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Supposing only that there is an effective charge which defines an evolution scheme for parton
distribution functions (DFs) that is all-orders exact, strict lower and upper bounds on all Mellin moments of
the valence-quark DFs of pionlike systems are derived. Exploiting contemporary results from numerical
simulations of lattice-regularized quantum chromodynamics (QCD) that are consistent with these bounds,
parameter-free predictions for pion valence, glue, and sea DFs are obtained. The form of the valence-quark
DF at large values of the light-front momentum fraction is consistent with predictions derived using the
QCD-prescribed behavior of the pion wave function.
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I. ISSUES AND MOTIVATIONS

Within the Standard Model of particle physics, hadrons
emerged roughly 1 μs after the big bang [1]. At this time,
the color-carrying gluon and quark (parton) degrees-of-
freedom, in terms of which the Lagrangian of quantum
chromodynamics (QCD) is expressed, were sublimated
into color-singlet bound states with nuclear-size masses and
femtometre-scale radii. Pions (π�, π0) are the lightest
hadrons; and without them, even simple nuclei could not
have formed in the ensuing few minutes [ [2], Sec. 24].
Additionally, and crucially for the stability of nuclei,
pions are unnaturally light: compared with the masses of
the protons and neutrons (mN) they bind, mπ ≈ 0.15mN .

This is explained if the pions are Nambu-Goldstone (NG)
bosons associated with dynamical chiral symmetry break-
ing in QCD [3–5]. That raises some very basic questions,
e.g.,: what imprints, if any, does this NG boson character
leave on pion structure; and does it distinguish their
structure and interactions from those of the nucleons
they bind?
In QCD, pions are bound-states seeded by a valence-

quark and valence-antiquark, Fig. 1. Yet, their properties
cannot be determined by solving a typical two-body
problem in quantum mechanics. Owing to strong self-
interactions among gluons—QCD’s gauge bosons, the
Lagrangian gluon and quark partons are transmogrified
into complex quasiparticles. Each parton species evolves to
acquire a distinct dynamically generated running mass
[6–8], both of which are large at infrared momenta and
typified by a renormalization group invariant mass
m0 ≈mN=2; and the interactions between these quasipar-
ticles are described by a momentum dependent coupling
[9,10], α̂ðk2Þ, which runs to saturate at infrared momenta:
α̂ðk2 ≲m2

0Þ ≈ π. These features are primary signals of the
dynamical breaking of scale invariance in QCD [11], i.e.,
the phenomenon of emergent hadron mass (EHM). They
produce a pion whose structure, when unfolded in terms of
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parton degrees-of-freedom, has the complicated character
illustrated in Fig. 1, and may lead to gluon and quark
confinement [12,13].
Continuum Schwinger function methods (CSMs)

[14–17] are well suited to tackling the pion. Successes
have been achieved by solving the coupled quark gap and
meson Bethe-Salpeter equations to obtain the pion’s Bethe-
Salpeter wave function, χπðk; k − PÞ, where P is the pion’s
total momentum and k is the momentum of the valence-
quark, and exploiting that to predict pion observables
[8,18]. Of great importance to an explanation of pion
properties, is the expression of an intimate link between the
dressed-quark mass function and χπ [19–24]. This link
means that, although it can be studied using a large array of
reactions [17,25–27], the sharpest probes of EHM are
found in pion properties; raising pion structure studies to
the highest level of importance [28–34].
Much is promised by data relating to pion parton

distribution functions (DFs), viz. the probability densities
describing the light-front momentum fractions carried by
each parton species within the pion [35]. For instance,
uπðx; ζÞ is the density for finding a valence u-quark with
momentum fraction x when the pion is resolved at scale ζ.
On ζ ≲ 2mN , this valence-quark is not equivalent to a
valence-quark-parton; rather, it is connected to that parton
as an object dressed by interactions in the manner described
by the quark gap equation [36]. Undressing reveals the
complexities in Fig. 1, leading to growth of the glue and
sea-quark DFs, gπðxÞ, SπðxÞ. However, more than forty
years after the first experiment to collect data suitable for
extracting pion DFs [37–40], the behavior of all these
functions remains uncertain and controversial [41,42]:
some analyses potentially challenge QCD as the theory
of strong interactions. New experiments [28–34] will
hopefully serve to dispel the confusion.

