also problems where there exists a partial or total order
among instances, which is coupled with an order constraint in
relation to the outputs. These are MC and IR.

Fig. III.2 summarizes these structural traits in a hierarchy and indi-
cates problems where these traits are present.
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Input
structure traits

Single feature
vector

Unordered
(standard)

Ordered
(MC, IR)

Multiple
feature vectors

Same space (MI)

Different
space (MV)

Figure III.2: Traits that can be found
on the input structure of supervised
problems.

Output structure

The diversity in output variations is higher than that of the input
ones. A first sorting criterion is whether the codomain is discrete or
continuous. This way, problems are either classification or regression
ones.

Further subdivision of problems allows to separate these traits ac-
cording to whether outputs remain scalars or become vectors. In the
first case we consider order in the discrete scenario a nonstandard
variation, which is present in OR and MC. In the second case, classi-
fication problems are spread into ML, LR and MD, and regression
ones into LDL and MTR.

Fig. III.3 organizes these traits in a hierarchy based on the previous
criteria. Each leaf of the tree also includes problems where each one
is present.

Output structure traits

Discrete

Scalar

Unordered
(standard

classification)

Ordered
(OR, MC)

Multiple

Ranking (LR)Binary (ML) Finite (MD)

Continuous

Scalar (standard
regression) Multiple

Distribution
(LDL)

Unrestricted
(MTR)

Figure III.3: Traits that can be found on the output structure of supervised problems.

The variations in the structure of target spaces in supervised prob-
lems can be seen as generalizations of the standard problems. Fur-
thermore, some of them are also more general than others. For
example, ML problems can be seen as LR ones where, for a given
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Table III.1: Identification of problems according to their input traits (vertical axis) and output traits (horizontal axis).

aaaaaaaa
Inputs

Outputs Unordered outputs Ordered outputs
Scalar Multiple Scalar Multiple

Discrete Continuous Discrete Continuous

Unordered inputs standard classification
[4]

ML/MD classifica-
tion [22, 26]

OR [32] standard regression
[9]

Graded
ML [44]

MTR [31]

Ordered inputs - - MC [34] IR [35] - -
Multiple instances MI classification [19] MIML/MIMD

classification [41]
- MI regression [19] - -

Multiple views MV classification [21] MVML/MVMD
classification [43]

- MV regression [21] - -

instance, labels over a threshold are active and those below are not.
Thus, LR is a generalization of the ML scenario. More relations of
this kind are displayed in Fig. III.4.

As shown in the graph, an inclusion of more target variables of
the same type transforms a binary problem into ML, a multiclass
problem into MD and a single-target regression one into MTR.
Similarly, inclusion of more values into each variable allows to
generalize binary problems to multiclass, and ordinal to single-target
regression, as well as ML ones to MD and these to MTR. LDL can be
seen as a generalization of ML where real numbers between 0 and 1
are also allowed as values for a label. LR is a generalization of ML
by the argument discussed before.

Figure III.4: Relations among super-
vised problems according to output
structure. Arrows follow natural gen-
eralizations from one problem to an-
other. Continuous arrows denote gen-
eralizations based on adding more
variables of the same type. Dashed ar-
rows indicate generalizations based
on modifying existing target vari-
ables.

Binary Multiclass

Ordinal

Multi-label

Label ranking Multi-
dimensional

Standard
regressionMulti-target

regression

Label
distribution

learning

Summary

In this section input and output variations of standard supervised
problems have been categorized and related. Table III.1 allows to
identify specific problems according to which input and output traits
are present.



III.4 Common approaches to tackle nonstandard problems 127

III.4 Common approaches to tackle nonstandard
problems

When tackling a nonstandard problem, most techniques follow
one of two main approaches: problem transformation or algorithm
adaptation. The first one relies on appropriate transformations of the
data which result in one or more simpler, standard problems. The
latter implies an extension or development of previously existing
algorithms, in order to adapt them to the complexities induced by
the structure of the data.

In the following subsections several methods based on both ap-
proaches are enumerated for each analysed problem.

Problem transformation

Problem transformation methods assume that a solution can be
achieved by extracting one or more simpler problems out of the
original one. For example, a problem with multi-dimensional tar-
gets could be transformed into many problems with scalar outputs.
Then, these problems could be solved independently by a classi-
cal algorithm. A solution for the original problem would be the
concatenation of those extracted from the simpler ones.

Next, the most common transformation techniques are described for
each nonstandard supervised learning task previously introduced.

– MI. The taxonomy proposed in [46] describes an Embedded
Space paradigm, where each bag is transformed into a single feature
vector representing the relevant information about the whole bag.
This transformation brings the MI problem into a single-instance
one. Most of these methods are vocabulary-based, which means that
the embedding uses a set of concepts to classify each bag according
to its instances, resulting in a single vector with one component per
concept.

– MV. Some naive transformations consist in ignoring every view
except one, or concatenating feature vectors from all views, thus
training a single-view model in both cases [47]. A preprocessing
based on Canonical Correlation Analysis [48] is able to project data
from multiple views onto a lower-dimensional, single-view space.



128 III A snapshot on nonstandard supervised learning problems

– ML. Transformation methods for ML classification [49] are di-
verse: Binary Relevance trains separate binary classifiers for each
label. Label Powerset reduces the problem to a multiclass one by
treating each individual labelset as an independent class label, and
Random k-Labelsets [50] extracts an ensemble of multiclass problems
similarly. Classifier chains [51] trains subsequent binary classifiers
accumulating previous predictions as inputs. ML problems can also
be transformed to LR [52].

– MD. In some cases, independent classifiers can be trained for
several dimensions [26, 53] but this method ignores possible correla-
tions among dimensions. An alternative transformation, building a
different label from each combination of classes, would produce a
much larger label space and thus is not typically applied.

– LDL. A LDL problem can be reduced to multiclass classification
by extracting as many single-label examples as labels for each one of
the training instances [27]. These new examples are assigned a class
corresponding to each label and weighted according to its degree
of description. During the prediction process, the classifier must be
able to output the score/confidence for each label, which can be
used as its description degree.

– LR. A reduction of this problem to several binary problems can
be achieved by learning pairwise preferences [29]. This transforms
a 𝑐-label problem into 𝑐(𝑐 − 1)/2 binary problems describing a
comparison among two labels. An alternative reduction by means
of constraint classification [54] builds a single binary classification
dataset by expanding each label preference into a new positive
instance and a new negative instance. The feature space of the new
binary problem has dimension 𝑛𝑐, where 𝑛 is the original dimension
and 𝑐 the number of labels, due to the constraints embedded in it by
Kesler’s construction [55].

– MTR. There are several ways to transform a MTR problem into
several single-target regression ones. Some of them are inspired by
the ML field, such as a one-vs-all single-target reduction, multi-target
stacking and regressor chains [56]. All of them train single-target
regressors for several extracted problems, and then combine the
obtained predictions. A different approach based on support vectors
[57] extends the feature space which expresses the multi-output
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problem as a single-target one that can be solved using least squares
support vector regression machines.

– OR. An ordinal problem with 𝑐 classes can be transformed into
𝑐 − 1 binary classification problems by using each class from the
second to the last one as a threshold for the positive class [58].
This decomposition can be called ordered partitions and is not the
only possible one: others are one-vs-next, one-vs-followers and one-vs-
previous [32]. Several 3-class problems can also be obtained by using,
for the 𝑖-th problem, classes “𝑙𝑖”, “< 𝑙𝑖” and “> 𝑙𝑖”.

– MC. The authors in [59] describe a procedure to tackle binary
MC problems by means of IR. Multiclass MC cases can be reduced to
several binary MC ones, which in turn are solved as IR problems.

Algorithm adaptation

Existing methods for classical problems can be extended in order to
introduce the necessary complexities of nonstandard variations. As
an example, nearest neighbor methods could be coupled with new
distance metrics in order to be able to measure similarity among
multiple inputs.

The rest of this section presents some algorithm adaptations which
can be used to tackle nonstandard supervised tasks.

– MI. Methods that work on instance level are adaptations of algo-
rithms from single-instance classification whose responses are then
aggregated to build the bag-level classification [46]. They typically
assume that one positive instance implies a positive bag. Adaptations
of common algorithms have been proposed with support vector ma-
chines (SVM) [60] and neural networks [61], whereas some original
methods in this area are Axis-Parallel Rectangles [62] and Diverse
Density [63]. In the bag-space paradigm, methods treat bags as a
whole and use specific distance metrics with distance as well as
kernel-based classifiers, such as k-nearest neighbor (k-NN) [64] or
SVM [65].
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– MV. Supervised methods for MV are comparatively less devel-
oped than semi-supervised ones. Nonetheless, there is an extension
of SVM [66] which simultaneously looks for two SVMs, one in each
of the feature spaces of a two-view problem. There is an extension
of Fisher discriminant analysis as well [67].

– ML. The most relevant algorithm adaptations [49] are based on
standard classification algorithms with added support for choosing
more than one class at a time: adaptations exist for k-NN [68],
decision trees [69], SVMs [70], association rules [71] and ensembles
[72].

– MD. Specific Bayesian networks have been proposed for the MD
scenario [73, 74], as well as Maximum Entropy-based algorithms [26,
53].

– LDL. Proposals in [27] are adaptations of k-NN, with a special
derivation of the label distribution of an unseen instance given
its neighbors, and backpropagated neural networks, where the
output layer indicates the label distribution of an instance. Other
proposed methods are based on the optimization algorithms BFGS
and Improved Iterative Scaling.

– LR. Boosting methods have been adapted to LR [75], as well as
the SVM proposed in [70] for ML which can be naturally extended
to LR [30]. An adaptation of online learning algorithms such as the
perceptron has also been developed [76].

– MTR. First methods able to treat MTR problems were actually
generalizations of statistical methods for single-target regression [77,
78]. Other common methods which have been extended to predict
multiple regression variables are support vector regression [79, 80],
kernel-based methods [81, 82], and regression trees [83] as well as
random forests [84].

– OR. Neural networks can be used to tackle OR with slight
changes in the loss function or the output layer [85, 86]. Similarly,
extreme learning machines have also been applied to this problem
[87, 88]. Common techniques such as k-NN or decision trees have
been coupled with global constraints for OR [89], and extensions of
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other well known algorithms such as Gaussian processes [90] and
AdaBoost [91] have been proposed as well.

– MC. Algorithm adaptations generally take a well known tech-
nique and add monotonicity constraints. For example, there exist in
the literature adaptations of k-NN [92], decision trees [93], decision
rules [94, 95] and artificial neural networks [96].

Table III.2 gathers all the methods described previously to tackle
nonstandard supervised tasks.

Task Problem transformation Algorithm adaptation

MI Embedded-space [46] SVM [60, 65]
Neural networks [61]
k-NN [64]

MV Canonical correlation analysis [48] SVM [66]
Fisher discriminant analysis [67]

ML Binary Relevance [49]
Label Powerset [49]
Classifier chains [51]

k-NN [68]
Decision trees [69]
SVM [70]
Association rules [71]
Ensembles [72]

MD Independent classifiers [26, 53] Bayesian networks [73, 74]
Maximum Entropy [26, 53]

LDL Multiclass reduction [27] k-NN [27]
Neural networks [27]

LR Pairwise preferences [29]
Constraint classification [54]

Boosting [75]
SVM [30]
Perceptron [76]

MTR ML inspired: one-vs-all, stacking, re-
gressor chains [56]
Support vectors [57]

Generalizations [77, 78]
Support vector regression [79, 80]
Kernel-based [81, 82]
Regression trees [83]
Random forests [84]

OR Ordered partitions [58]
One-vs-next, One-vs-followers, One-
vs-previous [32]
3-class problems [32]

Neural networks [85, 86]
Extreme learning machines [87, 88]
Decision trees [89]
Gaussian processes [90]
AdaBoost [91]

MC Reduction to IR [59] k-NN [92]
Decision trees [93]
Decision rules [94, 95]
Neural networks [96]

Table III.2: Summary table of pre-
sented methods according to their
type of approach.

III.5 Applications. Original real word scenarios

The problems studied in this work have their origins in real-world
scenarios which are related below:
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– MI. Problems modeled under MI learning are drug activity
prediction [62], where each pattern describes a molecule and its
different forms are represented by instances; image classification [46],
and bankruptcy [97]. Most of the datasets used in experimentations,
however, are usually synthetic.

– MV. Some situations where data is described in multiple views
are multilingual text categorization [98], face detection with several
poses [99], user localization in a WiFi network [100], advertisements
described by their image and surrounding text [101] and image
classification with several color-based views and texture-based views
[102].

– ML. Problems which fall naturally under the ML definition are
text classification under several categories simultaneously [103],
image labeling [104], question tagging in forums where tags can
co-exist [105], protein classification [106], data streams [107] and
recommendation systems [108].

– MD. Applications of MD classification include classification
of biomedical text [26], where predicted dimensions for a given
document are its focus, evidence type, certainty level, polarity and
trend; gene function identification [73]; tumor classification, and
illness diagnosis in animals [74].

– LR. The field known as preference learning has been gaining interest
[29], and LR is one of the problem that falls under this term. LR is
also frequently applied in ML scenarios [109], where a threshold
can be applied in order to transform an obtained ranking into a
labelset.

– LDL. Data with relative importance of each label appears in
applications such as analysis of gene expression levels in yeast [110],
or emotion description from facial expressions [111], where a face
can depict several emotions in different grades.

– MTR. Applications modeled as MTR problems are diverse, in-
cluding modeling of vegetation condition in ecosystems assigning
several scores which depend on the vegetation type [112], prediction
of audio spectrums of wind tunnel tests [113], and estimation of
several biophysical parameters from remote sensing images [114].
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– OR. The most salient fields where OR can be found are text
classification [115], where the predicted variable may be an opinion
scale or a degree of satisfaction; image categorization [116]; medical
research [117]; credit rating [118], and age estimation [119].

– MC. Monotonicity constraints are found in problems related to
customer satisfaction analysis [120], in which overall appreciation
of a product must increase along with the evaluation of its features;
house pricing [93]; bankruptcy risk evaluation [121], and cancer
prediction [122], among others.

III.6 Other nonstandard variations

This section covers variations of the standard supervised problem
which are further from the central focus of this paper less related to
those above.

Learning with partial information

In a standard supervised classification setting, it is assumed that
every training example is labeled accordingly and that there exist
examples for every class that may appear in the testing phase. When
only a fraction of the training instances are labeled, the problem
is considered semi-supervised [36], but generally there still exist
labeled samples for each class.

In positive-unlabeled learning [38, 123], however, labeled examples
provided within the training set are only positive. This means the
learning algorithm only knows about the class of positive instances,
and unlabeled ones can have either class.

A different scenario arises when the training set only consists of
negative (or only positive) instances, and no unlabeled examples are
provided. This is known as one-class classification [37], and data
of this nature can be obtained from outlier detection applications,
where positive examples are hardly recorded.

A problem which may be seen as a generalization of one-class
classification is zero-shot learning [39], a situation where unseen
classes are to be predicted in the testing stage. That is, the label space
𝑌 includes some values which are not present in any training pattern,
but the classifier must be able to predict them. For example, if in
a speech recognition problem 𝑌 is the set of all words in English,
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the training set is unlikely to have at least one instance for each
word, thus the classifier will only succeed if it is capable of assigning
unlearned words to test examples.

A relaxation on the obstacles of zero-shot learning is present in one-
shot learning [40], where algorithms attempt to generalize from very
few (1 to 5) examples of each class. This is a common circumstance
in the field of image classification, where the cost of collecting and
labeling data samples is high.

A classification of these problems according to the type of missing
information can be found in Table III.3.

Table III.3: Partial information problems according to the kind of absence in the training set.

Trait Problem types

Presence of unlabeled instances Semi-supervised [36], Positive-unlabeled [38]

No representation of some classes One-class [37], Positive-unlabeled [38], Zero-shot [39]

Scarce representation of some classes One-shot [40]

Prediction of structured data

The nonstandard variations described in this work generalize tradi-
tional supervised problems where the predicted output is at most
a vector whose components take values in either a finite set or ℝ.
Further generalizations are possible if other kinds of structures are
allowed. For example, the target may take the form of an ordered
sequence or a tree. In this case, the problem usually enters the scope
of structured prediction [124], a generalization of supervised learn-
ing where methods must build structured data associated to input
instances.

A particular case of supervised problem which can be seen under the
umbrella of structured prediction is learning to rank [33], which does
not involve a label space as such. Instead, training consists in learning
from a set of feature vectors with a series of preferences among them,
that is, a partial or total order in the training set. During testing a set
of feature vectors is provided and the desired output is a ranking
(with a predefined number of relevance levels, allowing ties) or a
sorting (simply an ordering of the instances). This problem differs
from OR in that individual classifications are usually meaningless:
only relative distances among ranked instances matter.
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III.7 Conclusions

Traditional supervised learning comprises two well known problems
in machine learning: classification and regression. However, the
multitude of applications which do not strictly fit the structure of the
standard versions of those problems have favored the development
of alternative versions which are more flexible and allow the analysis
of more complex situations.

