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a b s t r a c t 

Although the hidden Markov models (HMM) are very popular in many applied areas their use in reliabil- 

ity engineering is limited. Problems such as the selection of the HMM model by choosing the appropriate 

number of states, or problems of prediction of failures have not been widely covered in the literature. 

This paper is concerned with the use of HMMs where the state of the system is not directly observable 

and instead certain indicators of the true situation are provided via a control system. A hidden model 

can provide key information about the system dependability such as the failed component of the sys- 

tem, the reliability of the system and related measures. A maximum-likelihood estimator of the system 

reliability is obtained and its asymptotic properties are studied. Finally, the maintenance of the system 

is considered in this context and new preventive maintenance strategies are defined and their efficiency 

is measured in terms of expected cost. To prove the finite sample performance of the methodology, an 

extensive simulation study is developed. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

A stochastic model can describe the evolution-in-time of a 

tochastic system. The estimation of its local characteristics is de- 

ived from observation data of its evolution in a given interval of 

ime, based on one or several trajectories. In general, data can be 

rovided by sensors that can be interpreted in order to predict 

he real state of the system. All modern systems include sensors 

imed to describe internal or environmental changes of the sys- 

em functional conditions that influence to their performance level. 

or example, a car has sensors of pressure, temperature, etc., in or- 

er to describe the functional conditions of its engine, brakes, etc. 

he important challenge for engineers is to provide methods and 

evices to define the state of the engine, for example, of the car 

iven the values of these indicators. This is a typical inverse prob- 

em where several methods can be applied. Some of these methods 

re the so called hidden Markov models (HMM), which are based 

n a coupled process (e.g. Markov chain), say (X, Y ) , where X is an

nobserved random sequence, describing the state of the system 

i.e., engine), and Y is an observable random sequence, giving the 

alues of the parameters of some indicators (i.e., pressure, temper- 
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ture, etc.), whose law depends on the value of the corresponding 

nobserved sequence X . In order to be able to handle the above 

oupled process, we have to assume some particular probabilistic 

tructure. For example, for X we can suppose that it is an i.i.d se- 

uence or a Markov or semi-Markov chain; while for Y it can be 

hought as conditionally independent on X sequence, with its law 

epending on the corresponding value of X . 

We have a number of different situations where this model can 

e used in the real data case. For example in Rex data (field data), 

here we have a system (a device) with lifetime data and mainte- 

ance data matching together. If for example, in this case we have 

everal identical systems and we estimate their lifetime distribu- 

ions, they are not the same. That means we have some additional 

andom factor. This random factor could be a Markov chain as a 

andom media of our main system. The situation of experimen- 

al data is the same. This is the case of the Virkler’s data that we

resent here (see Section 6 ). The same idea is possible considering 

xpert’s opinion to describe the lifetime of the device. The random 

actor here could be the different experience of each expert. A dif- 

erent situation is when we describe a system, i.e, our car etc. 

It is a common practice in Statistics, in order to be able to con- 

rol the results, to produce simulated data. For example, we pro- 

uce trajectories (data) for Markov chain, from a given transition 

robability matrix, and then we use these trajectories as data en- 

ries to our estimator of the transition probability matrix without 
under the CC BY-NC-ND license 
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ny reference to the given matrix. Finally, we can compare the 

iven matrix with the estimated one. Nevertheless, as the ultimate 

oal is to estimate parameters and functions using real data, we 

ave also to try using real data, even if these data is a little diffi-

ult to obtain (see Section 6 ). 

Another important aspect for engineers is keeping the system 

n an appropriate working state. This is achieved by implement- 

ng good maintenance strategies for each particular system. Main- 

enance involves planned (preventive) and unplanned (corrective) 

ctions carried out to retain a system in or restore it to an accept-

ble operating condition ( Pham & Wang, 1996 ). Preventive mainte- 

ance (PM) actions attempt to retain the system in an acceptable 

perating condition preventing its failure. Corrective maintenance 

efers to all the actions that occur when the system has already 

ailed. PM is essential to reduce operating costs and the risk of a 

atastrophic failure ( Shey-Huei, Chin-Chih, Yen-Luan, & Zhe, 2015 ). 

After a maintenance action takes place the system is in a new 

tate, that depends not only on the performed maintenance ac- 

ion but also how well it was performed. Maintenance actions can 

e perfect, restoring the system to an as good as new condition 

AGAN), minimal, keeping the system in the same state as be- 

ore the maintenance action took place, or something in between 

 Labeau & Segovia, 2011 ). In most situations the system is not back

o an AGAN condition, but rather to a state previous to the mo- 

ent the maintenance action took place. This is known as Imper- 

ect Maintenance. Estimating this state has been widely consid- 

red in the literature. For example, Kijima I and Kijima II ( Kijima, 

989 ) are two well-known classical models. The first model con- 

iders that maintenance actions can only remove damage on the 

ystem since previous maintenance intervention, the second model 

ssumes that maintenance can remove part of the cumulated dam- 

ge up to the moment the intervention takes place. Other well es- 

ablished models are Arithmetic Reduction of the Intensity (ARI) 

nd Arithmetic Reduction of the Age (ARA) models ( Doyen & Gau- 

oin, 2004 ). ARI models consider that the failure intensity of the 

ystem is reduced after maintenance. ARA models focuses on re- 

ucing the age of the system after the intervention. These are just 

ome examples but there are many others. 

In this paper we will suppose that X = { X n ; n ≥ 0 } is a Markov

hain taking values in a set E = { e 1 , e 2 , . . . , e d } where transitions

etween states are given by an unknown matrix P ; and, that 

 = { Y n ; n ≥ 0 } is a random sequence conditionally independent 

nd stationary such that P (Y n ∈ B | X n = e j ) = M(e j , B ) , with j =
 , 2 , . . . , d, B ⊂ R 

k , for k ≥ 1 in general, and M is an unknown func-

ion. We consider the case where Y takes values in a finite set A =
 a 1 , a 2 , . . . , a s } . The d × s -matrix M with (i, j) element M(e i , a j ) is

alled the emission matrix. This model is described as HMM M1- 

0, that is, a Markov chain of order one for X , and a Markov chain

f order zero for Y . They are dynamical stochastic models and this 

s the main reason of their usefulness to model real systems. 

The problem here is to estimate the transition matrix of the 

arkov chain X and the emission probability for Y as above. As it 

s always the case for missed data, we cannot obtain a closed form 

olution for the maximum likelihood estimator (MLE), but we have 

o use approximation numerical methods as the EM-algorithm. The 

ain application of the proposed model concerns reliability and 

aintenance of complex systems, see Landon, Ozekici, & Soyer 

2013) , or Vrignat, Avila, Duculty, & Kratz (2015) , among others, 

nd also Wang (2002) , and Jonge & Scarf (2020) for an up to date

eview on maintenance theory and applications. 

Several studies in the literature concern this kind of models 

rom theoretical point of view ( Baum & Petrie, 1966; Trevezas 

 Limnios, 2009 ) and practical applications in modelling and 

nalysing biological sequences, as DNA ( Barbu & Limnios, 2008 ), in 

nvironmental sustainability problems analysis ( Jiang & Liu, 2015 ), 

T

2 
nd recently in reliability analysis ( Durand & Gaudoin, 2005; Fort, 

ugnaini, & Vignoli, 2015; Simoes, Viegas, Torres Farinha, & Fon- 

eca, 2017; Votsi, Limnios, Tsaklidis, & Papadimitriou, 2013; Zhou, 

u, Xu, Chen, & Zhou, 2010 ). 

The present paper is organized as follows. In Section 2 gen- 

ral considerations about hidden Markov models are treated. In 

ection 3 a new approach of reliability analysis based on HMM 

s presented. Section 4 is devoted to maintenance issues. Numer- 

cal applications are developed in Section 5 and Section 6 where 

e discuss simulated data as well as a real dataset. Finally, 

ection 7 gives the conclusions and suggests future research lines. 

. Hidden Markov models 

In a hidden modelling context, there are three basic problems 

hat must be solved for the model to be useful in real-world appli- 

ations ( Rabiner, 1989 ). The most difficult one is the training prob- 

em, which consists of optimally estimate the parameters of the 

odel from observed data. We usually call the available observa- 

ions the training dataset . Once the model is constructed (trained), 

e need to evaluate the model, that is we address the evaluation 

roblem. This involves the calculation of several probabilities asso- 

iated to the model estimated parameters. Among others we want 

o score how well the estimated model fit the data, which is use- 

ul to choose between competing candidate models. Finally, we are 

ostly interested in uncovering the hidden part of the model, then 

e have a decoding problem. In short it means that we want to 

etermine the “optimal” sequence of hidden states that originated 

he output sequence we actually observed. To do it, we first need 

o decide which optimality criterion best fits our purposes. In the 

articular case of reliability applications, solving these problems 

llow us to get key information about the system performance. 

ore specifically: knowing an estimator ̂ θ of θ we can estimate 

y the usual plug in estimation procedure the reliability, availabil- 

ty, mean times, etc. ( evaluation ) and find the way the system fails 

 decoding ), e.g. via a Viterbi algorithm. 

.1. Preliminary 

Let us consider two finite sets, say E = { e 1 , . . . , e d } and A =
 a 1 , . . . , a s } , and a sequence of coupled r.v. (X n , Y n ) n ≥0 , where (X n )

s a Markov chain of order 1 (CM1), with values in E, and transi-

ion matrix P , and initial law α, and (Y n ) a sequence of r.v. with

alues in A whose law depends on values of (X n ) , in the following

ay: 

(i, l) = P ( Y n = l | X n = i ) , i ∈ E, l ∈ A, (1) 

or all n ∈ N . The matrix M is called an emission matrix. As usual

e call the elements of E the states of the system while the ele- 

ents of A are referred to as signals . 

