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ABSTRACT Missing values are highly undesirable in real-world datasets. The missing values should be
estimated and treated during the preprocessing stage. With the expansion of nature-inspired metaheuristic
techniques, interest in missing value imputation (MVI) has increased. The main goal of this literature is to
identify and review the existing research on missing value imputation (MVI) in terms of nature-inspired
metaheuristic approaches, dataset designs, missingness mechanisms, and missing rates, as well as the most
used evaluation metrics between 2011 and 2021. This study ultimately gives insight into how the MVI plan
can be incorporated into the experimental design. Using the systematic literature review (SLR) guidelines
designed by Kitchenham, this study utilizes renowned scientific databases to retrieve and analyze all relevant
articles during the search process. A total of 48 related articles from 2011 to 2021 were selected to assess
the review questions. This review indicated that the synthetic missing dataset is the most popular baseline
test dataset to evaluate the effectiveness of the imputation strategy. The study revealed that missing at
random (MAR) is the most common proposed missing mechanism in the datasets. This review also indicated
that the hybridizations of metaheuristics with clustering or neural networks are popular among researchers.
The superior performance of the hybrid approaches is significantly attributed to the power of optimized
learning in MVI models. In addition, perspectives, challenges, and opportunities in MVI are also addressed
in this literature. The outcome of this review serves as a toolkit for the researchers to develop effective MVI
models.

INDEX TERMS Missing value, missing data, imputation, incomplete dataset, metaheuristic, systematic
review.

I. INTRODUCTION
Data quality in machine learning has been intensively studied
over the past decades. One of the data quality issues ismissing
values. Missing values can be defined as portions of the
data that are either incomplete or absent in the dataset. The
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presence of missing values in the dataset diminishes data
quality, reduces the power of data analysis, and induces bias
in data science applications. Hence, dealing with incomplete
information is critical for most data mining and machine
learning techniques [1].

Numerous studies have been successfully conducted to
address the issue of missing values. Little and Rubin [2]
classified missing values into three mechanisms, missing

61544 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0414-7926
https://orcid.org/0000-0001-9746-8459
https://orcid.org/0000-0002-5992-2574
https://orcid.org/0000-0003-3065-5975
https://orcid.org/0000-0001-5256-210X
https://orcid.org/0000-0002-7542-4356


P. C. Chiu et al.: MVI Designs and Methods of Nature-Inspired Metaheuristic Techniques: A Systematic Review

completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). In the case of MCAR,
the probability of missing values is independent. Any miss-
ing value estimation technique could be applied due to the
absence of data bias in the MCAR mechanism. In the type of
MAR, the probability of data incomplete is not related to the
missing value; instead, it is related to the part of the observed
data. In the MNAR case, missing values are dependent on
the missing variable, in which the incomplete values are
associated with unmeasured events.

Furthermore, the missing value pattern explains how the
data is missing in different ways. A univariate missing value
pattern occurs when only one variable is missing. Data is
missing monotone if the missing values follow a pattern.
On the other hand, data is missing arbitrarily if the data is
missing without a clear pattern.

Moreover, the percentage of missing values impacts the
data quality. However, the existing literature does not have
a standard cutoff for the acceptable proportion of missing
values in a dataset for quality data analysis. For example,
Bormann [3] suggested that 10% missing precipitation val-
ues of the calendar days are the threshold for removing the
whole winter observations from the analysis. In contrast,
Tatar et al [4] stated that a threshold of 50% missing features
was excluded from the prediction of low salinity waterflood-
ing, while an imputation of mean value was applied for
missing features below the missing threshold.

Equipment failure is a major cause of high missing
rates. Eliminating high missing rates from the observations
diminishes the representativeness of the samples. The miss-
ing values can be higher than 50% in real-world scenarios.
Therefore, missing value imputation (MVI) is used to address
the problem of missing values. MVI is a procedure that
is used to fill in missing values with substitutes [5]. Over
the past decades, various machine learning techniques have
been proposed to deal with incomplete datasets for different
domain problems, such asmedical [6], hydrology [7], [8], and
transportation [9].

Consequently, a number of literature [10]–[12] discusses
recent machine learning-based imputation techniques in solv-
ing incomplete dataset problems. Nevertheless, with respect
to MVI of nature-inspired metaheuristic techniques, the
literature receives limited attention. Therefore, this liter-
ature aims to review recent MVI designs of metaheuris-
tic techniques used for handling and optimizing missing
value imputation. This SLR follows the guidelines estab-
lished by Kitchenham and Charters [13], thereby provid-
ing significant insights for researchers working in the MVI
domain.

The contributions of this literature are:
1) A comprehensive systematic literature review is pre-

sented on the existing MVI designs for metaheuristic
approaches, experimental design, dataset design, missingness
mechanisms, missing rates, and evaluation metrics.

2) A guide to address, manage, and report MVI studies is
introduced. This SLR serves as a toolkit for the researchers

to come up with solutions for challenges in implementing
effective missing value imputation.

This research is organized as follows: Section II presents
the SLR methodologies, whereas Section III summarizes the
SLR findings. Section IV discusses the research trends and
potential opportunities inMVI. Section V highlights the chal-
lenges, and finally, the conclusion is presented in Section VI.

II. RESEARCH AND REVIEW METHOD
This section describes the systematic approach for review-
ing recent articles on metaheuristic-based MVI techniques
by adopting Kitchenham’s SLR standards. This SLR is
inspected, analyzed, and evaluated according to the research
questions and review protocols. Each phase of this SLR is
explained in the following sections.

A. PLANNING THE REVIEW
This section outlines the review plan needed to undertake the
SLR, which includes formulating research questions in accor-
dance with the review’s primary objective, defining a search
strategy, and designing a comprehensive review protocol.