In this work an overview of nonstandard variations of supervised
learning problems has been presented. A novel taxonomy under
several criteria has described relationships among these variations,
where the main differentiating properties are multiplicity of inputs,
multiplicity of outputs, presence of order relations and constraints,
and partial information. Afterwards, common methods for tackling
these problems have been outlined and their main applications have
been mentioned as well. Finally, some additional variants which were
left out of the scope of the previous analysis have been introduced
as well.

Design of novel algorithms for nonstandard supervised tasks is
scarcer than adaptations and transformations, but there exist some
approximations and even more open possibilities for tackling these
from classical algorithmic perspectives, such as probabilistic and
heuristic methods, information theory and linear algebra, among
others.
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Abstract

In many machine learning tasks, learning a good representation of
the data can be the key to building a well-performant solution. This is
because most learning algorithms operate with the features in order
to find models for the data. For instance, classification performance
can improve if the data is mapped to a space where classes are easily
separated, and regression can be facilitated by finding a manifold of
data in the feature space. As a general rule, features are transformed
by means of statistical methods such as principal component analysis,
or manifold learning techniques such as Isomap or locally linear
embedding. From a plethora of representation learning methods,
one of the most versatile tools is the autoencoder. In this paper we
aim to demonstrate how to influence its learned representations
to achieve the desired learning behavior. To this end, we present a
series of learning tasks: data embedding for visualization, image
denoising, semantic hashing, detection of abnormal behaviors and
instance generation. We model them from the representation learning
perspective, following the state of the art methodologies in each
field. A solution is proposed for each task employing autoencoders
as the only learning method. The theoretical developments are put
into practice using a selection of datasets for the different problems
and implementing each solution, followed by a discussion of the
results in each case study and a brief explanation of other six learning
applications. We also explore the current challenges and approaches
to explainability in the context of autoencoders. All of this helps
conclude that, thanks to alterations in their structure as well as
their objective function, autoencoders may be the core of a possible
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solution to many problems which can be modeled as a transformation
of the feature space.

Keywords

representation learning - autoencoders - deep learning - feature
extraction

IV.1 Introduction

Creating new representations of data is a fundamental task in
most machine learning tasks. First off, certain types of problems
that require a classifier or a regressor will certainly benefit from
transformations of the features which facilitate their work [2]. In
addition to this, there exists a variety of problems whose solution
relies strongly on finding an appropriate representation of the data.
Although the use of representation learning techniques is mainly
used as a complement to other learners in the former case, in the latter
one these methods become the focus. This work highlights some of
these situations, with specific applications that can be modeled as
representation learning problems.

The features that are used as input conform one of the most important
factors when building machine learning models. When the training
set contains intact data from its collection or measurements, it may
not be ready for treatment yet. Instead, it is common for data to be
expressed with redundant or uninformative variables and for it to
include some level of noise. These and other obstacles presented by
the data [3] are the reason why most of the manual work of building
machine learning models is spent in the preprocessing stage [4].

The success of a classifier, a regressor or other models will greatly
depend on the quality of the features it can learn from. For instance,
decision trees, regardless of whether the task is classification or
regression, attempt to find the most informative variables to branch
at each step [5]; support vector machines calculate the hyperplane
that best separates classes in a feature space originating from specific
transformations of the original one [5], and k-means clustering com-
putes distances among pairs of instances and thus depends strongly
on the input domain [6]. As a result, it is of vital importance that the
features provided to these learners are useful and as independent as
possible.
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However, finding alternative representations for data is not only a
medium to build classification and regression models, but it may be
an end in itself in many applications. For example, finding compact
binary codes that represent text documents [7], compressing signals
to a lower resolution without losing information [8], transforming
the problem domain to a different one [9], or producing filtered
versions of images with less distortions [10].

Learning representations usually consists in feature engineering [2]
or feature extraction [11], depending on whether new features are
computed manually by human intervention (either by selection [12]
or simple arithmetic operations) or they are generated, evaluated
and selected by the machine. Feature engineering leverages expert
knowledge and human creativity in order to select features and
operate with them in a way that results in a new feature set which
seems appropriate for predictors to work with. Nowadays there
exist many automatic approaches to feature learning, which relieve
users from the tedious task of engineering new features [13]. These
methods range from probabilistic to topological and from shallow to
deep: principal component analysis [14], Isomap [15], locally linear
embedding [16] and Laplacian eigenmaps [17], among others.

With the introduction of deep neural networks, the representa-
tion learning stage became integrated within the predictors them-
selves [18]. These techniques iteratively optimize the classification
performance by modifying the weights in several layers of individual
neurons which compute a hierarchy of abstractions over the original
data. For this purpose, the backpropagation algorithm [19] allows
to efficiently accumulate gradients along the network, so that an
optimizer such as Stochastic Gradient Descent [20] or one of its
derivatives [21–24] may compute each weight update. Since neural
networks can be structured as needed for each kind of problem,
they are able to function as standalone feature learners as well. This
is the case of autoencoders (AEs) [25], neural architectures whose
objective is to find the best representation for the data according to
the criterium defined by their loss function.

The objective of this paper is to analyze how AEs can serve as the main
basis for solving a wide variety of learning tasks and demonstrate this
with concrete applications and experimental results. Throughout the
paper, we examine several case studies that expose the adaptability
of AEs to these problems.

▶ First, an example of data embedding onto a very low dimen-
sional space for visualization and exploratory analysis.
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▶ Then, a case where noisy signals are to be repaired by the
model.

▶ Later, a different example where very high dimensional sparse
data, such as text documents, is to be compressed onto compact
binary codes in a semantic way.

▶ Additionally, we study anomaly detection, the situation where
abnormal patterns are to be detected in sequences but no
anomalies are available to learn from.

▶ As a last case study, we propose the generation of new instances
which do not belong to the training set.

Other applications are also briefly discussed: image superresolution,
image compression, transfer learning, human pose recovery and
recommender systems.

As a starting point, we provide the reader with the necessary back-
ground knowledge about the field of representation learning, as well
as a summary of the main features of AEs that make them a good
candidate model to solve the different problems later approached.
The solutions to these tasks using AEs as the only automatic learner
highlight their potential and flexibility as feature extraction tech-
niques.

Following the current increase in search for developing explainable
models [26], the main approaches for obtaining interpretable predic-
tions are summarized, finding that quality features can be the key to
explainable solutions. AE models which can build helpful features
are also highlighted.

The rest of this paper is structured as follows. Section IV.2 describes
the background of the problems and techniques above introduced.
Section IV.3 details the inner workings of AEs. Section IV.4 further
develops on several case studies where AEs resolve feature learning
tasks and outlines other existing learning applications, and Sec-
tion IV.5 describes the current state of the art in explainable AI and
how AEs are involved. Lastly, Section IV.6 concludes the text.

IV.2 Background: feature learning and deep
representation learning

This section explains some well-known methods that can extract
features from data. Afterwards, it introduces deep learning tech-
niques.
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Classical feature learning methods

Traditionally, feature extraction methods have been developed with
linear as well as nonlinear transformations of the variables [11]. They
can be considered nonconvex or convex, according to whether the ob-
jective function presents local optima or not, respectively [27]. Many
of these techniques perform unsupervised learning, but others are
supervised [28–30] or even semi-supervised [31]. Next, a summary
of typical feature learning methods is provided.

Linear methods The most common linear feature extraction meth-
ods are the following. Principal component analysis (PCA) consists in
extracting successive variables or principal components with maximum
variance while being uncorrelated with the previous components.
It is a statistical technique developed geometrically by Pearson [32]
and algebraically by Hotelling [33], but an analytical derivation
can be found in [14]. Factor analysis [34] is a similar procedure to
PCA which considers a set of latent variables or factors that are not
observed but are linearly combined to produce the final variables.
Linear discriminant analysis [28] is a supervised statistical technique
which attempts to find linear combinations of features to project
samples onto new coordinates that best discriminate classes, albeit
making some assumptions about the distribution of the data.

Nonlinear methods Some well known nonlinear approaches to
feature extraction are kernel PCA, restricted Boltzmann machines
and manifold learning methods. Kernel PCA [35] extends PCA
to nonlinear combinations of features by projecting samples onto
higher-dimensional spaces and using the kernel trick [36]. Restricted
Boltzmann machines are undirected graphical probabilistic models,
also known as harmoniums [37], with one visible layer and one
hidden layer that acts as the set of extracted features. They can
be trained using the contrastive divergence algorithm [38]. Many
nonlinear feature learning methods attempt to find coordinates for
a lower dimensional structure embedded in the original features,
namely, a manifold. Multidimensional scaling (MDS) is one of the first
techniques that can be considered manifold learning, as its objective
is projecting samples in a low-dimensional space while translating
as much information of pairwise distances as possible. There are
several variants of MDS, one of them is Sammon mapping [39],
which improves on MDS by using a different cost function which
stresses large distances similarly to small ones. Isomap [15] is a
more recent extension of MDS which looks for the coordinates that
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describe the actual degrees of freedom of the data while preserving
distances among neighbors and geodesic distances (the length of the
shortest path that connects two points in the manifold). Locally Linear
Embedding [16] also seeks a manifold which preserves neighbors but,
in order to maintain the local structure, it linearly reconstructs each
point from its neighbors. Laplacian eigenmaps [17] is a procedure
that builds a graph based on the neighborhood structure of the
data, and from it a weight matrix whose eigenvectors can be used to
compute new coordinates for each point.

Deep representation learning

Deep learning architectures are hierarchies of abstractions of the
input feature space and, as such, they compute several transfor-
mations of the features before reaching a response. In some cases,
these can be seen as learned representations, since they must be
able to capture the relevant information from each instance in order
to output an accurate result. This effect can be observed especially
in convolutional neural network classifiers, which are usually split
into a feature extraction component formed by convolutional layers
and a decision module composed by fully connected layers [40].
Apart from neural networks with other objectives such as supervised
classification or regression, there have been different approaches to
shallow as well as deep neural structures for unsupervised feature
learning [41], such as self-organizing Kohonen maps [42, 43], pre-
dictability minimization [44], restricted Boltzmann machines [45],
deep belief networks [46–48] and AEs [49, 50]. There have been
many instances of these unsupervised techniques being used to
either pre-train or provide feature transformations for supervised
models [51].

AEs are probably the most versatile unsupervised neural network
models. They essentially combine some kind of bottleneck or re-
striction in the learned data representations with the objective of
reconstructing and repairing the original input from that representa-
tion [25]. There are several ways to impose restrictions that produce
interesting representations, and the reconstruction objective will
cause the network to retain all invariant feature information along
its weights, so that the representation or encoding holds mainly
instance-specific traits. For example, undercomplete AEs project
inputs into lower-dimensional encodings, sparse AEs obtain rep-
resentations with very few activated neurons, and denoising AEs
attempt to repair partially corrupted data.
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Their versatility is demonstrated by the amount of applications AEs
have and their diversity. Across the rest of this work, we focus on
certain applications of representation learning that are solved with
AEs and we analyze how each model is built and trained.

IV.3 Autoencoder fundamentals

AEs are neural network structures designed with the purpose of
learning new features. Throughout the following subsections, their
main characteristics and differentiating aspects are outlined, and
some ways to influence the encoded variables are discussed.

Origin and essentials of autoencoders

AEs were originally conceieved as a way of initializing neural net-
works [52] and continued fulfilling that purpose for some time,
serving as a starting point for training of deep networks as well [53].
Over the last years, other applications for AEs have been emerging
and at the same time other approaches to neural network training
and regularization have succeeded over AEs [54, 55]. As a conse-
quence, the common uses for AEs have shifted from helping train
other neural networks to other applications of their own.

In general, the training process required to learn an AE can be
unsupervised, that is, it does not need labels or class information
in order to generate a model for the data. Instead, it extracts useful
information from each instance by feeding its feature vector through
some transformations which impose a bottleneck or restriction on
the possible representations it can compute. Then, the representation
is mapped to the original feature space through a similar set of
transformations, and the AE is evaluated according to the fidelity of
the reconstruction. This feedback allows to modify the parameters
iteratively until convergence is reached.

AEs take the form of a neural network with at least one hidden layer
and two components, an encoder and a decoder, which are connected
by the coding layer [25]. These components are usually symmetric in
layer shapes to each other, especially if they are implemented as fully
connected neural networks. In certain occasions, even the weights of
each layer in the decoder are tied to the corresponding layer in the
encoder. In general terms, however, it suffices with the input layer of
the encoding and the output layer having the same shape. Fig. IV.1
shows how the architecture of an AE may look like.
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Figure IV.1: Illustration of the general
structure of a basic AE: an encoder
and a decoder connected by the en-
coding layer

Table IV.1: Intepretation of symbols
used in the formulae Symbol Interpretation

𝜃 Full set of parameters of the AE (weights and
biases)

X Set of input instances
Z Set of instances in encoding space
𝑛 Dimension of input space
𝑘 Dimension of encoding space
𝑓 Encoder mapping
𝑔 Decoder mapping
𝑑 Distance function in input space
𝑟 Regularization function

In summary, an AE can be seen as the composition of an encoding
map 𝑓 which projects inputs onto a different feature space, and a
decoding map 𝑔 which operates inversely (see Table IV.1 for the
meaning of all symbols used below). The main objective of the AE is
to recover as much information as possible of the original input, so
it will attempt to minimize a distance between the inputs and the
outputs:

min
𝜃

∑
𝑥∈X

𝑑(𝑥, 𝑔𝜃( 𝑓𝜃(𝑥))) (IV.1)

The distance function 𝑑 used in the loss function is usually either
the mean squared error, see Eq. (IV.2), or the cross entropy, shown
in Eq. (IV.3). In the first case, data may not be normalized and the
output units should use an unbounded activation function. For
a cross entropy loss, each input and output variable is modeled
as following a Bernoulli distribution, so data should be scaled to
the [0, 1] interval and output units could make use of a sigmoid
activation.
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The mean squared error for an input 𝑥 and output 𝑥′ of length 𝑛 is
defined as:

𝑑(𝑥, 𝑥′) = 1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥′𝑖)
2 (IV.2)

Similarly, the binary cross entropy for the same input and output is
computed as:

𝑑(𝑥, 𝑥′) = −(𝑥 • log(𝑥′) + (1 − 𝑥) • log(1 − 𝑥′)), (IV.3)

where • denotes element-wise product and all other operations are
also performed element-wise.

Modeling the coding layer

The main objective of the AE (Eq. IV.1) only promotes faithful
reconstructions without explicitly considering any aspect about the
codes used. This can be enough in many cases where the codes are low
dimensional and they can capture only the relevant information of the
instances just by training to reconstruct accurately. Notwithstanding,
there are situations that require considering a more general case
of the objective, which allows penalizing certain behaviors of the
encoding found by the network, or even the values of the parameters
themselves (Eq. IV.4).

min
𝜃

∑
𝑥∈X

𝑑(𝑥, 𝑔𝜃( 𝑓𝜃(𝑥))) + 𝑟1( 𝑓𝜃(X)) + 𝑟2(𝜃) (IV.4)

A straightforward example of this kind of restrictions is the sparse
AE [56, 57], which adds a penalty for high activation rates in the
neurons of the code layer (Eqs. IV.5 and IV.6):

𝑟(Z) =
𝑘∑
𝑗=1

(𝜌 − 𝜌 𝑗)2, or (IV.5)

𝑟(Z) =
𝑘∑
𝑗=1

𝜌 log
𝜌

𝜌 𝑗
+ (1 − 𝜌) log

1 − 𝜌

1 − 𝜌 𝑗
, (IV.6)

where 𝜌 𝑗 = 1
|Z|

∑
𝑧∈Z 𝑧 𝑗 is the average activation vector, 𝑘 is the

length of the code and 𝜌 is the desired activation rate.

Other, more sophisticated variations on the AE with different penal-
ties are the contractive AE [58, 59], which promotes finding and
preserving any local structure from the original feature space, and
the variational AE [60], which uses a penalty to impose a distribution
to the codes computed by the encoder.
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Penalties on the codes are not, however, the only way of incentivizing
a behavior on the encoder mapping. Denoising AEs [61, 62] establish
a slightly different criterion to evaluate the performance of the
reconstruction: the network must be able to repair any noise or
corruption from the input. Robust AEs [63] use another objective
function, correntropy [64], which has a similar effect in repairing
several kinds of noise from the input data.

