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Abstract

Long Range Dependence (LRD) in functional sequences is characterized in the spectral
domain under suitable conditions. Particularly, multifractionally integrated functional
autoregressive moving averages processes can be introduced in this framework. The
convergence to zero in the Hilbert-Schmidt operator norm of the integrated bias of
the periodogram operator is proved. Under a Gaussian scenario, a weak-consistent
parametric estimator of the long-memory operator is then obtained by minimizing, in
the norm of bounded linear operators, a divergence information functional loss. The
results derived allow, in particular, to develop inference from the discrete sampling
of the Gaussian solution to fractional and multifractional pseudodifferential models
introduced in Anh et al. (Fract Calc Appl Anal 19(5):1161-1199, 2016; 19(6):1434—
1459, 2016) and Kelbert (Adv Appl Probab 37(1):1-25, 2005).
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1 Introduction

One can find evidence of Long Range Dependence (LRD) in time series data arising
in several areas like agriculture, environment, economics, finance, geophysics, just to
mention a few. Indeed, a huge amount of literature on this topic has been developed over
the last few decades (cf., [6, 8, 18, 30, 35]). This framework allows the description of
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processes with long persistence in time. In the stationary case, LRD is characterized by
a slow decay of the covariance function, and an unbounded spectral density, typically
at zero frequency. In the real-valued process framework, we refer to the reader to the
papers [1, 4, 16, 17, 19, 21, 25, 36], among others.

Special attention has been paid to the self-similar asymptotic behavior of the
second-order moments of the Gaussian solution to fractional and multifractional linear
pseudodifferential equations (see, e.g., [2, 3, 22]). Particularly, the analysis of LRD
phenomena in an infinite-dimensional framework is a challenging topic where sev-
eral problems remain open. Only a few contributions can be found on this topic in
functional processes. That is the case of time-varying isotropic vector random fields
on the sphere introduced in [28], that were also analyzed by [27] in the framework of
compact two-points homogeneous spaces.

On the other hand, LRD in functional sequences is characterized by the non-
summability in time of the nuclear norms of the associated family of covariance
operators. In the linear case, a variable-order fractional power law usually character-
izes the asymptotic behavior in time of the norms of the functional parameters, given
by bounded linear operators. That is the case of the approaches in the current litera-
ture based on operator-valued processes. A fractional Brownian motion with values
in a Hilbert space, involving an operator-valued Hurst coefficient, is considered in
[33] (see also [32] on the functional analytical tools applied). In [14], a central and
functional central limit theorems are obtained under non-summability of the operator
norm sequence. The limit process in this functional central limit result is a self-similar
process, characterized by an operator defining the self-similarity exponent. Note that
the LRD models introduced in these papers in the linear setting are characterized and
analyzed in the time domain. Recently, in [15], for LRD linear processes in a separable
Hilbert space, a stochastic-integral based approach is adopted to representing the lim-
iting process of the sample autocovariance operator in the space of Hilbert—Schmidt
operators.

A semiparametric linear framework has been adopted to analyze LRD in functional
sequences in [26]. The functional dependence structure is specified via the projec-
tions of the curve process onto different sub-spaces, spanned by the eigenvectors of
the long-run covariance function. A Central Limit Theorem is derived under suit-
able regularity conditions. Functional Principal Component Analysis is applied in the
consistent estimation of the orthonormal functions spanning the dominant subspace,
where the projected curve process displays the largest dependence range. The mem-
ory parameter and the dimension of the dominant subspace are estimated as well. The
conditions assumed are satisfied, in particular, by a functional version of fractionally
integrated autoregressive moving averages processes. Some interesting applications
to US stock prices and age specific fertility rates are also provided.

As follows from the above cited references, the spectral domain has not been
exploited yet in the formulation and estimation of LRD in stationary functional time
series. Furthermore, LRD functional time series models have mainly been introduced
in the linear setting. Our paper attempts to cover these gaps. To this aim, the spec-
tral representation of a self-adjoint operator on a separable Hilbert space, in terms of
a spectral family of projection operators, is considered. Suitable conditions are then
assumed on the symbol defining such a representation, for the spectral density operator
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family at a neighborhood of zero frequency. Specifically, the behavior of the spectral
density operator at zero frequency is characterized by a bounded symmetric posi-
tive operator family, whose operator norm slowly varies at zero frequency, composed
with an unbounded operator at zero frequency involving the long-memory operator.
The corresponding covariance operator family displays a heavy tail behavior in time as
proved in Proposition 1. As an interesting special case, we refer to a family of fraction-
ally integrated functional autoregressive moving averages processes of variable order
(see also Remark 9 in [26]). Several additional examples can be found by tapering, in
the frequency domain, the symbols of the spectral density operator family, associated
with infinite-dimensional stationary LRD processes in continuous time. Particularly,
we consider the case of fractional integration of variable order of functional processes
with rational spectral density operator (see, e.g., [2, 3, 22]). The convergence to zero,
in the Hilbert—Schmidt operator norm, of the integrated periodogram bias operator
is derived, under the square integrability in the frequency domain of the Hilbert—
Schmidt operator norm of the spectral density operator family. This condition holds
under mild conditions, in our case, under the second-order property of the functional
process, assuming the integrability in the frequency domain of the operator norm of
the spectral density operator family. The weak consistency of the proposed parametric
estimator of the long-memory operator then follows in the Gaussian case, extending
Theorem 3 in [4].

Note that the parametric estimation approach in the spectral domain has not been
exploited yet in the functional time series context. Under short-range dependence
(SRD), [31] adopts a nonparametric framework. Specifically, a weighted average of
the functional values of the periodogram operator is considered as an estimator of
the spectral density operator. This methodology is not applicable when one wants
to approximate the behavior of the spectral density operator at zero frequency in the
presence of LRD. In this paper, we consider a parametric estimator of the long-memory
operator, computed by minimizing the operator norm of a weighted Kullback—Leibler
divergence operator. This operator compares the behavior at a neighborhood of zero
frequency of the true spectral density operator, underlying to the curve data, with the
possible semiparametric candidates. On the other hand, this functional is linear with
respect to the periodogram operator. This is an important advantage of the proposed
estimation methodology in relation to nonparametric kernel estimation.

The outline of the paper is the following. Preliminary definitions, results and
first conditions are established in Sect. 2. The main assumptions are formulated in
Sect. 3. Under this setting of conditions, LRD is characterized in the functional spec-
tral domain. The heavy tail behavior in time of the associated covariance operator
family is obtained in Proposition 1. Some examples are provided as well. In Sect. 4,
the convergence to zero of the Hilbert-Schmidt operator norm of the integrated bias
of the periodogram operator is proved in Theorem 1. Under a Gaussian scenario, The-
orem 2 in Sect. 5 derives the consistent parametric estimation of the long-memory
operator in the functional spectral domain. Some final comments are given in Sect. 6.
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2 Preliminaries

In what follows, (2, A, P) denotes the basic probability space. Let H be a real sep-
arable Hilbert space with the inner product (-, -)y , and H = H + i H, its complex
version, whose elements are functions of the form

V=91 +ig, ¢ €H, i=12.
Its inner product is given by

(o1 +ipa, d1 +ign) g
= (o1 o)y — (92, )y +i ((02. 010
+ (o1, ¢2)p) - (2.1)

