Análisis Funcional Avanzado

Juan Francisco Mena Jurado

Departamento de Análisis Matemático Universidad de Granada

$$S_X = \{x \in X : ||x|| = 1\}$$

$$S_X = \{x \in X : ||x|| = 1\}$$

$$B_X = \{x \in X : ||x|| \le 1\}$$

$$S_X = \{x \in X : ||x|| = 1\}$$

$$B_X = \{x \in X : ||x|| \le 1\}$$

$$L(X, Y) = \{T : X \rightarrow Y : T \text{ lineal y continua}\}\$$

$$S_X = \{x \in X : ||x|| = 1\}$$

$$B_X = \{x \in X : ||x|| \le 1\}$$

$$L(X, Y) = \{T : X \to Y : T \text{ lineal y continua}\}$$

$$X^* = L(X, \mathbb{K})$$

Sea *X* un espacio normado. Las siguientes afirmaciones son equivalentes:

- i) B_X es compacto
- ii) X es de dimensión finita.

Sea X un conjunto no vacío, $\{(X_i, \mathcal{T}_i) : i \in I\}$ una familia de espacios topológicos y $\{f_i : i \in I\}$ una familia de aplicaciones de X en X_i .

Sea X un conjunto no vacío, $\{(X_i, \mathcal{T}_i) : i \in I\}$ una familia de espacios topológicos y $\{f_i : i \in I\}$ una familia de aplicaciones de X en X_i . Entonces, existe una topología \mathcal{T} en X que verifica que, para cada $i \in I$, f_i es una aplicación continua de (X, \mathcal{T}) en (X_i, \mathcal{T}_i) y que si \mathcal{T}' es otra topología en X con la anterior propiedad, entonces $\mathcal{T} \subseteq \mathcal{T}'$.

Sea X un conjunto no vacío, $\{(X_i, \mathcal{T}_i): i \in I\}$ una familia de espacios topológicos y $\{f_i: i \in I\}$ una familia de aplicaciones de X en X_i . Entonces, existe una topología \mathcal{T} en X que verifica que, para cada $i \in I$, f_i es una aplicación continua de (X, \mathcal{T}) en (X_i, \mathcal{T}_i) y que si \mathcal{T}' es otra topología en X con la anterior propiedad, entonces $\mathcal{T} \subseteq \mathcal{T}'$. La topología \mathcal{T} es evidentemente única y se le llama la **topología inicial** en X para la familia $\{f_i: i \in I\}$.

Sea X un conjunto no vacío, $\{(X_i, \mathcal{T}_i): i \in I\}$ una familia de espacios topológicos y $\{f_i: i \in I\}$ una familia de aplicaciones de X en X_i . Entonces, existe una topología \mathcal{T} en X que verifica que, para cada $i \in I$, f_i es una aplicación continua de (X, \mathcal{T}) en (X_i, \mathcal{T}_i) y que si \mathcal{T}' es otra topología en X con la anterior propiedad, entonces $\mathcal{T} \subseteq \mathcal{T}'$. La topología \mathcal{T} es evidentemente única y se le llama la **topología inicial** en X para la familia $\{f_i: i \in I\}$. Es fácil ver que

$$\mathcal{B} = \left\{ \bigcap_{i \in J} f_i^{-1}(G_i) : J \subseteq I, \ J \text{ finito, } G_i \in \mathcal{T}_i \ \forall i \in J \right\}$$

es una base para \mathcal{T} .

Ejemplos

 Si (X, T) es un espacio topológico y A es un subconjunto de X, entonces la topología inicial en A para la aplicación inclusión de A en X coincide con la topología inducida en A por T.

Ejemplos

- Si (X, T) es un espacio topológico y A es un subconjunto de X, entonces la topología inicial en A para la aplicación inclusión de A en X coincide con la topología inducida en A por T.
- 2) Si X es un conjunto y $\{\mathcal{T}_i: i \in I\}$ es una familia de topologías en X, y, para cada $i \in I$, se considera $f_i = 1_X: X \to (X, \mathcal{T}_i)$, la topología inicial en X para la familia $\{f_i: i \in I\}$ es la mínima topología en X que contiene a \mathcal{T}_i para todo $i \in I$, por lo que se le llama la **topología supremo** de las \mathcal{T}_i y se nota $\sup_{i \in I} \mathcal{T}_i$.