Evaluation metrics

The quality of learned features can be evaluated by the model’s
ability to project instances back to the original feature space. For
this purpose, regression metrics can be used. Some common metrics
which serve to assess the usefulness of the learned features are
the following, where 𝑥 is the original feature vector and 𝑥′ is the
reconstruction, mapped from the encoding space back onto the input
space:

▶ Mean squared error (Eq. IV.2) and root mean squared error:

RMSE(𝑥, 𝑥′) =
√

1
𝑛

𝑛∑
𝑖=1

(
𝑥𝑖 − 𝑥′𝑖

)2

▶ Mean absolute error:

MAE(𝑥, 𝑥′) = 1
𝑛

𝑛∑
𝑖=1

��𝑥𝑖 − 𝑥′𝑖 ��
▶ Mean absolute percentage error

MAPE(𝑥, 𝑥′) = 1
𝑛

𝑛∑
𝑖=1

����𝑥𝑖 − 𝑥′𝑖𝑥𝑖

����
In certain cases, the encoded features can also be evaluated inde-
pendently from the original features, by assessing their quality with
respect to their complexity, class separability and overlap [3]. This
usually requires that data belongs to a classification problem so that
a class is defined for each instance.

Beyond unsupervised autoencoders

Although the objective of an AE usually does not involve direct
prediction of labels, it can sometimes learn from classified examples.
The most straightforward way to introduce class information into
the AE is to modify the loss function so it propagates different errors
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according to the class of each instance. For example, we could weight
each class differently. Assuming the classes are binary, dividing the
dataset into X+ for positive instances and X− for negative ones, and
𝛼 is a parameter in [0, 1], the objective in Eq. (IV.7)

min
𝜃

(1 − 𝛼)
∑
𝑥∈X−

𝑑(𝑥, 𝑔𝜃( 𝑓𝜃(𝑥))) + 𝛼
∑
𝑥∈X+

𝑑(𝑥, 𝑔𝜃( 𝑓𝜃(𝑥))) (IV.7)

would give more importance to reconstructing one of the classes,
which may help if the aim is to find a manifold for that class and the
other one is less relevant.

Several uses of label information can be found in the proposal
of the adversarial AE [30]. This AE has a similar behavior to the
variational AE in that it also forces the codes to follow a given
distribution. Instead of using just a loss penalty, it adds a generator
which samples the distribution, and a discriminator which attempts
to distinguish distribution samples from codes belonging to actual
instances, analogous to a generative adversarial network [65]. The
label information can be used then to locate each label in a region of
the distribution, by feeding labels as well as codes to the discriminator.
Alternatively, labels can be feeded to the decoder, which causes the
codes to discard label information and instead model style in the
data.

Another step forward in introducing label information in AEs would
be for them to be able to predict labels as well. Some work has been
already done along these lines, by training an encoder and decoder
simultaneously to reconstruct and to produce codes as similar as
possible to the labels in a one-hot format [66].

IV.4 Learning task case studies

The following subsections detail several real examples of application
of AEs: embedding data onto a very low-dimensional space for
visualization purposes, reducing the noise in images, computing
semantic hashes for large text documents, finding anomalous behav-
iors in sequences and generating new instances outside the training
set. For each application, a relevant dataset has been selected and a
model has been specifically designed to solve the problem. The basic
traits of all chosen datasets can be found in Table IV.2.

The models described below are each associated to a diagram de-
scribing the layer structure of the corresponding AE and the purpose
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[72]: Jolliffe (2011), “Principal Com-
ponent Analysis”

[73]: Yu et al. (2013), “Embedding
with autoencoder regularization”
[74]: Maaten et al. (2008), “Visualiz-
ing data using t-SNE”

of each layer. Please refer to Fig. IV.2 for an example of how each
model is detailed.

Figure IV.2: Example AE architecture.
Each block represents a layer and is
splitted into three parts: the meaning
or purpose of the layer, the type of
operation performed and its output
shape (size of each dimension).

purpose: input

Layer type: input data

Output shape: 1000

encoding

Dense

10

output

Dense

1000
forward direction

All examples have been implemented and executed employing the
following setup: Tensorflow [70] 1.14.0 and Keras [71] 2.2.4 on top
of Python 3.7 and R 3.6, running on an Intel Core i5-8400 CPU and
a NVIDIA GeForce RTX 2060 GPU. The associated software can be
found at the following GitHub repository: https://github.com/
ari-dasci/autoencoder-case-studies/.

Data visualization

Most of the data collected nowadays, either from industries or from
the web, is high-dimensional. Visualization techniques can help its
interpretability, but the data generally needs to be summarized for
this purpose. Traditionally, an alternative representation would be
a subset of its features or its principal components [72]. An AE,
however, is able to automatically compute a representation that fits
each dataset. This representation can be 2 or 3-dimensional if the AE
is configured conveniently [73], or if another embedding technique
(such as t-SNE [74]) is used after a higher-dimensional encoding.

In particular, if our dataset consists of instances (𝑥, 𝑦) where 𝑥 is
a feature vector and 𝑦 is its associated label, we can use a training
subset to learn an autoencoder model with an encoding 𝑓 : ℝ𝑛 → ℝ2

resulting of the composition of the hidden layers up to the code layer.
Then, encoded examples can be colored in a scatter plot according
to their class.

Although a simple AE could fulfill the embedding task, it can be
convenient to restrict or modify its behavior so as to influence the

Table IV.2: Main traits of datasets
used for the experiments Dataset Application Input

features
Training

examples
Test

examples

CPU Activity Visualization 21 6553 1639
Satellite image Visualization 36 5142 1288
STL10 [67] Noise reduction 96 × 96 × 3 5000 8000
Bibtex[68] Semantic hashing 1836 5916 1479
UNSW-NB15[69] Anomaly detection 187 37000 175341
AT&T faces Instance generation 64 × 64 400 -
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[61]: Vincent et al. (2008), “Extracting
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denoising autoencoders”
[58]: Rifai et al. (2011), “Contractive
auto-encoders”
[73]: Yu et al. (2013), “Embedding
with autoencoder regularization”
[61]: Vincent et al. (2008), “Extracting
and composing robust features with
denoising autoencoders”

[10]: Xie et al. (2012), “Image denois-
ing and inpainting with deep neural
networks”
[75]: Li et al. (2015), “Feature learning
from incomplete EEG with denoising
autoencoder”
[58]: Rifai et al. (2011), “Contractive
auto-encoders”

[73]: Yu et al. (2013), “Embedding
with autoencoder regularization”

[17]: Belkin et al. (2003), “Laplacian
Eigenmaps for Dimensionality Re-
duction and Data Representation”
[76]: Torgerson (1952), “Multidimen-
sional scaling: I. Theory and method”
[77]: Hadsell et al. (2006), “Dimen-
sionality reduction by learning an
invariant mapping”

projection to the embedding space, in a way that improves how the
populated regions in the original space are modeled. Along these
lines, there are several approaches: denoising criteria [61], contractive
regularizations [58] and embedding regularizations [73].

Denoising criterion A denoising AE [61] trains, as briefly explained
in Section IV.3, by reconstructing partially corrupted inputs. In order
to do this, a corruption or noise function introduces alterations on
the input data: for example, a Gaussian noise 𝜉 ∼ 𝑁(0, 𝜎) would
be used to produce the input 𝜈(𝑥) = 𝑥 + 𝜉. The reconstruction
error is now computed as

∑
𝑥∈X 𝑑(𝑥, 𝑔( 𝑓 (𝜈(𝑥)))). During the training

process, the AE is forced to distinguish useful information from mere
perturbations of the data. If the instances lie on a manifold in the
original feature space, this can effectively train the AE to “push back”
instances to the manifold by discarding small displacements from
it. This can remove noise in the inputs as well as reconstruct some
missing values if inputs are just an estimation [10, 75]. As a result,
the encoding can serve as a set of coordinates for the manifold.

Contractive regularization The contractive AE [58] uses an ad-
ditional penalty in the training objective which promotes local
invariance to displacements in many directions around the training
samples, i.e., it is less sensitive to small perturbations especially in
directions that lead outside the manifold. The penalty consists in the
squared Frobenius norm of the Jacobian matrix of the encoder, that
is, the sum of the squares of all first-order partial derivatives applied
to all inputs:

∑
𝑥 ∥𝐽 𝑓 (𝑥)∥2. This can be seen as a generalization of L2

weight decay to the case where the encoder is nonlinear. This regular-
ization favors encodings where all dimensions are contracted, but the
reconstruction error prevents the AE from contracting dimensions
along the manifold.

Embedding regularization An alternative objective function for
AEs can be the same loss function from other embedding techniques.
This is the idea behind embeddings with AE regularization [73],
which combines the reconstruction error with one of several possible
embedding loss functions coming from Laplacian eigenmaps [17],
multidimensional scaling [76] and margin-based embedding [77].
These loss functions evaluate the embedding by taking pairs of
instances, and the AE is adapted the same way, by computing the
embedding loss across all pairs of instances and the reconstruction
loss across all instances.
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For the purposes of demonstrating the capacity of AEs to find mani-
folds and appropriate embeddings, we have selected a regression
dataset, CPU activity*, and a classification dataset, Satellite image†.
The AE used to find embeddings is the contractive AE. AEs for both
datasets have been designed using the same criteria: three hidden
layers, the encoding layer having 2 variables and the rest having as
much variables as needed so that the compression ratio from the
input to the first hidden layer is the same than from the hidden
layer to the encoding layer. The resulting architectures are detailed
in Fig. IV.3. The AEs have found the projections shown in Fig. IV.4,
where the label of each instance is used to color each point. Notice
that the AEs have trained without the respective target variables,
but there appears to be some degree of separability of classes and
different values of the regression variable in each graph.

Figure IV.3: AE architectures for vi-
sualization
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encoding

Dense

2
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output
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21

input

Satellite

36

Dense

8

encoding

Dense

2

Dense

8

output

Dense

36

In order to verify to a certain degree that these embeddings, in addi-
tion to producing meaningful visualizations, contain the necessary
information about the data, the mean squared error between each
instance and its reconstruction through the AE can be computed. As
a reference for comparison purposes, the same reconstruction error
can be computed from the two first principal components of the data
and from the encoding found by a basic AE. Table IV.3 holds these
results, which are very favourable to the contractive AE, since the
error is lower in every case. The difference among both AEs is small,
but it serves to deduce that the contractive penalty in the AE does
not hinder the reconstruction objective, instead it helps obtain useful
low-dimensional embeddings.

Noise reduction

Similar to searching for interesting representations of data in the
encodings of an AE, we can look for a reconstruction that adds value
to the input data. One way an AE can help with this is to remove

* CPU activity dataset is available at https://www.openml.org/d/573.
† Satellite image dataset can be found at https://www.openml.org/d/294.
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Figure IV.4: Embeddings learned by an unsupervised contractive AE. The top image shows the projection of the CPU Activity
dataset where each point has been shaded according to the level of user activity. The bottom image displays the projected
samples of the Satellite Image dataset, each one colored according to its class.

Mean squared error

CPU Activity Satellite

Method train test train test

PCA 0.5577 0.5097 0.1475 0.1483
Basic AE 0.5238 0.4729 0.1136 0.1160
Contractive AE 0.5053 0.4546 0.1132 0.1157

Table IV.3: Mean squared error com-
parison between the reconstructions
of a contractive AE with a 2-variable
encoding and the projections to the
original feature space from the two
principal components of the data.
Lower values are better.

[10]: Xie et al. (2012), “Image denois-
ing and inpainting with deep neural
networks”
[78]: Lu et al. (2013), “Speech enhance-
ment based on deep denoising au-
toencoder”
[79]: Xiong et al. (2016), “ECG sig-
nal enhancement based on improved
denoising auto-encoder”

[62]: Vincent et al. (2010), “Stacked de-
noising autoencoders: Learning use-
ful representations in a deep network
with a local denoising criterion”

noise from its inputs. This is especially useful when dealing with
images [10], sound [78] and other kinds of signals [79], since capture
methods usually may introduce some noise and it would be desirable
to have a clearer and sharper output.

In general, an AE can be trained to be resilient to input perturbations
with a mere random additive noise at the input. Throughout the
optimization stage, the AE only takes as input partially corrupted
versions of the training examples and attempts to reconstruct the
original ones. Once trained, this AE does not necessarily expect more
noisy data, but instead it will have learned to be robust against small
changes in its inputs. This type of AE is usually called a denoising
AE, and performs well in many scenarios that do not necessarily
involve treatment of noisy data [62].

In this case, nonetheless, the goal is to eliminate potential pertur-
bations in the inputs. Unlike a generic noise reduction filter, which
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will perform similar operations no matter what data it receives, a
denoising AE can be fitted to a specific training set and may thus
be more reliable with different kinds of data. More formally, we
consider a noise function 𝜈, which generates the corrupted data that
the autoencoder trains with to minimize∑

𝑥∈X
𝑑(𝑥, 𝑔( 𝑓 (𝜈(𝑥)))) .

The following are some possible noise functions that may be ap-
plied:

▶ 𝜈(𝑥) = 𝑥 + 𝜉 where 𝜉 is sampled from a Gaussian distribution
with small variance

▶ 𝜈(𝑥) = 𝑥 + 𝜉′ where 𝜉′ is sampled from a Cauchy distribution
with small scale

▶ 𝜈(𝑥) =
{

0 with low probability
𝑥 otherwise

▶ 𝜈(𝑥) =


0 with low probability
1 with low probability
𝑥 otherwise

Notice that the Gaussian and Cauchy distributions will usually
induce small changes to most inputs, while the zero and zero-one
noises will leave most values intact but the change in the corrupted
ones will be more drastic. Thus, for a given application, a specific
type of corruption function can be selected so that it fits best to the
types of noise the samples could have.

When using denoising AEs, it is also convenient to adapt the type
of layers used to the kind of data. For instance, a convolutional AE
would be best for noisy images, and an LSTM AE for corrupted
signals or sequences. Fig. IV.5 details a possible encoder-decoder
structure for a denoising AE which uses convolutional layers in
the encoding phase as well as deconvolution operations during
decodification.

Figure IV.5: Denoising AE architec-
ture for noise reduction

input

STL10 + noise

96 × 96 × 3

Conv (5 × 5)

96 × 96 × 64

Conv (1 × 1)

96 × 96 × 128

Encoding

Max pooling (2 × 2)

48 × 48 × 128

Deconv (5 × 5)

48 × 48 × 64

Upsampling (2 × 2)

96 × 96 × 64

output

Deconv (3 × 3)

96 × 96 × 3
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Images Mean squared error Noise reduction

Reference 0 100%
Noisy 1656.08 ± 696.31 0%
Basic AE 576.68 ± 156.53 62.14% ± 9.54
Denoising AE 159.74 ± 74.55 88.94% ± 6.38

Table IV.4: Summary of results for
noise reduction (average values and
standard deviations are provided).
Original images without noise are
the reference for measuring the mean
squared error, and the noise reduc-
tion is computed for each image as
the percentage decrease in this error.
Images are represented by their RGB
values from 0 to 255.

[67]: Coates et al. (2011), “An analysis
of single-layer networks in unsuper-
vised feature learning”

When this AE is trained with data from the STL10 dataset [67], a
subset of the ImageNet dataset, the objective function will force it
to configure its weights so that input noise is reduced along the
network. The noise used in this case has been zeros with a probability
of 0.1. The test images measure 96x96 pixels and have also been
corrupted with around 10% of noisy values, which can affect any
color channel, so each pixel has a 30% likelihood of having any of
its 3 values altered. The AE was trained during 10 epochs with the
training data using optimizer Adam.

The results can be analyzed in Table IV.4, which shows the designed
AE achieves a reduction in the mean squared error of about 89%. For
comparison purposes, a basic AE has also been trained with Fig. IV.6
displays some of the test inputs together with their reconstruction
by the network. The resulting reconstructions remove most of the
noise and appear slightly softer than the originals.

Figure IV.6: Random selection of
test examples (first and third rows)
and their reconstructions (second
and fourth rows) via forward passes
through the denoising AE.

Semantic hashing

Hashing usually refers to the process of summarizing large batches
of data in smaller or simpler codes. Hashes are employed in data
structures for fast search times, they can be used to find duplicates
and to protect data against corruption and manipulation.
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[7]: Salakhutdinov et al. (2009), “Se-
mantic hashing”

[80]: Katz et al. (2014), Introduction to
modern cryptography

[81]: Carreira-Perpinán et al. (2015),
“Hashing with binary autoencoders”
[7]: Salakhutdinov et al. (2009), “Se-
mantic hashing”

[68]: Katakis et al. (2008), “Multilabel
Text Classification for Automated Tag
Suggestion”

This task in particular, semantic hashing [7], involves finding binary
codes which form buckets of similar data, i.e. when two data points
are similar to each other, there is high probability that they will be
assigned the same hash. Furthermore, if two similar data points are
not hashed identically, their hashes will likely differ in only a few
digits. In consequence, a way of finding instances similar to a query
instance is to hash it and look for those whose hashes are the same or
almost identical. This is the opposite of cryptographic hashing [80],
where the likelihood of two similar entries obtaining the same hash
is almost zero and there is no way of retrieving a document from its
hash.

