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Abstract: Real-world classification data usually contain noise, which can affect the accuracy of the
models and their complexity. In this context, an interesting approach to reduce the effects of noise is
building ensembles of classifiers, which traditionally have been credited with the ability to tackle
difficult problems. Among the alternatives to build ensembles with noisy data, bagging has shown
some potential in the specialized literature. However, existing works in this field are limited and
only focus on the study of noise based on a random mislabeling, which is unlikely to occur in
real-world applications. Recent research shows that other types of noise, such as that occurring at
class boundaries, are more common and challenging for classification algorithms. This paper delves
into the analysis of the usage of bagging techniques in these complex problems, in which noise affects
the decision boundaries among classes. In order to investigate whether bagging is able to reduce
the impact of borderline noise, an experimental study is carried out considering a large number
of datasets with different noise levels, and several noise models and classification algorithms. The
results obtained reflect that bagging obtains a better accuracy and robustness than the individual
models with this complex type of noise. The highest improvements in average accuracy are around
2-4% and are generally found at medium-high noise levels (from 15-20% onwards). The partial
consideration of noisy samples when creating the subsamples from the original training set in bagging
can make it so that only some parts of the decision boundaries among classes are impaired when
building each model, reducing the impact of noise in the global system.

Keywords: borderline noise; label noise; bagging; ensembles; robust learners; classification

MSC: 62R07

1. Introduction

Data acquisition and processing in statistical and data-mining applications are often
subject to imperfections [1]. This fact may lead to the presence of errors or noise in
datasets [2,3]. In classification [4], creating models from noisy data has several drawbacks,
including the need for more time and samples to build the classifier [5,6]. Furthermore,
both the accuracy and complexity of classifiers can be affected by modeling corrupted
data [7,8].

Given the inconveniences caused by noise, previous works have raised the need for
techniques to deal with it [9,10]. Thus, in the classification literature, two main options
are contemplated for the treatment of noise: (i) the so-called robust learners [9,11], which
involve modifications of existing algorithms to deal with errors; and (ii) the preprocessing
of datasets with the aim of handling the noisy samples [2,10]. Despite the good results
that both types of approaches can provide, they have some disadvantages [12,13]. The
former require redesigning the algorithm associated with known classification methods,
which in some cases is complex to perform. Furthermore, since the adaptation depends on
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such methods, it is not immediately applicable to other classification techniques [9]. On
the other hand, methods following the second approach are often designed to detect noise
with certain characteristics, and therefore the resulting data may be imperfect [12]. These
facts show the importance of investigating other alternatives to reduce the impact of noise
that allow satisfactory results when the previous approaches are impaired.

When dealing with complex datasets, several works have demonstrated that ensemble
methods [14,15], which simultaneously use several classifiers, are an accurate way to
overcome some of the difficulties in building models from the data. One of the best
known approaches to create ensembles is bootstrap aggregating or, as it is more commonly
known, bagging [16,17]. Given a dataset, it generates different versions using a bootstrap
resampling procedure and builds a model on each of these subsets. Then, the outputs of all
the available classifiers are combined to obtain a single final prediction for each sample [18].

Nevertheless, despite the popularity of bagging schemes to build ensembles, research
works studying their behavior with noisy data are limited and use specific features [19,20].
Abellédn et al. [19] focused on studying decision trees, analyzing the application of bagging
of trees with imprecise probabilities compared to bagging of traditional decision trees. On
the other hand, Khoshgoftaar et al. [20] compared the performance of several boosting and
bagging techniques dealing with noisy datasets, only focusing on imbalanced and binary
classification data. Furthermore, the above studies dealt with noise based on random
mislabeling [20,21]: the samples to corrupt were chosen randomly, which represents an
unlikely situation in real applications [22]. Recent works [23,24] have proposed other more
advanced noise introduction models, which better represent the corruptions occurring
in real-world datasets. They are based on the mislabeling of samples close to decision
boundaries, where errors are more prone to occur [22]. These types of errors are more
common in practice and more difficult for classification algorithms to detect and deal
with [23]. There are works showing that, in real-world applications based on collaborative
labeling, most of the differences between the labelers occur in the proximity of the decision
boundaries [25,26]. A study on coronary disease classification [27] revealed that noise
was generally caused by equipment measurement errors, which generated altered values
in the proximity of the decision boundaries and led to incorrect labeling of the samples.
Other works also reinforce the importance of labeling errors at decision limits [12,28].
Thus, Garcia et al. [28] analyzed a dataset in the field of ecology, in which they observed
that certain alterations produced small errors in environmental characteristics, ultimately
leading to mislabeling of the collected data. The importance of noisy samples at decision
limits was also reflected in the field of noise filtering [12], in which the efficiency of noise
filters was more notable when the dataset presented overlapping between classes.