3) Este es, sin duda, el ejemplo más importante. Sea $\{(X_i, \mathcal{T}_i)\}_{i \in I}$ una familia de espacios topológicos y $X = \prod_{i \in I} X_i$, el producto cartesiano de los X_i . Si, para cada $i \in I$, π_i denota la proyección canónica de X sobre X_i , a la topología inicial en X para la familia $\{\pi_i : i \in I\}$ se le llama la **topología producto**. Se puede comprobar fácilmente que, cuando en X se considera la topología producto, π_i es una aplicación abierta para cada $i \in I$.

Recogemos a continuación algunas propiedades de las topologías iniciales.

Recogemos a continuación algunas propiedades de las topologías iniciales.

Proposición

Sea X un conjunto no vacío, $\{(X_i, \mathcal{T}_i) : i \in I\}$ una familia de espacios topológicos y \mathcal{T} la topología inicial en X para una familia $\{f_i : i \in I\}$ de aplicaciones de X en X_i . Se verifica:

Recogemos a continuación algunas propiedades de las topologías iniciales.

Proposición

Sea X un conjunto no vacío, $\{(X_i, \mathcal{T}_i) : i \in I\}$ una familia de espacios topológicos y \mathcal{T} la topología inicial en X para una familia $\{f_i : i \in I\}$ de aplicaciones de X en X_i . Se verifica:

1) Sea $x \in X$, si, para cada $i \in I$, \mathcal{B}_i es una base de entornos de $f_i(x)$ en \mathcal{T}_i , la familia

$$\mathcal{B} = \{ \bigcap_{i \in F} f_i^{-1}(B_i) : F \subseteq I, F \text{ finito, } B_i \in \mathcal{B}_i \ \forall i \in F \}$$

es una base de entornos de x para \mathcal{T} .

- 2) \mathcal{T} es la única topología en X que cumple la siguiente propiedad:
 - Para cualquier espacio topológico Y y para cualquier aplicación f de Y en (X, \mathcal{T}) se tiene que f es continua si, y sólo si, $f_i \circ f$ es continua para cada $i \in I$.

- 2) T es la única topología en X que cumple la siguiente propiedad: Para cualquier espacio topológico Y y para cualquier aplicación f de Y en (X, T) se tiene que f es continua si, y sólo si, f_i ∘ f es continua para cada i ∈ I.
- 3) Sea, para cada $i \in I$, \mathcal{T}_i separada. Entonces, \mathcal{T} es separada si, y sólo si, para cualesquiera $x, y \in X$ con $x \neq y$ existe $i \in I$ tal que $f_i(x) \neq f_i(y)$. (Esto es, la familia $\{f_i : i \in I\}$ separa los puntos de X).

4) Sea I numerable. Si \mathcal{T}_i es semimetrizable para cada $i \in I$, entonces \mathcal{T} es semimetrizable. Si \mathcal{T}_i es metrizable para cada $i \in I$, entonces \mathcal{T} es metrizable si, y sólo si, la familia $\{f_i : i \in I\}$ separa los puntos de X.

- 4) Sea I numerable. Si \mathcal{T}_i es semimetrizable para cada $i \in I$, entonces \mathcal{T} es semimetrizable. Si \mathcal{T}_i es metrizable para cada $i \in I$, entonces \mathcal{T} es metrizable si, y sólo si, la familia $\{f_i : i \in I\}$ separa los puntos de X.
- 5) Si, para cada $i \in I$, \mathcal{T}_i no es la topología trivial y $\prod_{i \in I} X_i$ es semimetrizable, entonces I es numerable y \mathcal{T}_i es semimetrizable para cada $i \in I$.

Si X es un espacio normado, definimos la **topología débil** en X como la topología inicial en X para la familia de aplicaciones X^* , es decir, la topología débil es la mínima topología en X que hace continuos todos los elementos de X^* .

Si X es un espacio normado, definimos la **topología débil** en X como la topología inicial en X para la familia de aplicaciones X^* , es decir, la topología débil es la mínima topología en X que hace continuos todos los elementos de X^* .

La topología débil en X la notaremos por $\sigma(X, X^*)$. (Otras notaciones: $w(X, X^*)$, w(X) o w). La topología de la norma en X la notaremos por τ_X

Si X es un espacio normado, definimos la **topología débil** en X como la topología inicial en X para la familia de aplicaciones X^* , es decir, la topología débil es la mínima topología en X que hace continuos todos los elementos de X^* .