We can write then 

P ( X n = j, Y n = l | X 0 = i 0 , Y 0 = l 0 , . . . , X n −1 = i, Y n −1 = l n −1 ) 

= P ( X n = j, Y n = l | X n −1 = i ) 

= P (i, j) M( j, l) . 

This model is denoted by M1 − M0 , where M1 is referred to the 

arkov chain of order 1, X , and M0 to the chain Y of order zero

ith respect to itself. A more general case is the model M1 − Mk 

ith k ≥ 1 . In the last case, the conditional law of Y is 

P ( Y n = l | X 0 = i 0 , Y 0 = l 0 , . . . , X n −1 = i n −1 , Y n −1 = l n −1 ) 

= P ( Y n = l | X n −1 = i n −1 , Y n −1 = l n −1 , . . . , Y n −k = l n −k +1 ) 

t is obvious that the Markov chain X can be considered of order 

 , which is the model Mm − Mk . 

In this paper we limit ourselves to the case HMM (M1-M0) . 

he problem here is to estimate the parameters of P and M . 
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et us denote the independent parameters of the model by θ = 

P (i, j) i � = j ;i, j ∈ E ; M(i, l) i ∈ E;l∈ A { a s } ) . 
The log-likelihood can be written, by neglecting the term 

og P (X 0 ) , as 

og p θ (Y ) = 

∑ 

X 

log f (X, Y | θ ) , (2) 

here Y = (Y 0 , . . . , Y n ) and X = (X 0 , . . . , X n ) and it is included in

3) 

og f (X, Y | θ ) = 

n ∑ 

k =1 

log P (X k −1 , X k ) + 

n ∑ 

k =0 

log M(X k , Y k ) . (3)

.2. The EM-algorithm 

In order to estimate θ we will apply E-M algorithm as follows. 

he function Q(θ | θ (m ) ) will give us by successive iterations an 

pproximation of the estimate of θ . 

 

(
θ | θ (m ) 

)
= E θ (m ) [ log f (X, Y | θ ) ] 

= 

n ∑ 

k =1 

E θ (m ) [ log P (X k −1 , X k ) | Y ] 

+ 

n ∑ 

k =0 

E θ (m ) [ log M(X k , Y k ) | Y ] . 

inally, 

 

(
θ | θ (m ) 

)
= 

n ∑ 

k =1 

∑ 

i, j∈ E 
P θ (m ) (X k −1 = i, X k = j | Y ) log P (i, j) 

+ 

n ∑ 

k =0 

∑ 

i ∈ E 

∑ 

a ∈ A 
P θ (m ) (X k = i | Y ) 1 { Y k = a } log M(i, a ) . (4) 

he calculus of this expectation needs the calculus of the probabil- 

ties P θ (m ) (X k −1 = i, X k = j | Y ) . 
In order to pass from θ (m ) to θ (m +1) , 

(m +1) = arg max 
θ

Q 

(
θ | θ (m ) 

)
, m = 0 , 1 , 2 , . . . (5) 

he following two-steps algorithm is used. This is the well known 

M algorithm. 

M-Algorithm 

tep E (Expectation): 

For given θ (m ) , compute the probabilities: 

 θ (m ) (X k −1 = i, X k = j | Y ) , k = 1 , 2 , . . . , n ; i, j ∈ E 

Step M (Maximization): 

Update θ (m ) to θ (m +1) via (5) 

The maximization step M, is realized directly by the following 

ormulas: 

ˆ 
 

(m +1) (i, j) = 

∑ n 
k =1 P θ (m ) (X k −1 = i, X k = j | Y ) ∑ n 

k =1 P θ (m ) (X k −1 = i | Y ) , (6) 

nd 

ˆ 
 

(m +1) (i, a ) = 

∑ n 
k =0 P θ (m ) (X k = i | Y ) 1 { Y k = a } ∑ n 

k =0 P θ (m ) (X k = i | Y ) . (7) 

.3. The E-Step: Forward-backward equations 

The probabilities that need to be computed in the E-step can 

e obtained by means of the “forward-backward” procedure as ex- 

lained in the following. 

For given θ (m ) , compute the probabilities: 

 θ (m ) (X k −1 = i, X k = j | Y ) , k = 1 , 2 , . . . , n ; i, j ∈ E;
3 
nd 

 θ (m ) (X k = i | Y ) , k = 1 , 2 , . . . , n ; i ∈ E. 

o do it a “forward-backward” procedure is used. 

Define the forward probability function F k (i ) , for k = 1 , . . . , n

nd i ∈ E as 

 

(m ) 
k 

(i ) = P θ (m ) (Y k 0 ; X k = i ) , (8) 

nd the backward probability function B k (i ) , as 

 

(m ) 
k 

(i ) = P θ (m ) (Y n k +1 | X k = i ) , (9) 

or k = 1 , . . . , n and i ∈ E. 

These functions meet, respectively, the following recurrence 

quations 

 

(m ) 
k 

(i ) = 

∑ 

j∈ E 
F (m ) 

k −1 
( j) P (m ) ( j, i ) M 

(m ) (i, Y k ) , 

or all k = 1 , 2 , . . . , n , with F (m ) 
0 

(i ) = α(m ) (i ) , for i ∈ E; and, 

 

(m ) 
k 

(i ) = 

∑ 

j∈ E 
P (m ) (i, j) M 

(m ) ( j, Y k +1 ) B 

(m ) 
k +1 

( j) , 

or k = n − 1 , n − 2 , . . . , 1 , taking B (m ) 
n (i ) = 1 for all i ∈ E. 

Also we have that P θ (m ) (Y ) = 

∑ 

i ∈ E F 
(m ) 

n (i ) and P θ (m ) (Y ) =
 

i ∈ E B 
(m ) 
0 

(i ) . 

Then it can be written that 

 θ (m ) (X k = i | Y ) = 

F (m ) 
k 

(i ) B 

(m ) 
k 

(i ) 

P θ (m ) (Y ) 
, 

nd 

 θ (m ) (X k = i, X k +1 = j | Y ) = 

F (m ) 
k 

(i ) P (m ) (i, j) M 

(m ) ( j, Y k +1 ) B 

(m ) 
k +1 

( j) 

P θ (m ) (Y ) 
,

. Reliability in HMM 

We suppose here that the system structure is described by the 

idden Markov chain X and that the state-space is split into two 

ubsets U := { 1 , . . . , r} , the working states, and D := { r + 1 , . . . , d} ,
he down states. For simplicity, and without loss of generality, this 

otation is used for the states of the system. 

Additionally, the system up states can be defined not only by 

 ⊂ E but also by some subset of A . In some situations, the in-

ormation we get about the system functioning can be categorized 

nto two groups of signals. On the one hand, we have a group of 

ignals indicating a good performance, the subset A 1 ⊂ A ; and, on 

he other hand, there is a group of s 1 < s signals for warning of

ome serious problem in the system A 2 that involves the opera- 

ion interruption thus causing the system failure, that is, the subset 

 2 ⊂ A . Then we have also the partition A = A 1 ∪ A 2 . 

.1. Definition 

Let us denote T the first time the system visits the set of 

own states D , i.e. the hitting time of set D . Let us consider ˜ U =
 × A 1 and 

˜ D = ̃

 E ˜ U , being ˜ E = E × A. Then T = min { n ≥ 0 : ˜ X =
X n , Y n ) ∈ 

˜ D } . Therefore the reliability of the system can be de-

ned as R (n ) = P (T > n ) , for n = 1 , 2 , . . . . Conditioning on X 0 = i ,

or i ∈ U , we write 

 i (n ) = P i (T > n ) 

= 

∑ 

i 1 ,i 2 , ... ,i n ∈ U 

∑ 

l 0 ,l 1 , ... ,l n ∈ A 1 
P i (X 

n 
1 = i n 1 ) P i (Y 

n 
0 = l n 0 | X 

n 
1 = i n 1 ) 

= 

∑ 

i n 
1 
∈ U n 

∑ 

l n 
0 
∈ A n +1 

1 

P (i, i 1 ) P (i 1 , i 2 ) · · · P (i n −1 , i n ) 
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Ẽ

T  

w  

B

w

m

t

fi

R

w  

t

i

m  

R

f  

n

R̂

f

3

r

 

l

l  

m

t

θ

t

t

s

θ

t

o

i  

S

A

T

6

P

T  

t

(

r

i  

a

I

I

s

I

t

w

p

P

a

w

t

θ
t

P̃

w

Ẽ

×M (i, l 0 ) M (i 1 , l 1 ) · · · M(i n , l n ) , 

here we use the notation i n 
1 

= (i 1 , i 2 , . . . , i n ) ∈ U 

n and l n 
0 

=
l 0 , l 1 , . . . , l n ) ∈ A 

n +1 
1 

. 

Finally 

 (n ) = 

∑ 

i ∈ U 
αi R i (n ) (10) 

here αi = P (X 0 = i ) , for i ∈ U , denotes the initial law. 

As we know, the two-dimensional process ˜ X = { (X n , Y n ) ; n ≥ 0 }
s a two-dimensional Markov chain of order 1 (CM1) with state- 

pace ˜ E of size d · s and transition probability matrix ˜ P , with ele- 

ents 

 

 ( (i 1 , l 1 ) , (i 2 , l 2 ) ) = P (i 1 , i 2 ) · M(i 2 , l 2 ) (11) 

or all pairs (i 1 , l 1 ) , (i 2 , l 2 ) ∈ ̃

 E . Also, the initial distribution of chain

X, Y ) is ˜ α(i,l) = αi M(i, l) . 