1) RESEARCH QUESTIONS
This review aims to study the existing literature on
metaheuristic designs and methods for optimizing and solv-
ing missing value problems. The following Research Ques-
tions (RQs) for this literature are formulated to accomplish
this aim, as indicated in TABLE 1.

In the past ten years, several novel imputation techniques
have been proposed. This SLR aims to identify the differences
among themethods to enrich the understanding ofMVImeth-
ods, which can be taken as the basis for planning and devel-
oping a new imputation model. RQ1 provides an overview
of state-of-the-art metaheuristic techniques used to handle
and optimize missing value imputation. Meanwhile, RQ2 is
defined to explore the experimental designs of imputation
and understand what factors affect the MVI design. RQ3 is
outlined to understandwhatmetrics are commonly usedwhen
evaluating the missing value imputation method.

2) SEARCH STRATEGY
The search strategy begins with selecting relevant databases
(IEEExplore, ScienceDirect, Scopus, and other electronic
databases) to track scientific papers that address research
topics published in linked journals, conferences, and book
chapters. The search string used to retrieve articles from the
scientific databases is described as follows:

String: (‘‘metaheuristic’’ OR ‘‘optimization’’ OR ‘‘evolu-
tionary’’) AND (‘‘imputation’’) AND (YEAR > 2010 AND
YEAR < 2022)

3) INCLUSION AND EXCLUSION CRITERIA
A list of inclusion and exclusion criteria was constructed
in this literature, as shown in TABLE 2. The inclusion and
exclusion criteria are used as one of the review protocols to
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TABLE 1. List of research questions.

TABLE 2. The inclusion and exclusion criteria.

narrow the relevant studies to the most pertinent ones during
the article review process.

4) QUALITY ASSESSMENT CRITERIA
Another review protocol is the quality assessment criteria.
The quality assessment criteria are crucial to determining
the selected articles’ quality. A quality assessment criteria
constructed based on Kitchenham and Charters [13], Genc-
Nayebi and Abran [14], and Yang et al. [15] are presented
in TABLE 3. The quality assessment is evaluated on the
responses of ‘‘Yes,’’ ‘‘No,’’ and ‘‘Partial applicable,’’ abbre-
viated as ‘‘Y,’’ ‘‘N,’’ and ‘‘P,’’ respectively.

B. CONDUCTING THE REVIEW
The article selection was carried out by applying the
mentioned search string. Initially, our search string found
758 publications from different databases between 2011 and
2021. The search results were then narrowed down to man-
ually reviewing all the articles’ titles and abstracts, resulting
from a total of 644 articles. Next, the potential articles were
filtered according to the RQs, which yielded 181 articles.
Further filtering was applied by removing irrelevant studies
according to the detailed inclusion and exclusion criteria,
as shown in TABLE 2. Additionally, the quality assess-
ment was conducted, and we chose articles that affirma-
tively respond to the nine quality assessment criteria listed in
TABLE 3. The findings indicated that most selected articles
satisfied all the quality assessment criteria. In the final selec-
tion, a total of 48 articles fulfilled all the inclusion and quality

FIGURE 1. The process of article selection.

TABLE 3. Quality assessment criteria and results of selected articles.

assessment criteria used in this literature. The article selection
processes are summarized and illustrated in FIGURE 1.

III. RESEARCH FINDINGS
This section presents and discusses the findings from the
literature review conducted in response to the RQs identified
in Section II. This section is divided into three subsections:
the first illustrates state-of-the-art metaheuristic techniques
for managing and optimizing MVI. The second subsection
discusses the experimental designs and factors affecting MVI
design. Finally, the third subsection explores the various
evaluation metrics that are used to evaluate the performance
of MVI.
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FIGURE 2. Year-wise distribution of publications relevant to studies.

A. SUMMARY OF METAHEURISTIC TECHNIQUES USED IN
MANAGING AND OPTIMIZING MISSING VALUE
IMPUTATION
This subsection mainly focuses on RQ1, which identifies
metaheuristic techniques for handling and optimizing MVI.
FIGURE 2 indicates the trend of publications over ten
years. The graph illustrates the popularity of metaheuris-
tic techniques in MVI research over time. As can be seen,
studies on metaheuristic-based MVI have experienced con-
tinuous growth since 2011 and show an emerging trend in
MVI research. The growth is apparently due to the explo-
sion of data science research involving high-quality data,
which raised researchers’ awareness of the importance of
imputation.

Next, we summarize the metaheuristic techniques
employed in handling MVI and highlight their primary ben-
efits. We have categorized the metaheuristic technologies
into three categories. The first category is a single objective
approach, followed by multi-objective and hybrid approaches
as the second and third categories. The taxonomy of meta-
heuristic approaches in handling and optimizing MVI is
shown in FIGURE 3.

From the literature, genetic algorithm (GA) has become
one of the most widely used metaheuristic approaches in
MVI tasks. Figueroa García et al. [16] used GA imputation
to estimate missing values by minimizing an error function
derived from the covariance matrix and means vector, while
Lobato et al. [17] improved GA imputation for the incom-
plete multi-attribute dataset. Recently, Awawdeh et al. [18]
performed imputation and feature selection simultaneously.
GA was used to determine the most optimal features, while
mean andmode imputations were used to fill missing numeric
and categorical features. The advantage of this approach is
that it is more tolerant of bias in MAR and NMAR miss-
ingness types. In another study, Sivapragasam et al. [19]
utilized mathematical models in genetic programming (GP)
to reconstruct missing time series rainfall data. In [20], PSO
imputation was proposed to infill missing gene expressions.
The advantages of this approach are it is simple and easy to
implement. However, the performance of the PSO imputation

cannot be generalized as it is only compared with conven-
tional imputers such as K-nearest neighbor (KNN) and row
averaging imputation at missing rates of 5%, 8%, and10%.