La topología débil en X la notaremos por $\sigma(X, X^*)$. (Otras notaciones: $w(X, X^*)$, w(X) o w). La topología de la norma en X la notaremos por τ_X

Dados $x_0 \in X$, $\epsilon > 0$ y $f_1, f_2, \dots, f_n \in X^*$, notaremos

$$U(x_0, \epsilon, f_1, f_2, \dots, f_n) = \{x \in X : |f_k(x - x_0)| < \epsilon \ \forall k = 1, 2, \dots, n\}$$

1)
$$\sigma(X, X^*) \subseteq \tau_X$$
.

- 1) $\sigma(X, X^*) \subseteq \tau_X$.
- 2) Dado $x_0 \in X$, $\mathcal{B} = \{U(x_0, \epsilon, f_1, f_2, \dots, f_n) : \epsilon \in \mathbb{R}^+, n \in \mathbb{N}, f_1, f_2, \dots, f_n \in X^*\}$ es una base de entornos de x_0 para $\sigma(X, X^*)$.

Sea X un espacio normado.

- 1) $\sigma(X, X^*) \subseteq \tau_X$.
- 2) Dado $x_0 \in X$, $\mathcal{B} = \{U(x_0, \epsilon, f_1, f_2, \dots, f_n) : \epsilon \in \mathbb{R}^+, n \in \mathbb{N}, f_1, f_2, \dots, f_n \in X^*\}$ es una base de entornos de x_0 para $\sigma(X, X^*)$.
- 3) $\sigma(X, X^*)$ es separada.

- 1) $\sigma(X, X^*) \subseteq \tau_X$.
- 2) Dado $x_0 \in X$, $\mathcal{B} = \{U(x_0, \epsilon, f_1, f_2, \dots, f_n) : \epsilon \in \mathbb{R}^+, n \in \mathbb{N}, f_1, f_2, \dots, f_n \in X^*\}$ es una base de entornos de x_0 para $\sigma(X, X^*)$.
- 3) $\sigma(X, X^*)$ es separada.
- 4) $(X, \sigma(X, X^*))^* = X^*$. Es decir, los funcionales lineales $\sigma(X, X^*)$ -continuos coinciden con los funcionales τ_X -continuos .

5) $\sigma(X, X^*)$ es una topología vectorial en X. Es decir, $(X, \sigma(X, X^*))$ es un espacio vectorial topológico.

- 5) $\sigma(X, X^*)$ es una topología vectorial en X. Es decir, $(X, \sigma(X, X^*))$ es un espacio vectorial topológico.
- 6) Una sucesión $\{x_n\}$ de elementos de X converge hacia un elemento $x \in X$ para $\sigma(X, X^*)$ si, y sólo si $\{f(x_n)\} \to f(x)$ para todo $f \in X^*$.

- 5) $\sigma(X, X^*)$ es una topología vectorial en X. Es decir, $(X, \sigma(X, X^*))$ es un espacio vectorial topológico.
- 6) Una sucesión $\{x_n\}$ de elementos de X converge hacia un elemento $x \in X$ para $\sigma(X, X^*)$ si, y sólo si $\{f(x_n)\} \to f(x)$ para todo $f \in X^*$.
- 7) Si X es de dimensión infinita, $(X, \sigma(X, X^*))$ no es metrizable. En consecuencia $\sigma(X, X^*) \neq \tau_X$.

- 5) $\sigma(X, X^*)$ es una topología vectorial en X. Es decir, $(X, \sigma(X, X^*))$ es un espacio vectorial topológico.
- 6) Una sucesión $\{x_n\}$ de elementos de X converge hacia un elemento $x \in X$ para $\sigma(X, X^*)$ si, y sólo si $\{f(x_n)\} \to f(x)$ para todo $f \in X^*$.
- 7) Si X es de dimensión infinita, $(X, \sigma(X, X^*))$ no es metrizable. En consecuencia $\sigma(X, X^*) \neq \tau_X$.
- 8) Si X es de dimensión infinita, S_X es débilmente denso en B_X .

- 5) $\sigma(X, X^*)$ es una topología vectorial en X. Es decir, $(X, \sigma(X, X^*))$ es un espacio vectorial topológico.
- 6) Una sucesión $\{x_n\}$ de elementos de X converge hacia un elemento $x \in X$ para $\sigma(X, X^*)$ si, y sólo si $\{f(x_n)\} \to f(x)$ para todo $f \in X^*$.
- 7) Si X es de dimensión infinita, $(X, \sigma(X, X^*))$ no es metrizable. En consecuencia $\sigma(X, X^*) \neq \tau_X$.
- 8) Si X es de dimensión infinita, S_X es débilmente denso en B_X .