Recall that £2 (2, A, P) denotes the space of second-order zero-mean H-valued
random Vanables on (2, A, P), with the norm || X ||? = E[||X||2ﬁ], for every

X € L5(Q, A, P).
In the following, fix an orthonormal basis {¢;, k > 1} of H, and consider

LZ (Q2,A,P)

e = A/ [gr +igil, k= 1}, (2.2)

as an orthonormal basis of H. All the subsequent identities involving operator norms
can be expressed in terms of such an orthonormal basis, allowing the interpretation
of H as a closed subspace of H. Particularly, the nuclear |||, 1 (i) » and the Hilbert—

Schmidt [|-[[ g /) Operator norms on H are defined as follows:

Ay = D2 ([AA] 2 o va)
k>1
172

IAlls, = | DA AW, ¥)z

k>1
\/ ”A*A”Ll(ﬁ) 5 (23)

with {y, k > 1} being an orthonormal basis of H as given in (2.2).
We denote by || - || £ the norm in the space of bounded linear operators on

H,ie., IAllz i) = SuPy e y =1 IM@)| 5. This norm is also usually referred as
the operator norm (or uniform operator norm). Through the paper we consider the
equality between operators on H (respectively, on H) in the norm of the space L(H )
(respectively, of the space L(H)) implying the pointwise identity of such operators
over the functions on H (respectively on H). Otherwise, the norm with respect to
which the identity considered holds is established.
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For simplicity of notation, in the subsequent development, the letter K will refer to
a positive constant whose specific value may vary from one to another inequality or
identity.

Let {X;, t € Z} be a strictly stationary functional time series with zero mean
E[X,] = 0, and functional variance o3 = E[|X,[|3,]1 = E[IXol%] = IRoll 11z
for every t € Z. Also,

R[ZE[XS+t®XS]=E[Xt®XO], VI,SGZ,
Ri()(h) = E[Xs+,(WXs(&)] = E [(Xs1t, By (X5, &) ], Vh,g € H.
(2.4)

Note that, E[||Xo||%,] < oo implies P[X; € H] =1, forall € Z.
Let F,, be the spectral density operator on H, defined by the following identity in
the L(H) norm, for w € [—m, w]\{0} :

. 1
@ L(H) 27

> exp(—iwn) R;. (2.5)

teZ

Remark 1 In [31], convergence of series (2.5) holds in the nuclear norm for SRD
functional sequences. Here, a weaker convergence is assumed. Indeed, identity (2.5)
could hold for w € [—m, m]\ Ao, where on dw = 0. In our case, Ag = {0} for the
characterization of LRD in Assumption II below.

For simplicity, in the following, we will omit the reference to the set [, ]\ Ao,
when the identities hold almost surely in the frequency domain. That is the case of
the identities for a spectral density operator family involving an unbounded spectral
density operator at zero-frequency (see Eq. (3.1) below).

The functional Discrete Fourier Transform (fDFT) X of the functional data
{X;, t =1,..., T}is defined as

T
)?C(UT)(') E 2171T ; X:()exp(—iwt), we[—m ], (2.6)

where = denotes the equality in H norm. Hence, X c(,)T) is 2w -periodic and Hermitian
H
with respectto w € [—m, 7].

Remark 2 Under the condition E[|| X 0||12q] < 00, applying triangle inequality,

T
~ 1
E[IRD 1] = 5= Y EIX Ol < oo
t=1

for every w € [—m, m]. The fDFT ié,” defines a random element in H , and

P [}?;T)(-) c ﬁ] — 1.Hence, 7' = E [}?}f) ® fiff)} e L'(H), forw € [-7, 7].
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The periodogram operator pfoT) =X C(L,T) X C(,)T) is an empirical operator, with mean

E[pL(UT)] = E[ig) ® )?&Taz] = fO(JT). Particularly, under (2.5), for any T > 2, the
following identity holds in L(H) :

T T

2nT t=1 s=1
T-1
I T —
- — 3 exp(—iou) %Ru. 2.7
u=—(T-1)

Let Fr be the Féjer kernel, given by
1 T T
Fr(w) = — D> exp(—it —s)w), wel-mal, T =2 (2.8)

t=1 s=1

Applying the Fourier Transform Inversion Formula in the space L(H), from Egs. (2.7)
and (2.8), foreach w € [—m, 7],

FD = [Fr + Fo] (w)

/ﬂ Fr(w—&)Feds, T >2. (2.9)

2.1 Preliminaries on spectral analysis of self-adjoint operators

This section presents some preliminary elements on spectral theory of self-adjoint
operators on a separable Hilbert space (see, e.g., [12], pp. 112-140).

It is well-known that, for a self-adjoint operator D on a separable Hilbert space H,
there exists a family of projection operators {E;, A € A C R}, also called the spectral
family of D, such that the following identity holds:

D:/ A E;. (2.10)
A

This family of projection operators satisfies the following properties:
) EvE, = Einfp )
(i) limg_,;. 55, B = Ej;
(iti) lim;_, _oo Ex = 0; lim; . E; = I, where I denotes the identity operator
on H.
(iv) The domain of D is defined as

Dom(D) = {h cH: / \M2d (E;.(h), h) j < oo}. 2.11)
A
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(v) A continuous function G (D) admits the representation
G(DD) = /A G(A\)E,, (2.12)
and
Dom(G (D)) = {h €H: /1\|G(A)|2d (Ex(h),h) g < oo}.

The operator integrals (2.10) and (2.12) are understood as improper operator
Stieltjes integrals which converge strongly (see, e.g., Section 8.2.1 in [34]). Let
A= (a,b],—00<a<b<oo, Ep :=E, — E,.

The family Ez of self-adjoint bounded non-negative operators from the Borel
sets A C R into the space L(I-I ) of bounded linear operators on a Hilbert space
H is called an operator measure if

oo
Flomn] = &5

where the limit at the right-hand side is understood in the sense of weak-
convergence of operators, with A; NA; =, i # j, Eg =0.

From (iii), for every g, h € ﬁ,

/Ad(E,\(g),h)ﬁ =(g, hg

fAd<EA<h>,h>,; = Ihl% . (2.13)

Thus, {E;, 2 € A C R} provides a resolution of the identity. N
Note that, from (2.10) (see (i)—(v)), for every v € Dom(D) C H,

ID@HI% = (D), DW)) 5
= (DD(W). ¥)

= /A IM2d (Ex (W), ¥) 7

([ (s Jorv), = {[(Lra )] w10},

(2.14)
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IfDe E(ﬁ), hence, Eq. (2.11) holds for every ¥ € H., and from (2.14),

2

D — d
o a5 )

i

=<D<w>— /A AE;(§), DY) — /A )»dE)\(W)>

7
=/|)»|2d<EA(1!f),1ﬁ>ﬁ+/ |A|2d<Ex<w>,w>g—2/ A2 (E5 (), ¥) =0,
A A A
(2.15)
Thus, | D — f AME; || i = 0, and the weak-sense representation (2.10) also holds

in E(ﬁ)-norm. In partigular, for D e Lo(ﬁ), with Lo(ﬁ) denoting the class of
compact operators on H, the mapping A — E; has discontinuities at the points
given by the eigenvalues {A; (D), k > 1}, with

Ey, — _ lim E; = Py,
A= (D): A<ii (D)

where Py is the projection operator onto the eigenspace generated by the eigenvectors
associated with the eigenvalue A, (D), for every k > 1.