The idea of finding semantic relations between data points is espe-
cially useful in document searches: if a query document is provided,
then the search method should find those documents in the dataset
which match as closely as possible. It is also of application in an
image domain, where finding matching binary sequences is much
more efficient than comparing two pictures [81].

The approach described in [7] uses a very simple AE architecture,
with an added noise generator after the encoding which forces the
encoder to polarize its outputs.

Figure IV.7: AE architecture for se-
mantic hashing
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encoding
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GaussianNoise

7

Dense

512

output

Dense
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In this case, the Bibtex dataset [68] was selected to illustrate the
application. Fig. IV.7 shows the AE architecture that was defined for
this purpose. The input data provides 1836 binary features which
are then projected onto a smaller feature space and lastly onto a
7-dimensional encoding, which is in turn slightly corrupted before
decoding. The noise introduced in the encoding during training
requires it to take extreme values, for the noise not to affect the
reconstruction.

In order to assess whether the trained model serves the purpose
of semantic hashing, we can group all possible pairs of hashes
according to their Hamming distance (e.g. 0001000 and 001001
are 1 digit away from each other, while 1010101 and 0101010 are
separated by a Hamming distance of 7). Then, we measure the
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[82]: Robertson (2004), “Understand-
ing inverse document frequency: on
theoretical arguments for IDF”

intercluster distance between those pairs of hashes, computed as the
mean cosine distance from each instance in the first cluster to each
one in the second. Assuming the clusters group similar instances,
the intercluster distance should increase along with the Hamming
distance. The distances for this example are illustrated in Fig. IV.8,
which indeed shows simultaneous growth of both.
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Figure IV.8: Intercluster cosine dis-
tance boxplot according to the ham-
ming distance between hashes. Blue
diamonds indicate the mean cosine
distance among all pairs of clusters
that differ in 𝑘 digits where 𝑘 is a
Hamming distance. Gray dots indi-
cate outlier cosine distances.

In addition to quantitatively evaluating the quality of the model, it
can be qualitatively analyzed in order to verify whether semantic
hashing indeed groups topics in similar hashes. One way of doing
this is computing the term frequency-inverse document frequency
index (tf-idf) [82] of the words for each cluster. This way, words that
are frequent within a cluster but uncommon along the rest of the
test set are considered the most relevant words. Table IV.5 shows a
truncated list of hashes used by the AE to cluster documents, along
with their most relevant words ranked by tf-idf.

Anomaly detection

Sometimes the objective of a machine learning task is to find unusual
behaviors or abnormalities in data, for example, detecting a possible
security attack by analyzing server logs, or identifying rare patterns
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Table IV.5: The first 15 hashes used
as semantic codes for clusters found
by the AE, ordered in Gray code.
The most relevant words are se-
lected according to tf-idf computed
for each cluster. They show some com-
mon topics between hashes 0001110
and 0001010, and between 0000001,
0001001 and 0001000.

Hash Relevant words

0000001 thermodynamic, transitions, induced, generalized,
completely, interacting

0000011 relaxation, barrier, mainly, contribute, surfaces, rights
0000010 lipoproteins, capacity, oxidation, apo, receptor, recognized
0000110 identifying, amino, united, capable, matrix, region
0000111 carbon, storage, enzymes, assessed, notes, roles
0000101 infrastructure, configuration, challenge, location,

qualitative, improvement
0000100 innovation, construction, ontologies, communities, 1999,

located
0001100 mining, advances, bioinformatics, er, solved, intelligence
0001101 reuse, object, perspectives, intelligent, notes, logic
0001111 trans, reading, behavioral, cultural, 1997, gap
0001110 ss, siamese, betta, splendens, male, fighting
0001010 siamese, ss, fighting, male, display, fish
0001011 treated, barrier, combines, electrostatic, solvent, molecule
0001001 thermal, boltzmann, origin, bulk, fluctuations, disorder
0001000 numerically, temperatures, exact, magnetic, glass, zero

[83]: Petsche et al. (1996), “A neural
network autoassociator for induction
motor failure prediction”
[84]: Sakurada et al. (2014), “Anomaly
detection using autoencoders with
nonlinear dimensionality reduction”
[85]: Park et al. (2018), “Anomaly
Detection for HTTP Using Convolu-
tional Autoencoders”
[86]: Mirsky et al. (2018), “Kitsune: An
Ensemble of Autoencoders for Online
Network Intrusion Detection”
[87]: Shone et al. (2018), “A Deep
Learning Approach to Network In-
trusion Detection”

in medical checks. This is known as anomaly detection because the
cases of interest are few in contrast to the amount of normal instances,
and even in some cases there are no anomalies to train with. In this
situation, a traditional classifier cannot solve the problem since it
will not be able to assign a class it has not seen before.

An approach to anomaly detection without previously observed
anomalous cases is to model those considered typical, and mark as
anomalies those instances which do not fit the model. An AE can be
used for this purpose, since it can be trained to accurately encode
and reconstruct instances following a certain distribution. When
the AE is feeded new instances, it is assumed that reconstruction
of anomalous data will not be as accurate, since it should follow a
different distribution [83–85]. More formally, the hypothesis of this
methodology is that, when trained with normal data, 𝑑(𝑥, 𝑔( 𝑓 (𝑥)))
will be very small when 𝑥 is normal and very high when 𝑥 is
anomalous.

An useful application of anomaly detection where real world data
will generally lack anomalies is network intrusion [86, 87], that is,
the detection of potential security attacks and malicious accesses
to a server. The straightforward approach is to continuously log
server accesses, and extract data from a period of time where usage
has been normal. By means of these data, an AE can be trained
to recognize typical usage parameters. Then, new log accesses are
constantly feeded to the AE in order to predict their reconstruction
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[69]: Moustafa et al. (2015), “UNSW-
NB15: a comprehensive data set for
network intrusion detection systems
(UNSW-NB15 network data set)”

error. In the case that several successive errors are much higher than
the mean, an attack may be underway.

The AE used for this purpose will work as follows: the encoding
layer will perform a drastic dimensionality reduction in order for
it to model the most essential information from the training data,
which does not include any anomaly. This should help have low
error rates on normal data, similar to training instances, but very
high ones on anomalous data. In general, this may not work well for
uncommon, isolated anomalies, but it is useful when anomalies are
several in sequence, so this strategy is especially designed for time
series data.

input

UNSW NB15

187

encoding

Dense, ReLU

2

output

Dense

187
Figure IV.9: Denoising AE architec-
ture for anomaly detection

The dataset treated in this example is UNSW-NB15 [69], which has 3
nominal variables and 42 numerical descriptors. Since AEs cannot
work directly with nominal variables, these have been converted
into dummy binary variables. In addition, any anomalous data from
the training subset has been removed. In total, 37000 instances with
187 features are being introduced as the training input of the AE,
whose architecture is shown in IV.9. The extraction of two features
is sufficient to model an approximation of most of the normal data,
but cannot preserve enough information for the reconstruction of
most anomalies.

The results of training this model are summarized in Fig. IV.10 and
Fig. IV.11. The first is a precision-recall curve which gives details about
the fraction of detections which are actually anomalies and the ratio
of detected anomalies among all of them. We find that it is possible
to detect more than half the anomalies without obtaining too many
false alarms. Since the test dataset contains many more anomalies
than normal instances and the objective is to detect abnormal sections
more than to find every individual anomaly, a recall of around 50%
could be enough as long as the precision is high so that few false
alarms are raised.

Indeed, Fig. IV.11 graphs the reconstruction error for each test instance
and shows that when an adequate threshold is chosen, anomalous
sections can be easily detected with very few isolated false alarms
that can be discarded. In this case, the chosen threshold is the
mean reconstruction error plus 6 times its standard deviation, but it
could be tuned high or low in order to adjust the sensitivity of the
detection.
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Figure IV.10: Precision-recall curve
for the detection of individual anoma-
lies in the UNSW dataset.
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Figure IV.11: Reconstruction error of the AE during test. The graph on the left shows the reconstruction error of each request
in sequence, where the detection threshold is set to the mean training error plus 6 times its standard deviation. The histogram
on the right shows the amount of hits and misses according to the reconstruction error.

Instance generation

The representation learned by an AE may be useful to encode or
reconstruct individual instances from a training set, but in certain
cases it will be very convenient to ensure that this representation
is actually attempting to perform some kind of manifold learning,
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[60]: Kingma et al. (2013), “Auto-
encoding variational bayes”

mapping the feature space onto a smaller space in a way that makes
sense to work with the whole encoding space. This encoding space
would allow to predict a reconstruction for encodings that do not
come from an instance in the original feature space, and still produce
a coherent result. For instance, an useful application would be to
generate new images of faces similar to those in a training set but not
identical to any of them. This is usually harder to achieve with simple
operations such as interpolation, because they would compute many
images that do not represent faces.

There are several variants of AEs that can fulfill this purpose, namely
variational [60], adversarial and contractive AEs. Variational as well
as adversarial AEs force a prior distribution in the encodings in
different ways, which allows to sample new instances by taking
points from this space and projecting them onto the original feature
space via reconstruction (𝑔). The contractive AE, on the contrary, only
imposes a regularization which promotes instances to be mapped to
encodings near their neighbors. This helps the autoencoder perform
transformations that find manifolds in the data, since local structure
is preserved. The manifold can then be traversed in order for the
decoder to generate new instances.

Variational AEs are stochastic in the sense that they do not map each
instance to a single point in the embedding space, but a distribution
instead. This is usually a normal distribution, defined by its mean and
standard deviation. Then, a reconstruction is produced by sampling
that distribution and propagating the results through the decoder
network. The objective function in this AE combines the clustering
behavior of the reconstruction loss function with a regularization
loss which forces the distribution to be as similar as possible to,
generally, a multivariate unit Gaussian. This helps the AE extract
a very compact representation which only preserves the necessary
information to provide a reconstruction of the input.

In this example, a variational AE following the structure in Fig. IV.12
is trained to generate human faces that do not belong to any person,
since they will not be present in the training dataset. The input
data used during training belong to the AT&T faces dataset‡, also
known as Olivetti faces dataset. The resulting model can be sampled
by feeding arbitrary values to the generator component, which
then outputs previously unseen images. Fig. IV.13 shows some
representative examples of the generated faces using this AE.

‡ AT&T faces dataset is available at https://www.openml.org/d/41083.
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Figure IV.12: Variational AE architec-
ture for instance generation. The sam-
pling layer draws a sample from the
vector of normal distributions with
means and variances given by the
previous layer.
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Figure IV.13: Faces sampled from
the encoding space of a variational
AE, using interpolations between the
projections of images in the original
dataset

Other applications

Apart from the previous selection of applications approached with
representation learning techniques based on AEs, there are many
other situations where AEs can be applied to extract features from
data. The following are learning applications present in the literature
that fell out of the scope of this article.

Image superresolution

This problem consists in building a high resolution image from a low
resolution sample, such as a thumbnail. By using an AE trained with
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low resolution images and another with the high resolution ones, a
map can be trained from the first encoding to the second [88]. This
way, the encoder from the first AE can be connected to the decoder
from the second AE and the resulting network can be fine-tuned.
During prediction it suffices with feeding a low resolution image
through the new network, which will encode it and decode it through
the high resolution decoder, producing a higher quality image.

Image compression

Images are usually compressed with algorithms designed for this
specific purpose, e.g. the JPEG standard [89]. Since a compression
mechanism must include a component which compresses the image
and another which performs decompression, AEs can be trained in
different ways to treat this problem as well [8, 90, 91], even surpassing
the capacity of JPEG2000 especially at low bit rates.

Transfer learning

In a transfer learning task, the learner must make use of the knowl-
edge extracted from data in a given domain to apply it to a different
domain. This may consist in using pre-trained networks with a large
dataset to use them with a small dataset by a fine-tuning process.
However, when labels for the large dataset are not available, the first
stage will necessarily be unsupervised [51], in which case an AE can
be trained and its extracted features can initialize a network for a
supervised problem with a dataset from other domain.

Human pose and facial features

Human pose recovery is an application specific to image and video
data where people appear and the aim is to recognize the pose of
each person from the visual information, i.e., to generate a skeleton
describing the position and orientation of the legs, arms and the
rest of the body. One of the challenges is to model this skeleton
as a 3D object while images are only 2D. AEs have been used as
the core of a human pose recovery model [92] for extracting an
inner pose representation which then maps onto a representation
of the 3D pose and is decoded as a 3D pose. This process is, in fact,
achieved with two AEs, one for each inner representation required,
which are then connected through the representation mapping. In
a similar way, facial expression recognition aims to identify the
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human emotional state from facial images. An approach based on
deep sparse autoencoders [93], which are used to extract robust and
discriminative features, has been developed to tackle this task.

3D shape learning

Extracting features from three-dimensional shapes usually has a
high computational cost but it is fundamental for tasks such as 3D
object retrieval and matching. There are several AE-based models
for automatic feature extraction that can help model this type of
data [94–96]. These range from simple stacked AEs to combinations
of convolutional AEs and extreme learning machines. In general,
retrieving similar objects to a given input consists in encoding the
input and comparing the result to the codes of known objects in
order to find the nearest or most similar ones.

Recommender systems and tagging systems

Recommender systems are filters that seek to predict user prefer-
ences for products, taking into account previous choices or ratings.
Collaborative filters for recommendation combine the information of
different users to build predictions. In [97], a collaborative variational
AE for recommendation is developed. It models the implicit rela-
tionships among items and users by making use of a shared latent
representation and the variational regularization. A task similar to
recommendation is tagging, since tags can be ranked for an item
according to its similarity to other items. AEs have been also used as
the core of tagging systems [98] using denoising AEs and relational
denoising AEs.

IV.5 Challenges for autoencoder progress and
prospects on explainability

Along this section, several difficulties and consequences of using AEs
in machine learning are explored. Some brief comments are provided
beforehand on the current state of explainability and transparency
in artificial intelligence (AI), in order to understand how they could
affect the way AEs are designed and used.

First, we introduce the most popular approaches to finding trans-
parent and explainable machine learning models. Later, we develop
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on the ways AEs can help build interpretable solutions to different
problems, by learning disentangled and fair features.

State and prospects on explainability

Explainable AI [26] encompasses many concepts around the idea that
people should be able to understand how trained machine learning
models work and why they make their decisions.

The recent surge in interest in explainable models derives from the
bias found in existing models as well as the search for AI safety
[99]. The first issue involves models that make decisions potentially
affecting human beings and those decisions can discriminate against
certain population groups, e.g. people of color or women. For in-
stance, a prediction model for criminal recidivism was found to be
heavily biased against African-American people [100]. The second
concept relates to the presence of relatively autonomous agents,
such as robots, which execute the actions computed by a machine
learning model. These models sometimes find unexpected ways to
optimize their reward function (reward hacking) [101], even without
completing the objective or having other potential consequences
(side effects).

Model transparency

The issues above reflect the fact that we should not completely
trust trained models unless we can comprehend the ways they are
making decisions and predictions. This has attracted the interest of
researchers, domain experts and users to more explainable models
and strategies to explain black-box models, a category which includes
most deep learning techniques.

The variety of algorithms to fit machine learning models to data
presents a tradeoff between performance and explainability: usually,
a simpler, more explainable model is less performant than an opaque
model. As a consequence most simple models, such as decision
trees, rule-based learners and k-nearest neighbors, are considered
transparent, since they provide an interpretable behavior out of the
box.

When a model is not transparent enough, there are two main ways to
approach explainability: one can use different post-hoc explainability
approaches, or modify the model to facilitate our understanding of
its decision process. Some new models derived from deep feature
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learners are designed to improve transparency and be more self-
explanatory.

One way deep learning models can increase transparency is by
highlighting which input features are causing their predictions. For
example, attention-based models [102] have an embedded scoring
technique which highlights the zones in the input that are being taken
into account to make predictions. This works for image classification
and object detection [103] as well as for document processing [104].

A different proposal for transparent image classification is a convo-
lutional neural network-based classifier which identifies prototypes
in similar images [105], that is, it provides examples on images of
the same class that justify the prediction.

Explainability techniques

When an opaque model is used, there are still ways to improve our
understanding of its inner workings or its predictions. In many cases,
a post-hoc explainability technique may be applied. The different
methods that can render a model more interpretable are usually
categorized into two groups. They can be either model-agnostic,
if they work independently of the model used, or model-specific,
otherwise.

Some examples of model-agnostic approaches and tools are the
following:

▶ Local approximations. LIME [106] this is a method which lin-
early performs a local approximation of a classifier or regressor,
in a way which is interpretable. An AE-based variant of LIME
has been developed to improve its stability [107].