Formulti-objectivemetaheuristic approaches, Lobato et al.
[21] analyzed incomplete instances and modeled task infor-
mation using multi-objective GA (MOGA-II) based non-
dominated sorting genetic algorithm-II (NSGA-II) to infill
mixed-attribute datasets. Both objective functions of root
mean square error (RMSE) and classification accuracy signif-
icantly improved the imputation performances for incomplete
numeric and nominal features. On the other hand, recent
work by Khorshidi et al. [22] proposed two objective func-
tions of cluster validity function and correlation function
to enhance the existing NSGA-II. The advantages of this
approach are that it is robust and able to handle online imputa-
tion and classification simultaneously for MAR missingness
type. The proposed multi-objective particle swarm optimiza-
tion (MOPSO) approach in [23] determined the optimal
imputation algorithm based on theMCAR,MAR, andMNAR
missingness mechanisms, in which the fitness function is
adapted according to sensitivity and specificity. The proposed
MOPSO improved the imputation accuracy by 16.52% to the
delete missing, mean, expectation-maximization, multivari-
ate imputation by chained equations (MICE), and missFor-
est imputation approach. However, the shortcomings of this
approach are that it is slow, and the imputation model is more
dependent on variables than on records.

Several new methods have been proposed to improve
imputation accuracy that combines metaheuristic methods
with other techniques such as Bayesian, clustering, prob-
abilistic, and neural network. Furthermore, most studies
adopted hybrid approaches to address missing value issues.
As for the bayesian category, several studies [24]–[27] have
explored the idea of infilling MVI using the combination of
metaheuristic and Bayesian algorithms. The bayesian fitness
has the advantage of increasing the optimality of the solution.
In [28], Nekouie and Moattar improved imputation perfor-
mance using bayesian, tensor, and chaotic PSO. The approach
significantly reduced the 4% error of the tensor method for
missing numerical values and class imbalance problems.

On the other hand, some researchers combined prob-
abilities and metaheuristics approaches to estimate miss-
ing values [29]–[33]. KNN imputation was used to infill
missing values based on neighbors’ data and optimized by
GA [29] and PSO [30]. Recently, Nagarajan and Dhinesh
Babu [31] proposed a feature weighting approach that com-
bined an improved local search and whale optimization
algorithm (WOA). The advantage of this approach is that
the hybrid learned various k of nearest neighbor for dif-
ferent testing values by examining the correlation matrix
between the training and testing datasets. Moreover, the
WOA avoided local optima and converged to a better solu-
tion in final iterations. The findings indicated that missing
values were predicted more precisely and improved clas-
sification performance in electronic health records. How-
ever, this approach is inefficient in large datasets with high
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FIGURE 3. Taxonomy of metaheuristic techniques based on missing value imputation.

dimensional features. Meanwhile, Krishna and Ravi [32]
utilized a covariance matrix to reduce the error function of

PSO. The approach achieved better classification accuracy
than the hybrid K-means and multilayer perceptron (MLP)
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and produced comparable results for regression tasks. In the
time series problem, a combination of inverse distance weight
(IDW), tolerance rough set (TR), and PSO [33] was proposed
to determine the optimal influence factor value for each rec-
ognized data point in the neighboring group, thereby reducing
the error rate of the imputed time series data.

As for the clustering category, several researchers
employed the clustering method with soft computing. In [34],
Veroneze et al. proposed a combination of bi-clustering and
ant colony optimization (ACO) to deal with missing data
problems. The introduction of a bi-clustering strategy and
optimal parameter selection in this approach enhanced the
imputation quality for the missing gene expression datasets;
however, the impact of long execution times increased the
computational cost of this approach.

The works of [35] and [36] specified the use of Fuzzy
C-means (FCM) with GA by generating a matrix-based data
structure and optimizing it through a GA parameter optimiza-
tion process to improve the accuracy of missing value esti-
mation. Meanwhile, Aydilek and Arslan [37] demonstrated
that combining an optimized clustering process with support
vector training improved imputation performance. However,
higher proportions of 25% of missing data were not con-
sidered in the study. Then, Khotimah and Pramudita [38]
implemented a self-organizing map (SOM) imputation with
GA. The selection of SOM weights using GA with elite
chromosomes determined the shortest distance between the
data and the cluster centroid, resulting in a more accurate
solution for incomplete data estimation.

In FCM imputation with the PSO method [39]–[42], the
missing values can be estimated from the observed data with
different optimized weights to improve data quality. Recent
work by Hu et al. [43] presented missing values in hybrid
numeric and granular forms. It used information granulari-
ties to construct granular fuzzy models (GFM), while PSO
optimized the optimal allocation of information granularities.
The advantage of this approach is that the established gran-
ular models improved numerical value prediction accuracy
by extracting the essential target information from incom-
plete data. On the other hand, Gautam and Ravi [44] imple-
mented data imputation via a two-stage learning strategy:
the first stage was based on local learning in particle swarm
optimization-evolving clustering method (PSO-ECM), and
the second stage was based on global approximation in auto-
associative extreme learning machine (AAELM). Another
approach is the ELM+PSO+FCM proposed by Sun et al.
[45], which resulted in effective data imputation for byprod-
uct gas flow data. These studies [43]–[45] demonstrated a
positive impact on MVI accuracy, but the imputation results
were only examined at missing rates under 50%.

To provide greater accuracy in predicting numerical and
nominal missing values, the recent work in [46] extended the
existing PSO imputation approach by incorporating ontology
and K-means, where ontology eliminated irrelevant data, and
K-means accelerated PSO convergence. In addition to PSO
imputation, a fruit fly optimization algorithm (FOA) has been

proposed by [47] for solving missing time series values. First,
SOM was used to cluster the time series and obtain a simi-
larity matrix for the incomplete series. Then, this approach
employed a cross-validation procedure and FOA strategy to
determine the optimal parameter in the least-squares support
vector machine (LSSVM) for building an optimal imputation
model. In addition, Tran et al. [48] proposed an approach for
classifying missing values that integrated imputation, clus-
tering, and feature selection. The proposed clustering mini-
mized the number of instances used by imputation, whereas
differential evolution (DE) extracted relevant features of the
training data. However, removing instances may result in data
loss, and performing feature selection after initial imputation
can be time-consuming, particularly when dealing with high-
dimensional data.