Let us now consider the following assumption:
Assumption I. Assume that

T
/ I Fooll 27y de < 00. (2.16)
T

Remark 3 Assumption I holds, for instance, when tlle family {F,, w € [—m, 7]} is
a.s. continuous in w € [—m, 7], with respect to £(H)-norm, since applying reverse
triangle inequality, || F, || L) is a.s. continuous in w € [—m, ].

Remark 4 Note that, under Assumption I, for every ¢t € Z,

b1
IRell 21y = H/ exp (iot) Fpdw
—7T

T
~ 5/ I Foll 7y dew < 00. (2.17)
L(H) -

The next preliminary result will be applied in the subsequent development.

Lemma 1 Under Assumption I,

T
2 _ 2
S IRy = [ 1l do < . 2.18)
1eZ T

Proof Given an orthonormal basis {y, k > 1} of H , under Assumption I, F,, is a.s.
bounded in w € [—m, ]. In particular,
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T

/ (Fol)s ¥i) j doo < ||1/u||g/

-7

| Fo o) llgde < / | Foll iy deo < 00,
-7
(2.19)

for every k,l > 1. Hence, from (2.5) and (2.19), for every t € Z,
T
/ exp (itw) (Fo(Yi), Y1) g do = (Re(Wi), ¥y g, k. 1=1.  (2.20)
—TT
From (2.20), applying Fourier transform inversion formula,

YIRSy =D Y IR @)

teZ teZ k,I>1

=y > / / exp (it (& — £)) Fo (Vi) (W) Fe (W) (Y dé deo

teZ k,I>1

f / {Zexp(zr(a) s»}f<wk)(wz>fg<wk><m)d5dw

teZ

Z f / 8w — ) Fo (W) () B GO WD dEdw

k,>1

- f S IE WP do

T ki>1
" 2

= / 170l g, deo- (2.21)
-7

From Egs. (2.20) and (2.21), keeping in mind that F,, is nonnegative symmetric
operator,

T T
SR = [ WEMygydo= [ 1FFol do
teZ B -

< [ WPl do= [ X ([ ) do

T k=1
= Z/ (Fo(Wr), i) i
k>1
=" (RoWw), vi) it = IRoll 1 i, = 0% < 00, (2.22)

k>1

m}

Remark 5 Under Assumption I, from Lemma 1, 7, € S(ﬁ), for w € [—m, 7]\ Ao,
with, as before, on dw = 0. Also, ||-7:w||3(ﬁ) e L*([—n, 7], C).
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3 Spectral analysis of LRD functional time series

As commented in Introduction, the literature on LRD modeling in functional sequences
has been mainly developed in the time domain, under the context of linear processes
in Hilbert spaces (see, e.g., [14, 26, 32, 33]), paying special attention to the theory of
operator self-similar processes (see [10, 23, 24, 29], among others).

The next condition characterizes the unbounded behavior at zero frequency of the
spectral density operator family.
Assumption II. Let {4y, 6 € ®} be a parametric family of positive bounded self-
adjoint long-memory operators, with ® denoting the parameter space. Foreachf € ©,
assume that as w — O:

-0, @3.1)

Hf”mw'AgM;}f — i L(F)

where I denotes the identity operator on H, and (Mg, 7, @ € [—m, ]} is afamily
of bounded positive self-adjoint operators.

Forw € [—m, 7] and 6 € ©, the spectral representation of M, 7 and Ay in terms
of a common spectral family {E,, A € A} of projection operators (see Sect. 2.1) is
considered in the next assumption.

Assumption III. Assume that Ay and M, r admit the following spectral represen-
tations:

Ag = /a(k,@)dEA, 0e®,
L(H) JA

My Fr = /Mw,f()\)dEA, we[-m, 7). (3.2)
L(H) JA

We refer to {a (X, 0), A € A}and {M,, 7(A), A € A} as the respective symbols of
the self-adjoint operators Ag and M,, r.

Remark 6 From (3.2), operators |a)|_A9 and M, 7 commute, for any # € ©, and
w € [—m, ]\ Ay (see, e.g., [12]).

Under Assumptions II-I1I, as w — 0,

|a)|ot()»,9)

Foo | ——
@A My 7 )

dE; — I —~0, VoeO. (3.3)

L(H)

Assumption IV. {« (X, 0), A € A}and {M,, (1), L € A} satisfy:
(i) For (A,0) € A x ®, there exist [, (0) and Ly (0) such that

0<y@) <a(r,0) <Ly®) <1

lo(0) = _inf (Ao, ¥) g, La(0)
veH: |ylz=1
= _sup (Ag(¥), V)7 - (3.4)
yel: |y z=1
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(ii) For each Lo € A, M, r(Lo) is slowly varying function at @ = 0 in Zygmund’s
sense (see, e.g., Definition 6.6 in [7]). Furthermore, we also assume that there exist
positive constants m and M such that, for every w € [—m, 7],

m<M,r(h) <M, VieA

m< _inf (M, r(W¥).¥)5<  sup
veH; |yl z=1 el |yl =1

(Mo 7). ¥)5 <M. (3.5)

3.1 LRD characterization in the time domain

The next proposition shows the heavy-tail behavior in time of the inverse functional
Fourier transform of the spectral density operator family satisfying the above formu-
lated conditions.

Proposition 1 Let {.7'—(0’9, (w,0) € [—m, ] X @} be the semiparametric family of
spectral density operators satisfying Assumptions I-1V. Consider

T

Rio = f exp (iot) Fpodw, teZ, 0c0. (3.6)

H —7IT
Then,

— 0, t— o0, 3.7

—~ -1
Ro [Fpa ] =ty
L(H)

with, as before, I denoting the identity operator on H. Here, for each 6 € O,
M, F, 4, admits the representation

M, 7.4, 5 /A 20(1 — a(h, 0)) sin ((w/2)a(, ) My 7O)E,,
=/ M, .4, WAE;, (3.8)
A

where symbols a (A, 0) and M,, 7(L) satisfy Assumptions III-1V. Thus, {X;, t € Z}
displays LRD.

Proof For each A € A, under Assumption IV, from Theorem 6.5 in [7], as t — o0,

" My, ) ~ 17!
H:f exp(ltw)%dw] I:Mt,]:,-AH ()\,)t‘x()n,e) 1] _ 1‘ — 0. (39)
-7

Under Assumption IV, for each 0 € ©®, from Eq. (3.8), the sequence

T Myr() T L
H[f eXp(mw)k:;r;Wd‘” [Mn,f,AH(A);a(W) 1] .

-7

,neN}
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is uniformly bounded in A € A. Thus, we can apply Bounded Convergence Theorem
to obtain, from the pointwise convergence (3.9),

) T . My, 7)) ~ atn0)—11""
Jim | [ ﬁ _expite) [ ST do [Mt,;, 4y ()1 ] —1|dE;
n M, +(
= / lim H:/ exp(itw)%dm]
L(H)JAI7™® - |ow|® s
~ -1
[M,,;;Ao (x)t““ﬂ)*‘] _ 1’dEA=o. (3.10)

From Remark 4, under Assumption I, R; is bounded, for every ¢ € Z. From (3.10),
under Assumptions II-I1I, keeping in mind (2.5), we obtain

11—

a4 M, 70
= lim U exp(im))L()da)}dﬁ:A
A

t—00 - ||

lim f M, 5 4, (WP E,
®JA

T
= lim exp(itw) Fpdw

t—oo J__

lim Ry, (3.11)
—o0

in the bounded operator norm.
Thus, Eq. (3.7) holds. Therefore, for M > 0, sufficiently large,

Z R0 ||L1(H) z Z ||Rfa9”L(H)

teZ [t|>M

>y H | 71,004
A

[t|>M

)= ®~1 £ o0, (3.12)
L(H)

as we wanted to prove.