This research delves into the above aspects, analyzing the behavior of bagging schemes
when decision boundaries are affected by labeling errors. An experimental study based on
the comparison of bagging against its baseline models dealing with borderline noise will
be developed. For this, four robust classification methods will be considered: C4.5 [11],
RIPPER [29], PART [30], and C5.0 [31]. Although the performance of these techniques with
noise is usually known [32,33], research works analyzing their real behavior with borderline
label noise are scarce, particularly if bagging is used. This work aims at verifying how
these algorithms are affected by borderline noise and whether their robustness can be
further increased by using bagging schemes. These methods, with and without bagging,
will be used to create classifiers over 36 real-world datasets, both binary and multi-class,
with different natures and characteristics. Recent borderline label noise models [23] will
be employed in order to inject errors into these datasets considering nine noise levels
(ranging from 0% to 40%, in steps of 5%), resulting in an experiment involving a total
of 612 noisy datasets. The disparity between the individual models and bagging-based
ensembles will be explored considering both their accuracy and robustness on each noisy
dataset created. As support for the conclusions drawn from this study, the corresponding
statistical tests [34] will be used on the results obtained. The datasets and the results
of the experimentation carried out in this paper can be accessed through the webpage
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https:/ /joseasaezm.github.io/bagbln/ (accessed on 1 May 2022). As a summary, the
following are the main contributions offered by this research:

*  Deepening the understanding of the impact of borderline label noise, which is more
frequent in practice than the random label noise that is commonly studied, on the
efficacy of traditional classification methods.

* Analysis of the behavior of bagging-based ensembles versus not considering them
when dealing with borderline label noise, which has usually been overlooked in the
literature.

*  Study of the improvement of robustness to noise, through the use of specific mea-
sures [35], of methods traditionally considered robust when included in a bagging
ensemble.

*  Establishing the noise levels in the data where the use of bagging is most recom-
mended, as well as the hypotheses that explain its good behavior with borderline
label noise.

Note that this paper primarily focuses on analyzing the accuracy and robustness of
classification methods with and without bagging when errors affect the labels of samples
at decision boundaries. However, a study of the specific characteristics of the data (such
as the overlapping level among classes, the imbalance ratio, and the dispersion degree of
the samples, among others [36]) leading to a better behavior of bagging is not carried out
(except for the level and type of noise, which are injected into the datasets in a controlled
way).

The rest of this work is organized as follows. Section 2 contemplates the background
associated with this paper, introducing the problem of noisy data in classification and
the creation of ensembles using bagging. Then, Section 3 details the characteristics of the
experiment that is carried out, and Section 4 focuses on the analysis of results. Finally,
Section 5 concludes this paper, providing some ideas about future research.

2. Background

This section presents the background related to this paper. Section 2.1 introduces
classification with noisy data, while Section 2.2 focuses on using bagging schemes for
building ensembles.

2.1. Noisy Data in Classification

Because the source and input of data in real-world applications are often subject to
imperfections, the data associated with them usually suffer from corruptions [6,37]. In
classification problems, noise can impair classifiers by affecting their accuracy, complexity,
and construction time [5,7]. In this context, there are two main types of noise found in the
specialized literature [2,8]:

* Label noise [2,38]. This occurs when samples are labeled with incorrect class labels.
Its origin is commonly associated with subjectivity during the labeling process, errors
in data collection, or the use of inaccurate information for labeling [39,40].

o Attribute noise [41,42]. This is related to the imperfections occurring in the attributes
of a classification dataset. This type of noise can come from various sources, such as
streaming restrictions, detection device failures, and transcription errors [8].