As can be seen, the matrix ̃  P has dimension d · s × d · s . 

For convenience in the calculations, the states are organized in 

exicographical order as follows 

 

 = { (1 , a 1 ) , (2 , a 1 ) , . . . , (d, a 1 ) , (1 , a 2 ) , . . . , 

(d, a 2 ) , . . . , (1 , a s ) , . . . , (d, a s ) } . 
he matrix ˜ P consists then of s blocks of sub-matrices B 1 , . . . , B s ,

ith dimension d × s d each. All blocks are identical, B j = B , for all

j = 1 , . . . , s , and can be expressed as 

 = 

(
P · D { M 1 , 1 , ... ,M d, 1 } , . . . , P · D { M 1 , j , ... ,M d, j } , . . . , P · D { M 1 ,s , ... ,M d,s } 

)
here D { m 1 , ... ,m d } is a d-dimensional diagonal matrix with ele- 

ents m 1 , . . . , m d . Finally, ˜ P = 

(
B 

′ 
1 
, . . . , B 

′ 
s 

)′ 
, where we denote B 

′ 
he transpose of matrix B . 

With this in mind, we can write the reliability function just de- 

ned as 

 (n ) = 

∑ 

(i,l) n 
0 
∈ ̃  U ̃

 α(i 0 ,l 0 ) ̃
 P ( (i 0 , l 0 ) , (i 1 , l 1 ) ) ̃  P ( (i 1 , l 1 ) , (i 2 , l 2 ) ) · · ·

˜ P ( (i n −1 , l n −1 ) , (i n , l n ) ) , (12) 

here it is denoted (i, l) n 
0 

= { (i 0 , l 0 ) , . . . , (i n , l n ) } . That is, the sys-

em fails whenever the subset D is reached or a signal of subset A 2 

s emitted. The summation in Eq. (12) is expanded for all the ele- 

ents in 

˜ U = U × A 1 , then, using matrix notation, it can be written

 (n ) = ̃

 α0 ̃
 P 

n 
0 1 ˜ r , 

or n ≥ 1 , with 1 ˜ r a unitary vector of size ̃  r = r · s 1 , being r the total

umber of up states and s 1 the size of the set A 1 . 

We define the following estimator of the reliability as 

 

 (n ; N) = ̂

 ˜ α0 ̂
 ˜ P 

n 

0 1 ˜ r , 

or n ≥ 0 and N the sample size. 

.2. Asymptotic properties of the reliability estimator 

Let us derive the consistency and asymptotic normality of the 

eliability estimator defined above. 

For { Y 0 , ..., Y N } a sample path of observations, the log-

ikelihood function for an observation of the hidden Markov chain 

og f (X, Y | θ) , is given in Eq. (3) . The vector of parameters of the

odel θ, can be written after removing the independent parame- 

ers as θ = 

(
θ1 , θ2 

)
, with 

1 = ( P (2 , 1) , . . . , P (d, 1) , P (1 , 2) , P (3 , 2) , . . . , 

P (d, 2) , . . . , P (1 , d) , . . . , P (d, d − 1) ) , 
4 
hat is, the elements of the matrix P taken column-wise without 

he diagonal. The number of parameters to be estimated in this 

ub-vector is b 1 = d · (d − 1) . On the other hand, 

2 = ( M(1 , a 1 ) , . . . , M(1 , a s −1 ) , M(2 , a 1 ) , . . . , M(2 , a s −1 ) , . . . , 

(d, a 1 ) , . . . , M(d, a s −1 ) ) , 

hat is the elements of the matrix M taken column-wise. The size 

f the sub-vector θ2 is b 2 = d · (s − 1) . Then, the total number of 

ndependent parameters to be estimated is b 1 + b 2 = d · (d + s − 2) .

o θ ∈ � ⊂ [0 , 1] d 
2 + ds −2 d . 

We need the following assumptions. 

ssumptions Barbu & Limnios (2008) : 

A1 The Markov chain X is ergodic, i.e., irreducible and aperi- 

odic; and stationary; 

A2 There exists an integer n ∈ N such that the Fisher informa- 

tion matrix I n ( θ
0 
) = −E 

θ0 

(
∂ 2 log p θ (Y n 

0 
) 

∂ θi ∂ θ j 

∣∣∣
θ= θ0 

)
i, j 

is nonsingu- 

lar, where log p θ(Y 
n 
0 
) is the log-likelihood function defined 

in Eq. (2) . 

Let us denote θ
0 = 

(
θ

0 
1 , θ

0 
2 

)
the true value of the parameter. 

he following theorem is deduced as a particular case of Theorem 

.1 and Theorem 6.4 in Barbu & Limnios (2008) . See also Baum & 

etrie (1966) and Bickel, Ritov, & Rydén (1998) . 

heorem 1. Under assumptions A 1 - A 2 , given a sample of observa-

ions Y N 0 , the maximum-likelihood estimator ̂ θN = 

(̂ θ1 , ̂
 θ2 

)
N 

of θ = 

 θ1 , θ2 ) is strongly consistent as N tends to infinity. Moreover, the 

andom vector 
√ 

N 

[ (̂ θ1 , ̂
 θ2 

)
N 

−
(
θ

0 
1 , θ

0 
2 

)] 
= 

√ 

N 

[((̂ P N (i, j) 1 ≤i, j <d ;(i � = j ) 
)
, 
( ̂ M N (i, a l ) 1 ≤i ≤d;1 ≤l<s 

))
−
((

P 0 (i, j) 1 ≤i, j <d ;(i � = j ) 
)
, 
(
M 

0 (i, a l ) 1 ≤i ≤d;1 ≤l<s 

))]
s asymptotically Normal, as N → + ∞ , with zero mean and covari-

nce matrix the inverse of the asymptotic Fisher information matrix 

( θ
0 
) . 

The asymptotic Fisher information matrix is given by 

( θ
0 
) = −E 

θ
0 

( 

∂ 2 log P θ(Y 0 | Y −1 , Y −2 , . . . ) 

∂ θi ∂ θ j 

∣∣∣∣
θ= θ0 

) 

i, j 

, 

ee Baum & Petrie (1966) , and in Douc (2005) it is shown that 

( θ
0 
) is nonsingular under Assumption A2. 

From Theorem 1 we immediately obtain the consistency and 

he asymptotic normality of the reliability estimator ̂ R . Previously 

e need the following lemmas. First we consider the following 

artition of the matrix P 

 = 

(
P UU P UD 

P DU P DD 

)
nd denote θ˜ U = 

(
θ1 ,U , θ2 , 1 

)
where in the sub-vector denoted θ1 ,U 

e keep only the elements of sub-matrix P UU , which contains all 

ransitions between the up-states; and, in the sub-vector denoted 

2 , 1 we keep only the elements of sub-matrix M UA 1 
, which con- 

ains all emission probabilities from up-states to good signals. 

Accordingly, we can write matrix ̃  P by blocks as follows 

 

 = 

( ˜ P ˜ U ̃  U 
˜ P ˜ U ̃  D ˜ P ˜ D ̃  U 
˜ P ˜ D ̃  D 

) 

, 

here we have considered a similar partition of the state space 
 

 = ̃

 U ∪ ̃

 D , where we denote ˜ D = (U × A ) ∪ (D × A ) . 
2 



M.L. Gámiz, N. Limnios and M.d.C. Segovia-García European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; May 26, 2022;10:41 ] 

C

L

p(
s

P

(

a

d

�

s

 

fi

m

m

t

B

i

(

L

P

g

t  

r

P

∞
R̂

P

(

L

A

L  

v

F

i

m

r

(

(

P

t

t

d

l

 

 

L

f  

(

m

s

P

L  

w

(

n

F

 

, 

w

F

onsistency 

emma 1. Under the Assumptions A 1 − A 2 , given a sam- 

le of observations Y N 
0 

, the maximum likelihood estimator of ˜ P ((i, l) , ( j, h )) 
)
(i,l) , ( j,h ) ∈ ̃  U 

, that is 

(̂ ˜ P N ((i, l) , ( j, h )) 
)

(i,l) , ( j,h ) ∈ ̃  U 
, is 

trongly consistent as N tends to infinity. 

roof. The transition probabilities for the two-dimensional process 

X, Y ) are obtained as ˜ P ((i, l) , ( j, h )) = P (i, j) M( j, h ) for all i, j ∈ E

nd l, h ∈ A . Considering the vector of parameters θ = 

(
θ1 , θ2 

)
we 

efine the following function 

: [0 , 1] d 
2 + ds −2 d −→ [0 , 1] r 

2 ·s 1 

uch that � = 

(
�m 

; m = 1 , 2 , . . . , r 2 · s 1 
)
. 

For fixed k = 1 , . . . , s 1 , let us consider values j = 1 , 2 , . . . , r. For

xed k and j, we can write m = (k − 1) r 2 + ( j − 1) r + i , for 1 ≤
 ≤ r 2 s 1 , and, for i = 1 , 2 , . . . , r, consider two cases: 

• for i � = j, define 

�m 

( θ) = �(k −1) r 2 +( j−1) r+ i ( θ) = P (i, j) · M( j, a k ) ; and , (13) 

• for i = j, define 

�m 

( θ) = �(k −1) r 2 +( j−1) r+ j ( θ) 

= 

( 

1 −
∑ 

j ′ ∈ E; j ′ � = j 
(1 − P ( j, j ′ ) 

) 

· M( j, a k ) . (14) 

Then � = 

(
�(k −1) r 2 +( j−1) r+ i 

)
k =1 , ... ,s 1 ; j=1 , ... ,r;i =1 , ... ,r 

∈ [0 , 1] r 
2 ·s 1 . 