Lema

Sea X un espacio vectorial y $f, f_1, f_2, ..., f_n$ funcionales lineales en X. Entonces $f \in lin(\{f_1, f_2, ..., f_n\})$ si, y sólo si, $\bigcap_{k=1}^n \ker f_k \subseteq \ker f$.

Corolario

 $(X, \sigma(X, X^*))$ es un espacio localmente convexo separado.

Corolario

 $(X, \sigma(X, X^*))$ es un espacio localmente convexo separado.

Corolario

En un espacio normado, las traslaciones y las homotecias son homeomorfismos para la topología débil.

Corolario

 $(X, \sigma(X, X^*))$ es un espacio localmente convexo separado.

Corolario

En un espacio normado, las traslaciones y las homotecias son homeomorfismos para la topología débil.

Corolario

En un espacio normado, las bolas cerradas son débilmente cerradas. En consecuencia, la norma es una aplicación semicontinua inferiormente para la topología débil.

Un espacio normado X es de dimensión finita si, y sólo si, $\sigma(X, X^*) = \tau_X$.

Un espacio normado X es de dimensión finita si, y sólo si, $\sigma(X, X^*) = \tau_X$.

Corolario

Todo entorno de cero para la topología débil contiene un subespacio de codimensión finita .

Sean X, Y espacios normados sobre el mismo cuerpo y $T: X \to Y$ una aplicación lineal. Son equivalentes:

- T es (τ_X, τ_Y) -continua.
- \bullet T es $(\sigma(X, X^*), \sigma(Y, Y^*))$ -continua.

Teorema de Mazur

Sean X un espacio normado C un subconjunto convexo de X. entonces $\overline{C}^{\tau_X} = \overline{C}^{\sigma(X,X^*)}$.

Teorema de Mazur

Sean X un espacio normado C un subconjunto convexo de X. entonces $\overline{C}^{\tau_X} = \overline{C}^{\sigma(X,X^*)}$.

Corolario

Los subconjuntos convexo-cerrados de $(X, \sigma(X, X^*))$ coinciden con los de (X, τ_X) .

Si X es un espacio normado, definimos la **topología débil-*** en X^* como la topología inicial en X^* para la familia de aplicaciones $J_X(X) \subseteq X^{**}$, es decir, la topología débil-* es la mínima topología en X^* que hace continuos todos los elementos de $J_X(X)$.

Si X es un espacio normado, definimos la **topología débil-*** en X^* como la topología inicial en X^* para la familia de aplicaciones $J_X(X) \subseteq X^{**}$, es decir, la topología débil-* es la mínima topología en X^* que hace continuos todos los elementos de $J_X(X)$.

La topología débil-* en X^* la notaremos por $\sigma(X^*, X)$. (Otras notaciones: $w^*(X^*)$ o w^*).

Si X es un espacio normado, definimos la **topología débil-*** en X^* como la topología inicial en X^* para la familia de aplicaciones $J_X(X) \subseteq X^{**}$, es decir, la topología débil-* es la mínima topología en X^* que hace continuos todos los elementos de $J_X(X)$.

La topología débil-* en X^* la notaremos por $\sigma(X^*, X)$. (Otras notaciones: $w^*(X^*)$ o w^*).

Dados $f_0 \in X^*$, $\epsilon > 0$ y $x_1, x_2, \dots, x_n \in X$, notaremos

$$U^*(f_0, \epsilon, x_1, x_2, \dots, x_n) = \{ f \in X^* : |(f - f_0)(x_k)| < \epsilon \ \forall k = 1, 2, \dots, n \}$$

1)
$$\sigma(X^*, X) \subseteq \sigma(X^*, X^{**}) \subseteq \tau_{X^*}$$
.

- 1) $\sigma(X^*, X) \subseteq \sigma(X^*, X^{**}) \subseteq \tau_{X^*}$.
- 2) Dado $f_0 \in X^*$, $\mathcal{B} = \{ U^*(f_0, \epsilon, x_1, x_2, \dots, x_n) : \epsilon \in \mathbb{R}^+, n \in \mathbb{N}, x_1, x_2, \dots, x_n \in X \}$

- 1) $\sigma(X^*, X) \subseteq \sigma(X^*, X^{**}) \subseteq \tau_{X^*}$.
- 2) Dado $f_0 \in X^*$, $\mathcal{B} = \{U^*(f_0, \epsilon, x_1, x_2, \dots, x_n) : \epsilon \in \mathbb{R}^+, n \in \mathbb{N}, x_1, x_2, \dots, x_n \in X\}$ es una base de entornos de f_0 para $\sigma(X, X^*)$.
- 3) $\sigma(X^*, X)$ es separada.