Duma et al. [49] proposed a hybrid multi-layered artificial
immune system and GA to fill in missing values for insurance
datasets. In [50], the authors demonstrated that using random
forest (RF) and GA-selected predictors to estimate missing
forest inventory variables with data from target and auxil-
iary stands significantly reduced model bias. The proposed
hybrid GA and asexual reproduction optimization (ARO)
approach outperformed the mean and original GA imputa-
tion approaches by incorporating ARO imputation and GA
optimization [51].

A published work in [52] recently improved the existing
GP algorithm by designing amixed tree-vector representation
that can be used for selection and symbolic regression on
missing data. The imputation performance was improved for
medium-sized datasets; nevertheless, it was less significant
for datasets with relatively small instances (< 300), a large
number of instances (> 8191), or below missing rates of
2%. In addition, this imputer model also has the drawback
of requiring a large volume of data for training.

In [53], Ismail et al. incorporated levy flight into PSO
to improve global exploration of PSO and helped PSO to
escape from local optimum. The results indicated that sup-
port vector machine (SVM) imputation, optimized by levy
flight PSO achieved the lowest error for filling the incom-
plete creatinine data than KNN, naïve Bayes, and deci-
sion tree imputation. Gao et al. also presented a variant of
SVM-based imputation that employed LSSVM optimized by
PSO to estimate incomplete dose rate and sensor rate data
values. The results revealed that the PSO+LSSVM approach
achieved better accuracy than the LSSVM model [54].
Furthermore, Al-Helali et al. [55]–[56] proposed wrapper-
specific GP methods to improve imputation accuracy and
symbolic regression performances.

The research done in [57] implemented a hybrid GSO
and neural network system to perform missing time series
data imputation tasks, and the results demonstrated that
the approach could accurately predict incomplete traffic
flow data for urban arterial streets. The authors [59] pro-
posed a sine cosine algorithm to optimize a function-fitting
neural network to impute incomplete rainfall data. A sig-
nificant advantage of the method is that it outperformed
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TABLE 4. State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.
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TABLE 4. (Continued.) State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.
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TABLE 4. (Continued.) State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.
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TABLE 4. (Continued.) State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.

the long short-term memory (LSTM) method in imputing
time-series data at various missing rates. Recent work [60]
extended the existing sine cosine algorithm by proposing
a novel hybrid sine cosine and fitness dependent optimizer
(SC-FDO) to approximate missing rainfall data. The mod-
ified pace-updating position, random weight factor, and
conversion parameter strategies significantly improved the
searching accuracy and exploration-exploitation balance in
the proposed SC-FDO. The findings revealed that the
SC-FDO-based MLP trainer yielded higher imputation accu-
racy for low and high missing rates compared to the
sine cosine algorithm (SCA) and fitness-dependent opti-
mizer (FDO) based MLP trainer.

On the other hand, Leke et al. [58] investigated
hybrid MLP-based auto-associative neural networks with
GA, simulated annealing (SA), PSO, and RF in the
prediction and classification of missing values. The
GA+MLP, SA+MLP, and PSO+MLP algorithms outper-
formed the RF+MLP algorithm in prediction. However,
the RF+MLP algorithm outperformed the GA+MLP,
SA+MLP, and PSO+MLP algorithms for classification
problems.

In addition to that, Leke et al. explored missing values in
high dimensional datasets with the aid of deep learning (DL)
and swarm intelligence approaches such as the cuckoo search
algorithm (CS), and firefly algorithm (FA), and bat algo-
rithm. The essential advantage of proposing hybrid models
(DL-CS [61] and DL-Bat [62]) is that both models yielded
more accurate estimates than the hybrid MLP models in
[58] and DL-FA. One of the shortcomings is that it is time-
consuming to train the deep neural network. As a result, the
DL-CS and DL-Bat have higher computational time than the
hybrid MLP approaches. The work in [63] further improved
the imputer models of [61], [62] by proposing the hybrid DL
and gravitational search algorithm (DL-GSA). The DL-GSA
[63] outperformed the DL-CS [61] and DL-Bat [62] with
higher accuracy and shorter computational time. A relative
comparison ofmetaheuristic techniques for dealingwithMVI
is presented in TABLE 4.

B. EXPERIMENTAL DESIGNS
This subsection focuses on the RQ2 that identifies the exper-
imental designs used for imputation. The three aspects to
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FIGURE 4. Distribution of studies based on the number of used dataset.

consider when dealing with missing data: are the dataset
characteristics, missing mechanisms, and missing rates.

1) DATASET CHARACTERISTICS
TABLE 5 summarizes the datasets and the state-of-the tech-
niques used in the selected articles. From the 133 datasets
shown in TABLE 5, 88 % of the datasets are publicly avail-
able, while a total of 16 datasets is real-world datasets from
industry or agency sources. The findings revealed that the
UCI Machine Learning Repository was the most often used
dataset over the last ten years, followed by OpenML and
Keel. Of all the UCI datasets used here, iris, forest fires, Pima
Indian, and wine datasets are the most used datasets. How-
ever, the famous databases are on a small scale, containing a
number of feature dimensions of less than 15 and the number
of instances less than 800.

FIGURE 4 further shows the distribution of studies accord-
ing to the number of the used dataset. As illustrated in
FIGURE 4, nearly 41.7% of the articles used a minimum
of one dataset, while others utilized multiple datasets. The
number of datasets used in comparing algorithms varied from
one to 15 datasets.