3.2 Examples

Some special cases of the LRD family of functional sequences introduced in the
spectral domain under Assumptions I-IV are now analyzed.

3.3 Example 1. Multifractionally integrated functional autoregressive moving
averages processes

We consider here, in the stationary case, an extended family (see Remark 9 in [26])
of multifractionally integrated functional autoregressive moving averages models.
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Let B be a difference operator such that
E|B/X; — X,—jlI3 =0, ¥z, €L (3.13)
Consider the state equation

(1-B)*" o ,(B)X, L= W Bm, VieL, (3.14)
L2

2 (2,A,P)

where equality holds in the norm of the space E%I (R, A, P). Here, {n;, t € Z}
is a sequence of independent and identically distributed random curves such that
E[n] =0, and E[n, ® 151 = & yR, with R} € L'(H), and 8,5 = 0, fort # s,
and §; ; = 1, for t = s. In particular,

Ra(h) = > MR (¢ hyydy| =0, VheH, (3.15)

>1 H

where {¢,, n > 1} is an orthonormal basis of eigenvectors in H, associated with the
eigenvalues {A, (’Rg), n > 1}. Here,

p q
®,(B)=1-— Z<ijj, Y, (B) = Zl//ij’
j=1

j=1

where operators ¢;, j = 1,...,p,and ¥, j = 1,...,¢q, are assumed to be posi-
tive self-adjoint bounded operators on H, admitting the following diagonal spectral
decompositions:

vj = Z/\l(<ﬁj)¢l®¢1,= L...,p

>1

V=Y MW dLi=1,...q. (3.16)

=1

Also, foreachl > 1, @, 1(2) = 1= 30_, i(e))z/ and Wy = 37%_, h(¥))2/ have
not common roots, and their roots are outside of the unit circle (see also Corollary
6.17 in [7]).

We also assume that, for each 6 € ©, operator Ay admits the diagonal spectral
representation:

A=Y all.0)¢1 ® ¢, (3.17)
>1

and

2
11 —exp(—iw)| "9 dw < co.  (3.18)

/” S M(RY) | Wg.i(exp(—iw))
— I>1 2 q)p,l(exp(_iw))
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Thus, Assumption I holds. Note that, for each/ > 1 and 6 € ©,

(1 — exp(—iw) D2 =3 "a; (1) exp(—ijow)
=0
FG+ad.6)/2)
FG+ Dl 02 '~

aj(l) =

Assume that, foreach/ > 1and 6 € O,

(3.19)

(3.20)

ijg(l)zj — (1 —exp(eigyetor Yald o
=0 pl( )
From Egs. (3.14)—(3.19), applying Corollary 6.17 in [7],
o0
X = b;()B’ Et
@ L=, ;0 J OB | @), 1=
and from Corollary 6.18 in [7], foreach/ > 1 and 8 € ®, there exists f(a), [, 0) such
that
2
_ AZ(R )
flw,1,0) = ——— = Zb (D) exp(—ijw)

—a(l,0)

wz ) ‘ wilexpion

pl

Thus, foreach!/ > 1and 6 € O,
i -~
(Reo (@), d1)z = / exp (iwt) f(w, [, 0)dw,

-7

and under Assumption I (see Eq. (3.18)), we obtain, for each 6 € ©,

4 . M(RY) | Wy i(exp(—iw)) [*
R, = t ’
o gy | e ton Lo oo

x |1 —exp (—iw)| 724D ¢ @ qbl] do,

under the condition (see Eq. (2.22) in Lemma 1),

T M(RY)
2 0
X0 = Z f_,, 27

>1

. 2
Vg 1(exp(=iw)) —exp (—iw)| %D do
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Spectral analysis of multifractional LRD functional time series

Note that, in this example, our operator measure satisfies

dED)(Y)(9) = d(Ex(¥), @) = i(V)pi(p), V¥, 9, [ = 1.

Thus, we are considering a discrete (or point) operator measure, defined from the com-
mon system of eigenvectors {¢;, / > 1}. Equivalently, the spectral family {E},, [ > 1}
admits a representation in terms of a spectral kernel ®, defined from the eigenvectors
{¢1, | = 1}, and a point spectral measure (see, e.g., Section 8.2.1 in [34]):

l 1
En=) ®®dp=) & [=1. (3.23)
k=1 k=1

Note that, since sin(w) ~ w, w — 0,

11 —exp (—iw)| ™
= [4sin®(0/2)] /% ~ |w|™ Y, »—> 0, (3.24)

where the frequency varying operator |1 — exp (—ia))I’A"/ 2 is interpreted as in [10,
14, 32, 33].

Keeping in mind (3.24), the following identifications are obtained in relation to
(3.1)—(3.3),
MRY) | Wy (exp(—io)) |?
2r | Dy (exp(—iw))

My 7)) = M, 7() =

3

w e [—m, 7], |1 —exp(—iw)| %D ~ 7% o 50, 1>1.

(3.25)
Hence, as w — 0, foreach > 1,
~ _ MR [ Wy (1) ]
,l,@ ~K ot(l,@)’lc — 0 4q ,
flw,1,0) 1l 1= —¢p,z(l)
K =sup K; < oo. (3.26)

>1
Assume that W, ; and @, ;, [ > 1, are such that

2
My, F() =

M(RY) ‘ W, .1 (exp(—iw))
2 D, (exp(—iw))

satisfies the conditions given in Assumption IV(ii). Hence, from Proposition 1, the
extended class of fractionally integrated functional autoregressive moving averages
models analyzed here displays LRD (see also Remark 9 in [26]). Indeed, Ag /2 defines
the multifractional order of integration.
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3.4 Example 2. Discrete sampling of multifractional H-valued processes in
continuous time

Let H = L2(R,R), and H = L3(R, C). Consider

d{E(¢), V) = /R POY M)dr, (3.27)
@(A)=/Rexp(—i (A2 ¥(2)dz, ¥ e L'(R),

oL = / exp (=i (A, 2) 9(x)dz, ¢ € L'(R). (3.28)
R

With this particular choice, for (A, w) € R2, assume that the symbol f(w, X, 8) of
the spectral density operator JF,,, with respect to the spectral family {E,, A € R}
introduced in (3.27)—(3.28) is defined as follows:

fw, A, 0) = o **DN,(W)h(w), (3.29)

where «(X, 0) satisfies Assumption IV(i), and / is a positive even taper function
of bounded variation, with bounded support is the interval [—m, 7], with h(—m) =
h(m) = 0(see, e.g., [20]). We also assume that / is Lipschitz-continuous function, and
N,, is such that M, 7(A) = Ny(L)h(w) satisfies Assumption IV(ii). Furthermore,
for w € [—m, m]\{0},

sup | f(w, A, 0)| < 0. (3.30)
reR

As special case of (3.29), we can consider the tapered continuous version of Exam-
ple 1 in Section 3.3

flw, 1, 0) = |o|7**O
P\, w)

2
O, w)h(‘”)l[—m](w), (A, w) € R?,

where the taper function satisfies the above required conditions, and P and Q are
positive polynomials such that Assumption IV(ii) holds. Particularly, when discrete
sampling of the solution to fractional and multifractional pseudodifferential evolution
equations with Gaussian functional innovations is considered, one can implement
inference tools from this framework (see, e.g., [2, 3, 22]).