II. SYMMETRY AND PION WAVE FUNCTIONS

Notwithstanding the intricacies of Fig. 1, simplicity
emerges when one adapts CSMs to the pion problem.
Then, at infrared scales, the πþ, for instance, appears as a
two-body bound-state of a dressed-valence-quark, u, and a
dressed-valence-antiquark d̄, with the complexity hidden
from view because the infinitely many gluon and quark
partons have been absorbed into making the dressed
quasiparticles. In this case, exploiting the G-parity sym-
metry limit, which is an accurate reflection of Nature,

χπðk; k − PÞ ¼ χπð−kþ P;−kÞ: ð1Þ

Unlike wave functions in quantum mechanics, χπ does
not have a probability interpretation; hence, cannot directly
yield uπðx; ζÞ. That door is opened by projection to obtain
the associated light-front wave function (LFWF) [43,44],
ψπðx; jk⃗⊥j2; ζÞ, which is a probability amplitude. Here,
using linearly independent four-vectors n, n̄, with
n2 ¼ 0 ¼ n̄2, n · n̄ ¼ −1: x ¼ n · k=n · P, i.e., the light-
front fraction of the pion’s total momentum carried by the
valence-quark; and k⃗⊥ is that part of the valence-quark’s
momentum which lies in the light-front transverse plane.
Using the LFWF,

uπðx; ζÞ ¼x∈ð0;1Þ
Hu

π ðx; t ¼ 0; ζÞ; ð2Þ

where Hu
π is the valence u-quark forward generalized

parton distribution [45], and:

Hu
π ðx; 0; ζÞ ¼

Z
d2k⊥
16π3

jψu
πðx; k2⊥; ζÞj2: ð3Þ

The LFWF defined by projection of χπðk; k − PÞ is
associated with a scale, ζ ¼ ζH, at which the dressed-
quark and -antiquark carry all pion properties and Eq. (1)
entails ψu

πðx; jk⃗⊥j2; ζHÞ ¼ ψu
πð1 − x; jk⃗⊥j2; ζHÞ. Hence,

uπðx; ζHÞ ¼ uπð1 − x; ζHÞ; ð4Þ

h2xiζHuπ
≔

Z
1

0

dx2xuπðx; ζHÞi ¼ 1; ð5Þ

confirming that dressed valence degrees-of-freedom
carry all the pion’s light-front momentum at this scale.
Momentum conservation demands that the glue and sea
momentum fractions vanish at ζH; and since DFs are
nonnegative on x ∈ ½0; 1�, then gπðx; ζHÞ≡ 0≡ Sπðx; ζHÞ.
As the resolving scale is increased to ζ > ζH, the

dressed-quark and -antiquark begin to shed their clothing,
gluon emission and subsequent splitting commence [46],
and QCD evolution (DGLAP) [47–50] proceeds to
generate nonzero glue and sea distributions from the

u

d
_

FIG. 1. In terms of QCD’s Lagrangian degrees-of-freedom, the
πþ contains one valence u-quark, one valence d̄-quark, and,
owing to the strong-interaction, infinitely many gluons and sea
quarks, indicated here as “springs” and closed loops, respectively.
(π− is dū and π0 is uū − dd̄).
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nonperturbative information contained in uπðx; ζHÞ. Thus,
the complex structure in Fig. 1 emerges.
A prediction for the value of ζH follows from the

properties of QCD’s renormalization group invariant effec-
tive charge [10,41,51–54], α̂ðk2Þ. Its scale is set by m0, the
gluon mass [8,10]. Notwithstanding that, the value of ζH is
immaterial herein, so long as Eq. (4) is understood.
Introducing the distribution PðtÞ ¼ uπð½1þ t�=2; ζHÞ,

the Mellin moments of the pion valence-quark DF are

hxniζHuπ
¼ 1

2n

X½n=2�
i¼0

�
n

2i

�
ht2iiP; ð6Þ

htjiP ¼ R
1
0 dtt

jPðtÞ. Since the hadron scale DF of a
ground-state pseudoscalar meson is necessarily unimodal
[ [8], Sec. 3], two limiting cases are apparent: (i) PðtÞ ¼
δðtÞ, corresponding to a pion constituted from two infi-
nitely-massive valence constituents; and (ii) its antithesis,
PðtÞ ¼ θð1þ tÞθð1 − tÞ, which is obtained for a massless
pion using a symmetry-preserving treatment of a vector ×
vector contact interaction [55]. They lead to the following
bounds:

1

2n
≤
ðiÞ
hxniζHuπ

≤
ðiiÞ 1

1þ n
: ð7Þ

III. PRINCIPLE AND PRACTICE OF ALL-ORDERS
EVOLUTION

We proceed by exploring the consequences of the
following hypothesis [42]:
P1—There exists at least one effective charge, α1lðk2Þ,

such that, when used to integrate the one-loop DGLAP
equations, an evolution scheme for parton DFs is defined
that is all-orders exact.
Charges of this type are discussed in Refs. [56–58]. They

need not be process-independent (PI); hence, not unique.
Nevertheless, a suitable PI charge is not excluded, e.g., that
discussed in Refs. [10,54] has proved efficacious. In being
defined via an observable—in this case, pion structure
functions, each such α1lðk2Þ is [59]: consistent with the
renormalization group; renormalization scheme indepen-
dent; everywhere analytic and finite; and supplies an
infrared completion of any standard running coupling.
Regarding this hypothesis, it is worth observing here that

CSM results for pion ζ ¼ ζH valence DFs, obtained from
symmetry-preserving analyses and used as initial values for
evolution according to P1, yield predictions for all pion
ζ > ζH DFs (valence, sea, glue) that are consistent with
QCD expectations, including those on their small- and
large-x behavior [42,60,61]. Owing to a deficit of pion data
[ [8], Table 9.5], more cannot yet be said. On the other
hand, given the large amount of relevant proton data, one
might think it possible to test a variant of P1 using
phenomenological proton DF fits [62,63]. Unfortunately,

however, extant such fits are inconsistent with a range of
QCD constraints; so, they cannot serve as a reliable
foundation for testing the validity of evolution schemes
related to P1. In large part, this explains conclusions drawn
elsewhere [64]. Future such studies should be built upon
improved DF fits and use an effective charge that furnishes
an infrared completion of QCD.
P1 entails [ [65], Sec. VII]

hxniζuπ
¼ hxniζHuπ

ðh2xiζuπ
Þγn0=γ10 ; ð8Þ

where γ00 ¼ 0 and, for nf ¼ 4 quark flavors, γ1;20 ¼
32=9; 50=9. The higher-n results are listed elsewhere
[[65], Eq. (56a)]. Thus, given the pion valence-quark DF
at one scale, e.g., ζH, then its pointwise behavior at any
other scale, ζ, is fully determined by the value of its first
moment at ζ. No other knowledge is required; especially,
one need know nothing about the actual form of α1lðk2Þ.
Similar statements are true for gπðx; ζÞ, Sπðx; ζÞ. As noted
above, the hadron scale is uniquely defined by h2xiζHuπ

¼ 1.
Inserting Eq. (8) into Eq. (7), one finds:

1

2n
≤ hxniζuπ

ðh2xiζuπ
Þ−γn0=γ10 ≤ 1

1þ n
: ð9Þ

Together, Eqs. (4), (8) entail this recursion [42]:

hx2nþ1iζuπ
¼ðh2xiζuπ

Þγ2nþ1
0

=γ1
0

2ðnþ1Þ

×
X2n

j¼0;1;…

ð−Þj
�
2ðnþ1Þ

j

�
hxjiζuπ

ðh2xiζuπ
Þ−γj0=γ10 :

ð10Þ

Namely, for any symmetric function, Eq. (4), which
evolves according to Eq. (8), the odd-order Mellin moment
hx2nþ1iζuπ

is completely determined by the set of even
moments hx2miζuπ

with m ≤ n. Conversely, if a DF satisfies
Eq. (10), then it is linked by evolution to a symmetric
distribution at ζH.

IV. PION VALENCE-QUARK DF FROM
LATTICE-QCD MOMENTS

Recent years have seen the refinement of lattice-QCD
predictions for low-order Mellin moments of the pion
valence-quark DF. Some contemporary results are listed
in Table I and plotted in Fig. 2. They satisfy the bounds in
Eq. (9). Importantly, a calculation which yields points that
lie systematically outside the inclusion area does not
describe a physically realizable pionlike bound-state; or,
stated otherwise, contains systematic uncertainties that
preclude its connection with a physical pion-like system.
The moments in Table I–Column 3 [68] satisfy Eq. (10);

hence, are associated with a symmetric pion valence-quark
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DF at ζH. Here one sees that the moments in Refs. [66,67]
are compatible with those in Ref. [68]; so may also be
associated with a symmetric DF at ζH. Moreover, the
consistency between the results in Table I means that one
can combine the moments and seek an optimal description
of the entire collection.
We therefore consider the symmetric distribution

uπðx; ζHÞ ¼ n0 lnð1þ x2ð1 − xÞ2=ρ2Þ; ð11Þ
n0 ensures unit normalization, which is simple yet flexible
enough to express the dilation that EHM is known to
introduce [10,41,51–54]. Denoting the moments of this
distribution by Mπ

nðρÞ, we minimize the following uncer-
tainty-weighted χ2-function:

χ2ðρÞ¼
X

s¼½65–67�

X6
n¼2

asn
ðMπ

nðρÞ−Ms
nðζÞ=ð2Ms

1Þγ
n
0
=γ1

0Þ2
ðσsnÞ2

;

ð12Þ

where asn ¼ 1 in all cases with an entry in Table I and is
otherwise zero; and Ms

nðζÞ, σsn are the related nonzero

entries, viz. moment and uncertainty. This yields ρ0 ¼
0.048 and χ2ðρ0Þ=degree-of-freedom ¼ 0.27. The associ-
ated trajectory of moments is drawn in Fig. 2 (gold curve).
It is practically indistinguishable from that calculated
using the CSM DF prediction [51–54]. (For subsequent
use, we rescale the uncertainties in Eq. (12) such that
χ20 ≔ χ2ðρ0Þ ¼ d − 2, where d ¼ 8 is the number of
degrees-of-freedom.)
Based on this result, we generate an ensemble of curves

that express the uncertainty in the lattice moments as
follows. (i) From a distribution centered on ρ0, choose a
new value of ρ. (ii) Evaluate χ2ðρÞ in Eq. (12). The new
value of ρ is accepted with probability

P ¼ Pðχ2; dÞ
Pðχ20; dÞ

; Pðy;dÞ ¼ ð1=2Þd=2
Γðd=2Þ yd=2−1e−y=2: ð13Þ

(iii) Repeat (i) and (ii) until one has a K ≳ 200-member
ensemble of DFs. This yields the DFs drawn in Fig. 3(a).

TABLE I. Lattice-QCD results for Mellin moments of the
pion valence-quark DF at ζ ¼ ζ2 ¼ 2 GeV [66] and ζ5 ¼
5.2 GeV [67,68].

n [66] [67] [68]

1 0.254(03) 0.18(3) 0.23(3)(7)
2 0.094(12) 0.064(10) 0.087(05)(08)
3 0.057(04) 0.030(05) 0.041(05)(09)
4 0.023(05)(06)
5 0.014(04)(05)
6 0.009(03)(03)

FIG. 2. Mellin moments from Table I, referred to ζH via Eq. (8).
blue up-triangles [66]; green diamonds [67]; and black down-
triangles [68]. Results consistent with the bounds in Eq. (9) fall
within the open band. The excluded regions are lightly shaded in
red. Gold curve: trajectory of moments that minimizes Eq. (12).
Long-dashed dark-blue curve: moments of CSM distribution
[54]. Dotted magenta curve: moments of the scale-free distribu-
tion: qsfðxÞ ¼ 30x2ð1 − xÞ2.

(a)

(b)

FIG. 3. Upper panel–(a) Randomly distributed ensemble of
lattice-QCD-based [66–68] pion valence-quark DFs (orange
curves) constructed using the procedure described in connection
with Eq. (13). Lower panel–(b) ζH → ζ5 evolution of each curve
in Panel (a). Black circles, data recorded in Ref. [ [40], E615]; and
teal boxes, reevaluation of that data as presented in Ref. [69].
Both panels. Dashed magenta curve: central ρ ¼ ρ0 result in
Eq. (11). Solid blue curve: CSM prediction from Refs. [41,53,54].
Dotted black curve: scale-free distribution. (All at scale appro-
priate to panel).
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Exploiting P1, every curve in Fig. 3(a) can be evolved to
ζ5 ¼ 5.2 GeV once h2xiζ5uπ

is known. Using an uncertainty
weighted average of the results in Refs. [54,66–68], which
yields h2xiζ5uπ

¼ 0.435ð12Þ, and no additional information,
one obtains the orange curves in Fig. 3(b). The central
curve and associated 1σ-band are reproduced by

uπðx; ζ5Þ ¼ nζ5
0 x

αð1 − xÞβð1þ γx2Þ; ð14Þ

α ¼ −0.168ð79Þ, β ¼ 2.49ð40Þ, γ ¼ 1.51ð74Þ, with nζ5
0

ensuring unit normalization.