2) MISSING MECHANISMS
From the findings, missingness can be grouped into two
categories: real missing and synthetic missing datasets. A real
missing dataset has the original missing data values, which
it does not include any synthetic or artificial missing ratios
in the dataset. A synthetic missing dataset contains artifi-
cial missing ratios that have been inserted into the dataset
according to the missing mechanisms. Nearly 79.2% (38/48)
of studies in the last decade used synthetic datasets to eval-
uate imputation performance, while only 8.3% (4/48) used
real missing datasets. However, four studies using synthetic
datasets did not clarify the missing mechanism, and six stud-
ies did not report on the missing dataset category.

Among the synthetic missing datasets, MAR missing
mechanism is the most popular mechanism, with 13 stud-
ies accounting for 27.1% (13/48) of the studies, followed
by MCAR (20.8%, 10/48), MCAR+MAR (12.5%, 6/48),

FIGURE 5. Distribution of studies based on the type of missing
mechanism.

MCAR+MAR+MNAR (10.4%, 5/48). At the same time,
the least attention is paid to MNAR missing mechanism.
Although the MAR mechanism is the most famous, gener-
ating missing values with the MAR pattern has been the most
complex [18], [67].

A closer analysis revealed that approximately half of the
studies (23/48) employed only one missing mechanism in
their research, whereas 22.9% (11/48) used numerous miss-
ing mechanisms. In the missing mechanism investigations,
Rajappan and Rangasamy [27] discovered that all the datasets
with MAR missingness have a higher classification accuracy
than the imputation of MCAR and MNAR missingness for
all the missing rate cases. Similarly, the studies were done
by [31], [33], [49] revealed that the proposed techniques
produced superior performance in most cases when the miss-
ing data was MAR rather than MCAR. The reason is that
the datasets with MAR missingness have a set of defined
covariates, and the missing values can be filled in based on
these covariates. As there are no defined covariates inMCAR,
the missing values must be estimated using the approximate
values. In addition, dealing with the MNAR mechanism is
challenging and complex [27], [67], which led to the lowest
amount of attention in theMNAR investigation. The rationale
for the slightest attention to MNAR missingness is that no
other feature has a defined influence on the missing values.
Thus, careful design of the MNAR missingness is crucial
to obtaining unbiased imputation performance. A detailed
distribution of the studies based on the missing mechanism
is depicted in FIGURE 5.

3) MISSING RATES
The missing rates used in the experiment can be divided into
three categories: missing rates <= 30%, missing rates under
30% – 50%, and missing rates > 50%. FIGURE 6 shows the
distribution of studies based on the missing rates. According
to the findings, the dataset with missing rates <= 30% cate-
gory is the most frequently used missing rate for experimen-
tation in the studies (45.8%), followed by 25% of the studies
designed to impute missing rates under 30% – 50% category.
However, nearly 14.6% of the studies did not reveal their
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TABLE 5. Benchmark datasets and their state-of-the-art techniques.
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TABLE 5. (Continued.) Benchmark datasets and their state-of-the-art techniques.
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TABLE 5. (Continued.) Benchmark datasets and their state-of-the-art techniques.

FIGURE 6. Distribution of studies based on missing rates.

missing rates for the experimentation. The works in [40], [41]
used the Framingham heart dataset with real missing values,
but the authors did not disclose the dataset’s missing values.

Nevertheless, the missing rates greater than 50% category
received the least attention, accounting for 14.6% (7/48) of
the studies. The detailed metaheuristic techniques for dealing
with high missing rates are presented in TABLE 6. The tech-
niques include ACO clustering for imputing gene expression
database [34], GA imputation for infilling missing multi-
attribute dataset [17], MOGA-II proposal for estimating
missing data patterns in classification [21], data imputation
of spatio-temporal underground water [47], DE clustering
and feature selection with incomplete data [48], GP+tree
vector imputer model for instance selection and symbolic
regression on incomplete data [52], and SC-FDO based
MLP trainer for missing rainfall time series imputation [60].
In general, all the proposed approaches produced comparable
results for the MVI tasks. Moreover, most studies investi-
gated high missing rates under MCAR or MAR mechanism.
6 out of 7 studies employed small-scale datasets of less
than 10,000 instances among these imputation techniques.
On the other hand, the work [60] utilized a large-scale dataset
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TABLE 6. State-of-the-art metaheuristic techniques for dealing with high missing rates.

(over 10,000 instances) to fill in gaps for missing rainfall
data.

To sum up, the MVI studies need to be addressed from
the three aspects: the study’s dataset characteristics, missing
mechanisms, and missing rates, as illustrated in FIGURE 7.

C. EVALUATION METRICS
To answer RQ3, this subsection identifies the most often used
metrics for evaluating the MVI’s performances.

As illustrated in FIGURE 8, the nine most frequently used
metrics for evaluating the performance of MVI were identi-
fied as the root mean square error (RMSE), accuracy, correla-
tion coefficient (R), mean square error (MSE), mean absolute
error (MAE), error, mean absolute percentage error (MAPE),
relative accuracy (RA), and specificity. Furthermore, 70.3%
of the selected studies used thesemetrics.Many of themetrics
are rarely used by the authors; therefore, these metrics have
been categorized as ‘Others’.

The RMSE is the most frequently used metric for eval-
uating imputation performance, mainly to measure the
differences between the predicted variables and the actual

variables. For example, the works in [19], [20], [33], [36],
[45], [46], [59], [60], to name a few, implemented this metric
to determine how concentrated the predicted time series vari-
ables would be around the line of the actual variables. This
metric is widely reported in time series imputation literature,
such as missing rainfall, groundwater level, traffic volume,
byproduct gas flow, and radiation dose rate data. Nagarajan
and Dhinesh Babu [31] also used this metric to measure the
performance of imputation related to missing health datasets.