This function returns a vector whose components are the ele- 

ents of matrix ˜ P ˜ U ̃  U taken column-wise. Then, using the consis- 

ency of the estimator ̂ θ, which is deduced from Theorem 6.1 in 

arbu & Limnios (2008) , recalled by Theorem 1 above, and apply- 

ng the continuous mapping theorem to the function � defined in 

13) - (14) , we obtain the desired result. �

emma 2. We have that 

max 
0 ≤n ≤N 

max 
(i,l) , ( j,h ) ∈ U×A 

∣∣∣̂  ˜ P 
n 

N ((i, l) , ( j, h )) − ˜ P n ((i, l) , ( j, h )) 

∣∣∣ a.s. −→ 0 , 

(N → + ∞ ) 

roof. The proof is easily obtained from Lemma 1 given above that 

ives the proof for n = 1 , then, mathematical induction similarly 

o Lemma 1 of Sadek & Limnios (2002) can be applied to get the

esult for all n ≥ 2 . �

roposition 1. The estimator ̂ R (n ; N) is strongly consistent, as N → 

 , for any n ≥ 1 , i.e., 

 

 (n ; N) 
a.s. −→ R (n ) 

roof. The proof is similar to Theorem 3 in Sadek & Limnios 

2002) and can be deduced straightforwardly from Lemma 1 and 

emma 2 above. �

symptotic normality 

emma 3. Under the Assumptions A 1 − A 2 , given a sample of obser-

ations Y N 0 , the random vector F N = 

(
F (i,l) , ( j,h ) ;(i,l) , ( j,h ) ∈ ̃  U 

)
such that 

 (i,l) , ( j,h ) = 

√ 

N 

[(̂ ˜ P N ((i, l) , ( j, h )) 
)

(i,l) , ( j,h ) ∈ ̃  U 

−
(˜ P ((i, l) , ( j, h )) 

)
(i,l) , ( j,h ) ∈ ̃  U 

] 
s asymptotically Normal, as N → + ∞ with 0 mean and covariance 

atrix �˜ = �′ · �θ · �′
 , where �θ is the covariance matrix of the 
P 

5 
andom vector ̂ θ = 

(̂ θ1 , ̂
 θ2 

)
and � is the function defined in (13) - 

14) whose partial derivative matrix �′ has elements given in (15) - 

18) . 

roof. Theorem 6.4 in Barbu & Limnios (2008) gives the asymp- 

otic normality of the maximum likelihood estimator ̂  θ = ( ̂  θ1 , ̂
 θ2 ) , 

hen we can apply the Delta method considering the function �

efined in (13) - (14) and the derivative matrix is detailed as fol- 

ows: 

• For each k = 1 , 2 , . . . , s 1 , each j = 1 , 2 , . . . , r, and i = j. For all

i ′ , j ′ ∈ { 1 , 2 , . . . , d} , we have that 

∂�(k −1) r 2 +( j−1) r+ j 
∂P (i ′ , j ′ ) = 

{
0 , if i ′ � = j;
−M( j, a k ) , if i ′ = j. 

(15) 

For all j ′ ∈ { 1 , . . . , d} and all k ′ ∈ { 1 , . . . , s } , 
∂�(k −1) r 2 +( j−1) r+ j 

∂M( j ′ , a k ′ ) 

= 

{
0 , if j ′ � = j or k ′ � = k ;
1 −∑ 

h ∈ E;h � = j P ( j, h ) , if j ′ = j and k ′ = k ; (16) 

• For each k = 1 , 2 , . . . , s 1 , each j = 1 , 2 , . . . , r, and each i =
1 , 2 , . . . , r, i � = j . For all i ′ , j ′ ∈ { 1 , 2 , . . . , d } 
∂�(k −1) r 2 +( j−1) r+ i 

∂P (i ′ , j ′ ) = 

{
0 , if i ′ � = j, or j ′ � = j;
M( j, a k ) , if i ′ = i and j ′ = j. 

(17) 

Finally, for all k ′ ∈ { 1 , . . . , s } , and all j ′ ∈ { 1 , . . . , d} , 
∂�(k −1) r 2 +( j−1) r+ i 

∂M( j ′ , a k ′ ) 
= 

{
0 , if k ′ � = k, or j ′ � = j 
P (i, j) , if j ′ = j and k ′ = k ; (18) 

�

emma 4. Let F n 
(i,l) , ( j,h ) 

= 

√ 

N 

(̂ ˜ P 
n 

N ((i, l) , ( j, h )) − ˜ P n ((i, l) , ( j, h )) 
)

, 

or all n ≥ 1 and (i, l) , ( j, h ) ∈ ̃

 E . Then, the random vector F n 
N 

=
F n 
(i,l) , ( j,h ) 

) converges, as N → + ∞ , to a Normal distribution with 

ean 0, and covariance matrix �F n = �n �F �

 
n , where �n is a con- 

tant matrix and �F is the covariance matrix of F N . 

roof. This result is directly deduced from the result in 

emma 3 given above which shows the result for n = 1 . Then

e can follow similar steps as in Theorem 4 of Sadek & Limnios 

2002) and apply mathematical induction to get the result for all 

 ≥ 2 . Specifically, for n = 2 we have 

 

2 
(i,l) , ( j,h ) = 

= 

√ 

N 

(̂ ˜ P 
2 

((i, l) , ( j, h )) − ˜ P 2 ((i, l) , ( j, h )) 
)

= 

√ 

N 

∑ 

(i 1 ,l 1 ) 

(̂ ˜ P ((i, l) , (i 1 , l 1 )) ̂
 ˜ P ((i 1 , l 1 ) , ( j, h )) 

−˜ P ((i, l) , (i 1 , l 1 ) ̃  P ((i 1 , l 1 ) , ( j, h )) 
)

= 

√ 

N 

∑ 

(i 1 ,l 1 ) 

{ ̂ ˜ P ((i, l) , (i 1 , l 1 )) 
[ ̂ ˜ P ((i 1 , l 1 ) , ( j, h )) 

−˜ P ((i 1 , l 1 ) , ( j, h )) 
]
+ 

+ 

[ ̂ ˜ P ((i, l) , (i 1 , l 1 )) −˜ P ((i, l) , (i 1 , l 1 )) 
] ˜ P ((i 1 , l 1 ) , ( j, h )) 

}
hich can also be written as 

 

2 
(i,l) , ( j,h ) = 

= 

√ 

N 

∑ 

(i 1 ,l 1 ) 

[ ̂ ˜ P ((i, l) , (i 1 , l 1 )) − ˜ P ((i, l) , (i 1 , l 1 )) 
] 
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[ ̂ ˜ P ((i 1 , l 1 ) , ( j, h )) − ˜ P ((i 1 , l 1 ) , ( j, h )) 
] 

+ 

√ 

N 

∑ 

(i 1 ,l 1 ) ̃

 P ((i,l) , (i 1 ,l 1 )) 

[ ̂ ˜ P ((i 1 , l 1 ) , ( j, h )) 

−˜ P ((i 1 , l 1 ) , ( j, h )) 
]

+ 

√ 

N 

∑ 

(i 1 ,l 1 ) 

[ ̂ ˜ P ((i, l) , (i 1 , l 1 )) − ˜ P ((i, l) , (i 1 , l 1 )) 
] 

˜ P ((i 1 ,l 1 ) , ( j,h )) . (19) 

Following similar arguments as in Sadek & Limnios (2002) , by 

lutsky’s theorem, the first term of the sum in 19 is of lower order

o it can be ignored for the limit expression. Then, we have 

 

2 
(i,l) , ( j,h ) = 

∑ 

(i 1 ,l 1 ) 

[˜ P ((i,l) , (i 1 ,l 1 )) F ((i 1 ,l 1 ) , ( j,h )) + F ((i,l) , (i 1 ,l 1 )) ̃
 P ((i 1 ,l 1 ) , ( j,h )) 

]
o we can express F 2 

(i,l) , ( j,h ) 
as a linear transformation of the vector 

F ((i,l) , ( j,h )) ; (i, l) , ( j, h ) ∈ ̃

 E 
)
. 

sing Lemma 3 , the vector F 2 N = 

(
F 2 
(i,l) , ( j,h ) 

; (i, l) , ( j, h ) ∈ ̃

 E 

)
has a 

entered Normal distribution. Moreover the covariance matrix can 

e obtained from the following 

Cov 
(
F 2 ((i 1 ,l 1 ) , ( j 1 ,h 1 )) 

, F 2 ((i 2 ,l 2 ) , ( j 2 ,h 2 )) 

)
= 

∑ 

(i,l) , ( j,h ) ∈ ̃  E ̃

 P (i 1 ,l 1 ) , (i,l) ̃
 P (i 2 ,l 2 ) , ( j,h ) Cov 

(
F (i,l) , ( j 1 ,h 1 ) , F ( j,h ) , ( j 2 ,h 2 ) 

)
+ 

∑ 

(i,l) , ( j,h ) ∈ ̃  E ̃

 P (i 1 ,l 1 ) , (i,l) ̃
 P ( j,h ) , ( j 2 ,l 2 ) Cov 

(
F (i,l) , ( j 1 ,h 1 ) , F (i 2 ,l 2 ) , ( j,h ) 

)
+ 

∑ 

(i,l) , ( j,h ) ∈ ̃  E ̃

 P (i,l) , ( j 1 ,h 1 ) ̃
 P (i 2 ,l 2 ) , ( j,h ) Cov 

(
F (i 1 ,l 1 ) , (i,l) , F ( j,h ) , (i 2 ,l 2 ) 

)
+ 

∑ 

(i,l) , ( j,h ) ∈ ̃  E ̃

 P (i,l) , ( j 1 ,h 1 ) ̃
 P ( j,h ) , ( j 2 ,h 2 ) Cov (F (i 1 ,l 1 ) , (i,l) , F (i 2 ,l 2 ) , ( j,h )) , 

hich can be written, after conveniently defining the matrix �2 , as 

F 2 = �2 �F �

 
2 . 