V. PION VALENCE-QUARK DF AT LARGE-X

The results in Fig. 3 bear directly upon a longstanding
controversy. Namely [42], analyses of the pion valence-
quark DF, which incorporate the behavior of the pion wave
function prescribed by QCD, predict

uπðx; ζÞ ∼x≃1ð1 − xÞβ¼2þγðζÞ; ð15Þ

where γðζÞ ≥ 0 grows logarithmically with ζ, expressing
the physics of gluon radiation from the struck quark. As
noted above, γðζHÞ ¼ 0. Nevertheless, more than forty
years after the first experiment [37] to deliver data relating
to uπðx ≃ 1Þ, the empirical status remains confused
because, among the methods used to fit extant data, e.g.,
Refs. [69–72], some return a uπ form that violates Eq. (15).
Such disagreement requires that one of the following
conclusions be faced: the chosen analysis scheme is
incomplete; not all data included are a valid expression
of qualities intrinsic to the pion; or QCD, as currently
understood, is not the theory of strong interactions.
Fitting the results in Fig. 3(b) on x ∈ ð0.9; 1Þ, one finds

the effective value of the large-x exponent: β ¼ 2.45ð38Þ.
Hence, the lattice simulations [66–68] yield a valence-
quark DF that is consistent with Eq. (15). However, the
leading-order perturbative QCD analysis of data reported in
Ref. [ [40], E615], which disagrees overall with the
ensemble of lattice based curves, produces β ≈ 1.3, con-
tradicting Eq. (15). This remains true at next-to-leading-
order [70–72]. On the other hand, inclusion of soft-gluon
resummation in the hard-scattering kernel produces [69] the
teal squares in Fig. 3(b), which agree with the lattice-QCD
ensemble and express β ¼ 2.57ð6Þ, consistent with
Eq. (15). The lattice-QCD ensemble also agrees with the
CSM prediction [41,53,54], for which β ¼ 2.81ð8Þ. Recent
explorations of uncertainties associated with soft-gluon
resummation are briefly discussed in the Appendix.
Given P1, then the results obtained above also enable

prediction of the pion glue and sea DFs [ [65], Sec. VII].
Using the central curve in Fig. 3(a), obtained with ρ ¼
ρ0 ¼ 0.048 in Eq. (11), one arrives at the DFs in Fig. 4.
Within uncertainties, the lattice-QCD based results calcu-
lated herein agree with the CSM predictions [41,53,54].

Notably [41], the CSM result for the glue DF agrees with an
independent lattice determination [73]; consequently, so
does the result calculated herein.

VI. PERSPECTIVES

More than seventy years after discovery of the pion,
Nature’s most fundamental Nambu-Goldstone boson, too
little is yet known about its internal structure. This must
change if the origin of nuclear-size mass-scales—the
emergence of hadron mass—is to be understood within
the Standard Model. The proposition considered herein,
viz. that there is an effective charge which defines an
evolution scheme for parton distribution functions (DFs)
that is all-orders exact, has many consequences. Among
them, the unique definition of the hadron scale, the bounds
on all Mellin moments of the valence-quark DF in pionlike
systems, and the recursion relation for odd-moments, can
be used to good effect, enabling, e.g., parameter-free
predictions for all pion DFs that can both benchmark
existing data fitting methods and be validated using data
from forthcoming experiments. Studies are underway that
test the proposition in the nucleon sector [74,75].
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APPENDIX: SOFT GLUONS

Uncertainties attendant upon inclusion of soft-gluon
resummation in analyses of E615 data are discussed else-
where [42,72]. Three different methods are compared
therein. Two may be described as Mellin-Fourier (MF)
schemes [76,77] and yield mutually consistent results. The
Ref. [69] analysis is in this class. The third is a double-
Mellin (dM) approach [78].
The ensemble of lattice-QCD based results for uπðx; ζ5Þ

is compared in Fig. 5 with reanalyses of data using the MF
and dM methods. The overall quantitative mismatch
between the lattice-QCD based results and both sets of
displayed data is explained by the fact that all data fits in
Ref. [72] store 15% less of the pion’s longitudinal light-
front momentum with the valence degrees-of-freedom than
modern calculations predict. Regarding the large-x expo-
nent, the MF approach to soft-gluon resummation (blue

up-triangles) yields βMF ¼ 2.24ð7Þ, agreeing with the
lattice result and consistent with Eq. (15). However, the
value inferred using the dM scheme, βdM ¼ 1.54ð5Þ, is
inconsistent with both the lattice result and Eq. (15).
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