▶ FairML [108]. The FairML toolbox can find strong dependencies
between model outputs and the input features.

▶ Sensitivity analysis [109]. It is a computation based on the
derivative of the conditional probability of not predicting a
class given the input features. This defines a vector field where
each vector indicates the direction an instance needs to be
moved to, so as to be classified differently.

▶ Auditing. Trained models can be repeatedly tested against
different inputs in order to analyze how the outputs are affected.
These inputs, however, need to be provided according to some
criteria. As a way to compute direct and indirect influence of
each feature in the output of a model, there is a procedure
which obscures the effect of a variable in the data [110]. It works
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without retraining the model, and can assess the degree in
which a feature is relevant to a classifier. There are several
other approaches to analyzing direct influence of a feature in
the output of a model [111, 112].

▶ Counterfactuals [113–115]. This is an approach with a similar
objective to auditing but from a different perspective. Finding
a counterfactual consists in detecting the smallest possible
change in feature values that causes an alteration to the pre-
diction of the model. These serve as an explanation for the
“closest possible world” where the prediction would have been
different, without providing further insight into the decision
process.

There are several specific techniques for explaining the outputs of
deep learning models:

▶ Layer-wise relevance propagation [116]. This is a methodology
for visualization of pixel-wise contributions to predictions,
where classifiers are decomposed into several layers of compu-
tation, so the relevance of each pixel is found by propagating
relevance backwards through the network.

▶ Saliency map generation [117]. Saliency maps are heatmaps
where the most relevant features from the input are highlighted.
These are usually applied to convolutional neural networks
in order to obtain the image regions that cause the output for
each instance.

▶ DeepLIFT [118]. This is a technique for computing relevance for
each input feature to a neural network, by assigning contibution
scores to each neuron according to its activation given a specific
input.

▶ SHAP [119]. This tool provides several model-specific tech-
niques which find local explanations for different models based
on Shapley values from game theory. In particular, it includes
DeepExplainer and GradientExplainer, which apply to deep
learning models.

▶ Traceability [120]. This is a more theoretical concept from the
field of software development that could be applied to deep
neural models. It seeks to describe how each component of
a final inference model is related back to its training model,
the dataset, hyperparameters and all the way up to some high
level requirements on what task the model should carry out.
Being able to trace every item in the development of a deep
neural networks to a higher level cause could serve to ensure
that all choices such as hyperparameters and architecture are
well justified.
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Current challenges and influence in future work

As discussed in the previous section, most of the well-known explain-
ability techniques involve analysis of features in one way or another.
The contribution that AEs can provide in this field is, therefore,
substantial. This is due to the fact that AEs can transform a set of
highly dependent, correlated features in a different set of indepen-
dent, interpretable ones, by using adequate regularizations. In this
section, we comment on different ways to learn features that are
meaningful and fair, and on recent developments for also improving
the explainability of the feature extraction process itself.

Improving features: disentanglement and fairness

One way extracted features can improve their quality is by holding
an understandable meaning by themselves, e.g. a model could train
with face pictures and extract a feature for hair color, another one
for nose size, etc. These new features would be much more useful
than the original ones which represent individual pixels. This task is
usually known as feature disentanglement.

Some recent AE models whose objective is to disentangle features
are Total Correlation VAE [121], Wasserstein AE [122] and InfoGAN
[123]. All of these are generative models, so, as a result, extracted
features not only provide interpretable meaning to instances, but
can also be sampled in order to generate unseen examples in a way
that resembles the manipulation of existing instances: for example, a
model could generate a realistic face similar to an existing image but
changing blonde hair to black.

Another step forward in improving learned representations is forcing
these to become fair [124], which means that the extracted features
obfuscate information about membership to potentially discrimi-
nated groups, e.g. gender or ethnicity. Fairness usually applies only
in contexts where model predictions affect human lives, e.g. job appli-
cations, legal proceedings, etc. A statistic can be defined to measure
the discrimination of a classifier with respect to a binary variable.
The objective is then to optimize a tradeoff between classification
accuracy and discrimination [125].

There already exist AE-based models for learning fair representa-
tions. In [126], an adversarial AE-based classifier is proposed where
the adversary attempts to predict the sensitive (potentially discrim-
inatory) attributes from the encoding, but its prediction ability is
minimized by the AE and classifier. The objective function can be
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adjusted according to the desired type of fairness. Another model
in [127] consists in a variational AE which disentangles sensitive
information from the non-sensitive latent features and is flexible in
the sense that potentially sensitive information can be retained or
removed from the encoding during inference.

Explainable feature learning

The described approaches provide the possibility of explaining the
end predictions of other models, as well as rendering them fairer.
However, as has been extensely discussed in this work, the extracted
features can be the actual core of a solution to many problems. As
a consequence, it would be necessary as well to develop strategies
which facilitate the explainability of the transformations an AE can
perform in order to learn features. This is an area only explored very
recently, but there are already some developments.

Variational AEs can be used to detect anomalies, similarly to the
denoising AE explained in Section 12. In addition, they enable
another, more explainable way of detecting anomalies: computing
the gradients of the reconstruction error with respect to the inputs
[128]. This allows to notice which input features are contributing to
the error, and to cluster anomalies according to this same criterion.

A different approach to improving the explainability of the embed-
ding consists in restricting the operations each neuron performs to
just logical AND/OR operators [129], which limits the origin of each
extracted feature to a relatively simple logical combination of the
input features, thus facilitating its interpretability.

Influence in future works

There is currently much to be researched in the area of explainable
AEs as well as AEs which help explain other models by extracting
better features. The current trends focus especially on generative
models such as variational AEs for these purposes, and will probably
continue to do so, even if some diversification is achieved as new
works appear.

The adaptability of AEs to many different problems, illustrated in
previous sections, together with the possibility of producing inter-
pretable and fair features, may lead to an increase in usage of these
models throughout all kinds of machine learning applications.
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In our future work, we intend to approach explainable feature
learning in the context of AEs, that is, find AE-based models that
extract features and at the same time provide an understandable
meaning to the mapping from the original features to the encoded
ones. Ideally, an explainable feature learner should not be restricted
to one end application, but could be used for many purposes, as
common AEs already can.

IV.6 Conclusions

Throughout this text, we have summarized the traditional alterna-
tives for learning representations, the origins and essential charac-
teristics of AEs, including how to introduce certain behaviors into
the coding layer.

Later, we have thoroughly examined several case studies of AE
applications in unstructured data as well as images and sequences:
data visualization, image denoising, semantic hashing, anomaly
detection and instance generation. Other applications have also
been briefly discussed: image superresolution, image compression,
transfer learning, human pose recovery and recommender systems.

An introduction to the state of the art in explainable AI and its
application to the field of AEs has been provided as well. AEs have
notoriously contributed to the areas of feature disentanglement and
fair representations, and there have been some recent developments
on explainable feature learning as well.

We can conclude that AEs are a versatile framework for solving a wide
variety of problems where a central task is to learn representations
of the data. They can adapt to a given problem in structure as well as
in the objective they optimize. This way, if the solution to a problem
can be modeled with a transformation of the feature space onto
another space, there will be many instances where the parameters of
the transformation can be learned by an AE.
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Abstract

Available data in machine learning applications is becoming increas-
ingly complex, due to higher dimensionality and difficult classes.
There exists a wide variety of approaches to measuring complexity
of labeled data, according to class overlap, separability or bound-
ary shapes, as well as group morphology. Many techniques can
transform the data in order to find better features, but few focus
on specifically reducing data complexity. Most data transformation
methods mainly treat the dimensionality aspect, leaving aside the
available information within class labels which can be useful when
classes are somehow complex.

This paper proposes an autoencoder-based approach to complexity
reduction, using class labels in order to inform the loss function about
the adequacy of the generated variables. This leads to three different
new feature learners, Scorer, Skaler and Slicer. They are based on
Fisher’s discriminant ratio, the Kullback-Leibler divergence and least-
squares support vector machines, respectively. They can be applied as
a preprocessing stage for a binary classification problem. A thorough
experimentation across a collection of 27 datasets and a range of
complexity and classification metrics shows that class-informed
autoencoders perform better than 4 other popular unsupervised
feature extraction techniques, especially when the final objective is
using the data for a classification task.
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V.1 Introduction

A classical obstacle in the field of data science is obtaining data of suf-
ficient quality in order to extract the desired knowledge. The process
of learning a model can be notably hindered by data presenting very
common traits such as noise [2], outliers [3], high dimensionality
[4] or complex class boundaries [5]. This results in long periods of
time spent cleaning and preprocessing data [6] before the actual data
mining step can even begin. Although data cleaning techniques can
be of good use in order to identify and filter out noise, outliers and
missing data, other aspects can be trickier to solve.

Many real world situations can be modeled as supervised classifica-
tion problems, those where each instance belongs to one of several
classes, and the objective is to learn from the observed data from
each class in order to automatically assign the corresponding class
labels to new, unobserved instances. Some examples of classification
problems are text categorization [7], spam filtering [8], object recog-
nition in images [9] and automatic interpretation of medical data
to facilitate diagnostics [10]. Many of these problems correspond
to the simplest case, binary classification, where there are only two
categories.

One of the type of issues that is very commonly overlooked in
classification problems is the complexity of data [5, 11]. Consider a
clean dataset with no presence of errors or abnormalities. There can
still be aspects related to the geometrical shapes and overlap among
classes which can hinder the performance of a learning technique.
For example, there could be no separability between classes, or even
regions of the feature space with a mix of instances from different
classes. In cases where separability is achievable, boundaries can
present complex shapes that can be difficult for a parameterized
model to fit. Figure V.1 illustrates some of these cases, more concretely,
one where the features do not allow to separate the classes, and
another where class boundaries are difficult to model due to there
being several small groups from one class, sometimes known as
small disjuncts [12], within a group of the other.

An additional hindrance that frequently occurs in data mining
scenarios is associated to the representation of instances, to the
features themselves [13]. These can be typically seen as observed
outcomes of underlying factors that cause them and, as a result, are
not always the ideal representation of the data. This can depend on
the objective task and the learning method to be used. For example, a
pixel-based representation for images can be ideal for a convolutional
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Figure V.1: Different situations relating to class complexity. The graph on the left shows separable classes, the middle one is
an example where classes are not separable and the one on the right shows separable classes with complex boundaries (small
disjuncts).
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neural network to perform classification, but may be difficult for a
lazy learning method to process.

When data have some kind of complexity, it can affect the perfor-
mance of machine learning methods and these are usually not able to
overcome the issue by themselves. Instead, a preprocessing step can
transform data aiming to find a better representation which makes it
easier to categorize points. Operating with features for this purpose
is a task known as feature extraction or feature learning. There exists
a wide variety of approaches to feature extraction [14], including
linear transformations, manifold learning and neural network-based
models. However, very few of them take class complexity into ac-
count and, as a result, extracting quality features with a specific
strategy to reduce this complexity is still an important challenge.

In particular, autoencoders (AEs) [15] are neural networks specifically
designed to extract features from the data. These are typically trained
to reconstruct the input at its output, feeding the data through several
layers which impose some kind of restriction or bottleneck in order
to find more appropriate representations along the way. AEs can also
be easily restricted or adapted in order to promote certain kinds of
transformations and encodings, for example, finding sparse variables
which only take high values for a small number of instances [16].

This work makes use of the well-known technique for regularizing
the behavior of an AE, applied in this case to achieve class complexity
reduction. Aiming to transform features onto a more useful space
with special attention to class complexity, three concrete models
that use different criteria are proposed. The bases for these are:
Fisher’s discriminant ratio, the Kullback-Leibler divergence (KLD)
and least-squares support vector machines (LSSVMs). The new
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models have been tested against well-established feature extraction
methods within a binary classification pipeline.

In summary, the main contributions of this paper are the following:

▶ New AE-based models able to learn from input features as well
as binary class labels, specifically the following three variants:

• Scorer, a model which enables separability among classes
by means of the Fisher’s discriminant ratio.

• Skaler, a model that receives feedback from the KLD and
can thus provide features where positive and negative
instances belong to very different distributions.

• Slicer, an extended AE using a LSSVM in order to simul-
taneously evaluate a simple linear classifier and assess
the adequacy of the new features for classification.

▶ A thorough experimentation across 27 cases and 11 evaluation
measures, focusing on different complexity rates and classifi-
cation performance, and against 4 other well-known feature
extraction methods.

▶ A comparison between the most interpretable complexity met-
rics and several evaluation metrics for classifiers, revealing
which of the complexity metrics are better predictors of classi-
fication performance.

As an important conclusion after the experimental analysis of the
newly proposed models, we must point out that they can be trained
to generate better features for the purposes of classification than
other popular feature extraction methods.

The rest of this paper is organized as follows. Section V.2 describes
the current state with respect to available complexity measures
and techniques to overcome complexity in data. Next, Section V.3
introduces our proposals and provides all the details about their inner
workings. Section V.4 explains the details of the experimentation
process, while Section V.5 discusses the results. Lastly, conclusions
and final comments are provided in Section V.6.

V.2 State of the art in complexity reduction

A dataset can present many different problems that may drive it to
be considered difficult or complex to classify. Initially, a possible
measure of complexity could be the error rate of the classifier itself.
However, the objective of this work is identifying difficult datasets
to treat them before learning a classifier. For this reason, we rely on
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other metrics which aim to characterize the complexity of supervised
problems.

Sources of difficulty

Ho and Basu [17] identify three possible sources of difficulty: (1) class
ambiguity, (2) boundary complexity and (3) sample sparsity and
feature space dimensionality. The first applies to the circumstances
where classes cannot be distinguished using the given features, either
because they provide insufficient knowledge about the problem
or because the classes are not well defined. The second source
refers to the situation where classes are interleaved or not easily
separable. In these cases, the complexity can be measured attending
to class overlap and class separability as well as geometry, topology
and density of manifolds. The last category covers issues with the
structure of the sample, whether it is complete enough and the
amount of variables the classifier needs to work with.

Complexity measures

In order to quantitatively assess how complex a dataset is, a wide
variety of complexity metrics have been proposed over the years
[5, 11]. The following sections briefly describe the most relevant
approaches to measure complexity, paying special attention to the
metrics that will be applied throughout the experimentation. Each
metric is abbreviated according to the original nomenclature in [5]
and [11].

Class overlap

Geometrical complexity in a dataset can be characterized in several
ways. One approach is to measure the overlap in feature values
among different classes. Each feature can be assessed as to how much
it contributes to distinguishing the classes. In this case, measures
usually focus on binary problems. The following measures follow
this approach:

Maximum Fisher’s discriminant ratio (F1) Fisher’s discriminant
ratio is a measure of class overlap, based on the simplest statistics for
a distribution, mean and standard deviation. Higher values of this
metric mean lower levels of overlap. The maximum over all features
is taken as a measure of the class separation in a dataset.
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Maximum feature efficiency (F3) Feature efficiency is calculated
as the proportion of examples that can be unambiguously classified
by a simple threshold, that is, they lie outside an overlapping region.
This rate gives an idea of the usefulness of a given feature when
attempting to classify every instance in the dataset. The maximum
of this ratio across all features is known as F3.

Class separability and nonlinearity

Instead of measuring the importance of the overlapping regions in
features, an alternative approach is to look for complexity of the
boundary separating classes, that is, its ability to actually isolate both
classes and its nonlinearity. Several measures have been developed
regarding the shape and separation degree of classes.

Linear classifier error (L2) Linear separability of classes is the core
of a branch of classification methods, support vector machines (SVM)
[18]. In its simplest form, a SVM is a binary classifier that attempts to
find the hyperplane which best separates both classes. Its training
error can be used as a metric to characterize the separability (or lack
thereof) of a dataset.

Linear classifier nonlinearity (L3) Describing the shape of the
regions occupied by each class can also contribute to learning about
the complexity of the data. In particular, this measure tackles nonlin-
earity, i.e. the smoothness of the decision boundary of a classifier,
which can be detected by interpolating pairs of points of the same
class to extract a test set and computing the classification error for
this new set.

Neighborhoods and morphology

The previous traditional measures for data complexity come from a
statistical or geometrical point of view. Other metrics look at how
instances are located around each other, so they study local behavior
instead of global properties.
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1-NN classifier error (N3) Similarly to the L1-L3 measures, which
make use of a simple classifier in order to measure complexity, this
metric performs a leave-one-out validation of a nearest neighbor
classifier, that is, it checks the class of every instance according to the
nearest one, and measures complexity as the error rate obtained.

Recently, some new metrics have been proposed that attempt to
describe data complexity from the perspective of data morphology
[19]. These are based on the Pure Class Cover Catch Digraph (P-
CCCD) classification method [20].