- 1) $\sigma(X^*, X) \subseteq \sigma(X^*, X^{**}) \subseteq \tau_{X^*}$.
- 2) Dado $f_0 \in X^*$, $\mathcal{B} = \{U^*(f_0, \epsilon, x_1, x_2, \dots, x_n) : \epsilon \in \mathbb{R}^+, n \in \mathbb{N}, x_1, x_2, \dots, x_n \in X\}$ es una base de entornos de f_0 para $\sigma(X, X^*)$.
- 3) $\sigma(X^*, X)$ es separada.
- 4) $(X^*, \sigma(X^*, X))^* = J_X(X)$. Es decir, los funcionales lineales $\sigma(X^*, X)$ -continuos coinciden con los elementos de $J_X(X)$.

5) $\sigma(X^*, X)$ es una topología vectorial en X^* . Es decir, $(X^*, \sigma(X^*, X))$ es un espacio vectorial topológico.

- 5) $\sigma(X^*, X)$ es una topología vectorial en X^* . Es decir, $(X^*, \sigma(X^*, X))$ es un espacio vectorial topológico.
- 6) Una sucesión $\{f_n\}$ de elementos de X^* converge hacia un elemento $f \in X^*$ para $\sigma(X^*, X)$ si, y sólo si $\{f_n(x)\} \to f(x)$ para todo $x \in X$.

- 5) $\sigma(X^*, X)$ es una topología vectorial en X^* . Es decir, $(X^*, \sigma(X^*, X))$ es un espacio vectorial topológico.
- 6) Una sucesión $\{f_n\}$ de elementos de X^* converge hacia un elemento $f \in X^*$ para $\sigma(X^*, X)$ si, y sólo si $\{f_n(x)\} \to f(x)$ para todo $x \in X$.
- 7) Si X es de dimensión infinita, $\sigma(X^*, X)$ no es normable. En consecuencia $\sigma(X^*, X) \neq \tau_{X^*}$.

19/31

- 5) $\sigma(X^*, X)$ es una topología vectorial en X^* . Es decir, $(X^*, \sigma(X^*, X))$ es un espacio vectorial topológico.
- 6) Una sucesión $\{f_n\}$ de elementos de X^* converge hacia un elemento $f \in X^*$ para $\sigma(X^*, X)$ si, y sólo si $\{f_n(x)\} \to f(x)$ para todo $x \in X$.
- 7) Si X es de dimensión infinita, $\sigma(X^*, X)$ no es normable. En consecuencia $\sigma(X^*, X) \neq \tau_{X^*}$.
- 8) Si X es de dimensión infinita, S_{X^*} es débil-* denso en B_{X^*} .

 $(X^*, \sigma(X^*, X))$ es un espacio localmente convexo separado.

 $(X^*, \sigma(X^*, X))$ es un espacio localmente convexo separado.

Corolario

En un espacio dual, las traslaciones y las homotecias son homeomorfismos para la topología débil-*.

 $(X^*, \sigma(X^*, X))$ es un espacio localmente convexo separado.

Corolario

En un espacio dual, las traslaciones y las homotecias son homeomorfismos para la topología débil-*.

Corolario

En un espacio dual, las bolas cerradas son débil-* cerradas . En consecuencia, la norma es una aplicación semicontinua inferiormente para la topología débil-*.

Un espacio normado X es de dimensión finita si, y sólo si, $\sigma(X^*,X)=\tau_{X^*}.$

21/31

Un espacio normado X es de dimensión finita si, y sólo si, $\sigma(X^*, X) = \tau_{X^*}$.

Corolario

Todo entorno de cero para la topología débil-* contiene un subespacio de codimensión finita .

Un espacio normado X se dice que es **reflexivo** si $J_X(X) = X^{**}$.

Un espacio normado X se dice que es **reflexivo** si $J_X(X) = X^{**}$.

Proposición

Un espacio de Banach X es reflexivo si, y sólo si, $\sigma(X^*, X) = \sigma(X^*, X^{**})$.

Un espacio normado X se dice que es **reflexivo** si $J_X(X) = X^{**}$.

Proposición

Un espacio de Banach X es reflexivo si, y sólo si, $\sigma(X^*, X) = \sigma(X^*, X^{**})$.

Proposición

Sea X un espacio normado. Entonces $J_X: (X, \sigma(X, X^*)) \to (X^{**}, \sigma(X^{**}, X^*))$ es un homeomorfismo sobre $J_X(X)$.