Note that, although only two types of noise are distinguished, each of them can
appear in multiple ways [10,42]. For example, label noise may occur only between certain
classes [10], affect each of the classes unequally [43], or be located in certain areas [22], such
as the decision boundaries analyzed in this paper. Something similar applies to attribute
noise, as it can appear as small errors in the data following a Gaussian distribution [42]
or more pronounced errors that can have a larger impact [44]. Among both types of
noise, label noise, which is the focus of this research, is often more harmful to classifier
performance than attribute noise because labels usually have more influence on model
construction [32,33].
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Since error is inherent in human nature and in most measurement instruments, there
are many real-world applications where noisy data are typically present [45,46]. For
example, label noise is common in medical applications [45], in which the information used
to label each case may come from different tests whose results are unknown or imprecise.
Another common application where label noise occurs is spam filtering [47], in which
accidental clicks can cause samples to be mislabeled. On the other hand, attribute noise
can be present in other types of applications, such as those involving voice recognition in
call routing [48] or in the field of software engineering [46], where it can affect the software
quality metrics.

In the context of noisy data, robustness [35] is the ability of a classification technique
to create classifiers that are less affected by imperfect data. This fact implies that models
created by robust algorithms from clean and noisy data are more similar. Robustness is a
relevant issue when studying noisy data because it allows estimation of the performance of
a technique when the characteristics of noise in a dataset are unknown. Examples of robust
learners are C4.5 [11], RIPPER [29], PART [30], and C5.0 [31], which are considered in this
paper. These algorithms incorporate pruning schemes to avoid overfitting the classifiers to
errors. One of the contributions of this research is to analyze whether the usage of bagging
improves the behavior of these algorithms traditionally considered robust to noise when
dealing with borderline label noise.

2.2. Building Classification Ensembles Using Bagging

Ensemble methods [14,15] are based on creating several models from the training data.
They have been postulated as an efficient alternative for complex problems, where the
construction of different models from the data, in such a way that they complement each
other, usually brings some advantages [49]. Thus, the usage of ensembles with respect
to each of their components often implies improvements in classification performance,
dynamic adaptation, and parallelization [50,51]. One of the best known and widely used
approaches to building ensembles is bagging [16,17] (see Figure 1).

o

Test data
»

Training data |° —>

Input
Bagging-based ensemble: steps & process

Figure 1. Main steps of bagging-based ensembles.

Final prediction
Output

The operation of bagging-based ensembles is described below. Let D be a classification
dataset with n samples. Bagging generates t different subsets Dy, ..., D; from D using a
bootstrap resampling procedure [52]. Each subset Dy, k € {1,...,t}, is usually created
by means of a random selection with replacement of n samples from the initial data D.
This sampling procedure ensures that each subset Dy is independent of the others. Then,
amodel my, k € {1,...,t}, is built on each of these subsets Dj using a base classification
algorithm. A phase of output combination is carried out to determine the class labels for
new samples [52], in which each sample is evaluated by all the available classifiers obtaining
t distinct predictions py, ..., p;. The most used approach for output combination in the
specialized literature is majority voting [14,19]. This is a simple but effective procedure in
which each model within the ensemble casts a vote for one of the classes, and the most
voted class is chosen as the final prediction.
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3. Experimental Framework

This section details the characteristics of the experimental framework designed to
analyze the efficacy of bagging schemes with borderline label noise. They are influenced
by the experimental framework of other recent research works published in the field of
classification with noisy data [10,42,53]. Sections 3.1 and 3.2 focus on describing the real-
world datasets used and how labeling errors are induced in them. Then, Section 3.3 focuses
on the classification methods. Section 3.4 presents the methodology employed for the
analysis of results.

3.1. Real-World Datasets

The experimentation is based on 36 real-world datasets of different natures taken from
the UCI machine learning and KEEL-dataset repositories (https:/ /archive.ics.uci.edu/ and
http:/ /www.keel.es (accessed on 1 May 2022)). These are shown in Table 1, where sa refers
to the number of samples, af to the number of attributes, and cI to the number of classes.
They cover a wide range of cardinalities regarding the number of samples (from 106 up
to 20,000), attributes (from 2 up to 309), and classes (from 2 up to 37). The selection of the
datasets has been made considering that all their attributes are numerical. This requirement
is imposed by the models used in experimentation to introduce borderline label noise into
the data [23], which compute the distance of the samples to the decision boundaries and
need numerical attributes for that purpose.