P-CCCD creates a collection of balls that cover the feature space so
that each ball only contains points from the same class. The process
consists in choosing a ball so that it is centered in a point of the target
class and is the largest possible ball that does not any point of the
other class. This is repeated until all points of that class are in at least
one ball, producing a cover which is not necessarily optimal but is a
good approximation.

Morphology-based complexity metrics are inspired by this algorithm
in the sense that they look for a ball cover of all points where balls only
contain points from one class, and then perform some computations
according to the number of balls created. The main metrics are as
follows:

Total number of balls (ONBtot) This measure counts the total
number of balls required to produce the cover. If 𝑏+ balls are needed
to cover all positive instances and 𝑏− are necessary for the negative
points, it is calculated as

ONBtot =
𝑏+ + 𝑏−
𝑛

. (V.1)

Average number of balls (ONBavg) It averages the amount of balls
used to cover the points of each class. In a binary classification
environment, the definition would just be the sum of the balls-to-
points ratios, divided by 2:

ONBtot =
𝑏+
𝑛+ + 𝑏−

𝑛−

2
. (V.2)

These metrics can turn into a very general way of describing the
geometrical complexity of the classes, since the shape of the balls
depends on the distance chosen (e.g. Euclidean, Manhattan or the
maximum distance). The mechanism for covering the feature space
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attempts to use as few balls as possible to cover all points. If the
dataset can be covered by a few large balls, then its complexity will
be low, but if many small balls are needed, it means that many little
clusters of different classes are near each other, and the complexity
is thus high. Both ONBtot and ONBavg are, as a result, higher the
more complex the data is. The difference between them is that
ONBavg gives the same weight to all classes, while ONBtot does not
distinguish classes but gives the same weight to all instances.

Feature space dimensionality

One of the main issues that occur in many datasets and has been
tackled from many perspectives is dimensionality. Dimensionality
refers to the number of variables where each instance takes values.
High dimensionality has long been considered a problem for clas-
sification algorithms, known as curse of dimensionality [21]. It is
not directly related to the way classes interact with each other, but a
high number of features can hinder the performance of a classifier
with a dataset that is otherwise not considered complex, due to the
fact that most distance metrics lose meaning when measuring across
many variables.

Dimension can be measured in absolute terms, but the complexity
that derives from it is also related to the number of instances in the
dataset. Two problems with the same number of features are not
equally complex if the first one has 10 times more instances than the
other. As a result, an instances-to-features rate (T2) can be considered
a complexity metric that can give a better account of this relation.

Other models for complexity

When trying to reduce the complexity present in a dataset, one
can take complexity measures into account for evaluation purposes,
and use other ways of modeling complexity when training and
performing data transformations. For instance, considering that
each class presents different distributions across each variable, some
similarity or dissimilarity metrics for distributions could be used.

The Kullback-Leibler divergence is a well-known measure of how
a distribution differs from another one, it is asymmetric as it usu-
ally compares a distribution coming from data with a distribution
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representing a model or theory. If these are defined on a discrete
probability space X, then the divergence is formulated as

𝐷KL(𝑝∥𝑞) =
∑
𝑥∈X

𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥) . (V.3)

This quantity could provide an intuition on how two distributions
are overlapping or separated. It is higher the more different the
distributions are. One way to retrieve a symmetric value out of it
is to add the Kullback-Leibler divergence of the distributions in
reverse order: 𝐷KL(𝑝∥𝑞) + 𝐷KL(𝑞∥𝑝). For both measures, the chosen
distribution when applying them to class separability could be a
Bernoulli distribution for each feature in the encoding, so that their
values are considered either high or low. If we model all features
at the same time, a categorical distribution could be employed.
Assuming a binary classification problem, we could measure the
dissimilarity of the distribution corresponding to positive instances
against the distribution of negative instances, which would provide
a sense on how easy it is to differentiate them.

Reducing complexity in datasets

There are several approaches to complexity reduction in datasets.
This section provides a general overview of the different aspects that
can be treated and techniques for doing so.

Dimensionality of data has been one of the most diversely tackled
issues. A multitude of methods exist in the literature, ranging from
simple feature selection to nonlinear feature learning. A thorough
review of all these can be found in [6], but we enumerate and describe
the main ones below.

However, there are other emerging methods that may be able to
modify other aspects of the data and reduce complexity along the
way. Some of those are distance metric learning methods.

Feature selection

Assuming that not every variable has the same relevance for the
purposes of classification, an initial approach to dimensionality
reduction can be to simply discard some of them, retaining only
the ones that help the classifier the most. This process is known as
feature selection [6]. Of course, there exist a plethora of criteria that
can apply for this purpose.
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Filters This variety of techniques is mostly founded on statistical
and information theory measures, such as the joint mutual infor-
mation, the conditional mutual information, the Kullback-Leibler
divergence or minimum-reduncancy-maximum-relevance. The ob-
jective is to quantify the utility of each variable and keep only the
most useful ones. In fact, some approaches take class separability
into account as well [22, 23].

Wrappers Another way of looking at feature selection is shaping it
as an optimization problem, finding an adequate fitness function,
typically the performance of a classifier, and making use of one
of the many existing metaheuristics available, for instance, genetic
algorithms, simulated annealing or particle swarm optimization, to
name a few.

Embedded methods Some classifiers have built-in feature selection,
so that they only look at the information provided by the most
relevant variables. These are usually decision trees like C4.5 [24].

Linear feature extraction

Another way of reducing the number of variables is to attempt to
summarize most of the information of the original variables in a
smaller set of new variables, which emerge as linear transformations
of the original ones.

Principal component analysis (PCA) [25, 26] PCA is a well-studied
technique that solves the problem of obtaining features which retain
the maximum possible variance while being uncorrelated to each
other. It also allows to recover the original data from the projected
points while losing the minimum amount of information as measured
by the mean squared error.

Linear discriminant analysis (LDA) [27] This is a supervised
method able to extract linear combinations of features which achieve
good class separation. Under assumptions of normality, indepen-
dence and homoscedascity, it can project the data onto a space
consisting of new coordinates that best discriminate the classes. Its
main drawback is that the number of resulting variables is completely
determined by the number of classes. More specifically, for a problem
with 𝑐 classes, LDA will output a space of 𝑐 − 1 linear combinations
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of the original variables. There is a recent generalization of LDA
which claims to solve its stability issues and achieve better class
separation through a maximum margin criterion [28].

Factor analysis [29] This technique assumes, unlike PCA, that a
series of hidden factors are generating the observed data by means
of linear combinations. The number of underlying factors is lower
than the number of observed variables, and they are assumed to
have zero mean and unit covariance (i.e. the identity matrix).

Nonlinear feature extraction

The most advanced methods for dimensionality reduction base their
new variables on nonlinear transformations of the original ones.

A lot of these techniques can be grouped in a concept known as
manifold learning, since they attempt to find structure for a manifold
where most of the data lie, and thus transform each data point onto
its coordinates on that manifold.

Multidimensional scaling (MDS) [30] This is a classical method-
ology that has served as basis for several other algorithms as well.
Its objective is to compute new coordinates for data points while
preserving distances among them as faithfully as possible. Instead
of having points as inputs, it only receives the pairwise distances
themselves, and minimizes a loss function which helps the model
obtain coordinates for each point, creating a space where the given
distances are maintained.

Isomap [31] This method extends metric MDS in order to find
coordinates that describe the actual degrees of freedom of the data
while preserving distances among neighbors and geodesic distances
between the rest of points. Isomap constructs a neighborhood graph
where each edge is weighted according to the Euclidean distance
among vertices, then uses this to compute geodesic distances instead
of using straight lines. These new distances are potentially higher
than the Euclidean but help capture more information about the
manifold.
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Locally linear embedding (LLE) [32] The objective of LLE is similar
to that of the previous techniques, but with a different approach to
preserving the local structure. It finds a linear combination which de-
scribes each point from its neighbors. Once its coefficients have been
computed, LLE optimizes the coordinates for a lower-dimensional
space so that they fit the same expressions.

t-stochastic neighbor embedding (t-SNE) [33] This is a technique
specially oriented for visualization, so it finds specially attractive
low-dimensional projections of the data. It consists on assigning, for
each pair of points, the probability that one point would choose the
other as its nearest neighbor if neighbors are computed according to
Gaussian distributions centered on each point. t-SNE then defines a
low-dimensional mapping that tries to preserve these probability
scores.

Autoencoder networks (AE) [15] AEs are neural network models
which reconstruct the input at their output, using some kind of
bottleneck in between so as to learn useful information from the
data. We explain AEs in further detail in Section V.3.

Distance metric learning

Distance metric learning [34] is an area of machine learning dedicated
to learning distances from datasets. These distances are built to
better represent the similarities and differences among examples
than standard distances, such as the Euclidean distance.

In a supervised learning context, the problem of learning a distance
can be formulated as follows:

argmin
𝑑∈D

𝑙(𝑑, 𝑆, 𝐷), where (V.4)

𝑆 = {(𝑥𝑖 , 𝑥 𝑗) ∈ X× X : 𝑦𝑖 = 𝑦 𝑗} (V.5)
𝐷 = {(𝑥𝑖 , 𝑥 𝑗) ∈ X× X : 𝑦𝑖 ≠ 𝑦 𝑗} (V.6)

and 𝑙 is a loss function that determines the fitness of a distance to
describe the similarities and differences provided as sets 𝑆 and 𝐷.

Some of the dimensionality reduction methods mentioned above
can be also seen as distance metric learning techniques, but there
are more algorithms which can learn distances. Some of them are
addressed at improving the performance of k-nearest neighbors, and
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others are based on information theory. Among the most relevant
are: NCA [35], LMNN [36], NCMML [37] and NCMC [37].

Current limitations

Many of the complexity reduction methods explained above tackle
complexity only partially or from a limited perspective. In most
of the cases, tha main focus is reducing dimensionality. This can
help model data when good quality coordinates are found, but may
discard useful information present in the class labels.

Some of the available methods consider class separability when
selecting features [22, 23] but they do not generate new features,
and can capture only a partial view of the whole feature space as a
result.

In summary, there is an unexplored possibility of advanced feature
extraction techniques which perform nonlinear transformations of
variables in order to find spaces where classes are further away and
easier to identify.

V.3 Autoencoders for complexity reduction

The objective of this work is to develop strategies that address
data complexity in a more complete way, that is, working with
transformations of all available features and incorporating class
complexity measures to acquire information from the class labels.
The result is a collection of models that are based on AEs because they
are very versatile deep learning architectures, able to transform the
data in diverse ways according to their loss function. Our hypothesis
is that when the loss function takes data complexity into account,
then the AE will have more information to work with and will
generate better features than other feature extraction methods.

In order to provide an indication on data complexity to a loss function,
it is necessary to look for computationally simple ways of calculating
a penalty that points the training method in the right direction.
This problem can be approached from several possible perspectives,
including the integration of a complexity metric, a measure of
distribution dissimilarity or a linear separation method.

This section details the theoretical underpinings of our proposals:
Scorer, Skaler and Slicer. First, some basic notions of AEs help
establish a starting point for these new models. Next, the added
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Figure V.2: The essential structure of
an AE implemented as a fully con-
nected feed-forward neural network,
composed of an encoder 𝑓 and a
decoder 𝑔. The training loss of this
model is measured as the distance
𝑑 between the input 𝑥 and its recon-
struction 𝑥′ = (𝑔 ◦ 𝑓 )(𝑥).

penalties for Scorer and Skaler are explained. Lastly, the necessary
modifications and computations needed for Slicer are shown as
well.

Autoencoder fundamentals

A neural AE [15, 38] is generally a symmetrical neural network
trained to reconstruct the inputs at its output. The composition of
layers up to the middle one computes a new representation of the
input data where some traits may be induced: lower dimension,
sparsity, or robustness against noise, for example. The feature trans-
formation is learned by means of a training process that optimizes the
reconstruction error as well as, potentially, other penalties allowing
the introduction of those specific aspects.

A simple AE models the reconstruction problem as a deterministic
function given by the composition of an encoder 𝑓 and a decoder 𝑔.
When an instance is feeded to the model, the encoder transforms it
to a vector located within the encoding space, and the decoder maps
this vector to the original feature space.

Consider the diagram in Fig. V.2. During training, mini-batches of
samples are propagated through the network. The AE is evaluated
according to the average distance between original and reconstructed
samples. Its weights are iteratively modified in order to minimize
this distance. There are two typical dissimilarity metrics for this
purpose:

▶ Mean squared error: defined as the average of squared errors.
If 𝑥 and 𝑥′ are a training sample and its reconstruction, it is
expressed as:

L(𝑥, 𝑥′) = 1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥′𝑖)
2 (V.7)

▶ Cross entropy: this measure is effective when modeling data
where values lie in the [0, 1] interval, since it is usually im-
plemented as the cross entropy of two Bernoulli distributions.
The formulation is as follows:

L(𝑥, 𝑥′) = −
𝑛∑
𝑖=1

𝑥𝑖 log 𝑥′𝑖 + (1 − 𝑥𝑖) log(1 − 𝑥′𝑖) (V.8)

In general, any kind of measure that indicates the difference among
two data points of the same type can be used. For certain types of
structured data, such as images or sequences, specific reconstruction
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errors may also apply. For instance, a perceptual loss [39] can be
very fitting for image reconstruction, since it focuses more in the
appearance of the image instead of trying to accurately recover each
individual pixel, which can lead to softer and blurrier images.

Once one of these dissimilarity metrics is chosen, the loss function
of the AE can be defined:

𝐽(𝜃; 𝑆) =
∑

(𝑥,𝑦)∈𝑆
L(𝑥, (𝑔 ◦ 𝑓 )(𝑥)) , (V.9)

where 𝜃 holds the parameters of the network, and thus determines
𝑓 and 𝑔, and 𝑆 is a set of training instances.

Diverse kinds of regularizations can be applied to the loss function
with the objective of adjusting the behavior of the AE, such as sparsity,
contraction or variational inference. Each of these result in a slightly
different AE variant with its own applications. Although these and
several other regularizations help build better feature spaces, to the
best of our knowledge there is no AE variant focusing on enabling
class separability or reducing data complexity yet.

AEs are generally trained with common neural network optimizers,
such as stochastic gradient descent [40] or Adam [41]. They decide
how to update the parameters in an iterative process which computes
the gradient of the loss function via backpropagation [42].

Regularizing autoencoders with label information

As described above, a basic autoencoder is trained using a loss
function which evaluates the distance between the input feature
vector and its reconstruction through the network. It is clear, by its
definition, that instance labels are not used at all to compute the loss
function, nor does the AE receive this information as input. This has
its advantages and shortcomings. A benefit is that one may train AEs
using unlabeled data and obtain valuable knowledge as a result. This
allows for their use in several widespread applications [43], such
as anomaly detection, data denoising, synthetic instance generation
and semantic hashing.

One possible drawback, when applying AEs to classification prob-
lems, is that they will extract features that may or may not help
distinguish the classes, since they are not provided with the labels.
However, this is not applicable to all AE-based models, since some
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of them can take the class label into account when computing the en-
coded representation, either directly as an input layer to the network,
or indirectly, by informing the loss function.

A common way to modify the behavior of the training process
and improve the solutions is to add a penalty term Ω to the loss
function promoting certain aspects of the encoding or reconstruction
mappings. This penalty may be dependent on the weights of the
network or the resulting codes. It is added with a weight coefficient
𝜆 in order to adjust its importance with respect to the standard
reconstruction error:

𝐽 (𝜃; 𝑆) =
∑

(𝑥,𝑦)∈𝑆
L(𝑥, (𝑔 ◦ 𝑓 ) (𝑥)) + 𝜆Ω (𝜃; 𝑆) (V.10)

For instance, one well-known regularization consists in penalizing
high levels of simultaneous activations within the codes. This, usually
called a sparsity regularization [16], helps maintain a low number of
active neurons in the encoding for each sample.

In our case, the objective is that the resulting feature transformation
helps better separate different classes, so the loss function should
receive some kind of label information in order to be able to learn
from it. The procedure can thus be similar to a penalty modification,
but using the class label within the penalty term Ω.

There could be numerous ways of analyzing the relation of codes
and classes. For example, trying to optimize a complexity measure
or maximizing the difference among class distributions, as well as
wrapping a simple classifier so as to assess the quality of the features.
These are the main ideas behind our three proposals:

▶ Scorer, an AE model with a Fisher’s discriminant ratio-based
penalty. Its objectives may be collaborating or in opposition,
but it needs to find a balance between good instance recon-
structions and low class overlap.

▶ Skaler, an AE using the KLD to separate class distributions.
The encodings are modeled as a categorical distribution and
the model attempts to maximize the divergence among the
distribution of positive instances and that of negative instances.
This should draw them apart from each other.