Sean X, Y espacios normados sobre el mismo cuerpo y $T \in L(X, Y)$. Se define $T^*: Y^* \to X^*$ mediante $T^*(g) = g \circ T$ para todo $g \in Y^*$.

23 / 31

Sean X,Y espacios normados sobre el mismo cuerpo y $T\in L(X,Y)$. Se define $T^*:Y^*\to X^*$ mediante $T^*(g)=g\circ T$ para todo $g\in Y^*$. Es de comprobación inmediata que $T^*\in L(Y^*,X^*)$ y que $\|T^*\|\leq \|T\|$

23 / 31

Sean X,Y espacios normados sobre el mismo cuerpo y $T \in L(X,Y)$. Se define $T^*:Y^* \to X^*$ mediante $T^*(g)=g\circ T$ para todo $g\in Y^*$. Es de comprobación inmediata que $T^*\in L(Y^*,X^*)$ y que $\|T^*\|\leq \|T\|$

Proposición

Sean X,Y espacios normados sobre el mismo cuerpo y $T\in L(X,Y)$. Se define $T^*:Y^*\to X^*$ mediante $T^*(g)=g\circ T$ para todo $g\in Y^*$. Es de comprobación inmediata que $T^*\in L(Y^*,X^*)$ y que $\|T^*\|\leq \|T\|$

Proposición

$$||T^*|| = ||T||$$

Sean X, Y espacios normados sobre el mismo cuerpo y $T \in L(X, Y)$. Se define $T^*: Y^* \to X^*$ mediante $T^*(g) = g \circ T$ para todo $g \in Y^*$. Es de comprobación inmediata que $T^* \in L(Y^*, X^*)$ y que $\|T^*\| \le \|T\|$

Proposición

- $||T^*|| = ||T||$
- \bullet Si $\alpha, \beta \in \mathbb{K}$, entonces $(\alpha S + \beta T)^* = \alpha S^* + \beta T^*$.

Sean X, Y espacios normados sobre el mismo cuerpo y $T \in L(X,Y)$. Se define $T^*: Y^* \to X^*$ mediante $T^*(g) = g \circ T$ para todo $g \in Y^*$. Es de comprobación inmediata que $T^* \in L(Y^*,X^*)$ y que $\|T^*\| \leq \|T\|$

Proposición

- $||T^*|| = ||T||$
- \bullet Si $\alpha, \beta \in \mathbb{K}$, entonces $(\alpha S + \beta T)^* = \alpha S^* + \beta T^*$.
- $T^{**} \in L(X^{**}, Y^{**}) \text{ extiende a } T, \text{ es decir, } T^{**} \circ J_X = J_Y \circ T.$

Sean X, Y espacios normados sobre el mismo cuerpo y $T \in L(X,Y)$. Se define $T^*: Y^* \to X^*$ mediante $T^*(g) = g \circ T$ para todo $g \in Y^*$. Es de comprobación inmediata que $T^* \in L(Y^*,X^*)$ y que $\|T^*\| \leq \|T\|$

Proposición

- $||T^*|| = ||T||$
- \bullet Si $\alpha, \beta \in \mathbb{K}$, entonces $(\alpha S + \beta T)^* = \alpha S^* + \beta T^*$.
- $T^{**} \in L(X^{**}, Y^{**}) \text{ extiende a } T, \text{ es decir, } T^{**} \circ J_X = J_Y \circ T.$
- $Ker(T^*) = T(X)^{\circ}$.

Sean X, Y espacios normados sobre el mismo cuerpo y $T \in L(X, Y)$. Se define $T^*: Y^* \to X^*$ mediante $T^*(g) = g \circ T$ para todo $g \in Y^*$. Es de comprobación inmediata que $T^* \in L(Y^*, X^*)$ y que $\|T^*\| \le \|T\|$

Proposición

- $||T^*|| = ||T||$
- \bullet Si $\alpha, \beta \in \mathbb{K}$, entonces $(\alpha S + \beta T)^* = \alpha S^* + \beta T^*$.
- \bullet $T^{**} \in L(X^{**}, Y^{**})$ extiende a T, es decir, $T^{**} \circ J_X = J_Y \circ T$.
- *Ker*(T^*) = $T(X)^{\circ}$.
- Si Z es otro espacio normado y $T_1 \in L(Y, Z)$, entonces $(T_1 \circ T)^* = T^* \circ T_1^*$.

La aplicación $T \to T^*$ es una biyección lineal de L(X, Y) sobre $L_{w^*}(Y^*, X^*)$. En particular, $L_{w^*}(Y^*, X^*) \subseteq L(Y^*, X^*)$.