Other than that, accuracy is used to measure the perfor-
mance of the imputation method with respect to classifier
accuracy [17], [23], [27], [28], [40], [41], [48], [49]. The
MOGA-II imputer [21] achieved an accuracy of 82.9%, out-
performing the GA imputer [18] and GA+ARO imputer [51]
when handling missing values for the pima Indian dataset.
Moreover, using the naïve Bayes classifier, the GA+ARO
imputer [51] achieved the highest accuracy of 85% compared
to GA imputer at 83.07% [17], and DE clustering imputer at
80.82% [48] for the missing mammographic masses dataset.
Another standard metric is the error for summarizing the
performance of imputation and classification models. For
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FIGURE 7. Factors affecting missing value imputation.

FIGURE 8. Commonly used metrics in the studies.

example, researchers adopted error metric to measure the
classification errors of the proposed imputation models in the
missing iris dataset [22], [35], [39], poker hand dataset [24],
[26], website phishing dataset [25] and health datasets [31].
On the other hand, RA is an indicator of how many esti-
mations fail within a standard range [36], [37], [45], [61],
[62], while specificity (also true negative rate) refers to the
proportion of sample without the condition but obtained a
negative result [18], [23], [28], [43].

The R metric assesses the linear correlation between
predicted and actual values. A higher R-value implies a
better imputation performance. The works of [19], [36],
[54], [58]–[60] used R to assess the correlation and associ-
ation of the predicted and actual values for infilling missing
values in the river basin, weather, and traffic volume, and for-
est fire datasets.MSE is anothermetric for assessing themean
squared difference between predicted and actual values. For
example, Garg et al. [63] measured their proposed DL-GSA
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imputation with the works in [61] and [62] in terms of R
and MSE. The results revealed that the DL-GSA imputation
method produced more substantial correlation results and
lowerMSE than the works in [61] and [62]. Some researchers
also adoptedMAE to measure the proposed imputation meth-
ods in terms of the average magnitude of the errors for
continuous variables [53], [58]–[60].

Nevertheless, the shortcoming of the MAE metric is that it
does not consider the direction of the mean error. As opposed
to this shortcoming, Willmott [68] suggested that comparing
average model performance error should use MAE because
MAE is a natural measure of average error magnitude.
In some instances, MAPE is essential to assess the prediction
accuracy of the imputationmodels. Zhang [57] usedMAPE to
evaluate imputation results in missing spatio-temporal data.
Concerning MAPE, the PSO-ECM+AAELM imputer [44]
outperformed the PSO+covariance matrix imputer [32] for
all 12 datasets, such as autompg, body fat, boston hous-
ing, forest fires, iris, pima Indian, Spanish, spectf, Turkish,
UK bankruptcy, UK credit, and wine datasets.

IV. DISCUSSION
This section discusses the research trends and potential
opportunities in the metaheuristic approach for handling and
optimizing MVI.

A. THE MVI APPROACHES
In reference to the RQs, which attempt to identify the existing
metaheuristic techniques used for handling and optimizing
MVI, it can be revealed that most techniques used to handle
missing values were hybrid metaheuristics with clustering
or neural networks. Each of the hybrids has characteristics
that make it a good fit for a particular problem. For exam-
ple, the hybrids of deep-autoencoder and metaheuristics pro-
vide good results in imputing high-dimensional handwritten
digits. In particular, the DL-GSA [63] imputer model was
faster and more accurate than the DL-CS [61] and DL-BAT
[62]. However, the computational times of the hybrids MLP
and metaheuristics (GA+MLP, SA+MLP, and PSO+MLP)
[58] were relatively shorter than the DL-GSA, DL-BAT, and
DL-CS approaches.

On the other hand, the work in [59] indicated that the
hybrid function of fitting neural network and metaheuris-
tic (SC-FITNET) yielded more accurate estimates than the
LSTM imputermodel formissing rainfall data whenR,MAE,
and RMSE were taken into account. Therefore, selecting the
suitable imputer model best suited for the incomplete datasets
is essential. Additionally, the hybridization of the state-of-art
metaheuristic and neural networks could be of interest to the
researchers, therefore providing new studies.

B. FINE TUNING HYPERPARAMETER
Typically, researchers perform a series of studies to fine-
tune parameters in imputer models, which requires consider-
able effort. For instance, metaheuristic parameters [24]–[26],
such as the population size and the iteration count, require

fine-tuning; parameters in neural network models [61]–[63]
are the number of hidden layers in the neural network and
the number of neurons in the hidden layer; and parameters
in clustering [39] such as the fuzzification parameter, the
number of clusters, and the number of nearest neighbors all
require fine-tuning.

Consequently, several studies [69]–[71] investigate auto-
matic parameter tuning methods to optimize the algorithm’s
performance. However, there is no universally accepted
guideline for selecting the optimal set of parameters to
achieve the best performance. Therefore, future research
could consider a semi-automatic or automatic parameter tun-
ing approach for a given context and domain in the imputer
model.

C. THE DATASETS
The most often used databases show various domain datasets;
however, they are not on large scales, such as iris, for-
est fires, pima Indian, and wine datasets. In contrast, large
scale datasets (over 10, 000 instances) were used in the
works of [26], [27] (discrete, continuous data type), and [59],
[60] (continuous data type). Meanwhile, handwriting digit
datasets with high dimensions and scales [61]–[63] were
used.

Dataset scales (the number of instances) in a dataset influ-
ence the imputation performance. Data resources with few
instances may cause imputed values to be underestimated or
overestimated. For example, neural networks, especially deep
learning algorithms, need many data to improve accuracy.
Therefore, researchers must expand the size of the databases,
as small-scale datasets can lead to biases and a lack of
generalization. Furthermore, training on a large-scale and
high-dimensional dataset is difficult due to computational
complexity. Hence, dimensionality reduction approaches can
help reduce computational costs and improve the accuracy of
imputation performance.

On the other hand, imputation models [52] built on a rela-
tively small number of instances (<300) or a large number of
instances (>8191) were ineffective and inaccurate. For this
reason, researchers need to comprehend the requirements in
both the problem and solution domains before proposing an
imputer model.