4 The convergence to zero in S(I-I) norm of the bias of the integrated
periodogram operator

Theorem 1 provides the convergence to zero, in the Hilbert—Schmidt operator norm,
of the integrated bias of the periodogram operator. Note that, in [9], weak-convergence
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Spectral analysis of multifractional LRD functional time series

of the covariance operator of the fDFT to the spectral density operator, and the con-
vergence of their respective traces is proved. The next result provides convergence in
S(H) norm of the integrated covariance operator of the fDFT to the integrated spectral
density operator, in the frequency domain, beyond the SRD condition assumed in [9].

Theorem 1 Under Assumption I, the following limit holds:

IR

Proof Let {4y, k > 1} be an orthonormal basis of H. Under Assumption 1,

m 2
[ -z,
- S(H)
e /g
-3 [ [ (rn - s -,
k>1 - J—71

+F7FD | o deds. (@.1)

-0, T — oc.
S(H)

From Lemma 1 (see Eq. (2.22)), for every k > 1, F,(Yx)(Yx) € L' ([—m, 7).
Hence, foreach k > 1,

FD W W) = Fo) W), T — o0, w € [—m,7\Ag.  (4.2)

Applying triangle inequality, for every 7' > 2,

[Fo = FD] wowo)| < 21Folli @ < oo,
w € [—m, T\ Ao, (4.3)

since from (2.22),

T
—TT

Hence, from Egs. (4.2)—-(4.3), keeping in mind (2.22), Dominated Convergence The-
orem leads to

e

Tli—>moo . [}-‘” - f,f)T)] (Kﬁk)(lﬁk)‘ dw
= [ i [[7 - 2D oo |do =0k =1 @

Note also that, from Lemma 1, ||}'w||5(1;) € L% ([—n, 7], C). Hence, for every
k.l > 1, F,(Yr)(Yy) € L([-7, 7], C). Particularly, from Young’s convolution
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inequality with p = 2, foreach k,[ > 1,
/ \FD W) () Pdew < / |\ Foo (Yi) (W) Pd . (4.5)
- -7

Hence, under Assumption I, applying the Cauchy—Schwarz and Jensen’s inequalities,
and (4.5), from Lemma 1 (see Eq. (2.22)), we obtain

> [ [ ADED oo

k>1

=Y [ [ (FED w0 A ), dods

k>1
f(f)T)(W)Hﬁdw} [/—1 Hf;“wwHﬁ dé}

=/

<d4n’)" [ ’ fé”fé”(x/fw(m)dw}\/ [ / ’ ng)fg(T)(lﬁk)(l/fk)df}

k>1 -

FO | de

<t (Y[ Hz,@wu;dwl >/
k=177 k=1°"T

—4x | Y f |fé“(wk><w1>|2"”l 2 / IF" (o (o) P

\k,lzl - ki>1%"

k=17 k=17

<dn? | Y f |fw<w><wz>|2deZ / | Fe (Vi) (W) P

Y
- 4712/ 1Full$ ) de < oo (4.6)
-7

Following similar steps to (4.6),

Y[ Ao

>1 T J—n

e
< 4712/ 1Full$, g, deo < oo, (€
-7
as well as

> f FeFSP (o) () dowdg

k>1

by
< 4712/ 1 Foll g 7, de < 00 (4.8)
-7
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Furthermore, from Lemma 1 (see Eq. (2.22)), F.,(Yx)(Yx) € L'([—m, 7)), for
every k > 1. Thus, we can consider Young’s convolution inequality with p = 1
leading to

FPW0Wde < | Fe@oWde, k= 1.

- -

Therefore,

b/g b/
/ ||]:>;-(T)||L(ﬁ)d55/ 1Fell 27y 4.9)

From Eqgs. (4.6)—(4.8), we can apply Dominated Convergence Theorem, and keep-
ing in mind Eqgs. (4.4) and (4.9), we obtain

lim H/_ﬂ [fw —fé)T)]dw 2

T—o00

S(H)

=3 lim / / [7eFo — FFD — FDFy+ FDFD | o deds.
k 1 —TT —7IT

T—o00

=22 [ /_ z ”fé”aﬁ)a’%} Jim / ’ [70 - ZP ] wowo|do =0. @.10)

k>1 -

5 Semiparametric estimation in the spectral domain

This section introduces the estimation methodology adopted in the functional spec-
tral domain. Theorem 2 derives the weak consistency of the formulated parametric
estimator of the long-memory operator.

Under Assumptions I-IV, let ® C R”, p > 1, be acompact subset of R”. Assume
that the true parameter value 6 lies in the interior of ®, denoted as int ®. The symbol
a:Rx® — (0, l)issuchthata(:, 1) # «(-, 62), for0; # 6, forevery 6, 6, € ©.
Thus, under (3.1), we get indentifiability in the semiparametric model. Denote by or
the estimator of the true parameter value 6y, based on a functional sample of size T'.
Hence, a7 (A, ) = a (), é}) provides the parametric estimator of the symbol « (4, 6)
of Ay.

Let now introduce the elements involved in the definition of our operator loss
function, to compute the minimum contrast estimator @\T, under suitable conditions.
Specifically, for each w € [—m, 7], the weighting operator W,, is introduced as a
bounded positive self-adjoint operator admitting the following spectral representation:
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sz/ W(w,)»,ﬁ)dE,\,zf W)|w|PdE,, B> 0. 5.1
A A

In partlcular the symbol W (w, A, B) of operator W,, factorizes, in terms of W(A) and
|w|#, with W defining the symbol of a positive self-adjoint operator W e L(H) such
that

p=_inf (W) v);
myy ¢€H;1F1ﬁ||ﬁ:1< V). ¥
My = sup (W) ¥)5. (5.2)
vel: 1ylg=1

For each 6 € ©, the normalizing operator ag is computed as follows:

My )W ()
09 = /_n Fo.oWedw = /;n/ | C-B 7 —————dFE,dw. 5.3)

Thus, the symbol 25 of 062 is given by

M, r(W)W QA
20 = / ﬁfk)@ g)d V2 € A. (5.4)

Under Assumption IV(ii) (see Eq. (3.5)), and (5.2), for every A € A,

-1 T 1
mmyz; <|:f +/ i| |a)|_L(6)+’3dw +f Ia)I_I(eH‘ﬁda})
-7 1 -1

|:(_n)l+ﬁ—L(0) _ (_1)l+ﬂ—L(9) (n)l-‘rﬁ—L(Q) -1 (_1)1—1(9)+ﬁ
= mmW

1+B—L®) 1+8—L0O)  1-10)+8

1
+1_1(9)+ﬂ]

—1 b4 1
< Eg(k) < MMW ([f _‘_/1‘ :| |w|—l(9)+/3dw+ /1 |w|—L(9)+ﬁdw>
-1 _

(_Tr)1+ﬂ—l(9) _ (_1)1+ﬂ—l(0) (n)l+ﬂ—l(9) -1
= MMy
1+B8—-106) 1+8-1)
(_1)1—L(9)+ﬂ 1
+ . (5.5)
1-LO)+B 1—-LO)+B
Thus, 09 is a bounded operator. The symbol of [00] lis given by
-1
Mo 7 (W ()
Ze(k) [/ o[ da)} ,A €A (5.6)
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Spectral analysis of multifractional LRD functional time series