▶ Slicer, an AE which internally trains a linear least-squares
support vector machine. The internal classifier need not be
perfect, but it helps the model analyze how easy it is to classify
the instances using the generated features. The objective, in
this case, is to maximize the linear separation of both classes.
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Along the rest of this section, each one of these AE-based models is
thoroughly described.

Scorer

The first of our approaches to complexity reduction is to directly
employ one of the complexity metrics as penalty, assuming that,
if an AE is able to optimize this metric for a given dataset, the
resulting representation will be less complex than the original. For
this purpose, Fisher’s discriminant ratio has been selected, as it is
simple enough to be computed on the fly during training. The result
is an AE which performs supervised class overlap reduction, or
Scorer for short.

In order to introduce a complexity penalty based on Fisher’s dis-
criminant ratio, we consider the average of the discriminant ratios
of each feature. This is different to the complexity measure com-
monly known as maximum Fisher’s discriminant ratio or F1, which
instead calculates the maximum of those ratios. In this case, we
chose the average because it should provide better gradients in order
to optimize the objective. This was corroborated by a preliminary
experimentation.

The following equations formally define the complexity penalty com-
puted within Scorer, 𝑁+ denoting the amount of positive examples
and 𝑁− the number of negative ones. First, we define the necessary
terms for the mean of each variable for positive instances and the
same for negative instances.

𝜇+
𝑗 =

1
𝑁+

∑
(𝑥,+1)∈𝑆

𝑓 (𝑥)𝑗 , 𝜇−
𝑗 =

1
𝑁−

∑
(𝑥,−1)∈𝑆

𝑓 (𝑥)𝑗 , (V.11)

Next comes the standard deviation for each variable and for each
class, calculated as the mean squared value minus the square of the
mean:

𝜎+
𝑗 =

[
1
𝑁+

∑
(𝑥,+1)∈𝑆

𝑓 (𝑥)2𝑗

]
− (𝜇+

𝑗 )
2 (V.12)

𝜎+
𝑗 =

[
1
𝑁−

∑
(𝑥,−1)∈𝑆

𝑓 (𝑥)2𝑗

]
− (𝜇−

𝑗 )
2 (V.13)

This allows to put together an expression for the average Fisher’s
discriminant ratio, which is introduced in the loss function in a way
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zx x'f g

Fisher(z, y)y
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Figure V.3: Schematic illustration of
the Scorer model. The average Fisher
discriminant ratio of the encoded
class distributions contributes to the
training loss.

zx x'f g

KLD(zy=+||zy=-)y

d(x, x')

Figure V.4: Schematic illustration of
the Skaler model. The KLD between
the positive and the negative-class
encodings contributes negatively to
the training loss.

that ensures its value to be between 0 and 1:

𝐹 =
1
𝑛 𝑓

𝑛 𝑓∑
𝑗=1

(𝜇+
𝑗
− 𝜇−

𝑗
)2

𝜎+
𝑗
+ 𝜎−

𝑗

, Ω(𝜃; 𝑆) = 1
1 + 𝐹 (V.14)

The penalty term, drawing inputs from the encoding layer and the
class label, is simply computed at the end of each training and added
to the loss function, multiplied by a weight hyperparameter 𝜆 so as
to balance it with the reconstruction objective. Figure V.3 extends the
basic AE diagram with these new components in order to illustrate
how Scorer differs from the basic model.

Skaler

The next step in inducing a class-separating behavior in an AE is to
use information theory-based measures. In this case, the AE is not
forced to directly optimize a complexity metric. Instead, it receives
information about the current relation among class distributions,
and is assessed according to the similarity of those.

Although cross entropy is the conventional measure for classification
loss, we refrain from using it as a penalty because the objective
is not to directly classify, thus concentrating all instances on one
of two points, but to provide a representation that better clusters
examples.

Skaler is a supervised feature extraction model with a KLD-based
penalty for class separation. As explained above, the KLD gives an
asymmetric view on how two distributions are different. In this case,
the objective is to maximize the difference among the distribution of
encodings belonging to the positive class and those belonging to the
negative class. A schematic view is provided in Figure V.4.

Both positive and negative encodings can be modeled as following
categorical distributions, if we assume that each feature in the
encoding can have a high (1) and a low (0) state and that the highest
feature is the one that matters. This is a simplification but it helps
build a KLD-based formulation that is easy to implement and able
to train successfully. Then, the sample space of each distribution
consists of events associated to each feature, indicating whether that
feature is the highest. If 𝑃+(𝑗) denotes the probability that the 𝑗-th
feature is highest for positive instances and 𝑃−(𝑗) does the same
for the negative class, the KLD-based penalty function would be as
follows:
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[44]: Suykens et al. (1999), “Least
squares support vector machine clas-
sifiers”

Ω(𝜃; 𝑆) = −
𝑑∑
𝑗=1

𝑃+(𝑗) log
𝑃+(𝑗)
𝑃−(𝑗)

(V.15)

Now, in order to compute valid probabilities for each case of the
categorical distribution out of the encoding generated by the AE,
we take the mean of each variable in a vector and perform the
softmax activation function, obtaining a vector of values summing 1,
thus representing a distribution. The 𝑗-th component of that vector
corresponds to the probability that the 𝑗-th feature is high for any
given data sample:

𝑃+(𝑗) = softmax

(
1
𝑁+

∑
(𝑥,+1)∈𝑆

𝑓 (𝑥)
)
𝑗

(V.16)

𝑃−(𝑗) = softmax

(
1
𝑁−

∑
(𝑥,−1)∈𝑆

𝑓 (𝑥)
)
𝑗

(V.17)

Some preliminary tests revealed that it is easy for this penalty to
force encodings onto a single class-dependent value for any inputs. It
was observed, however, that maximizing the entropy of the encoding
variables helped prevent this issue, so it is added as a negative term
to the penalty in the implementation.

Slicer

The third proposal of this work goes a bit further than the two
previous ones, since it incorporates not only a different penalty
function, but also additional learnable parameters.

This alternative regularization is inspired on least-squares support
vector machines (LSSVM) [44]. These models attempt to learn the
hyperplane which best separates both classes, but the difference
between them and traditional SVMs lies on the objective function.
For both models, the linear (non-kernelized) version of the classifier
optimizes parameters 𝑤 and 𝑏 of the hyperplane 𝑤𝑇𝑥 + 𝑏. However,
the functions that both models minimize are different. In the case
of the LSSVM, the parameters are fitted to optimize the following
expression:

1
2
∥𝑤∥2 + 𝛽

2
∑

(𝑥,𝑦)∈𝑆

(
1 − 𝑦

(
𝑤𝑇𝑥 + 𝑏

))2
(V.18)
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Figure V.5: Schematic illustration of
the Slicer model.

The idea behind our model is to find a representation which facilitates
the task of fitting a linear classifier. The resulting model is an AE
for supervised linear classifier error reduction, hereinafter called
Slicer.

In order for the model to compute the linear classifier objective
function, we add trainable weights 𝑤 and 𝑏 to the computation
graph of the neural network. These are used to get the output of a
linear SVM, allowing thus to train the SVM and use it as a penalty to
modify the behavior of the encoder at the same time:

Ω(𝜃; 𝑆) = 1
2
∥𝑤∥2 +

𝛽

2
∑

(𝑥,𝑦)∈𝑆

(
1 − 𝑦

(
𝑤𝑇 𝑓 (𝑥) + 𝑏

))2
, (V.19)

where 𝛽 is just a hyperparameter weighting the importance of the
LSSVM loss, and 𝑤 and 𝑏 are updated by the model after each epoch,
just like the rest of neural network weights. In this case, the value of
𝑦 is 1 for the positive class and −1 for the negative one.

Figure V.5 illustrates how the AE is modified using the LSSVM
objective function, taking the encoding 𝑧 = 𝑓 (𝑥) as input for the
LSSVM and using a prediction 𝑝 = 𝑤𝑇𝑧 + 𝑏 to calculate its loss.

The result is a model that simultaneously trains a very simple
classifier on the encoded data and uses its objective in order to find
better representations. Our assumption is that there will exist some
level of collaboration between both models and this will help the
new features become more practical for classifiers to use.

V.4 Experimental setup

Our proposals have been tested to verify their performance in reduc-
ing the complexity of data according to some measures, as well as in
generating feature spaces where binary classification is easier. This
section first goes through the materials for the experiments: data,
methods and metrics, and then provides details on the implementa-
tions of the newly proposed models.

The experiments that were performed in order to analyze whether
using class information in an AE provides an advantage include
a broad range of datasets as well as several well-established meth-
ods for comparison purposes. The following sections explain the
data, compared methods and evaluation metrics used along the
experimentation.
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Data

The methods have worked with a collection of 27 datasets from
several sources with varying dimensionalities. Thirteen of them
originally have binary classes, six derive from the individual labels
in a multilabel dataset, five are “grouped” binarizations where
several classes are taken as the positive class and the rest as the
negative one, and two originate from one-vs-all scenarios where only
one arbitrary class is chosen as the positive one.

The grouped binarizations have been chosen so as to present a
binary scenario that would make sense with each of the problems
posed by the datasets: distinguishing vowels from consonants (when
the original label was the letter), odd from even handwritten digits,
walking from staying movement signals and two high-level categories
of soil from images. One-vs-all schemes have not been performed
in these cases due to the high amount of classes and resulting
experiments.

The datasets are briefly described and referenced in the supplemen-
tary material.

Complexity reduction methods

In addition to our proposals Scorer, Skaler and Slicer, we have
selected four dimension reduction methods which can contribute to
reducing the complexity of these datasets: PCA, LLE, Isomap and
basic AE. PCA is used as the baseline for dimension reduction, LLE
and Isomap are selected due to their manifold learning purpose, and
the basic AE serves to analyze whether our proposals improve its
behavior. None of these has the capability of learning from the classes,
but they do address the dimensionality problem. The objective of our
experiments is, thus, to test whether class information can be useful
for an automatic feature learner to retrieve better quality attributes.
Please refer to Table V.1 and Section V.2 for a brief description of the
idea behind each technique and a longer explanation, respectively.

Method Description

PCA [26] Linear variance maximization
LLE [32] Neighborhood-based manifold learning
Isomap [31] MDS-based manifold learning
Basic AE [45] Neural network for data reconstruction
Skaler Proposed AE with Kullback-Leibler-based penalty
Scorer Proposed AE with discriminant ratio-based penalty
Slicer Proposed AE with LSSVM-based penalty

Table V.1: Brief description of each
method available in the experiments
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Evaluation metrics

In order to provide different perspectives on the performance of
all methods, a diverse set of evaluation metrics has been selected.
The objective is to be able to analyze the possible advantages and
shortcomings of each available method.

We have trained our proposals and the compared methods to reduce
the dimension of the datasets to the square root of the original
dimension. The feature transformation learned by each one has
been used to compute a list of complexity metrics for the resulting
projections. Afterwards, we have trained several simple classifiers in
order to assess the ease of classification with the generated features.

In summary, the metrics used for evaluation of each complexity
reduction method can be categorized into classifier-agnostic and
classifier-dependent.

Classifier-agnostic metrics are some of the complexity measures
discussed in Section V.2. They have been chosen essentially for their
popularity and easy interpretation. Morphology-based ONB metrics
have also been computed so as to verify their affinity with the actual
classification performance as well.

On the other hand, a partial objective of this experimentation is
to check whether the generation of new features can actually ease
classification tasks if aided by class information. The logical step is
thus to analyze the performance of several datasets with the resulting
variables.

▶ F-score. Derived from precision (the ratio of instances correctly
predicted as positive) and recall (the ratio of positive instances
correctly detected), it is essentially the harmonic mean of both:

F-score =
2 × Precision × Recall

Precision + Recall
(V.20)

▶ Area under the ROC curve (AUC). This metric is computed
as the area, out of 1, that lays under the receiver operating
characteristic curve, which denotes, as the prediction threshold
goes from 0 to 1, the ratio of true positives related to the ratio
of false positives.

▶ Cohen’s Kappa. It measures the level of agreement between
the predictor and the ground truth, that is, the extent to
which the coincidences differ from random chance (𝑝𝑐). The
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mathematical definition is:

𝜅 = 1 − 1 − Acc
1 − 𝑝𝑐

. (V.21)

These evaluation metrics have been chosen over other popular
ones such as accuracy or precision since they attempt to provide a
better overall picture of the performance without being affected by
imbalance. Some other metrics that are also considered common
complexity measures are not actually classifier-independent: linear
classifier error (L2), nonlinearity of linear classifier (L3) and 1NN
classifier error (N3). These were previously defined in Section V.2.

Table V.2 gathers all of these selected metrics with a short interpre-
tation of each one. In order to obtain robust values, they have been
computed over a 5-fold cross validation scheme.

Metric Meaning

A
gn

os
tic

F1 (Fisher) Class overlap according to mean and variance
F3 (efficiency) Feature ability to separate classes
ONB (total) Total number of balls in cover
ONB (average) Average number of balls in cover

D
ep

en
de

nt

L2 Linear classifier error
L3 Linear classifier nonlinearity
N3 1NN classifier error
F-score Tradeoff between precision and recall
AUC Area under the ROC curve
Kappa Agreement between prediction and truth

Table V.2: Brief description of each
evaluation metric used for the exper-
iments, classified according to their
dependency on a classifier

Parameters

The last details about the execution of the experiments are provided
in Table V.3, which shows all the values for the parameters involved
in the each of the different methods.

Parameter Value

Encoding dimension max
{
min

{√
𝑑, 𝑛10

}
, 2

}
Epochs 200
Number of hidden layers 3 (1 for < 100 variables)
Activation function (AEs except Skaler) ReLU
Activation function (Skaler) Sigmoid
Penalty weight - Scorer 0.01
Penalty weight - Skaler 0.1
Penalty weight - Slicer 1
Reconstruction error Cross entropy

Table V.3: Enumeration of param-
eters used throughout the experi-
ments.
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V.5 Experimental results

This section presents the outcomes of the experiments performed,
focusing on comparing the different methods, as well as drawing
conclusions from the obtained metrics and graphics.

Results

Experiments for the 27 datasets have been conducted in a 5-fold cross
validation scheme. A total of 16 metrics were computed for each case,
and the full results are available at the associated website*. Next,
we show and analyze aggregated results and the corresponding
statistical tests.

Table V.4 holds the average ranking that each dimensionality re-
duction method achieved for each metric throughout the dataset
collection. The winning method for each row is marked in underlined
bold text. The number of overall first positions in rankings is summed
up and shown in the last row of the table. The first observation that
can be extracted is that model Slicer turns out to be consistently
superior in most metrics, resulting in a vastly higher amount of won
cases than the rest.

Table V.4: Average ranking for each
method in each evaluated metric. A
horizontal line separates complex-
ity metrics from classifier evaluation
metrics. The best method is marked
with a star⋆. Those which are worse
with 𝑝 < 0.05 are marked with×, and
those which are worse with 𝑝 < 0.01
are marked with ⊗. The total num-
ber of first positions achieved by each
method is shown in the last row.

PCA LLE Isomap AE Skaler Scorer Slicer

F1 ⊗ 5.885 ⊗ 6.115 ⊗ 5.731 ⊗ 4.038 ⋆ 1.577 2.308 2.346
F3 ⊗ 4.250 ⊗ 5.231 ⊗ 4.846 ⊗ 5.654 2.788 3.000 ⋆ 2.231
N3 ⊗ 4.692 ⊗ 5.173 ⊗ 5.308 × 4.269 3.654 2.577 ⋆ 2.327
L2 ⋆ 2.712 × 4.519 3.981 ⊗ 5.654 × 4.442 3.846 2.846
L3 2.769 × 4.500 4.115 ⊗ 5.500 ⊗ 4.923 3.654 ⋆ 2.538
ONBtot ⊗ 4.481 ⊗ 6.115 ⊗ 4.519 ⊗ 4.481 3.442 3.019 ⋆ 1.942
ONBavg ⊗ 4.442 ⊗ 6.077 ⊗ 4.519 ⊗ 4.577 × 3.538 2.904 ⋆ 1.942

kN
N

F-score 3.096 ⊗ 6.923 ⊗ 4.904 4.115 3.519 3.231 ⋆ 2.212
AUC 3.288 ⊗ 7.000 ⊗ 4.750 × 4.038 3.500 3.250 ⋆ 2.173
Kappa 3.096 ⊗ 7.000 ⊗ 4.827 × 4.038 3.558 3.346 ⋆ 2.135

SV
M

F-score 3.788 ⊗ 6.846 ⊗ 4.673 3.538 3.538 2.923 ⋆ 2.692
AUC × 4.000 ⊗ 6.846 ⊗ 4.865 3.462 3.346 2.962 ⋆ 2.519
Kappa 3.904 ⊗ 6.846 ⊗ 4.827 3.346 3.577 2.962 ⋆ 2.538

M
LP

F-score ⊗ 4.077 ⊗ 6.769 ⊗ 3.962 ⊗ 4.731 2.596 ⊗ 3.865 ⋆ 2.000
AUC ⊗ 4.000 ⊗ 7.000 ⊗ 4.058 ⊗ 4.635 2.404 ⊗ 3.942 ⋆ 1.962
Kappa ⊗ 4.000 ⊗ 7.000 ⊗ 4.077 ⊗ 4.596 2.558 ⊗ 3.827 ⋆ 1.942

wins 62 10 17 19 78 64 188

Looking at the table into more detail, we can observe that the three
supervised AE-based methods overall reach better metrics than the
traditional feature extraction techniques, especially when analyzing
the resulting predictive performance of the different classifiers.