By the same reasoning as in Eq. (19) , for any n ≥ 2 , the expres-

ion F n +1 
(i,l) , ( j,h ) 

has the same limit as the expression that follows 

 

N 

∑ 

(i n ,l n ) 

[˜ P ((i,l) , (i n ,l n )) F 
n 
((i 1 ,l 1 ) , ( j,h )) + F ((i,l) , (i n ,l n )) ̃

 P n ((i n ,l n ) , ( j,h )) 

]
. 

hen, using mathematical induction, the following recurrence rela- 

ion can be shown, for any n ≥ 2 , 

F n +1 
((i,l) , ( j,h ) 

≡
∑ 

(i 1 ,l 1 ) ∈ ̃  E ̃

 P (i,l) , (i 1 ,l 1 ) F ((i 1 ,l 1 ) , ( j,h ) 

+ 

n −1 ∑ 

k =1 

[ ∑ 

(i k ,l k ) ∈ ̃  E 

∑ 

(i k +1 ,l k +1 ) ∈ ̃  E ̃

 P n −k 
(i,l) , (i k +1 ,l k +1 ) 

F (i k +1 ,l k +1 ) , (i k ,l k ) ̃
 P k (i k ,l k ) , ( j,h ) 

] 

+ 

∑ 

(i n ,l n ) ∈ ̃  E 

F (i,l) , (i n ,l n ) ̃
 P n ((i n ,l n ) , ( j,h ) , 

here ≡ means equivalence in distribution. Then, we get that vec- 

or F n +1 
N 

= 

(
F n +1 
(i,l) , ( j,h ) 

; (i, l) , ( j, h ) ∈ ̃

 E 

)
is a linear transformation of 

ector F N and then it has Normal distribution with mean 0. Rea- 

oning similar to the case n = 2 we can write the covariance ma-

rix conveniently defining the transformation matrix �n +1 . �

roposition 2. The estimator ̂ R (n ; N) is asymptotically Normal, as 

 → ∞ , for any n ≥ 1 , i.e., 

 

N ( ̂  R (n ; N) − R (n )) 
d −→ N(0 , �R,n ) 
a

6 
roof. The proof is similar to Theorem 6 in Sadek & Limnios 

2002) and can be deduced straightforwardly from Lemma 3 and 

emma 4 above. �

emark 1. Conditional reliability for stationary Markov chains 

When the Markov chain X is stationary the initial distribution 

coincides with the stationary distribution π, then we have that 

 (0) < 1 because in general π(D ) = 

∑ 

i ∈ D πi > 0 , where E = U ∪ D ,

eing U the subset of up-states U , and D the subset of down-states. 

o overcome this issue we introduce the concept of conditional re- 

iability R C , defined as 

 C (n ) = 

1 

π(U) 

∑ 

i ∈ U 
πi R i (n ) , 

or all n ≥ 0 , where π(U) = 

∑ 

i ∈ U πi . Taking αi = 

πi 
π(U) 

in Eq. 

10) we can define the corresponding estimator and deduce its 

roperties. 

. Maintenance in HMM 

In this paper, we propose a maintenance policy for our HMM 

here the system states represent degradation levels. The pol- 

cy restores the system to a previous, not necessarily AGAN, con- 

ition with certain probability. Similarly, Boussemart, Bickard, & 

imnios (2001) considered a Markov chain that governs the sys- 

em degradation, maintenance actions bring the system to a new 

tate with certain probability, the new system state depends on 

he performed action. More details in this subject can be read in 

ection 1 . 

.1. Maintenance strategy based on critical values 

Let us consider a system that degrades with time. Every state 

f the system represents a degradation level, E = { 1 , . . . , d} . State 1

ndicates that the system is new and state d indicates the failure of 

he system. The system can only progress to a higher degradation 

evel, not necessarily the following one. 

The system is inspected at regular intervals to detect any prob- 

em and intervene if necessary. Two different maintenance poli- 

ies are proposed for this system: the first one is based on the 

stimated probability that the system is visiting a certain subset 

f states at the n th inspection. The second one considers the ob- 

erved signals assuming that when the signals associated to failure 

re observed, the system has failed. 

The cost of the intervention depends on the degradation level 

eached by the system, being the corrective maintenance the most 

xpensive one. 

Case 1: Preventive maintenance based on critical state prob- 

bility criterion (CSPC) 

In our first approach we consider preventive maintenance cri- 

eria based on critical states probability criterion (CSPC). Roughly 

peaking, a preventive maintenance action is carried out once the 

ystem enters a subset of operational states that are considered 

ritical in some sense. To get a better picture of the situation let 

s illustrate it with the following example. 

Consider a system with two units that is working as long as 

t least one unit is operative (i.e. parallel structure). Let us as- 

ume that the two units are identical and the system evolution 

s modelled by a Markov chain with state space defined in terms 

f the number of down units, E = { 0 , 1 , 2 } ; the set of up states

s U = { 0 , 1 } and the down-state set is then D = { 2 } . State 1 can

e seen as critical in comparison with state 0. In general, we de- 

ote U = { 1 , 2 , . . . , r} , the set of up states and let us assume that

 = U 1 ∪ U 2 where the set of up states can be split into two sub-

ets such states in U 2 are critical to the system performance. Let us 

ssume that card(U ) = c, for a c < r. 
2 
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The preventive maintenance action is undertaken as soon as the 

ubset U 2 is reached with pre-specified probability. More specifi- 

ally, let us denote T c the first time the system hits subset U 2 di-

ectly from subset U 1 , that is, without visiting any state of subset 

 . The probability distribution of this time is 

f c (n ) = P (X n ∈ U 2 ; X k ∈ U 1 , k = 1 , . . . , n − 1) 

= αU 1 ( P U 1 ,U 1 ) 
n −1 P U 1 ,U 2 1 U 2 , 

or n ≥ 1 . As long as transitions from U 1 to D are allowed there are

on-zero elements in sub-matrix P U 1 ,D , and then 

∑ 

n ≥1 f c (n ) < 1 .

et f ∗c (n ) = 

f c (n ) ∑ 

k ≥1 f c (k ) 
, for all n = 1 , 2 . . . and let F ∗c (n ) = 

∑ 

k ≤n f 
∗
c (k )

enote the corresponding distribution function. A preventive main- 

enance action is carried out at time 

 c (q ) := min { n ≥ 0 : F ∗c (n ) ≥ q } , (20)

ith q a critical probability value, 0 < q < 1 ; that is, the quantile

f order q of the distribution F ∗c . 
Once the action is finished, the system is restored to a non- 

ritical state. Then, by the memoryless property, a new preventive 

aintenance action will be scheduled following the rule just de- 

ned. Note that with this rule we decide when to do the preven- 

ive action, but it is still to be decided how the system is main-

ained. 

Case 2: Preventive maintenance based on warning signals 

robability criterion (WSPC) 

As explained in Section 3 , the system performance is described 

ot only in terms of the states of the set E, but also in terms of

he set of observed signals, i.e. A = A 1 ∪ A 2 , where we distinguish

etween good signals A 1 , and bad signals A 2 . Then we can decide

o undertake a preventive action as soon as a warning signal is ob- 

erved. Notice that when a signal in the subset A 2 is emitted the 

ystem is in a failed state with probability 1. 

Let as assume that the subset of good signals A 1 can in turn 

e split into two subsets such that A 1 = A 11 ∪ A 12 , being a w 

∈ A 12 a

ignal that alerts of some non desirable behaviour in the system, 

hat is, a w 

is a warning signal. Let us also define τw 

the first time

 warning signal is observed without having previously received a 

ignal indicating the system failure, that is a signal of subset A 2 . 

n other words, τw 

= n if and only if Y n ∈ A 12 and Y k ∈ A 11 for all

 = 1 , 2 , . . . , n − 1 . The system has only emitted good signals until

ime n , when an alert is detected for the first time. To obtain the

istribution probability of τw 

we can consider two different situa- 

ions. 

1. { Y n ; n = 1 , . . . , N} are independent identically distributed 

(i.i.d.) 

g w 

(n ) = P ( Y n ∈ A 12 ;Y k ∈ A 11 , k = 1 , . . . , n − 1 ) 

= P (Y n ∈ A 12 ) P (Y n −1 ∈ A 11 ) · · · P (Y 1 ∈ A 11 ) (21) 

Let A 1 l , for l = 1 , 2 the corresponding subset of signals, then

it can be written 

P (Y k ∈ A 1 l ) = 

∑ 

i ∈ E 
P (X k = i ) M(i, A 1 l ) 

with M(i, A 1 l ) = 

∑ 

a ∈ A 1 l M(i, a ) . Then, 

g w 

(n ) = P ( Y n ∈ A 12 ;Y k ∈ A 11 , k = 1 , . . . , n − 1 ) 

= 

( 

n −1 ∏ 

k =1 

{ ∑ 

i ∈ E 
P (X k = i ) M(i, A 11 ) 

} ) 

( ∑ 

j∈ E 
P (X n = j) M( j, A 12 ) 

) 
E

7 
2. { Y n ; n = 1 , . . . , N} are independent conditionally on { X n ; n =
1 , . . . , N} 
g w 

(n ) = P ( Y n ∈ A 12 ;Y k ∈ A 11 , k = 1 , . . . , n − 1 ) 

= 

∑ 

i 1 ,i 2 , ... ,i n ∈ E 
αi 1 M(i 1 , A 11 ) P (i 1 , i 2 ) M(i 2 , A 11 ) · · ·

P (i n −1 , i n ) M(i n , A 12 ) 

Then, for a pre-specified probability q , we can decide to under- 

ake preventive maintenance actions at times 

 w 

(q ) = min { n : G 

∗
w 

(n ) > q } , (22) 

or n = 1 , 2 , . . . , and 0 < q < 1 , a critical probability value, and G 

∗
w 

epresents the distribution function of the corresponding normal- 

zed distribution. 