Furthermore, less attention has been paid to real-world
datasets from industries or agencies. Therefore, real-world
datasets from industries or agencies with larger scales (over
10000 instances) and higher dimensions might be the areas
worth exploring by future researchers.

D. THE MISSING MECHANISMS
The approaches to handling incomplete data are associated
with the missing mechanisms. MAR and MCAR are the two
most frequently used for evaluating imputation performance
among the missing mechanisms. However, the MNAR miss-
ing mechanism receives the least attention.

Domain-based imputation approaches are developed to
deal with the problem of incomplete data. It is not envisaged
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that some features are missing for all patients in medi-
cal datasets. In real-life cases, some features may be miss-
ing by certain patients [49], [53], [72] in medical datasets.
The occurrence of the missingness pattern depends on the
observed values of other features in the dataset. For example,
the salary feature for professional patients and the number
of cigarette features for young patients are likely to be miss-
ing. In this case, the MAR and MNAR missing mechanisms
are appropriate for evaluating imputation performance on
incomplete medical datasets. While in weather datasets, it is
expected that a particular feature, for example, rainfall fea-
ture [59], there may be a possibility of missing for all days
when hardware failure occurs at a specific gauging station.
However, the missing rainfall feature of one gauging station
does not influence the other gauging stations. For this reason,
the MCAR missing mechanism is appropriate for evaluating
the incomplete rainfall datasets. Therefore, a domain-based
imputation approach and missing mechanism for a given con-
text should be investigated further to improve the adaptability
and accuracy of the imputation models.

E. THE MISSING RATES
The ability of imputer approaches to handle complexity is
tested using different percentages of missing values. Most
studies reported that at lower missingness, the performances
ofMVI are relatively better. Imputation errors increasedwhen
missing rates increased, for examples in [22], [24], [25],
[28], [33], [34], [45], [46]. In addition, the percentages of
missingness greatly influenced the work in [26], [35].

The findings also indicated that synthetic datasets with
missing rates less than 30% are the most frequently used
missing rates for experimentation in studies (45.8%), while
only 14.6% of the studies considered missing rates greater
than 50%. However, the missing rates could be larger than
50% in real-world problems. Therefore, this SLR suggests
designingMVImethods that can deal with low and highmiss-
ingness problems, for example, missing rates of 10% - 90%.
These findings also agree with other work [10] that impu-
tation studies with more significant missing rates would be
more practical.

F. THREATS TO VALIDITY
Four potential threats to validity should be considered to sup-
port the findings of this SLR: construct, internal, external, and
conclusion validity. To achieve maximum construct valid-
ity, we conducted this literature review following Kitchen-
ham’s guidelines [13] and performed analyses in response
to research questions, quality assessment, and inclusion and
exclusion criteria. However, the relevance of various terms
associated with the missing could constrain our findings.
We attempt to maximize internal validity by applying all
missing terms associated with imputation techniques and
datasets as described in TABLE 4 and TABLE 5. In this study,
we emphasize MVI designs and methods of metaheuristic
techniques exclusively, holding the other paradigms for future
research. Additionally, we seek to maximize internal validity

by employing an exhaustive manual and automated search
strategy to ensure the paper selection was unbiased. Fur-
ther, external validity considers whether our findings can
be generalized to other studies. Finally, data extraction was
carried out to ensure the conclusion’s validity by adhering
to the review protocols, including the research questions,
quality assessment, inclusion criteria, search strategy, and
study selection [15]. Other review protocols could increase
or decrease research bias and lead to different findings.

V. CHALLENGES IN IMPLEMENTING MISSING VALUE
IMPUTATION DESIGNS AND METHODS
There will be challenges with any new research method,
especially in identifying the appropriate approaches for a
wide range of research questions and experimental designs.
Careful planning and consideration are required to reduce the
impact of missing values and improve data quality. The fol-
lowing section discusses some roadblocks to implementing
the MVI and the tentative guidelines.

A. IMPUTATION PERFORMANCES AND COMPUTATIONAL
COST
One of the significant MVI challenges is the expensive
computational time, especially with large-scale and high-
dimensional datasets. Data normalization, feature selection,
or feature extraction can be employed to reduce the com-
putational cost. For example, [48] demonstrated that feature
selection significantly reduced the computational time of
imputation while improving the imputation and classification
accuracy.

B. UNPLANNED MISSING VALUE
Data with missing values were removed in [73]–[75]. The
works in [3], [76], [77] also removed missing time-series data
from experiments. However, it is important to note how the
authors dealt with the records’ continuity because accurate
forecasting relies on continuous time-series records. Further-
more, Hussain et al. [78] reported that many missing data
entries made it challenging to impute the electric power con-
sumption data accurately. Only 60.11%of the total consumers
with null entries lower than 200 were considered for MVI,
whereas 39.89% of the customer records were removed from
the experiment. However, removing missing values from
observations results in a reduction in sample representative-
ness. The effects of unintentional missing values can induce
biases in parameter estimates and uncertainty, which can be
mitigated by adopting an effectiveMVI procedure and design
plan.

C. OPTIMAL MISSING VALUE IMPUTATION APPROACHES
The MVI has been applied in a diverse range of applica-
tions, including traffic control and operation [36], insur-
ance management [49], student information [16], biomedical
informatics [20], [23], [31], [33], [46], byproduct gas flow
data analysis [45], forest inventory [50], and hydrological
modeling [19], [47], [59], [60]. This study also revealed
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FIGURE 9. A guide to addressing, managing, and reporting the missing value imputation studies.

no definitive answer on which method is the best to date
for all the missingness. The adoption of MVI approaches
depends on many factors: data characteristics, missingness
mechanisms, the proportion of missing values, dependent and
independent variables, dataset volume, computational time,
and domain applications.