* https://ari-dasci.github.io/S-reducing-complexity/
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In order to calculate which differences are significant, the Friedman’s
Aligned Ranks test was performed with its corresponding post-hoc
test where the winning algorithm was chosen as the control for each
metric. Table V.4 organizes the results of these tests, indicating which
methods were significantly worse than the winner with two levels
of confidence (𝑝 < 0.05 and 𝑝 < 0.01). The tests allow to assess
whether the values found by the rankings can be considered enough
to state that two methods are performing differently. It is important
to notice, however, that each statistical test had information only
about a specific metric, and not the whole picture. As a result, the fact
that a test does not find significant differences among two methods
does not mean that they perform the same in general.

As a last summary, we have gathered all results and performed the
Friedman’s Aligned Ranks test in order to obtain potential global
differences among methods. Although values from different metrics
are mixed in these data, the test only considers rankings so it allows
to extract some intuitions about the overall performance and whether
different methods can be discerned from their evaluation metrics.
This test is visualized in Figure V.6, where critical distances are
annotated with a confidence level of 99% (𝑝 < 0.01).

2 3 4 5 6 7

Slicer

Scorer

Skaler

PCA

AE

Isomap

LLE

Figure V.6: Critical distance plot for
all results. Horizontal lines join meth-
ods where significant differences
were not detected.

The supplementary material for this paper also includes density
estimation plots which provide a visual account of the overall results
of each method for each metric.

Discussion

The previous results allow to notice some interesting details. One of
them is the fact that the model that performed best according to the
F1 metric, Skaler, is not the one that attempts to optimize that metric.
This suggests that, within a neural network model, the KLD-based
loss penalty is more useful for this purpose than the F1 metric itself.
It is also noteworthy that Skaler, having reached the best separability
metrics according to the F1 metric, ended up losing performance
to Slicer when evaluated by means of actual classifiers. This could
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mean that the F1 metric, despite being widely known and used, is
not the best estimator of classifier performance.

Looking further at the relation between the complexity metrics and
the classification metrics for each classifier, it is straightforward
to identify the complexity metrics that align best with classifier
performance. Those would be F3, N3, L3 and the morphology-
based metrics. However, the complexity metrics where rankings are
most similar to the classification rankings seem to be ONBtot and
ONBavg.

As to the comparison among complexity reduction methods, the
computed rankings, critical distance plots and joyplots reveal that
Slicer presents a clear advantage over the rest of methods in the
majority of metrics. The individual statistical tests show many sig-
nificant differences between Slicer and other methods, specifically
LLE and Isomap. Some differences are also found from Slicer to
PCA and AE, although not for every case. However, it is important
to notice that Slicer is consistently superior to every other method
across almost all metrics, something that these tests do not take into
account. A more global perspective is given by the critical distance
plot in Figure V.6, which does find significant superiority of Slicer
over the rest of methods.

In addition to Slicer taking the top place in classification tasks,
we can also see that the other supervised AEs tend to be superior
than the unsupervised methods in many cases, but the differences
are smaller. In fact, PCA is also competing with them when the
kNN classifier is employed for classification, which is interesting
considering the simplicity of the method. The standard AE, however,
does not achieve very good results in comparison to the improved
versions with class-informed penalties. This leads to deduce that
these types of regularizations are helping differentiate our proposals
from what is otherwise the exact same neural network architecture.
This idea is corroborated by the overall number of wins in Table V.4,
where both Skaler and Scorer achieve a higher number of wins
than the rest except Slicer. Furthermore, the critical distance plot
in Figure V.6 shows a significant difference from Scorer and Skaler
to the classical feature extraction techniques, without being able to
discard whether they perform equally.

In summary, the experimentation has shown that defining a class-
based penalty in an otherwise unsupervised learning method such
as an AE does help generate more useful features when the objective
is training classifiers. Although the level of benefit will depend on
the classifier used, any one of them will have some improvement in
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[46]: Kingma et al. (2014), “Semi-
supervised learning with deep gen-
erative models”

its performance. Of all the proposed approaches, the one that seems
to retain the most information about classes within the encoded
features is Slicer, which simultaneously learns the encoding and a
linear classifier for the encoded variables.

V.6 Final comments

This work has introduced the concept of class complexity onto AEs
that learn from class labels. If dimension reduction helps classifiers by
providing more compact versions of the data, complexity reduction
goes further by also improving the shape and distribution of the
different classes. This concept is realized in 3 specific models with
distinct behavior, Scorer, Skaler and Slicer.

Similarly to other preprocessing methods, these intend to ease a
later classification task. In this case, only binary targets have been
supported, since most of the complexity metrics were initially defined
for binary problems. It would be possible to extend the proposed
framework to multiclass or even multi-label datasets, although
the penalty functions as well as the implementations would need
notable modifications. A similar approach could also be followed
for regression problems, where the target variable could help model
the embedding space.

An additional option that may be explored is the application of a
combination of penalties, since they are not necessarily exclusive,
including improvements on basic AEs such as variational AEs. Some
preliminary tests suggested that combining Slicer and Scorer may
provide a slight improvement in classification performance, but
it would need meticulous optimization of the selected penalties
and their weights in order to provide promising results. Further
steps would include introducing other complexity measures into
the penalty function, so as to tackle other aspects of data complexity,
as well as learning from just a small number of labels in a semi-
supervised scenario [46].

The experimentation developed to support the proposals has served
not only to highlight the potential of Slicer as a better alternative for
feature extraction, but also to notice which complexity measures are
better predictors of classifier performance. In particular, morphology-
based metrics like ONBtot and ONBavg seemed to be more aligned
with classifiers.
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This chapter aims to summarize the outcomes of this thesis, highlight
the most relevant achievements and outline some lines of work that
will be pursued next.

5.1 Summary of work

The candidate has been working under a competitive government
contract for university professor training with the objective of com-
pleting this thesis. Additionally, the doctoral program at University
of Granada includes a comprehensive range of lectures and courses
which provide formative resources for doctoral candidates. In con-
sequence, the work throughout this period can be categorized into
three parts: research, training and teaching.

Research activity

The research developed by the candidate has been already mostly
discussed in Chapter 4. The outputs have been multiple and have
covered all necessary areas from the study of the state of the art, to
developing a new solution to an existing problem and applying it to
a specific case.

In summary, during the course of the pre-doctoral stage, the can-
didate has authored 11 peer-reviewed journal articles, 10 of them
being in JCR journals and 8 of those in Q1 within the corresponding
knowledge areas. Additionally, the candidate has attended three
national AI-focused conferences and two international ones, and has
presented works on all of them.

Most of the developed software to perform experimentations has
been made available in the popular code repository GitHub for
its use to replicate and extend them. Additionally, some of these
packages conveniently allow users to apply the models to other
datasets, more specifically, Ruta and the autoencoders for complexity
reduction including the convolutional version of Slicer. The most
relevant source code pieces are described below:



222 5 Conclusions

[1]: Charte et al. (2021), “Slicer: Fea-
ture Learning for Class Separability
with Least-Squares Support Vector
Machine Loss and COVID-19 Chest
X-Ray Case Study”

▶ Ruta, software for unsupervised deep architectures (associ-
ated to Article II). Homepage: ruta.software. Source code:
github.com/fdavidcl/ruta.

▶ Autoencoder case studies (associated to Article IV). Home-
page/source code: github.com/fdavidcl/ae-case-studies.

▶ Reducing complexity (associated to Article V). Homepage:
ari-dasci.github.io/S-reducing-complexity. Source code:
github.com/ari-dasci/S-reducing-complexity.

▶ Convolutional Slicer (associated to [1]). Homepage/source
code: github.com/fdavidcl/slicer-conv.

Formative activity

The different organisms of the University of Granada offer a wide
variety of courses, workshops and seminars which help doctoral
students complete their training and augment their skills. The candi-
date has leveraged this as much as time has allowed, having attended
to the events detailed in Table 5.1.

Table 5.1: Relation of courses and seminars the candidate has attended.

Year Title Speaker(s) Organization

2018 Iniciación a la docencia universitaria
para contratados/as predoctorales
FPU y FPI

multiple UGR

2019 Open Access, Data Management y
Data Protection

Pilar Rico,
María José Ariza

OPI-UGR, FECYT,
Biblioteca UGR

2019 Workshop de Inteligencia Artificial
(Microsoft Azure)

Eduardo Matallanas Microsoft/Plain Con-
cepts

2020 Inverse Problems in Image Processing Mehran Ebrahimi CITIC-UGR
2020 ¿Cómo afrontar con éxito una es-

tancia de investigación?
Nicolás Robinson Vicerrectorado de in-

vestigación
2021 Taller virtual de iniciación a la divul-

gación
Carlos Centeno,
Susana Escudero

DaSCI

2022 Taller de formación Google Cloud
(NLP)

Javier Martínez Google

2020-22 DaSCI Online Seminars multiple DaSCI

Teaching activity

The candidate has fulfilled the teaching objectives marked by the
FPU regulations: between 3 and 6 ECTS credits a year, totaling at
most 18 ECTS credits. More specifically, the amount of credits has
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been maxed out, achieving the total of 18 credits taught across 4
years.

Taught subjects have belonged to the Computer Science department
and to two different disciplines: data structures and models of
computation. Table 5.2 details the subjects, groups and credits
taught each year.

Year Degree Subject Groups ECTS

2019 GII Estructuras de datos 1 1.5
2019 GIM Estructuras de datos 1 1.5
2019 GII Modelos de computación 1 3.0
2020 GII Estructuras de datos 2 3.0
2020 GII Modelos de computación 1 3.0
2021 GII Modelos de computación 2 6.0

Table 5.2: Breakdown of the subjects
where the candidate taught practi-
cal lectures during the doctoral pe-
riod, detailing the number of groups
and the total of ECTS credits. Ab-
breviations: Grado en Ingeniería In-
formática (GII), Doble Grado en In-
geniería Informática y Matemáticas
(GIM).

In addition to the mandatory classes, during the course of the
thesis, a textbook on machine learning and data science has been
published for use as training material [2], as well as a 5-video
course on linear algebra and dimensionality reduction, including
autoencoder networks. The latter, part of a larger machine learn-
ing course titled Math-ML, has been created in collaboration with
the Andalusian Research Institute in Data Science and Compu-
tational Intelligence (DaSCI). The video playlist can be accessed
at youtube.com/playlist?list=PL88MWrW4s4nf-Bc3hccxt3Att8TSS-
LBn.

Collaboration with public and private entities

The doctoral period also opened opportunities to participate in
collaborations established between the research group and other
institutions and companies. The following is a list of these:

▶ Our research group has obtained several state-funded projects
which involve deep learning as one of their main lines of
work. Their funding allowed the group to build the necessary
infrastructure to quickly develop and test models with large
amounts of data.

▶ The candidate has collaborated with the Repsol statistics de-
partment in optimization of refinery processes. No research
outputs are available due to industrial secrecy requirements.

▶ The candidate has participated in a two-year collaboration
with the metallurgic company ArcelorMittal, on the topic of
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semantic segmentation of metallographic iamges with encoder-
decoder deep neural networks. A result of this project was the
article [3] co-written by the UGR and ArcelorMittal teams.

▶ A collaboration was also established with the Hospital Uni-
versitario San Cecilio in Granada, during which the candidate
looked into capsule networks and convolutional networks at-
tempting to solve the problem of detecting the presence of
COVID-19-induced lung affection. The results of this study
were published in [4].

5.2 Achieved objectives

This section explains how the different objectives posed in Section 1.4
have been tackled and completed.

Didactic resources about autoencoders

Our first objective was tied to the inexistence of a modern, exhaustive
and accessible survey on the main tool, the autoencoder. The result
was an extensive article (reproduced as Article I) that explained every
fundamental aspect about these models, as well as provided enough
detail about the main variants to be able to select an appropriate one
for any given purpose.

One key contribution of this work was Section section I.6, which
attempts to provide advice on which options to choose depending
on the problem at hand. This article has achieved more than 100
citations according to Web of Science and more than 200 in Google
Scholar, confirming that there was a need for this kind of resource
on autoencoders in the research community.

Easy-to-use autoencoder implementations

The main software-related outcome of this thesis has been the R
package Ruta (see Article II), a library which includes the most rele-
vant autoencoder variants and provides easy-to-use functionalities
for beginners, as well as more flexible and detailed options for more
experienced users. This software is published at CRAN, a software
repository for the R language with strict quality controls.

The Ruta package has totaled more than 15000 downloads just on the
official RStudio CRAN mirror, averaging more than 10 downloads
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per day since its launch. Figure 5.1 shows daily downloads of the
library according to the RStudio CRAN logs.

Figure 5.1: Per-day downloads of the Ruta package from the RStudio CRAN mirror.

Exploration of supervised problems

The importance of this work, materialized in Article III, resides in the
fact that it helps connect all the different problem structures that can
be encountered in supervised learning, from the simplest to the more
general ones. More concretely, Figure III.4 visually explains how
each problem relates to another by means of generalizations. This
can help scientists and practitioners tackle new problem structures
by means of known techniques from other problems.

Development and application of new autoencoder models

The novel contribution developed to satify this objective comprised
three new penalty functions that proved to alter the behavior of an
autoencoder in a way that was beneficial to undertake a posterior
classification task.

The extensive experimentation showed that, out of the three methods
considered, the LSSVM-inspired loss worked best and provided
significant improvement in classification performance with respect
to other feature learners.

When this model in particular was applied to the image classification
problem given by the COVIDGR dataset, results revealed a promising
line of work, as several of the selected classifiers improved their
performance when learning from the features extracted by the
proposed model with respect to the original features.
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5.3 Future lines of work

The developed work has shown to be very promising and opens
several possible routes to continue researching.

Promoting other behavior in learned representations

As was learned out of the study of autoencoder variants in Article I
and the new autoencoder models from Article V, these models are
flexible enough to be able to accept very diverse penalty functions
which in turn influence the learned transformations in some way.
Relevant uses of this property have been to learn noise-resilient rep-
resentations, create probability distributions from which to sample
new data, and separate points from different classes.

Leveraging this advantage of autoencoders and taking into account
the diversity of supervised problems analyzed in Article III, an
interesting path of research would be to conceptualize and implement
new penalties which incorporate knowledge about the structure of
those problems and allow this way to perform feature preprocessing
on those tasks, even potentially transformations from one task type
to another. For example, one specifically designed autoencoder could
merge features from multi-view input samples in order to output
just one feature vector, representative of the whole instance. This
would effectively reduce multi-view problems to single-view ones.

Label separability in multilabel data

The early work of the candidate, although not fundamental for this
thesis, revolved around learning from multilabel data. The previous
experience in this specific area would help translate the newly
developed solutions in Article V from the binary classification scheme
to multilabel clasification, as this can be seen as a generalization of
the more traditional binary case.

Approaching label separability, however, is not as straightforward
as class separability in binary or multiclass problems, since several
labels can co-occur in the same instance. This means that separability
is no longer easy to measure: one could compute per-label data
complexity measures but that would not give a complete account of
how close instances with similar labelsets are. Similarly, for a model
to be able to project instances to a feature space better suited for
classification, it has to take all labels into account at the same time
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and produce variables that separate not only individual labels but
relevant labelsets.

Multilabel learning being typically a harder problem than multiclass
classification, there is a need for better descriptive and preprocessing
tools, so a set of complexity measures and new methods for reducing
complexity in datasets of this kind would be a notable advancement.
Some preliminary work is currently being done by the candidate
with this purpose in mind.

Synthetic instance generation for label resampling

Multilabel classification problems pose an interesting obstacle when
resampling instances in order to address imbalanced labels: replicat-
ing instances with minority labels or generating similar ones usually
also implies increasing the amount of instances with majority labels,
since they can co-occur [5].

A novel solution to this issue would be to train generative autoen-
coders so as to learn a probability distribution characterized by the
dataset labels. This would constitute a mechanism for creating new
synthetic instances with only minority labels. Furthermore, instances
generated by an autoencoder would fit better within the distribution
of the original dataset than those built by pure interpolation of pairs
of instances [6], like in SMOTE-based approaches.
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