From (5.5), for every A € A,

()l HBLO) (1) I+B-L®
I I+5—L©)

(n)l+ﬂ—L(9) -1 (_1)l—l(9)+/3 1 ]}1

1+B—L©®) 1—l(9)+ﬂ+1—l(0)+/3

5 —1 N (_ﬂ-)l-i-ﬁ—l(@) _ (_1)1+ﬂ—1(9)
2[29()‘)] E{MMW[ 1+ 8—10)

1+8—16) _  N—LO)+B -1
(1) 1 (=D 1 ” 57

T+8-10) 1-L@) B 1-L©O) +8

Hence, [092]_1 is strictly positive and bounded.
From (5.3), we can consider the following factorization of the spectral density
operator, for (w, 0) € [—m, 7]\{0} x ®,
Foo =04 Vo0 = Y0005, (5.8)

where, foreach 6 € ®, and w € [—m, 7], w # 0,

Mo, 7(2)
Yoo = | Y(w,A,0)dE, = ———————dE,. 5.9
.0 /;\ ( YA E; ,/;\|w|a()"9)25()») A (5.9)

From Egs. (5.1)~(5.9), for each 6 € ©, and any o, ¥ € H,

/ Yoo Wo(@)(Y)dw = /Ad(Ex(Q)»lﬂ)ﬁ ={e¥jg- (5.10)

—7T

Equivalently, | fn Yw,0 Wawdw coincides with the identity operator /7 on H, for each
0e®.
Let us now consider the empirical operator Ur ¢ given by, for each 6 € O,

b8
[Ur] = _/ PP (Ypp) Wedo, (5.11)
-7

where T denotes as before the sample size. Its theoretical counterpart Uy is defined,
foreach 6 € ©, as

T
— / Fa),(?o In (Twyg) Wwda)

Mo F )W ()
/ / Toeop 1 (T@.2.0)dEde. (5.12)
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Remark 7 Note that, under Assumption IV(i), for each 0 € ®, Uy € L(H)
for any g > 0. Specifically, for every A € A, ljzfl‘;ff((%z € Ll([—JT,JT]), and
In(Y(w, A, 0)) W(w, A, B) € L' ([—n, 1), with

(5.13)

sup |—
reEA

In addition, for 7 large, Ur g € E(I-NI ) a.s. (see Theorem 2 below)

We now consider the loss operator K (6p, ) to be minimized, with respect to 6, in

the operator norm. Specifically, consider, for each 0 € ®

[K(60.0)] = / ]-"wgoln( ot )W dw = [Us — Ug,].  (5.14)

™ M, £
/ T T (.. 0)) Ww. . B)dw| < oco.
o] 20-0)

From Remark 7, for each 8 € ©, K(0y,0) € E(ﬁ ). Furthermore, the symbol of

K (6, 0) is given by

T M, F(r T(w, 1,0
/ 0FR) (Y@ 2, 0) W(w. . f)do,
—x lw[@®0) T\ Y (o, A, 0)

Le A, He0.

(5.15)

The operator [0920 171K (80, 0) could be interpreted as a weighted Kullback—Leibler
divergence operator, measuring the discrepancy between the two semiparametric func-

tional spectral models Y, g, and Y, ¢, for each 6 € O (see, e.g., [11]). Note that
from Egs. (5.3)—(5.14), applying Jensen’s inequality, for every k > 1, and 6 € O,

~1K (60, I < |of Haﬁ)
In </ /AT(a), A OW(w, A, B)d (E;(Yi), Wk)ﬁdw)

- H%z H i) In (/z TwﬁWw(W)(I/fk)dw)
(5.16)

= |07 1, 1 (htz) =

for any orthonormal basis {1/, k > 1} of H. From Eq. (5.16), for every k > 1, and
0 € 0, [K(6,0)](W¥r)(Yr) > 0. Thus, {(8y,0), 0 € O} is a parametric family of

non-negative self-adjoint bounded operators such that
Sup[’C(Oo, O W) >0, 0 # 6

KO0, Ol 27y =
SUP[/C(HO, DI (W) =0 < 0 = 6bp.

160, Dl 277y = (5.17)
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Hence, from Eqs. (5.17),

6y = arg géi@l} I G0, D]l i)
= arg min sup K (6o, 0) (V) (Yk)
0€0 >

= arg min sup Ug (V) (¥r). (5.18)
e® k>1

We then consider the following estimator é} computed from the empirical contrast
operator Ut ¢ in (5.11), and a given orthonormal basis {yx, k > 1} of H :

-~

Or = arg minsup Ut ¢ (Yi) (Y1)- (5.19)
0e® k>1

Theorem 2 Let {X,, t € Z} be a stationary zero-mean Gaussian functional sequence
satisfying Assumptions I-1V. Consider in Assumption IV(ii) the particular case where
M, F satisfies, for any & > 0,

. -1 g _
it 1,
Under the conditions reflected in Egs. (5.1)—(5.16), for B > 1, we then have
T
E H/ [p;” - fw,go] W gdew 0, T — oo, (5.21)
-7 S(H)
where, for (w,0) € [-m, 7] X O,
Weo =1n(Yu0) We. (5.22)

Furthermore, the estimator é} in (5.19) satisfies
0r —-p 6y, T — o0,

where — p denotes convergence in probability.

Proof The operator W,, ¢ introduced in (5.22) admits the spectral representation

_ _ 2
Wi = fA [m (M,(0) —1In (ze(x))
—a(h, 6)In (lo))] W) |w|PdE;, (5.23)
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forw € [—m, ], and 6 € ©. From (5.23),

[We.a “ﬁ(ﬁ) < [In (Mo.7) ! W “L(ﬁ)
+ [ A 0 (o) [0l W | 2, + |10 (07) 1l W, Hﬁ(ﬁ)
By By 2 By
< In(M)7P My + L©O) In(r) 7P My + Hln (00>H£(ﬁ)n My, (5.24)

forevery0 € ®, w € [—m, ], and 8 > 0.