Table 1. Datasets used, along with their number of samples (sa), attributes (at), and classes (cl).

Dataset Dataset

balance 625 3 1svt 126 309

banana 5300 2 miceprotein 552 77
banknote 1372 2 pageblocks 5473 10

biodeg 1055 2 parkinson 195 22 2
breast 106 6 pendigits 10,992 16 10
bupa 345 2 pima 768 8 2
climatemuq 540 2 seeds 210 3
column2C 310 2 segment 2310 19 7
column3C 310 3 sonar 208 60 2
energyheat 768 spectf 267 44 2
glass 214 transfusion 748 4 2
haberman 306 userkw 403 4
ionosphere 351 wdbc 569 30 2
iris 150 wine 178 13 3
landsat 6435 wisconsin 683 9 2
leaf 340 wpbc 194 33 2
letter 20,000 wqred 1599 11 6
libras 360 wqwhite 4898 11 7

3.2. Noise Introduction Models

In the above datasets, nine levels of borderline label noise p% are injected in order to
control the characteristics of the errors: from 0% (clean datasets) up to 40%, by increments
of 5%. The following two noise models are used to introduce noise [23]:

1. Neighborwise borderline label noise. This calculates a noise measure N(x;) for each
sample x; based on the distances to its closest samples from the same class and from a
different one. The noise measure N(x;) has the following expression:

d(x;, xj = NN(x;) | xj0 = xip)
d(x;, xx = NN(x;) | X0 7# Xip)

N(x;) =
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where NN(x;) is the nearest neighbor of x;, d(x;, x;) the Euclidean distance between
the samples x; and x;, and x; the class label of the sample ;. Finally, the values N (x;)
are ordered in descending order, and the first p% of them are chosen to be mislabeled.

2. Non-linearwise borderline label noise. This computes a noise metric for each sample
based on its distance to the decision limit induced by a support vector machine (SVM)
[54]. In order to achieve this, it first uses SVM with a radial basis kernel to compute
the decision boundary in the data D. Then, for each sample x; in D, its distance to
the decision border is calculated, considered as the unsigned decision values of SVM
for that sample. For multi-class problems, the one-vs-one approach is used, and the
distance between the sample and the nearest decision boundary is selected. Finally,
the values of the noise metric are ordered in ascending order, and the first p% of them
are chosen to be altered.

For a given dataset D in Table 1, noise is introduced as follows. First, a noise level p%
is injected into a copy D’ of D using one of the above noise models. Then, both datasets, D
and D', are split into five equivalent parts, maintaining the same samples per fold. Finally,
the training sets are selected from D’ (using four folds), and the test sets are built from D
(using the remaining fold). Both noise models, neighborwise and non-linearwise borderline
label noise, are independently considered. For each one, nine noise levels are analyzed.
This fact implies the usage of a total of 612 different noisy datasets in the experiment. The
accuracy of each algorithm in these datasets is computed by averaging its test results over
five runs of a five-fold cross-validation.

3.3. Classification Algorithms

The choice of the classification techniques employed in the experimentation (C4.5 [11],
RIPPER [29], PART [30], and C5.0 [31]) is based on two main aspects related to the research
carried out. First, they are algorithms traditionally considered when creating bagging-based
ensembles [17,55]. Even though bagging can be applied regardless of the classification
method, those approaches based on decision trees and ruleset creation are generally recom-
mended when building ensembles [18]. Among their advantages [55,56], we can highlight
that they are non-parametric (no assumptions about the data distribution are made) and
interpretable, and, what is even more important, when multiple models are built from
the data, they provide good solutions in relatively short times. These types of techniques
based on decision trees and rulesets are commonly used in some of the most popular
ensembles, such as XGBoost [57] or random forest [58]. Second, the algorithms considered
include mechanisms against overfitting and are commonly used in works on noisy data
in classification [32,33]. This paper delves into this field, studying the effect of borderline
label noise on the performance of these robust learners, comparing their results with and
without bagging. The classification techniques used in the experimentation are briefly
described below:

1. C4.5[11]. Itis based on the ID3 [59] algorithm, including some improvements, such
as the handling of missing values, the possibility of treating continuous attributes,
and the usage of pruning to avoid overfitting. C4.5 follows a top-down approach to
build the decision tree. In order to determine the current node in each of its stages,
the attribute that best separates the remaining samples among classes is selected.