Consequently, the existing reports of MVI studies are of
great worth assisting future researchers in developing an
effectiveMVI strategy. However, 14.6% of the studies did not
report missing rates, whereas 20.8% of the studies (10/48) did
not clarify the missingness mechanism. This information is
a valuable factor when planning for the experimental design
of MVI. Therefore, an overview of the recommended guide-
lines in addressing, managing, and reporting MVI studies is
outlined in FIGURE 9.

TheMVI strategic planning process begins with the collec-
tion of incomplete datasets. It is crucial to identify the three
main aspects of incomplete datasets: dataset characteristics,
missing mechanisms, and missing rates. The next step is the
selection of MVI approach. Having a clear justification of
the chosen strategy, the potential impact of imputation, and
computational cost are crucial to the success of MVI method.
Without a clear direction, the MVI strategy may stall or even
fail. Data normalization, feature selection, or feature extrac-
tion method could be considered to improve the performance
of the MVI approach.

Researchers can then use complete or incomplete training
datasets to construct optimal imputer models. The incom-
plete dataset can be a real missing or synthetic missing
dataset. Training and testing dataset design, variables with
missing data, missing rates, missing mechanism, and dataset
characteristics should be thoroughly reported. Researchers
should train the imputer models on one dataset and test them

on another dataset to verify the robustness of the proposed
imputer models. A set of performance metrics is used to
measure the effectiveness and efficiency of the MVI method.
The commonly used metrics are RMSE, accuracy, R, MSE,
and MAE. Statistical analysis such as Wilcoxon signed-rank
test [21], [32], Wilcoxon rank-sum test [37], and Friedman
test [21] can be performed to assess the significance of
the proposed MVI approach. Finally, we suggest that the
researchers report the three factors affecting MVI in detail
(dataset characteristics, missing mechanisms, and missing
rates), training and testing procedures, measurement metrics,
and the findings of the studies.

Additionally, the reporting could couple with the discus-
sion of the impact and challenges of the MVI, which will
increase the overall confidence in the study. The planned
MVI procedures and strategies can raise statistical power and
model convergence compared to employing a complete case
analysis [79]. Preparing for missing values before starting an
experiment can also help avoid the problems of nonrandom
missing data, leading to significant bias and invalid statis-
tical inferences [2], [80]. Furthermore, researchers can use
the planned MVI design in conjunction with missing data
procedures to increase the quality and scope of the study and
lower research costs. Researchers might minimize the study
cost by strategically implementing an effective MVI design.

VI. CONCLUSION
In recent years, MVI for incomplete datasets has grown
in popularity to improve data quality, statistical power and
reduce bias in data science applications. In this study,
we conducted a SLR to examine the existing metaheuristic
techniques used for handling and optimizing missing value
imputation over the last ten years. This SLR is also concerned
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with establishing guidelines for researchers in the domain to
understand MVI technologies and designs better. This study
concentrated on threemajor scientific databases: IEEExplore,
ScienceDirect, and Scopus. The findings of this SLR revealed
that the hybridizations of metaheuristics with clustering or
neural networks are the most used MVI approaches. The
review indicates that the hybrid metaheuristic is a promising
field of study for solving various imputation problems. Addi-
tionally, we discovered that the synthetic missing dataset is
the most frequently used incomplete dataset for evaluation,
and RMSE is the topmost used metric for evaluating the per-
formance of the proposed MVI. The three aspects to consider
when handling missing data are the dataset characteristics,
missing mechanisms, and missing rates. This review also
addresses MVI perspectives, challenges, and opportunities.
An optimal imputer technique by domain-based approaches
should be investigated further. However, designing a planned
MVI design and method to expand the quality of study scope
remains a significant challenge. Therefore, the literature pro-
vides an overview of recommended guide for planning MVI
designs and methods, which serve as a toolkit for developing
an effective MVI strategy.

APPENDIX
Acronym Full form
AAELM Autoassociative extreme learning

machine.
ABC Artificial bee colony.
ACO Ant colony optimization.
ARO Asexual reproduction optimization.
BAT Bat algorithm.
CS Cuckoo search.
DE Differential evolution.
DL Deep learning.
ECM Evolving clustering method.
ELM Extreme learning machine.
FA Firefly algorithm.
FCM Fuzzy C-means.
FDO Fitness dependent optimizer.
FOA Fruit fly optimization algorithm.
GA Genetic algorithm.
GFM Granular fuzzy models.
GMSA Gaussian mutation simulated annealing.
GP Genetic programming.
GSA Gravitational search algorithm.
GSO Group search optimization.
IDW Inverse distance weight.
KNN K-nearest neighbor.
LAHCAWOA Late acceptance hill climbing

algorithm+whale optimization
algorithm.

LSSVM Least squares support vector machine.
LSTM Long short-term memory.
MAE Mean absolute error.
MAPE Mean absolute percentage error.
MAR Missing at random.

MCAR Missing completely at random.
MICE Multivariate imputation by chained

equations.
MAIS Multi-layered artificial immune system.
MLP Multilayer perceptron.
MNAR Missing not at random.
MOGA-II Multi objective genetic algorithm-II.
MOPSO Multi objective particle swarm

optimization.
MPSO Memetic particle swarm optimization.
MSE Mean square error.
MVI Missing value imputation.
NSGA-II Non-dominated sorting genetic

algorithm-II.
PSO Particle swarm optimization.
R Correlation coefficient.
RA Relative accuracy.
RF Random forest.
RMSE Root mean square error.
RQ Research question.
SA Simulated annealing.
SCA Sine cosine algorithm.
SC-FDO Sine cosine-fitness dependent optimizer.
SC-FITNET Sine cosine function fitting

neural network.
SLR Systematic literature review.
SOM Self-organizing map.
SVR Support vector regression.
TR Tolerance rough set.
WKNN Weighted K-nearest neighbor.
WOA Whale optimization algorithm.
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