From (5.24),
sup [ W 7y < In(M)n” Mygy + L(0) In(r)z” My
we[—m, ]
+|n (oF) ”am P Mg = H©). (5.25)

Thus, the family {Wa)’g, w € [—m, 71]} is equicontinuous, for any 6 € ®. We first
prove that the following limits hold, for each 6 € ®,

H/ EEBO Fo 90] W, odw -0, T— o0 (5.26)
S(H)
2
E H / [ng f;Tgo] Wegdew 50, T — oo, (5.27)
- S(H)
where E (p(T)) ]:ge)o
From Theorem 1, and Eq. (5.26),
H/ (T) ]—'w’go:l Ww’deH 5
S(H)

—-0, T — oo. (5.28)
S(H)

< H(H) H/ ge)o Fo 90] dw

Under the Gaussian distribution of {X;, ¢ € Z}, applying Fourier Transform Inver-
sion Formula, we obtain

T
e[ [ -],
S(H)

T T T T
_Z/ / p< )PfuT)]Jrfg( VFD D g [ ff)]
—T J—TT

k>1

2

—E [ oD F [ e Woo o (Wi dends

=X [ [ B[ n0] —AR D] W Was o dods

k>1
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1 T pw T
T @nT)? Z/ / D e (i —si) —iE(n — 5)

k>1 t1,81,12,50=1
x[E[Xy ® X5, @ Xi, Xy, | — E[ X, ® X | E[ X1, ® X, |]]
XWE g Wa,0 (W) (W) dwd§
SN M
=53 exp (—iw(ty — s1) — i(12 — 52))
@rT) k=177 0T | f,s1,00,5=1

X [E [th & th] E [Xs1 ® st] + E [th ® XSZ] E [th ® Xsl]]]
XWE g W6 (W) W) dwdé
T

27[ ’ ’ i ! 1 . ~
N 7 Z /—7{ /;rr /—n /_ﬂ fa’eofg,b‘o W Z exp (it (0 — w))

k=l t1,81,12,52=1
x exp (isy(w + E) +in(—& — @) +isr(E — 'g))
+exp (it1 (@ —w)+isi(@+E) +itr(—E — &) +isa(E — 5))]
XWE g W0 (Vi) (W) dwdEdBdE
T 9} 3} ha(w,u
_ 2?71' Z/_ﬂ /ffz( )/ggz( )/h 2(w,u1) cp‘;(ul,MZv”3)‘7:u1+w,90-7:uz—w,90

k>1 1(w) 1(w) 1(w,ut)
XWZ 1 s to).0 WVeo,0 k) (W) duszdurdudo

2 T rh@ peaw) phai) 4o e~
+? Z/ ‘/f / A CDT(ulv uz, u3)fﬁl+w,00fﬁz—a),90
k>177T Y. 8

1 (w) 1(®) 1(w,11)

XWE 1 — .0 We.0 k) (Yr)diizdidi do

or (T @) ro@) pha(o.ur) .
= 7/ / / / D7 (uy, uz, uz)
- J filw) Jgi(w) Jhi(wur)

X (Fur+,00We.0, fu2—w,90W—(u1+u3+w),9>5(ﬁ) duzdurduidw

o (T PO 2@ phn) P
‘*‘?/ / / /~ &7 (U1, uo, uz)
- Jfi(@) Jgi(w) Jhi(wi)

X (]:’1,71 +w,90Ww,99 f'iszﬁowﬁ;;fﬁ]fw,@)s(ﬁ) dﬁ}dﬁzdﬁldw

K 4
= Dy (uy, uz, u3)
[—m.7]*
X <-7:2u1+w,90Ww,9’ qug—w,@oW—(2u1+4u3+w),6>5(ﬁ) dwduidurdus
+ICJT o (@1 T 3)
T 4T up,uz,us3
T [,7.[’7.[]4

X T2t 0,00 Wen 0+ Fity 0,00 Wity —2ii1 0,6 )s 7, dod i dinad iz, (5.29)

where, for o € [, 7], fi(w) = -7 —w, folw) =7 —w, giI(®) = -7 + o,
o) =m+o, hi(wu)=—-1—u—o, (o, u)=r—u —o, (o, i) =
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—7 + 1 + o, ha(w, %)) =7 + 1 +o. For vg = —(v] + v2 + v3), vj € [-m, m],
Jj =1,2,3,4, in (5.29), the multidimensional kernel @‘} of Féjer type is defined as
follows:’

% (v1, v2, v3, v4) = DF(v1, V2, v3)
T
1 )
= W Z exp (i (tjv1 + s1v2 + vz + s204))
t1,81,t2,50=1
4

1 1—[ sin(T'v;/2)

T Q)T 14 sin(v;/2)

(5.30)

(see, e.g., Eq. (6.6) in [5]).
Denote in Eq. (5.29), foreachk > 1, and u; € [—mw,7],i =1,2,3,0 € O,

T

Gk1,9(ul,uz,u3)=/ (7‘—2m+w,00Ww,0(1//k),fzuz—w,eow—(2u1+4u3+w),e(¢k))g do
—IT
T

Gio,0(uy, uz, uz) =/ (-7:251+w,00Ww,0(]//k)sf2'uvsz,90w4ﬁ372ﬁ]7a),0(1//k)>ﬁ do

v

T
Z Gri,6(uy, uz, u3) = / (Four 4,00 War0 -7:21427!0,90W—(2M1+4u3+w)~9)5(1-1) dw
k>1 -

T
Zsz,o(ﬁlﬁz,%) =/ (.7:2;1+w,90Ww,9,fzﬁz—wﬁoWzmg—zﬁ,—w,o)s(g) do.
k>1 -

(5.31)

From Eqgs. (5.24) and (5.25), for each 6 € ®, consideringy = 8 — 1 > 0,

Hfgwa‘gﬁWae HL(H)

< M? [nz(l—“@))] [[1n(M)]2n2VMf~V + [L®) In(m)? M)
n Hln (ag) Hi(ﬁ) (nVM‘;,)z] . VE w3, F -7, 7. (5.32)

Thus, we can apply Bounded Convergence Theorem to obtain, for each k > 1,

g
lim 5 3Gk1,9(u1, uz, u3) = / lim 5 3]:2u1+w,907:2u2—w,00

ui—0, i=12, _qg ui—0,i=1,2,

XV s taus .0 We.o (W) () dw
= Gr1,6(0,0,0)

T

= lim X Gro,o(y, 2, U3) = f lim , 3f2§.+w,907:2;2—w,90

w;—0, i=1,2, e u;—0, i=1,
XWiity—2t) — .0 VWer,.0 (W) (Y d @
= G2,0(0,0,0), (5.33)
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which means that Gi;, i = 1, 2, are continuous at zero, and uniform convergence holds
in the limits of their convolutions with multidimensional Féjer kernel. Particularly,

lim @7 (1, V2, V3)Gi 0 (V1, V2, V3)dV1dvadvy = Gii (0,0, 0), (5.34)

T—o0 [—m,7]3

foreachk >1,i=1,2,andf € ©.
Furthermore, the absolute integrability of the functions

Gi(ur, uz, u3) = Z G101, uz, u3),

k>1
Ga(ur, uz, uz) =y Grap(ur, ua, u3)
k=1

over [—7, 7]? holds. Specifically, under Assumptions I-IV, and Eq. (5.20), keeping
in mind Egs. (5.24) and (5.25), we obtain

3
/ \ Gy, uz, uz)| | [ dus
[—m.7]

i=1

/[ ZIlee(ul,uz,uz)H_[du,

o,7]3 =1
/ / / 20k, f(k) Mouy—w, 7 (M)
[~ ]} k>1 —7 |2u1 + a)|°‘()» 60) [2ur — |Ol()»,90)
X ‘ln M7(2u|+4u3+w)(k)) —In (Eg(k))

—a(h, 0)In (| — Quy + 4uz + o)D) WO — Quy + 4u3 + w)|?
x [In (4,6 — n (230

w

—a(h, 0) In (Jo))| W) o dod (E; (), vi) g | | dui

g
< [H(@)]%ﬁ/ ||fw||2$(ﬁ) dw < 00. (5.35)

Similarly, we can prove that Go (u1, un, u3) € LY([—7, 71%). Thus, the following limits
are obtained from the convolution of functions G (uy, u», u3), and Go(u1, u>, uz) with
Féjer kernel in (5.29):