2. RIPPER[29]. Its main goal is to create a set of crisp rules from the training data. The
rules are learned one by one, until they cover all the samples of each of the classes
according to their frequency. For this, a stopping criterion based on the minimum
description length [60] metric is used. Each rule is then pruned to avoid the overfitting
of the previous stage. After learning the ruleset for a given class, an optimization
stage is run, in which the rules are improved by adjusting their antecedents.

3. PART [30]. It relies on a divide-and-conquer strategy to create a set of if-else rules from
the construction of partial decision trees, which are those whose branches are not
completely explored. Thus, when the children of a given node are obtained, it can be
chosen to be pruned. At each stage, PART creates a partial decision tree and converts
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its best branch, the one that covers the most samples, into a rule in the ruleset. The
algorithm stops once all samples in the dataset have been covered.

4. C5.0 [31]. It has been considered in the experimentation as a more recent and ad-
vanced version of the classic C4.5 algorithm. Among the improvements that C5.0
offers with respect to its predecessor, we can highlight lower temporal and spatial
complexities (which are especially useful when building ensembles), the creation of
smaller decision trees that maintain their accuracy, the introduction of sample and
misclassification weighting schemes, and the filtering of irrelevant attributes for the
classification task.

The parameter setting for each method is the default one recommended by the authors:

. C4.5, PART, C5.0: pruning confidence ¢ = 0.25; min. samples per leaf s = 2.
. RIPPER: folds f = 3; optimizations » = 2; min. weights w = 2.

Note that, in real-world applications, it is interesting to find the optimal parameters
for each algorithm on each dataset in order to obtain the highest possible classification
accuracy for the specific problem addressed. However, this aspect is not the object of this
research, whose main goal is to analyze whether there is an improvement in the behavior
of ensembles based on bagging with respect to not considering them when dealing with
borderline label noise. Because of this, finding the optimal parameter setup for each method
is not essential, and the same parameters are set for all of them, regardless of whether they
use bagging or not. In this way, the variation in accuracy of each algorithm before and after
using bagging will be due to the use of bagging itself and not to the optimization of the
parameters for each method and dataset.

3.4. Methodology of Analysis

The main goal of the experimentation is to compare the performance of each classifica-
tion method when dealing with borderline label noise before and after using bagging. In
order to do this, the analysis of results will be focused on four main aspects:

1. Classification accuracy. Classification accuracy is computed for each algorithm on each
dataset, noise model, and noise level. Note that, even though this paper presents
averaged results, the conclusions drawn are supported by the proper statistical tests
with respect to each of them. On the other hand, the complete results are accessible
through the webpage (https://joseasaezm.github.io/bagbln/ (accessed on 1 May
2022)) with complementary material of this research.

2. Robustness to noise. The equalized loss of accuracy (ELA) [35] metric is used to evaluate
the noise robustness by measuring the performance deterioration with noisy data
from a perfect classification weighted by the performance with clean data:

1— A

ELAp, A,
where Age, and A, are, respectively, the classification accuracies without noise and
with a noise level p%. In this case, the lower the ELA value, the greater the robustness
of the classification algorithm. It is important to point out that the conclusions reached
when studying accuracy and robustness do not necessarily have to coincide: an
algorithm can have a good accuracy, but deteriorate to a greater degree (being less
robust) when considering higher levels of noise in the data.

3. Box-plots of robustness results. Box-plots allow completion of the analysis of the ro-
bustness to noise of the classification algorithms by analyzing the distribution of the
ELA results. Lower medians and interquartile ranges will be an indicator of good
robustness in all the datasets used, showing similar performances of the methods
before and after introducing noise into the data.