.2. Maintenance strategy expected cost 

Let us consider again the state space E = { 1 , . . . , d} as a set of

egradation states of the system in the sense that 1 indicates the 

ystem is new and d the failure of the system. As above, let us as- 

ume that U = U 1 ∪ U 2 , that is r = r 1 + r 2 < d, with U 2 the subset of

ize r 2 containing the critical states of the system. D is the subset 

f failed states. 

Here a maintenance cost depending on the state of the system 

s well as the observed signal is considered. A system failure is 

ollowed by a corrective maintenance action which involves a cost 

ector of C CM 

, of dimension d − r. On the other hand, a preventive

aintenance action is done at times N c (q ) given in (20) when the

aintenance is carried out following rule CSPC (see Case 1 above), 

nd at times N w 

(q ) given in (22) , when the maintenance is car-

ied out following rule WSPC (as described in Case 2). The asso- 

iated cost depends on the hidden state that is being visited at 

he moment of the inspection. We then define a vector of costs 

s follows. The cost is 0 for the states 1 to r 1 , and, on the other

and, for the critical states there is an associated PM cost given 

y c j with j = r 1 + 1 , . . . , r 1 + r 2 = r where c j 1 ≤ c j 2 , for j 1 < j 2 . Let

 PM 

= (0 r 1 , c r 1 +1 , . . . , c r ) 
′ be a column vector of dimension r with

 r 1 , the first r 1 components equal to 0. Additionally, it is supposed 

hat min C CM 

≥ c r . For a probability q , a PM inspection is carried 

ut at a particular time n only if N � (q ) = n . Let C q,� (n ) , the to-

al cost associated with a potential maintenance action at a time 

 , with N � = N c for PM based on CSPC; or N � = N w 

in case PM is

dopted according to WSPC. The expected cost at time n can be 

btained as 

 [ C q,� (n ) ] = 1 { n = N � } 
r ∑ 

i =1 

P (X n = i ) C PM 

(i ) + 

d ∑ 

i = r+1 

P (X n = i ) C CM 

(i ) 

(23) 

Let us assume that the system is allowed to operate for a pre- 

pecified period of time, that is N 0 . Each time a PM action is car-

ied out, the system is returned to a functioning state in the subset 

 1 chosen with a probability given by the vector α1 , that is the ini-

ial law restricted to the elements of U 1 . After that, the conditions 

f the system are the same as they were at time 0, which means 

hat the following state after PM is chosen according to the initial 

aw, α and the following transitions are governed by the matrix P . 

rom that moment, new PM action will be carried out N � times 

ater. This behaviour continues until time N 0 is reached. The total 

umber of PM actions developed is equal to n 0 ,� , where it can be 

ritten N 0 = n 0 ,� N � + r 0 ,� . The total expected cost involved in the

nterval (0 , N 0 ] is then 

[ C � (N 0 )] = 
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= n 0 ,� 

( 

N � ∑ 

n =1 

{ 

r ∑ 

i =1 

P (X n = i ) C PM 

(i ) 

} 

+ 

d ∑ 

i = r+1 

P (X N � = i ) C CM 

(i ) 

) 

+ 

r 0 ,� ∑ 

n =1 

N � ∑ 

n =1 

{ 

r ∑ 

i =1 

P (X n = i ) C PM 

(i ) 

} 

(24) 

here as before, the subscript � indicates the type of PM mainte- 

ance, based on critical states or critical signals. 

emark 2. Controlling for false positives 

Maintenance strategy based on observed signals can lead to as- 

ess the state of the system wrongly, and consequently an unnec- 

ssary maintenance cost will be involved. If an alarm signal is ob- 

erved the system will be sent for repair. Maintenance crew will 

hen assess the true system state that might not agree with the 

stimated one. There is a cost associated to it that should be min- 

mized. This aspect of maintenance will be treated in a future re- 

earch. 

. Numerical application 

.1. Example 1. A G : 1-out-of- n system. 

Let us consider a system with d 0 identical units that operate in- 

ependently. The system is operative while at least one unit is op- 

rative and fails as soon as all units are down. The state of the sys-

em (wear out level) is measured in terms of the number of units 

ailed. After failure, the units are not repaired, and when there are 

o operative units, the system is replaced by a new identical one. 

Let us assume that the units are exponentially distributed with 

qual failure rate λ. 

Model description. Information on the system performance is 

ollected periodically in such a way that only partial information 

s obtained regarding the system deterioration. More specifically, 

t regular instants of time one has access to some parameters or 

ndicators ( signals ) related somehow to the level of wear out of 

he system. For simplicity, let us denote A = { 1 , 2 , . . . , s } , and con-

ider that when signal a = 1 is emitted, it means that the system

s operating in optimal conditions. On the opposite, an observation 

 = s indicates that a fatal failure has occurred in the system. 

At any moment, the true state of the systems is unobservable. 

he state space is represented by E = { 1 , 2 , . . . , d} , where i = 1 is

he optimal functioning state, that is, the system is new with no 

nit failed. On the other hand, i = d means that all units are down

nd then the system is in the failure state, with d = d 0 + 1 . 

Let us denote X 0 , X 1 , . . . , X n the successive (unobserved) states 

f the system, taking values in the set E; and, Y 0 , Y 1 , . . . , Y n the

uccessive observed indicators, which are assumed to range in 

he set A . We consider that inspections are carried out at times 

 = 0 , 
, 2 · 
, . . . . . . , for simplicity we take 
 = 1 . 

At time k = 0 we assume that the system is new so that the

nitial state is X 0 = 1 and the transition probabilities p i j = P (X k =
j | X k −1 = i ) , for i = 1 , . . . , d − 1 , and k ≥ 1 , are given by 

p i j = 

(d − i )! 

( j − i )!(d − j)! 
(1 − e −λ) j−i e −(d − j ) λ, 

or and i ≤ j, and p i j = 0 for i > j. Finally, p d, 1 = 1 . 

Successively, an output symbol is produced according to a prob- 

bility distribution, which depends on the current state. This prob- 

bility distribution is held fixed for the state regardless of when 

nd how the state is entered. Specifically, for a given state of the 

ystem, i ∈ E, we denote P (Y = a | X = i ) = M(i, a ) , for any a ∈ A .
k k 

8

e have that 
∑ 

a ∈ A M(i, a ) = 1 , for all i ∈ E. Let M denote the ma-

rix of dimension d × s , whose (i, a ) element is M(i, a ) , for all i ∈ E,

nd a ∈ A . In particular we have that M(1 , 1) = 1 , and M(d, s ) = 1 .

n addition, it is quite realistic assumption that M(i, 1) = M(i, s ) =
 for 1 < i < s . Rows 2 to d − 1 of matrix M are taken as the corre-

ponding probability distribution of a Binomial law with size s − 2 

nd probability p i which is assumed to decrease with the value of 

 . Then we have that the signal emitted stochastically increases as 

he system deteriorates. 

Then the parameters to be estimated are θ := ( θ1 , θ2 ) , 

ith θ1 = λ and θ2 = (M(i, a ) ; i = 2 , . . . , d − 1 ; a = 1 , . . . , s − 1) .

q. (4) can be approximated as 

(θ | θ (m ) ) ≈
n ∑ 

k =1 

d−1 ∑ 

i =1 

d ∑ 

j= i 
P θ (m ) (X k −1 = i, X k = j | Y ) (

( j − i ) log (1 − e −λ) − (d − j) λ
)

+ 

n ∑ 

k =0 

d−1 ∑ 

i =2 

s −1 ∑ 

a =2 

P θ (m ) (X k = i | Y ) 1 { Y k = a } log M(i, a ) , 

here all terms that do not depend on the unknown parameters 

ave been omitted. 

Using the EM algorithm, the maximization step M leads us to 

he following 

 

(m +1) = − log 

∑ n 
k =1 

∑ d−1 
i =1 

∑ d−1 
j= i (d − j) · P θ (m ) (X k −1 = i, X k = j | Y ) ∑ n 

k =1 

∑ d−1 
i =1 

∑ d 
j= i (d − i ) · P θ (m ) (X k −1 = i, X k = j | Y ) 

hanging the order of summation we get 

 

(m +1) = − log 

∑ n 
k =1 

∑ d−1 
j=1 (d − j) · P θ (m ) (X k = j | Y ) ∑ n 

k =1 

∑ d−1 
i =1 (d − i ) · P θ (m ) (X k −1 = i | Y ) 

= − log 

∑ n 
k =1 

∑ d−1 
i =1 (d − i ) · P θ (m ) (X k = i | Y ) ∑ n −1 

k =0 

∑ d−1 
i =1 (d − i ) · P θ (m ) (X k = i | Y ) , 

here we have used that 
∑ j 

i =1 
P θ (m ) (X k −1 = i, X k = j | Y ) = P θ (m ) 

X k = j | Y ) ; and 

∑ d 
j= i P θ (m ) (X k −1 = i, X k = j | Y ) = P θ (m ) (X k −1 = i |

 ) . On the other hand, ̂ M 

(m +1) (i, a ) as in Eq. (7) . 