. Knm 4
llm (D4T(u]9u2’ u3)
T—ooo T [—m,7]*

X (Fouy 4,60 We 0+ «7:2142—0),00W—(2u1+4u3+a)),9>3(ﬁ) dwduiduszdus

@ Springer



M. D. Ruiz-Medina

. Kr 4 i~ ~ o~
+ hm I q)47"(I/tls’/£2al’t3)
T—o00 [_7.[’7.[]4
X (Fait) 40,00 Weo,0+ Fiits—av,00 Wity —2i0, —w,e)s(g) dwdi | dirdii3
. Kr
= lim —-[G((0,0,0) 4+ G2(0,0,0)]. (5.36)
T—ooo T

From Egs. (5.29)—(5.36), as T — oo,

1@ _ D
EH/ (2 = F | Wesdeo
—7T

2
1
-of3)
S(H) r
Applying Jensen’s inequality,

T
T
E H/ [pL(UT) _ }“‘E)’g)o:l We pdw
—TT

S(H)

e

From (5.28) and (5.37), applying triangle inequality, Eq. (5.21) holds. In particular,

2
-0, T —o0. (537
S(H)

|Uro —Us|l g5, =>p 0. T—o0, VoecoO. (5.38)
Therefore, foreach® € ®, as T — oo,

|Ur.6 — Ur g, — K(0, 9)”5(ﬁ)
12

= Z IlU7.6 — Ur.601(¥1) (Y1) — KB, 9)](¢k)(1ﬂl)|2 —p0,
k=1
(5.39)

implying that, as T — oo,

sup [UT,6 = Ur 6, ] (1) (Yr) = [K(G0, O)1(¥) (Yx) | — p . (5.40)

From the reverse triangle inequality, denoting
L7(0) = sup|[Ur,0 — Ur,0,](¥i) (Y1) |

k>1
and L(6) = 2u11> [ (G0, (W) (W)l

we have

L7(0) —p L(O), T — oo, VO e0. (5.41)
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From Egs. (5.16)—(5.18),

L©O) = 231;[’@6’0, O W) >0, 0 # 6o,

0o = arg ;gnei({)l L(0) = arg géi(g il;;;[iC(Go, NIWr) (Vi) (5.42)
for any orthonormal basis {1, k > 1} of H.

To prove the consistency of the estimator fr in (5.19), we first show that the conver-

gence (5.41) holds uniformly in6 € ®. Specifically, forany 0, 6, € ®, fromEq. (5.9),

considering the triangle inequality, and the fact that pC(UT) and W,, are non-negative

operators for every w € [—m, ], we obtain, for each k > 1,

|Ur.0, — Ur .0, 1) (Y1)

= /7, )”c(f) in (Twﬁz T;fel) Ww(wkwk)\ do

-[.

<[ PDWa o (o) deo

in (2 021" ) + (Ao, — As) I (1))

S RICATARY | / CPOWe 0 Wde

-7

+ Ao — Ao | 2 / I (lo))| p W (W) W)de.  (5.43)

From (5.43), to prove the convergence (5.41) holds uniformly in 8 € ®, we only
need to show that, for any k > 1,

/ P OW, () (Y)dw = Op(1), T — oo (5.44)
f lIn (JwD| pPWe (W) )dw = Op(1), T — oo (5.45)

(see Theorems 21.9 and 21.10 in [13]). Note that, for k > 1,

g

o2 WOV = | FoaWe)@odo < 1022 < o0 (5.46)

—TT
m
[|1n(|w|)|fw,eoww(w(wk)dws2n sup I n(|w])|/|w|**00)=F
-7 (w, M) e[—m,m]xA

xsup WM F o < oo, (5.47)

wel[—m,m]
where, for g > 1,

C=2n sup [ In(jo])|/|0|*®0~F < .
(w, )e[—m,T]x A
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From Theorem 1, as T — oo,

H / m fwﬁo] Wadw 50 (5.48)

- S(H)

H/ | In(lo])] [E [pfu”] —fw,go]wwde o (5.49)
- S(H)

In a similar way to Egs. (5.29)—(5.38), it can also be proved that

b4 2
E H / [P0 = Fg [ Wodo| =0, T > o (5.50)
- S(H)

b4
E H f | In(|o])| [p;” fggo] Wede
—7T

2

-0, T - o0. (551

S(H)
From Egs. (5.46)—(5.51),as T — oo,
H pD -7, eo] Wwda)H —p0 (5.52)
- S(H)
H (oDl [P = Foto | Wader| 0. (5.53)
*ﬂ S(H)

From (5.52) and (5.53), Egs. (5.44) and (5.45) are satisfied uniformly in k > 1. Thus,
(5.41) holds umformly infd € O.

To prove Or is weakly consistent, consider that 7 does not converge in probability
to 6. Hence, there exists a subsequence {GTm, m € N} such that GTm —p 0’ #6p, as
T,n — 00, when m — oo. From (5.42), for T > 0 satisfying 0 < v < £(0') — t, for
certain v > 0, applying uniform convergence in 6 € ®, in Eq. (5.41), there exists mg
such that for m > my,

P |:linf LT,(@\T,) >LO)—Tt>v> 0i| > po > 1/2. (5.54)
>m

From Eqgs. (5.39), (5.40) and (5.42), for T sufficiently large,

Ur,g —Ura()(r) >0, Vk>1.

Then, from definition of the estimator 9} ~in (5.19), and uniform convergence in proba-
bility in (5.41), that also holds in the S(H) norm (see Egs. (5.52)—(5.53)), there exists
my such that for m > mg,

|:sup LT,(GTI) < 1nf L) = L(Oy) = 0:| > po > 1/2, (5.55)
I>m
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which, in particular, implies
P [inf L7,(0r) < inf L(0) = L(B)) = 0} > po > 1/2. (5.56)
I>m 0e®

For m > max{mo, my}, Egs. (5.54)~(5.56) lead to a contradiction. Thus,
Or —p Oy, as T — oo. O

Remark 8 The multifractionally integrated functional autoregressive moving averages
process family introduced in Section 3.3 satisfies the conditions assumed in Theorem
2, for a suitable choice of the polynomial sequence {43 pls Vg, 1> 1} .

6 Final comments

The spectral analysis of SRD functional time series has been currently achieved in sev-
eral papers. Particularly, in Introduction, we have referred to the pioneer contribution
in [31]. This paper constitutes a first attempt in the spectral analysis of stationary func-
tional time series beyond the SRD condition. Specifically, this paper applies spectral
theory of self-adjoint operators on a separable Hilbert space to characterize LRD in
functional time series in the spectral domain, under Assumptions I-IV (see Proposi-
tion 1). As special cases, multifractionally integrated functional ARMA processes are
considered (see Sect. 3.3). Their tapered continuous version in the spectral domain is
also analyzed in Sect. 3.4. This second example allows the implementation of paramet-
ric estimation techniques in the functional spectral domain, from the discrete sampling
in time of the solution to fractional and multifractional pseudodifferential models
introduced in [2, 3, 22]. Our main results, Theorems 1 and 2, respectively provide the
convergence to zero in S (H) norm of the bias of the integrated periodogram operator,
and the weak consistent estimation of the LRD operator, in a parametric framework in
the spectral domain. Note that Theorem 1 holds beyond the linear and Gaussian case,
under our LRD setting, while Theorem 2 is proved under a LRD Gaussian scenario.
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