24 / 31

La aplicación $T \to T^*$ es una biyección lineal de L(X, Y) sobre $L_{w^*}(Y^*, X^*)$. En particular, $L_{w^*}(Y^*, X^*) \subseteq L(Y^*, X^*)$.

<u>Teore</u>ma

Sea X un espacio normado, entonces $P = J_{X^*} \circ J_X^*$ es una proyección lineal en X^{***} con $P(X^{***}) = J_{X^*}(X^*)$ y $Ker(P) = J_X(X)^{\circ}$.

La aplicación $T \to T^*$ es una biyección lineal de L(X, Y) sobre $L_{w^*}(Y^*, X^*)$. En particular, $L_{w^*}(Y^*, X^*) \subseteq L(Y^*, X^*)$.

Teorema

Sea X un espacio normado, entonces $P=J_{X^*}\circ J_X^*$ es una proyección lineal en X^{***} con $P(X^{***})=J_{X^*}(X^*)$ y $Ker(P)=J_X(X)^\circ$. En consecuencia $X^{***}=J_{X^*}(X^*)\oplus J_X(X)^\circ$

24 / 31

La aplicación $T \to T^*$ es una biyección lineal de L(X, Y) sobre $L_{w^*}(Y^*, X^*)$. En particular, $L_{w^*}(Y^*, X^*) \subseteq L(Y^*, X^*)$.

Teorema

Sea X un espacio normado, entonces $P=J_{X^*}\circ J_X^*$ es una proyección lineal en X^{***} con $P(X^{***})=J_{X^*}(X^*)$ y $Ker(P)=J_X(X)^\circ$. En consecuencia $X^{***}=J_{X^*}(X^*)\oplus J_X(X)^\circ$

Corolario

Un espacio de Banach X es reflexivo si, y sólo si, X^* es reflexivo.

Si X es un espacio normado, B_{X^*} es débil-* compacta $((B_{X^*}, \sigma(X^*, X))$ es compacto.)

Si X es un espacio normado, B_{X^*} es débil-* compacta $((B_{X^*}, \sigma(X^*, X))$ es compacto.)

Corolario

Sean X un espacio de Banach y $A\subseteq X^*$. Entonces A es $\sigma(X^*,X)$ -compacto si, y sólo si, A es $\sigma(X^*,X)$ -cerrado y acotado

Si X es un espacio normado, B_{X^*} es débil-* compacta $((B_{X^*}, \sigma(X^*, X))$ es compacto.)

Corolario

Sean X un espacio de Banach y $A\subseteq X^*$. Entonces A es $\sigma(X^*,X)$ -compacto si, y sólo si, A es $\sigma(X^*,X)$ -cerrado y acotado

Corolario

Todo espacio normado es isométricamente isomorfo a un subespacio de $\mathcal{C}(K)$ para conveniente K espacio topológico compacto Hausdorff.

Si X es un espacio normado, B_{X^*} es débil-* compacta $((B_{X^*}, \sigma(X^*, X))$ es compacto.)

Corolario

Sean X un espacio de Banach y $A\subseteq X^*$. Entonces A es $\sigma(X^*,X)$ -compacto si, y sólo si, A es $\sigma(X^*,X)$ -cerrado y acotado

Corolario

Todo espacio normado es isométricamente isomorfo a un subespacio de $\mathcal{C}(K)$ para conveniente K espacio topológico compacto Hausdorff.

Teorema de Banach-Mazur

Todo espacio normado separable es isométricamente isomorfo a un subespacio de $\mathcal{C}([0,1])$.

Proposición

Un espacio normado X tiene dimensión numerable si, y sólo si, $(X^*, \sigma(X^*, X))$ es metrizable.

Proposición

Un espacio normado X tiene dimensión numerable si, y sólo si, $(X^*, \sigma(X^*, X))$ es metrizable.

Teorema

Un espacio normado X es separable si, y sólo si, $(B_{X^*}, \sigma(X^*, X))$ es metrizable.

Proposición

Un espacio normado X tiene dimensión numerable si, y sólo si, $(X^*, \sigma(X^*, X))$ es metrizable.

Teorema

Un espacio normado X es separable si, y sólo si, $(B_{X^*}, \sigma(X^*, X))$ es metrizable.

Corolario

Si X es un espacio normado separable, toda sucesión acotada en X^* tiene una sucesión parcial débil-* convergente.

Teorema de Helly

Sean X un espacio normado y $F \in X^{**}$. Dados W subespacio de dimensión finita de X^* y $\epsilon > 0$, existe $x \in X$ tal que $\|x\| < \|F\| + \epsilon$ y $J_X(x)|_W = F|_W$.