Using the forward-backward probabilities in Eq. (8) and the 

ackward probabilities given in (9) , we calculate, 

 

(m +1) = − log 

∑ n 
k =1 

∑ d−1 
i =1 (d − i ) F (m ) 

k 
(i ) B 

(m ) 
k 

(i ) ∑ n −1 
k =0 

∑ d−1 
i =1 (d − i ) F (m ) 

k 
(i ) B 

(m ) 
k 

(i ) 
. (25) 

nd, 

̂ 

 

(m +1) (i, a ) = 

∑ n 
k =0 F 

(m ) 
k 

(i ) B 

(m ) 
k 

(i ) 1 { Y k = a } ∑ n 
k =0 F 

(m ) 
k 

(i ) B 

(m ) 
k 

(i ) 
. (26) 

Numerical results . In this example we are specially interested 

n evaluating the role of the system size. Then we consider dif- 

erent specifications for the number of units included in the sys- 

em, specifically we take d 0 = 3 , 5 , 10 . Besides, we consider λ = 0 . 1 .

igure 1 displays the true reliability functions corresponding to 3 

ystems with size: 3 ( solid line ), 5 ( dashed line ), 10 ( dotted line ),

espectively. 

For each system we have simulated markovian sample paths of 

ize n = 150 using the corresponding true model (α, P ) . Then, from

he theoretical emission matrix M , a sample of simulated outputs 

as been obtained. To avoid wrong conclusions due to the random- 

ess in the simulation process the experiment has been repeated a 

otal of 500 times for each system. The estimation results are rep- 

esented in Fig. 2 . The true reliability is given by the black curve. 

or each sample we have estimated the reliability function based 

n the HMM model. The results have been summarized through 
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Fig. 1. A G : 1-out-of- n system. 
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veraging. That is, we consider the following 

 

 a v (t) = 

1 

500 

500 ∑ 

r=1 ̂

 R 

(r) (n ) , 

here ̂ R (r) is the estimated reliability function based on the rth 

ample, for r = 1 , . . . , 500 . 

The red curve represents the average of the estimated curves 

long the 500 replications for each case d 0 = 3 , 5 , 10 (from left to

ight). As expected, the accuracy of the estimator decreases with 

he complexity of the system. The bias increases with the number 

f components. It is worth noticing that in an acceptable reliabil- 

ty level, i.e. [ 0 , 20 ] time interval, for all figures we have a good 

ccuracy. 

.2. Example 2. A progressively deteriorating system with shocks 

Let us consider a system that receives shocks with time. The 

tate of the system varies in the set E = { 1 , 2 , . . . , d} , from per-

ect functioning represented by state 1 to complete failure repre- 

ented by state d. Each time a shock occurs, the state of the sys-

em changes from the current state i to i + 1 with probability p or

he system remains in the same state i with probability 1 − p, for 

 = 1 , 2 , . . . , d − 1 . It is assumed that the system is designed such

hat it can only stand a maximum number of shocks after which 

t is replaced by a new and identical one. Equivalently when the 
ig. 2. Deteriorating system with identical Exponential components. From left to right. Pa

ll graphs, the black line is true reliability curve; the red line is the averaged reliability e

gure legend, the reader is referred to the web version of this article.) 

9

ystem reaches level d it is restored to state 1 of perfect function- 

ng. That is, the system is designed to stand a maximum number 

f chocks, i.e. d. In this case the hidden Markov chain is given by 

 random walk with state space E, with a reflecting barrier at d, 

hose probability transition matrix is given by 

 = 

⎛ ⎜ ⎝ 

1 − p p 0 0 

0 1 − p p 0 

· · · · · · · · · · · ·
1 0 0 0 

⎞ ⎟ ⎠ 

s in the previous case, we do not observe the true state of the 

ystem but an output symbol wich is produced depending on the 

urrent state with a particular probability distribution. Again, for 

 given state of the system, i ∈ E, we denote P (Y k = a | X k = i ) =
(i, a ) , for any a ∈ A . Let M be a d × s -matrix whose (i, a ) element

s M(i, a ) , for all i ∈ E, and a ∈ A . In this case we only assume that

(d, s ) = 1 and for rows 1 to d − 1 we consider the correspond-

ng probability distribution of a Binomial law with size s − 1 and 

robability p i which is assumed to decrease with the value of i . 

The parameters to be estimated are θ := ( θ1 , θ2 ) , with θ1 = p

nd θ2 = (M(i, a ) ; i = 2 , . . . , d − 1 ; a = 1 , . . . , s − 1) . Eq. (4) , can be

ritten as 

(θ | θ (m ) ) ≈
n ∑ 

k =1 

∑ 

i<d 

{ P θ (m ) (X k −1 = i, X k = i + 1 | Y ) log p 

+ P θ (m ) (X k −1 = i, X k = i | Y ) log (1 − p) } 

+ 

n ∑ 

k =0 

d−1 ∑ 

i =1 

s −1 ∑ 

a =1 

P θ (m ) (X k = i | Y ) 1 { Y k = a } log M(i, a ) . 

sing the EM, the maximization step M leads us to the following 

xpression 

 p (m +1) = 

∑ n 
k =1 

∑ 

i<d P θ (m ) (X k −1 = i, X k = i + 1 | Y ) ∑ n 
k =1 

∑ 

i<d P θ (m ) (X k −1 = i | Y ) . 

Let us consider the following particular model: d = 10 ; s = 20 ;

p = 0 . 6 . From this model we generate a total of 500 samples of size

 = 150 and, as in the previous example, estimate for each case the 

eliability function. The estimation results are presented in Fig. 3 . 

he true reliability is given by the black curve. For each sample we 

ave estimated the reliability function based on the HMM model. 

he solid red curve represents the average of the estimated curves 

long the 500 replications, the two dotted red lines represent the 

orresponding bootstrap confidence intervals at a confidence level 

f 95%, calculated at each estimation point, that is, n = 1 , 2 , . . . . 

.3. Example 3: A repairable system with two failure states 

Let us consider now a system with four possible levels of per- 

ormance, that is E = { u , u , d , d } , where u · denotes a function-
1 2 1 2 

nel 1: d 0 = 3 and s = 5 . Panel 2: d 0 = 5 and s = 7 . Panel 3: d 0 = 10 and s = 12 . For 

stimations from 500 samples. (For interpretation of the references to colour in this 
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Fig. 3. A system with shocks. Left panel: d = 10 and s = 20 . Right panel: d = 20 and s = 30 . For all graphs, the black line is true reliability curve; the red line is the averaged 

reliability estimations from 500 samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Repairable system. 
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Table 1 

Example 3: Relative errors of the estimated values of the transition matrix 

P and the emission matrix M . 

N Err P Err M 

100 0.1187 0.2126 

500 0.0300 0.1008 

1000 0.0070 0.0857 

5000 0.0014 0.0080 

t

e

i

e

t

ng state whereas d · refers to the down states.The true transition 

nd emission matrices are given by 

P = 

⎛ ⎜ ⎝ 

0 . 4 0 . 4 0 . 1 0 . 1 

0 . 3 0 . 4 0 . 2 0 . 1 

0 . 2 0 . 3 0 . 3 0 . 2 

0 0 . 3 0 . 4 0 . 3 

⎞ ⎟ ⎠ 

, and , 

 = 

⎛ ⎜ ⎝ 

0 . 5 0 . 5 0 0 

0 . 3 0 . 5 0 . 2 0 

0 . 1 0 . 2 0 . 5 0 . 2 

0 0 . 2 0 . 3 0 . 5 

⎞ ⎟ ⎠ 

. 

In this case we have simulated a total of 500 samples of size 

 = 150 each. The results are illustrated in Fig. 4 where also boot-

trap confidence intervals have been added based on the empirical 

uantiles. 

We use this example to check the asymptotic properties of the 

stimator of the reliability function. We have simulated samples of 

ize N = 10 0 , 50 0 , 10 0 0 , 50 0 0 respectively. The plot in Fig. 5 shows
10 
he estimated curves for each sample and it is noticeable how the 

stimation errors decrease as the sample size increases. 

To summarize the results obtained in this example we present 

n Table 1 an overall measure of the relative errors reported by the 

stimations of matrices P and M . Specifically we have considered 

he following measurements of the error 

Err P = 

∑ 

i, j∈ E 

(̂ P (i, j) − P (i, j) 
)2 

P (i, j) 
; and , 
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Fig. 5. Example 3. Consistency of the reliability estimator. 
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Table 2 

The Virkler’s dataset. The observations are the increments of the crack size 

in successive intervals of length equal to 20 0 0 cycles of functioning. 

Clusters Estimated signal Frequency 

1 0.1023 56 

1 0.2609 27 

2 0.606 38 

3 1.6907 5 
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1 Although the original dataset contains a total of 68 trajectories, we have con- 

sidered only one of them to develop this application example. There is no particular 

preference for the one utilized here and similar results would have been obtained 

had it been selected a different case of the dataset. 
rr M 

= 

∑ 

i ∈ E,a ∈ A 

(̂ M (i, a ) − M(i, a ) 
)2 

M(i, a ) 
. 

he consistency properties of the estimators can be numerically 

valuated by noticing the significant reduction of the errors (in- 

reasing accuracy) as N increases. 