4. Datasets with the best result. Along with the above metrics (accuracy and ELA), the
number of datasets in which each approach (bagging or baseline method) obtains the
best result at each noise level is computed.
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Wilcoxon's test [61] will be employed to properly analyze both accuracy and ELA results
and detect differences between two sample means, as suggested in the literature [62]. For
each noise model and level, the baseline algorithm and that using bagging will be compared,
and the corresponding p-values will be obtained. The p-value for each comparison will
allow rejection of the null hypothesis of equality of means, implying that a given algorithm
outperforms the other. This research considers a significance level « = 0.05.

4. Addressing the Borderline Label Noise Problem with Bagging Ensembles

This section analyzes both the accuracy and robustness of the classification methods,
with and without bagging, dealing with borderline label noise. Section 4.1 focuses on the
impact of borderline noise on classification accuracy, whereas Section 4.2 focuses on the
robustness against noise of each approach.

4.1. Impact of Borderline Label Noise on Classification Accuracy

Table 2 presents the accuracy results (rows ACC) of each classification method with
and without bagging with each noise model and noise level. Additionally, the amount of
datasets with the best result for each classification technique (rows Best) and the p-values
obtained using Wilcoxon’s test (rows pyy;) are provided.

The following observations emerge from the analysis of these results:

¢  The test accuracy results are higher for bagging than for non-bagging in both noise
models, neighborwise and non-linearwise, at all the noise levels.

*  The improvements using bagging are approximately between 2—4% in all cases.

*  They are slightly larger for RIPPER and PART than for C4.5 and C5.0.

*  The largest improvements for each method are generally found at medium-high noise
levels, that is, from 15-20% onwards.

®  The rows Best show a clear advantage in favor of bagging, which provides the best
accuracy in the majority of the datasets.

*  The low p-values obtained with Wilcoxon’s test support the superiority of the bagging
schemes in all the comparisons.

The results in Table 2 show that bagging schemes provide higher accuracies for all
the classification algorithms studied when the data suffer from borderline label noise.
Furthermore, this ensemble-building approach even improves the accuracy of algorithms
traditionally considered robust to noise when dealing with this type of complex data. The
improvement percentages obtained through the application of bagging (2-4%) represent
significant amounts in classification problems. Note that these percentages of improvement
occur in the borderline area among classes, where samples tend to be more confusing. In
certain types of real-world applications, such as medical ones, these percentages can have a
large impact on the classification system. On many occasions, the classification decision
usually involves the health of patients who are difficult to classify, whose descriptive
attributes place them on the border between two of the classes of the problem.

On the other hand, those classification methods generally providing worse perfor-
mance results in some noise levels without using bagging, such as RIPPER, benefit the
most from its usage, obtaining larger percentages of improvement on average. It is worth
noting the behavior of PART at the levels 25-30% with non-linearwise borderline noise,
where, despite obtaining good results among the methods that do not use bagging, it
reaches high percentages of improvement when considered within the ensemble. The best
results of improvement for all the classification algorithms, which are usually obtained at
medium-high noise levels, show that the impact of bagging is potentially greater in the
most complex classification problems.

Given that bagging provides better results in the majority of the datasets and that the
statistical comparisons confirm its good behavior, its usage can be recommended when the
data suffer from borderline label noise. Its better performance against label noise affecting
decision boundaries can be explained by the fact that the bootstrap resampling procedure
may cause each model to be affected by only some of the borderline samples. In this way,
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the separability between the classes can be increased, reducing the chances that decision
limits induced by the classifiers overfit the noisy data.

Table 2. Accuracy results of baseline and bagging classifiers with borderline label noise.