Teorema de Helly

Sean X un espacio normado y $F \in X^{**}$. Dados W subespacio de dimensión finita de X^* y $\epsilon > 0$, existe $x \in X$ tal que $\|x\| < \|F\| + \epsilon$ y $J_X(x)|_W = F|_W$.

Teorema de Goldstine

Sea X un espacio normado, entonces $J_X(B_X)$ es $\sigma(X^{**}, X^*)$ -denso en $B_{X^{**}}$ ($\overline{J_X(B_X)}^{\sigma(X^{**}, X^*)} = B_{X^{**}}$).

Teorema de Helly

Sean X un espacio normado y $F \in X^{**}$. Dados W subespacio de dimensión finita de X^* y $\epsilon > 0$, existe $x \in X$ tal que $\|x\| < \|F\| + \epsilon$ y $J_X(x)|_W = F|_W$.

Teorema de Goldstine

Sea X un espacio normado, entonces $J_X(B_X)$ es $\sigma(X^{**}, X^*)$ -denso en $B_{X^{**}}$ ($\overline{J_X(B_X)}^{\sigma(X^{**}, X^*)} = B_{X^{**}}$).

Corolario

Si X es un espacio normado de dimensión infinita,

$$B_{X^{**}} = \overline{J_X(S_X)}^{\sigma(X^{**},X^*)}$$

Teorema de Dieudonné

Un espacio normado X es reflexivo si, y sólo si, B_X es débilmente compacta.

Teorema de Dieudonné

Un espacio normado X es reflexivo si, y sólo si, B_X es débilmente compacta.

Corolario

Sean X un espacio de Banach reflexivo y M un subespacio cerrado de X. Entonces M y X/M son espacios reflexivos.

Teorema de Dieudonné

Un espacio normado X es reflexivo si, y sólo si, B_X es débilmente compacta.

Corolario

Sean X un espacio de Banach reflexivo y M un subespacio cerrado de X. Entonces M y X/M son espacios reflexivos.

Corolario

Sean X un espacio de Banach reflexivo y M un subespacio cerrado de X. Entonces para cada $x \in X$, existe $m \in M$ tal que $\|x - m\| = \|x + M\|$.

Teorema de James

Un espacio de Banach *X* es reflexivo si, y sólo si, todo funcional lineal continuo en *X* alcanza su norma.

Teorema de James

Un espacio de Banach *X* es reflexivo si, y sólo si, todo funcional lineal continuo en *X* alcanza su norma.

Teorema

Sea X un espacio normado. Entonces X^* es separable si, y sólo si, $(B_X, \sigma(X, X^*))$ es metrizable.

Teorema de James

Un espacio de Banach *X* es reflexivo si, y sólo si, todo funcional lineal continuo en *X* alcanza su norma.

Teorema

Sea X un espacio normado. Entonces X^* es separable si, y sólo si, $(B_X, \sigma(X, X^*))$ es metrizable.

Corolario

Si X es un espacio reflexivo, X es separable si, y sólo si, $(B_X, \sigma(X, X^*))$ es metrizable.

Corolario

En un espacio de Banach reflexivo toda sucesión acotada tiene una sucesión parcial débilmente convergente.

Corolario

En un espacio de Banach reflexivo toda sucesión acotada tiene una sucesión parcial débilmente convergente.

Teorema de Eberlein-Smulyan

Sea *X* un espacio de Banach. Las siguientes afirmaciones son equivalentes:

- X es reflexivo.
- Toda sucesión acotada en X tiene un valor adherente en la topología débil.
- Toda sucesión acotada en X tiene una sucesión parcial débilmente convergente.

Teorema de Banach-Dieudonné

Sea X un espacio de Banach y M un subespacio de vectorial de X. Entonces M es $\sigma(X^*, X)$ -cerrado si, y sólo si, la bola unidad cerrada de M es $\sigma(X^*, X)$ -cerrada.

Teorema de Banach-Dieudonné

Sea X un espacio de Banach y M un subespacio de vectorial de X. Entonces M es $\sigma(X^*, X)$ -cerrado si, y sólo si, la bola unidad cerrada de M es $\sigma(X^*, X)$ -cerrada.

Corolario

Sea X un espacio de Banach, Y un espacio normado y T en L(X,Y). Son equivalentes:

- $T^*(Y^*)$ es $\sigma(X^*, X)$ -cerrado.
- $T^*(Y^*)$ es cerrado para la topología de la norma en X^* .