A graphical inspection element-by-element of the two matrices 

s given in Figs. 6 and 7 that display, respectively, summary statis- 

ics for the estimations of the matrices P and M . We have consid-

red in each case samples of sizes N = 10 0 , 50 0 , 10 0 0 , 50 0 0 . Each

oxplot on the graphs gives the results for each element of ma- 

rix P in Fig. 6 and matrix M in Fig. 7 . The red symbols inside

he boxplots represent the true values. The blue symbols repre- 

ent, for each probability value, the average of the estimated val- 

es. These averages have been obtained by considering 500 sam- 

les for each sample size. As expected the accuracy of the estima- 

ors increases with the sample size. The distance between the red 

nd blue points inside the plots provides a graphical impression 

f the bias of the estimator for each element of the corresponding 

atrix, P and M . As can be seen even for small samples the bias is

easonable and it almost vanishes for the biggest samples. On the 

ther hand, the number of parameters to be estimated is large in 

his case, 24 unknown parameters in total, and then the estimators 

how high variability for the smallest samples ( N = 100 ) especially 

n the case of the emission matrix. However, this variability shows 

 remarkable descending trend as the sample size increases, as it 

an be appreciated on the plots. 

.4. Maintenance analysis 

In this section we discuss the maintenance problem for the sys- 

em in Example 1, that is, the deteriorating system. We consider 

n particular that d 0 = 5 , so the hidden chain has d = 6 states of

hich r = 5 are operative states. The subset of critical states is 

 2 = { 4 , 5 } , so r 2 = 2 . With respect to the observations (signals),

e consider that s = 7 is the total number of possible signals emit-

ed by the system, with A 2 = { 4 , 5 , 6 } the set of warning signals

mong the set of good signals, that is, A = { 1 , 2 , 3 , 4 , 5 , 6 } . We as-

ume that the system is allowed to be in operation for a maximum 

f N 0 = 50 transitions. Our aim is to calculate the expected cost 

onsidering two different PM strategies as explained in Section 4 . 
11 
he vector of cost is defined as follows. C CM 

= 1 is the cost asso-

iated to a CM action. The vector of cost associated to PM main- 

enance is C PM 

= (0 , 0 , 0 , 0 . 5 , 0 . 75) ′ . In Fig. 8 the solid line reports

he results of the total cost that entails the operation of the sys- 

em until time N 0 = 50 under CM and PM based on critical states 

or a range of values of the threshold probability q . The dashed line

ive the results of the cost generated by the system operating un- 

il N 0 = 50 under CM and PM based on critical signals. We can see

hat when the critical probability increases, the PM based on states 

et smaller values, while the opposite is true for the PM strategy 

ased on signals. 

. A real case study: The Virkler’s dataset 

As illustrative example we consider the fatigue crack growth 

roblem in a degradation mechanism analyzed in Chiquet, Limnios, 

 Eid (2009) , where a piecewise deterministic Markov process is 

roposed for the degradation modelling. The data consist of an alu- 

inum alloy specimen that was tested to investigate fatigue crack 

ropagation. 1 

Starting from an initial crack of length 9 mm for a particular 

tem in test, the number of cycles for the size of the crack to 

each a predetermined value was recorded successively. That is, it 

s registered the number of cycles every time an increment of size 

 . 2 mm in length occurs. The experiment finishes once a critical 

ize of the crack is reached, meaning the failure of the item. The 

ata were first published in Virkler, Hillberry, & Goel (1979) . The 

andom factor here is the inhomogeneity in the material. 

Fatigue crack growth in materials may exhibit high variability 

ue to among other causes material inhomogeneity or environ- 

ental conditions and thus an HMM is a good model to explain 

uch variability. Certain information on the state of the piece is 

ecorded regularly in terms of the size of the crack, however full 

nderstanding of the real degradation also needs to account for 

andom factors that are involved in the underlying process. So, 

he fatigue crack growth is assumed to fit into different regimes 

ith different crack propagation rates. One can consider that these 

egimes are in a one-to-one correspondence with the actual dete- 

ioration states of the piece, so that a state transition of the hidden 

odel means a regime-switching. The transition between regimes 

states) may happen at an arbitrary random time. 

One item is followed until the size of the crack exceeds 

9 . 8 mm , which occurs at time τ = 247251 (cycles of function- 

ng) for the selected item. Assume that the piece is observed ev- 

ry 20 0 0 cycles and that the increment of the crack size be- 

ween two consecutive inspections is recorded while the true 

tate of the piece remains unobserved. Let us denote Y 1 , Y 2 , . . . , Y N 
he sequence of the crack increments observed in the item and 

 1 , X 2 , . . . , X N , the corresponding sequence of hidden states. For 

implicity the observation space is divided into four categories us- 

ng the k -means clustering method. In Table 2 it is detailed the 
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Fig. 6. Example 3. Estimation of the transition matrix P . 

Fig. 7. Example 3. Estimation of the emission matrix M . 

Fig. 8. Deteriorating system with maintenance. 
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12 
stimated 4-dimensional signal-space as well as the frequency cor- 

esponding to each value (see Chiquet et al., 2009 for a similar dis- 

ussion). 

In an attempt to reveal the number of the actual degradations 

evels underlying the observations we study two possibilities. First, 

e distinguish only two internal (hidden) states, that is E = { 1 , 2 } .
t is reasonable that initially the item is occupying its less degraded 

tate, that is X 0 = 1 . The estimated transition matrix ̂ P 2 and emis- 

ion matrix ̂ M 2 are given 

̂ P 2 = 

(
0 . 985 0 . 015 

0 . 0 0 0 1 . 0 0 0 

)
; and , 

̂ 

 2 = 

(
0 . 842 0 . 158 0 . 0 0 0 0 . 0 0 0 

0 . 0 0 0 0 . 445 0 . 471 0 . 084 

)
. 

Now we fit a 3-state HMM model to the same dataset and ob- 

ain the following 

̂ P 3 = 

( 

0 . 985 0 . 008 0 . 008 

0 . 0 0 0 0 . 800 0 . 200 

0 . 0 0 0 0 . 200 0 . 800 

) 

; and , 
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Fig. 9. Virkler dataset. A real case reliability study based on HMM. 

Table 3 

Model selection. 

Model d = 2 d = 3 

AIC 193.1830 234.7712 
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̂ 

 3 = 

( 

0 . 842 0 . 158 0 . 0 0 0 0 . 0 0 0 

0 . 0 0 0 0 . 445 0 . 471 0 . 084 

0 . 0 0 0 0 . 445 0 . 471 0 . 084 

) 

. 

ccording to matrix ̂ M , the probability distribution of signals emit- 

ed from state 2 is the same as from state 3. In other words, ac-

ually the model with three states does not allow to distinguish 

ifferent behaviours between these two latent states. Finally, to 

ompare the fitted HMMs on the basis of the number of states, 

e use the Akaike’s information criterion as done in Votsi et al. 

2013) . The best model will be selected by means of the AIC, de-

ned by AIC = −2 log L + 2(d(d − 1) + d(m − 1)) , where log L is the

stimated maximum log-likelihood function. The results are pre- 

ented in Table 3 , where it is shown that the 2-states HMM model

ts better the data. This conclusion agrees with previous analyses 

f this dataset where it is argued that fatigue crack growth of this 

ind of material can be divided into two regimes with different 

rack propagation rates, see Abdessalema et al. (2012) . 

Using the fitted 2-dimensional HMM model we can define the 

eliability of the item in terms of up and down states as well as 

ood and bad signals as explained in Section 3 . In our case the hid- 

en state space is E = { 1 , 2 } and we can consider that 1 is denoting

 good performance in the system while 2 refers to a bad func- 

ioning regime. Then, according to the previous notation we con- 

ider U = { 1 } and D = { 2 } . In the same way, the observed signals

an be split into two categories. If a crack size growth is detected 

ear 0 . 606 mm or more during a single interval of 20 0 0 cycles,

hen a danger situation is considered. So, we have A 1 = { 1 , 2 } and

 2 = { 3 , 4 } , using the notation of Section 3 . Then, we define the

eliability of the piece in this terms as R (t) = P (X n t = 1 ;Y n t ∈ A 2 ) ,

or t > 0 and n t = sup { n ∈ N : n ≤ t 
20 0 0 } . The results are displayed

n Fig. 9 . 
13 
. Conclusions and future research 

During the lifetime of most real complex systems, the real state 

f the system is unobservable most of the time, while indicators 

f this state, such as temperature, pressure, etc., are available via a 

ontrol system. So, the real problem here is to be able to estimate 

he state of the system by considering those indicators. 

This paper aims to validate the approach of the HMM models 

n reliability engineering. As we have seen in this paper, a hidden 

odel can provide the key information about the system depend- 

bility such as the failed component of the system, the reliabil- 

ty of the system and related measures. Our approach focuses on 

he introduction of a new concept of the system reliability func- 

ion when the true system degradation is not directly observed. 

he reliability function is expressed not only in terms of the inter- 

al (unobserved) states of the system but also in terms of the ob- 

erved signal that is recorded and is treated as an indicator of the 

egradation level of the system. We have constructed a maximum- 

ikelihood estimator of the reliability function based on a sample 

f observations of signals and have derived its theoretical (asymp- 

otic) properties. 

Maintenance is an important issue of system dependability. In 

his respect we have proposed for the first time in this context of 

issing information, two criteria for preventive maintenance. One 

s based on critical states probability criterion (CSPC) and the other 

n warning signals probability criterion (WSPC). We have studied 

he efficiency of these two criteria in terms of cost and we have il- 

ustrated our methodology through a simulation study where three 

ystems of different nature have been analyzed. 

The present work can be extended to: 

• Hidden Semi-Markov reliability models; 
• Define and develop other approaches of maintenance; 
• Extend our study to the case of a continuous time follow-up 

of the system; 
• Extend our model to the semi-Markov case via Phase-type 

distributions. 
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