Neighborwise Borderline Label Noise

Method 0% 5% 10% 15% 20% 25% 30% 35% 40%
ACC 0.8120 0.8120 0.8044 0.7906 0.7725 0.7540 0.7296 0.7030  0.6716
0.8399 0.8398 0.8321 0.8233 0.8049 0.7850 0.7595 0.7344  0.7004
Best 3 3 4 4 5 4 6 5 6
33 33 32 32 31 32 30 31 30
Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ACC 0.7990 0.7926 0.7854 0.7839 0.7647 0.7523 0.7285 0.7015 0.6766
0.8301 0.8253 0.8239 0.8192 0.8072 0.7846 0.7621 0.7388  0.7093
Best 6 5 4 4 2 6 6 6 8
30 32 32 33 34 30 30 30 28
Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ACC 0.8136  0.8080 0.8009 0.7846 0.7677 0.7494 0.7207 0.6974 0.6644
0.8428 0.8373 0.8338 0.8229 0.8106 0.7880 0.7641 0.7329  0.7040
Best 6 3 4 0 3 6 3 7 4
30 34 32 36 33 30 33 29 32
Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ACC 0.8135 0.8117 0.8075 0.7951 0.7790 0.7524 0.7315 0.7083  0.6815
0.8371 0.8368 0.8320 0.8229 0.8068 0.7868 0.7589 0.7326  0.7025
Best 5 6 4 1 5 7 5 7 9
31 30 32 35 31 29 31 29 27
Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Non-Linearwise Borderline Label Noise

Method 0% 5% 10% 15% 20% 25% 30% 35% 40%
ACC 0.8120 0.8058 0.7994 0.7828 0.7663 0.7449  0.7200 0.6963  0.6681
0.8399 0.8344 0.8238 0.8102 0.7949 0.7779 0.7522 0.7291  0.7032
Best 3 5 4 5 8 2 6 6 6
33 31 32 31 28 34 30 30 30
pPwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ACC 0.7990 0.7943 0.7845 0.7731 0.7590 0.7435 0.7236 0.7010  0.6851
0.8301 0.8253 0.8167 0.8071 0.7940 0.7750 0.7604 0.7367 0.7124
Best 6 6 3 4 5 6 4 5 7
30 30 34 34 31 30 33 32 30
Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ACC 08136 0.8071 0.7976 0.7826 0.7696 0.7471  0.7239 0.6907  0.6632
0.8428 0.8385 0.8279 0.8140 0.7993 0.7835 0.7621 0.7305 0.7034
Best 6 4 3 5 6 3 3 4 8
30 32 33 33 30 33 33 32 28
pPwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ACC 0.8135 0.8122 0.7999 0.7830 0.7672 0.7425 0.7205 0.6988  0.6680
0.8371 0.8321 0.8247 0.8132 0.7947 0.7736  0.7530 0.7270  0.7026
Best 5 8 5 4 6 7 7 8 7
31 28 31 32 30 29 29 28 29
Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

4.2. Analysis of Classification Robustness to Borderline Noise

Table 3 shows the robustness results using the ELA metric for each classification algo-
rithm, with and without bagging, in each noise model and noise level.
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Table 3. Robustness results of baseline and bagging classifiers with borderline label noise.

Neighborwise Borderline Label Noise

Method () 5% 10% 15% 20% 25% 30% 35%

7 4 5
29 32 31
<0.001 <0.001 <0.001
Non-Linearwise Borderline Label noise
Method 5% 10% 15% 20% 25%
02613 02676 02736  0.2934 0.3131 0.3384 0.3670 0.3968  0.4285
0.2114 0.2182 0.2301 0.2454 0.2631 0.2816 0.3112 0.3374 0.3658

33 32 32 33 30 34 31 31 30
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
03015 0.3062 0.3167 0.3329 0.3484 03675 0.3899 04177 0.4334
0.2350  0.2402  0.2502 0.2624 0.2763  0.2987 0.3141 0.3418 0.3701

Best 6 5 3 1 4 5 1 4 5
30 31 33 35 32 31 35 32 31

Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ELA 0.2607  0.2671 02777 0.2950 0.3093 0.3372 0.3636  0.4025  0.4339
0.2075 0.2122  0.2246  0.2406 0.2568  0.2739  0.2979  0.3349  0.3655

Best 6 3 4 6 6 4 3 3 6
30 33 32 30 30 32 33 33 30

Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ELA 02571 02569 02716 0.2910 0.3091 0.3390 0.3650 0.3906  0.4256
0.2177  0.2226  0.2311  0.2437 0.2649 0.2894 0.3124 0.3415 0.3691

Best 5 7 3 2 4 5 7 7 7
31 29 33 34 32 31 29 29 29

Pwil <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

From the analysis of Table 3, the following results arise:

*  The ELA values are better for the algorithms using bagging than for baseline classifiers
at all the noise levels for the two borderline noise models studied.

*  The most favorable advantages for each method using bagging generally occur at
medium-high noise levels (from 20-25% onwards).

*  These differences are usually more noticeable in the RIPPER algorithm, followed by
PART, C4.5, and finally C5.0.
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*  The number of datasets in which each algorithm shows a greater robustness provides
clear results in favor of bagging, being the best in most datasets.

*  The p-values of Wilcoxon’s test confirm the robustness of the bagging schemes com-
pared to their non-application.

Figure 2 shows the box-plots for the ELA values of each classification method on
datasets with borderline label noise. Figure 2a—d show the plots for neighborwise borderline
noise, whereas Figure 2e-h show the distributions for non-linearwise borderline noise.
These plots show that the ELA medians and interquartile ranges of the methods that use
bagging are generally lower compared to those that do not. It is also observed that the
methods not using bagging often present more outliers in their robustness results at lower
noise levels than if they consider it.

The above results show the efficacy of bagging when dealing with label noise at
decision boundaries between classes. The bagging-based schemes obtain the highest
accuracy and robustness with respect to their non-bagging counterparts. The partial
consideration of mislabeled samples when creating the subsamples from the original
training set in bagging can make it so that only some classifiers and some of the parts of
the boundaries among classes are impaired. Because of this, the global system may be less
affected than it is when creating a single model from the whole dataset containing errors.
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Figure 2. Distributions of robustness results (ELA) for each classification algorithm (C4.5, RIPPER,

(h)

PART, and C5.0) at each noise level and borderline noise model (neighborwise and non-linearwise).
(a) C4.5 (neighborwise); (b) RIPPER (neighborwise); (c) PART (neighborwise); (d) C5.0 (neighborwise);
(e) C4.5 (non-linearwise); (f) RIPPER (non-linearwise); (g) PART (non-linearwise); (h) C5.0 (non-linearwise).

5. Conclusions

This research has focused on a comparison of the behavior of bagging-based ensembles
against their individual components when the data is affected by borderline label noise. A
total of 612 noisy datasets, considering various models and noise levels, have been used
to analyze this comparison. On these datasets, the C4.5, RIPPER, PART, and C5.0 robust
learners have been employed to create classifiers with and without the usage of bagging.
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The results derived from the experimentation carried out have shown that bagging
provides better accuracy and robustness results in the models and noise levels studied.
The lowest improvements of average accuracy using bagging are around 2%, whereas the
largest are around 4% and are usually obtained from the noise levels 15-20%. In these noise
levels, a larger amount of noisy samples are available, producing greater advantages in
favor of bagging. The quantity of datasets where bagging provides the highest accuracy
is always above 27 (out of 36) at each noise level and noise model, regardless of the
classification algorithm (the average being 31.13). However, the robustness results show a
slightly greater superiority of the bagging-based methods, which are able to increase the
number of datasets with the best result above 28 in all cases (with an average amount of
31.44). Wilcoxon’s test supports the good behavior of bagging, providing p-values below
0.001 in all the comparisons.

The main hypothesis to explain the better results of bagging-based methods with
borderline noise is that the bootstrap resampling procedure may cause each model to be
affected by only some of the borderline samples. Thus, the separability between classes
can be increased, and the classifiers do not overfit the noisy data as much as in the case
where bagging is not considered. Although it should be noted that the use of ensembles
increases the computational cost, since several models are created from the training set, the
advantages in accuracy and robustness offered by bagging in this scenario imply that it can
be recommended as a simple and effective way to deal with borderline label noise.

Among the limitations and possibilities for improvement of this work, it may be inter-
esting to analyze the imbalance ratio and other well-known characteristics of classification
data, such as the dispersion of samples and the overlapping among classes [36], before and
after introducing borderline label noise, determining those cases in which bagging provides
better results. Another aspect to address is the analysis of the samples that are part of each
subsample created by bagging, computing the number of clean and noisy samples at class
boundaries in each one in order to deepen the understanding of the circumstances that
make bagging work better with this type of complex data.

In future works, the synergy between bagging and preprocessing methods for the
treatment of noisy data will be studied in order to test their joint operation when dealing
with borderline label errors. Furthermore, the behavior of bagging when the data is affected
by other types of noise in the borderline region, such as attribute noise, must be also
studied.
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